
 
 

 
 

Doctoral Dissertation 
Doctoral Program in Mechanical Engineering (34th Cycle) 

 
 

Electromechanical Modelling and 
Analysis of Piezoelectric Smart 
Structures: Energy Harvesting, 
Static and Dynamic Problems 

 
 

By: 

Mahmoud Askari 
****** 

 
Supervisor(s): 

Prof. Cristiana Delprete, Supervisor 
Prof. Eugenio Brusa, Co-Supervisor 

 
 
Doctoral Examination Committee: 
Prof. Flavia Libonati, Università di Genova 
Prof. Gabriele Cricri, Università degli Studi di Napoli Federico II 

 
 

Politecnico di Torino 
2022 

http://www.unina.it/
http://www.unina.it/


ii 
 

 

 

 

Declaration 
 
 

I hereby declare that the contents and organization of this dissertation constitute my 
own original work and does not compromise in any way the rights of third parties, 
including those relating to the security of personal data. 
 
 
 

Mahmoud Askari 
2022 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
* This dissertation is presented in partial fulfillment of the Ph.D. degree in the 
graduate school of Politecnico di Torino (ScuDo). 



iii 
 

 

 

 

Dedication 
 
 

I would like to dedicate this thesis to my loving parents who have 
always given me their infinite love, kindness, and support without 

any expectation!  



iv 
 

 

 

 

Acknowledgment 

 
 

This dissertation is the product of the passionate encouragement and assistance I 
received from numerous individuals, both directly and indirectly. I owe them a great 
deal for their guidance, advice, assistance, and contributions to the production of 
this work. 

First and foremost, I would like to express my sincere gratitude and special 
appreciation to my supervisors Prof. Cristiana Delprete and Prof. Eugenio Brusa, 
who placed their trust in me, and provided the space for me to develop both 
personally and professionally. Their bold characters have persuaded me to regard 
them as mentors on several occasions over the last few years, and I wish I could 
replicate more of their characteristics. I consider myself really fortunate to work 
under their supervision and will always be indebted to them for their support and 
assistance. 

During my Ph.D. course at Politecnico di Torino, I had the privilege of 
meeting some of the most amazing people, namely Maria Grazia Angelillo, Nicola 
Ruggiero and Vilma Boaglio, those who were always available to provide me with 
any help and support. 

Special thanks go to my favorite Italian, Prof. Elvio Bonisoli, who has been a 
wonderful friend to me since the first days I started my work at Politecnico di 
Torino. Despite his hectic schedule, he always tried to make time for discussions 
and guiding me toward the development of my career. 

Selfishly, I would like to thank me for long working hours that are illegal 
under labor laws, and for never giving up when situation became tight on occasion. 
The experience I have gained as a graduate student in the Department of Mechanical 



v 
 

and Aerospace Engineering (DIMEAS) of Politecnico di Torino is invaluable. I 
know that I am only at the beginning of my academic career but my appreciation of 
Mechanical Engineering as a part of my life has increased significantly after 
attending this university, as well as multiple classes presented by the pioneers of 
this field. 

I also would like to extend my appreciation to Coffee Espresso, which played 
a critical part in keeping me alive and energized throughout the last three years. 

Last but not least, my sincere appreciation to my family for their continuous 
love, assistance, and support. I am forever beholden to my parents; they instilled in 
me the confidence to venture outside my comfort zone and pursue my own destiny. 
Without them, this journey would not have been possible, and I dedicate this 
milestone to them. 

 

 

 

 

 

 

  



vi 
 

 

 

 

Summary 

 
 

Piezoelectric materials are capable of converting mechanical deformation to electric 
voltage and vice versa. Due to these features, they have been widely used in many 
engineering applications such as vibration energy harvesting, sensing and actuation 
technology. This dissertation is divided into two parts. Following the introduction, 
Part 1 consists of Chapters 2 and 3 dealing with analytical and numerical 
electromechanical modelling and analysis of different piezoelectric smart structures 
proposed for vibration energy harvesting. Part 2 consists of Chapters 4 to 7 covering 
analytical modeling of dynamic and static problems for piezoelectrics 
bimorph/unimorph structural elements such as beams, plates, and shells with 
substrates made of functionally graded materials (FGMs) and porous materials.  

Piezoelectric vibration energy harvesting has been investigated by many 
researchers from different disciplines throughout the last two decades. The ultimate 
goal of this line of research is to power small electronic components by harvesting 
the ambient vibration available in their environment. Taking into account the issues 
and shortcomings of available studies, the former part of this present work is 
focused on developments of reliable piezoelectric energy harvesting models for a 
unimorph cantilevered beam, a novel multi-beam smart structure, and a bimorph 
plate harvester with porous substrate, by means of both analytical and numerical 
techniques. First of all, analytical modeling of the unimorph piezoelectric harvester 
is presented based on the thin-beam theory, followed by its numerical model 
simulated in the commercial software of COMSOL Multiphysics®. Using several 
of this unimorph harvester, as well as two identical proof masses, a novel multi-
beam piezoelectric structure is then proposed for harvesting vibration from low 
frequency applications (below 100 Hz). Moreover, regarding the bimorph plate 
harvesters with substrate containing porosities, an exact electromechanical model 
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based on shear deformation theories is presented, which can be used for analyzing 
moderately thick and thick plate-like energy harvester configurations. For each of 
such piezoelectric scavengers, the respective electromechanical response to 
external harmonic excitation is extracted, reliability of the models is verified, and 
finally detailed parametric studies are presented to demonstrate the performance of 
the scavengers. 

On the other hand, developing computationally efficient but accurate 
electromechanical models is of great importance to the research community of the 
rapidly growing and multi-disciplinary area of piezoelectric smart structures. 
Therefore, the focus in the latter part of this thesis is placed on proposing 
comprehensive analytical solutions for the particular problems of free vibration, 
wave propagation and buckling analysis of beam-, plate-, and shell-like smart 
sandwich structures consisting of functionally graded or porous substrates, and 
integrated piezoelectric layer(s). Analytical methods, as long as they are available, 
are usually much faster than the numerical solution techniques such as the finite 
element modeling and other energy-based discretization techniques. To study the 
above-mentioned problems analytically, the governing equations of each system 
are first derived based on higher-order shear deformation theories, and through the 
use of Hamilton’s principle and Maxwell’s equation. Depending on the type of 

boundary conditions, the obtained governing equations, that are highly coupled, are 
solved using Navier’s approach, state space approach and Galerkin method. As the 

systems response, closed-form expressions have been extracted for the wave 
characteristics, free vibration, and buckling problems of the systems of interest, 
providing the opportunity to study the effects of the systems parameters explicitly, 
and understand the physics of the problem clearly. Finally, the effects of variety of 
the systems parameters such as characteristics of selected materials, mechanical and 
electrical boundary conditions, as well as geometrical properties are studied in 
detail. The analytical models presented in this part of the thesis not only furnish 
benchmark solutions of shear deformation theories for the piezoelectric coupled 
structures but also provide insight into the significance of shear deformation on the 
response. The exact results obtained from those analytical models can also be used 
for verification of the numerical approaches. 
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Chapter 1 
 
Introduction 
 
1.1 An Overview of Smart Structures 
Numerous definitions have been presented in the literature for smart or intelligent 
structures, which differ in many aspects from one engineering or science discipline 
to another.  In spite of such varieties, it is widely accepted that a smart structure is 
a system containing multifunctional components which have both life features and 
artificial intelligence (see Fig. 1.1). The life features concern with the fact that 
intelligent structures can perform sensing, actuation and control, the characteristics 
that exist in every living thing. These functions or features can either be inherent 
properties of the smart structure or be synthetically embedded in it. On the other 
hand, the artificial intelligence feature is concerned with the notion that each 
intelligent structure possesses unique capabilities, via computers, microprocessors, 
and so on, to adapt to environmental changes/conditions and external stimuli in 
order to accomplish the stated objectives and provide adaptive functionality. Smart 
materials, which are used to design intelligent structures, refer to those materials 
that are capable of changing their structure or composition, electrical and/or 
mechanical properties, or even their functions in response to some environmental 
stimuli such as temperature, pressure, magnetic and electric fields. For instance, 
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piezoelectrics, magnetostrictive, and shape memory alloys (SMAs) are some 
examples of smart materials that convert various types of energy into mechanical 
deformation and vice versa. Other examples include magneto- and electro-
rheological materials whose rheological properties are controlled by application of 
external magnetic and electric fields, respectively. In Table 1.1 are presented a list 
of some smart materials alongside their corresponding stimulus and response forms. 
The listed materials are classified into two categories of sensors and actuators 
applications. A critical property of the change or response of smart materials to 
environmental stimuli is reversibility, which indicates that the beneficial physical 
impact can be easily adjusted by simply altering the condition of the environmental 
stimulation. Due to their great features and wide applications, the design and 
analysis of intelligent structures has been a hot topic for many years among 
researchers from different disciplines. A comprehensive description of smart 
materials/structures and their applications can be found in [1]. 
 

 
Fig. 1.1: Conceptual definition and attributes of intelligent structures [2] 

 
Among various types of intelligent materials, piezoelectrics have gained 

much importance and stand out as the most commonly used active material in many 
applications such as vibration control and energy harvesting, the areas that are of 
great importance to the subject of this dissertation. Piezoelectrics are a class of 
smart materials being capable of converting mechanical deformation into electrical 
charge and vice versa. The former effect is called direct piezoelectric effect and the 
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latter is the converse piezoelectric effect. Piezoelectrics have a wide range of 
applications and can be used as sensors (such as many accelerometers), actuators 
(provide a voltage to create a motion) and energy scavengers because the charge 
generated from motion can be harvested and stored. Leaving much of the details to 
the next subsection, it was briefly discussed here the significance of piezoelectrics 
in design of sensors and actuators. From the structural point of view, it is worth 
noting that piezoelectric materials are often used in the forms of patches or layers 
attached to host structures made of different materials such as metals, composites, 
and functionally graded materials (FGMs). However, since the smart structures 
investigated in the present dissertation are assumed to be composed of either FGM 
or porous structural elements integrated with piezoelectric layers, the definitions, 
properties, and constitutive equations of such materials are presented in the next 
subsections. The specific applications/capabilities of such smart structures will be 
highlighted in the respective chapters. 
 

 

Table 1.1: Some of smart materials used in sensor and actuator technology [3] 
 Material Class Stimulus Response 

Se
ns

or
s 

Pyroelectrics Temperature Change Electric Polarization 

Piezoelectrics Mechanical Strain Electric Polarization 

Electrostrictors Mechanical Strain Electric Polarization 

Magnetostrictors Mechanical Strain Change in Magnetic Field 

Electroactive Polymers Mechanical Strain Electric Polarization 

Electroluminescent Electric Field Light Emission 

Photoluminescent Incident Light Light Emission 

Electrochromic Electric Field Color Change 

A
ct

ua
to

rs
 

Piezoelectrics Electric Current Mechanical Strain 

Electrostrictors Electric Current Mechanical Strain 

Magnetostrictors Magnetic/Electric Field Mechanical Strain 

Shape Memory Alloys Temperature Change Mechanical Strain 

Electroactive Polymers Electric Field/pH change Mechanical Strain 

Electrorheological Fluids Electric Field Viscosity Change 

Magnetorheological Fluids Magnetic Field Viscosity Change 
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1.2 Piezoelectric Materials 
Piezoelectricity, as a research field in crystal physics, was discovered by the 
brothers Jacques Curie and Pierre Curie in 1880 [2]. The term “piezo” derives from 

a Greek word meaning for pressure; therefore, piezoelectricity translates as pressure 
electricity. As mentioned earlier, the direct piezoelectric effect (also called 
piezoelectric effect) is used in design of sensors while the converse effect is the 
basis of piezoelectric actuating devices. In Fig. 1.2 are schematically shown both 
direct and converse piezoelectric effects, in which mechanical and electric fields 
are converted to each other. For clarity, the magnitude of deformations has been 
exaggerated in both cases. As seen from Figure 1.2a, an electric charge is generated 
when a compressive load is applied to piezoelectric material due to the coupling 
between the electrical and mechanical fields. On the actuation side, Fig. 1.2b 
displays that application of an electric voltage to the piezoelectric element results 
in mechanical strain in its structure, again because of the mechanical and electrical 
fields coupling. It is important to note that both direct and converse effects usually 
co-exist in a piezoelectric material. This means that in an application of 
piezoelectric materials where the direct effect is of specific interest (e.g. in the case 
energy harvesting), ignoring the existence of the converse effect would not be 
consistent thermodynamically. 

 

 
Fig. 1.2: Schematic representation of direct and converse piezoelectric effects [2] 

 
Piezoelectricity is found in materials either naturally or by artificial means. 

Crystals such as ceramics, polymers and composites are some examples of man-
made piezoelectrics. On the other hand, quartz, ammonium, bone and even wood 
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are some of the common natural piezoelectric materials. The most commonly 
produced piezoelectric material is lead zirconate titanate (so-called PZT), a ceramic 
perovskite material which is manufactured via a complicated process [4]. Some 
other known piezoelectric ceramics (or piezoceramics) are barium titanate and lead 
titanate as well. Another typical piezoelectric material is polyvinylidene fluoride 
(so-called PVDF), which is not a ceramic but a polymeric material. Piezoceramics 
are widely chosen for different applications due to their physical strength, chemical 
inertness, and their relatively low manufacturing cost. More specifically, PZTs are 
the most popular piezoceramics because not only they offer an even higher 
sensitivity and greater operating temperature as compared to other piezoceramics 
but also their properties can be optimized by appropriate adjustment of the 
zirconate-titanate ratio to suit specific applications. Some examples of PZT 
ceramics include PZT-2, PZT-4, PZT-5A and PZT-5H whose mechanical and 
electrical properties are listed in Table 1.2. To prepare a piezoelectric ceramic, fine 
powders of the component metal oxides are combined in precise quantities and then 
heated until a homogeneous powder is formed. The powder is combined with an 
organic binder and molded into required structural elements such as discs, beams, 
plates, and shells. After cooling, the elements are shaped or cut to the desired 
dimensions, and electrodes are placed to the appropriate surfaces. Above a specific 
temperature, referred to as the Curie temperature, each perovskite crystal in the 
fired ceramic element exhibits a simple cubic symmetry devoid of a dipole moment. 

Most piezoelectric materials are naturally isotropic and do not have the dipole 
effect to generate piezoelectricity so that an important process called poling is 
required. Usually, the direction of polarization in the elemental crystals, that 
comprise a piezoelectric domain, are different from each other (see Fig. 1.3a), such 
that at a global level the domain is not polarized. Hence, a strong electric field is 
applied to the material, therefore, each crystal changes its polarization direction 
along the applied field, and when the external field is removed, the material retains 
a degree of polarization. (see Fig. 1.3b). It is worth noting that, because each crystal 
has only six possible polarization directions, the level of domain's polarization can 
never equal that of a single crystal. In Figure 1.3 is observed that, after polarization, 
the direction of the elemental poling is typically aligned with the direction of the 
coercive field. Depending on the material anisotropy, the produced polarization can 
be in any direction, which can lead to displacements of varying amplitude and 
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direction. This feature allows manufacturers to fabricate piezoelectric materials in 
such a manner that the resultant displacement can be selectively controlled in a 
particular direction. A piezoelectric material can lose its piezoelectric effect when 
it undergoes the following severe conditions: (i) being subjected to high mechanical 
stresses, which leads to distortion of dipoles alignment, (ii) applying a significant 
electric field in the opposite direction of the polarization and (iii) heating the 
material above its Curie temperature. Accordingly, in most practical cases, the 
operating temperature of the piezoelectric material has to be kept below its Curie 
temperature to avoid permanent damage to the material. 
 

 
(a) (b) (c) 

Fig. 1.3: Schematic representation of electric dipoles in a piezoelectric domain (a) 
prior to poling, (b) poling under a constant electric field, and (c) after poling 

 
Due to the coupling between mechanical and electrical fields, the constitutive 

equations of piezoelectric materials are expressed as a combination of both 
mechanical and electrical characteristics. The respective constitutive equations, 
which connect the electrical domain (with electric field {𝐸} and displacement {𝐷}) 
to the mechanical domain (with stress field {𝜎} and strain field {휀}) are expressed 
in the following general form for linear piezoelectric materials: 

{휀} = [𝑠]𝐸{𝜎} − [𝑑]𝑇{𝐸} (1.1a) 
{𝐷} = [𝑑]{𝜎} + [𝜖]𝜎{𝐸} (1.1b) 

in which [𝑠]𝐸 is the matrix of compliance coefficients under a constant electrical 
filed, [𝜖]𝜎 is the dielectric permittivity under a constant stress, and [𝑑] and [𝑑]𝑇 are 
the matrices of the electromechanical coefficients for direct and converse 
piezoelectric effects, where 𝑇 stands for the transpose. 



Introduction  7 
 
Table 1.2: Mechanical and electrical properties of some PZT materials [5] 

 PZT Material 

Property PZT-2 PZT-4 PZT-5A PZT-5H 

Elastic moduli (GPa)      
𝑐11  134.9 139.0 99.2 127.2 
𝑐12  67.9 77.8 54.0 80.2 
𝑐33  113.3 115.0 86.9 117.4 
𝑐13  68.1 74.3 50.8 84.7 
𝑐55  22.2 25.6 21.1 23.0 
𝑐66  33.4 30.6 22.6 23.5 
Piezoelectric moduli (C/m2)      
𝑒31  -1.82 -5.2 -7.2 -6.6 
𝑒33  9.05 15.1 15.1 23.2 
𝑒15  9.8 12.7 12.3 17.0 
Dielectric moduli (nF/m)      
Ξ11  4.46 6.75 15.30 15.10 
Ξ22  4.46 6.75 15.30 15.10 
Ξ33  2.4 5.90 15.00 12.70 
Mass density (kg/m3)      
𝜌  7600 7500 7750 7500 
Curie temperature (oC)  NA 328 365 193 

 
The constitutive equations (1.1) can also be written in the following forms: 

{𝜎} = [𝑐]{휀} − [𝑒]𝑇{𝐸} (1.2a) 
{𝐷} = [𝑒]{휀} + [Ξ]{𝐸} (1.2b) 

where: 

[𝑐] = [𝑠]−1 
(1.3) [𝑒] = [𝑠]−1[𝑑] 

[Ξ] = [𝜖] − [𝑑][𝑠]−1[𝑑] 

In Eq. (1.2), [𝑐], [𝑒], [Ξ] are the matrices of stiffness, piezoelectric, and permittivity 
coefficients, respectively. It is worthy to note that the first equation in (1.1) or (1.2) 
denotes the converse piezoelectric effect (i.e., actuation mechanism) whilst the 
second equation represents the direct effect (i.e., sensing mechanism). In the present 
dissertation, the piezoelectric materials are considered to be transversely isotropic. 
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PZTs belong to this class of piezoelectric materials. Hence, the constitutive 
equations (1.2) can be simplified and rewritten in particular matrix forms for such 
materials. To that, first, consider a piezoelectric domain as shown in Fig. 1.4: 

 

 
Fig. 1.4: A 3D piezoelectric domain 

 

Depending on the direction of polarization, Eq. (1.2) can be rewritten in the 
following forms for transversely isotropic piezoelectric materials: 

 
With 𝑧 being the direction of polarization (see Fig. 1.4): 
 

{
 
 

 
 
𝜎𝑥𝑦
𝜎𝑦𝑦
𝜎𝑧𝑧
𝜎𝑦𝑧
𝜎𝑥𝑧
𝜎𝑥𝑦}

 
 

 
 

=

[
 
 
 
 
 
𝑐11 𝑐12 𝑐13 0 0 0
𝑐12 𝑐11 𝑐13 0 0 0
𝑐13 𝑐13 𝑐33 0 0 0
0 0 0 𝑐55 0 0
0 0 0 0 𝑐55 0
0 0 0 0 0 𝑐66]

 
 
 
 
 

{
 
 

 
 
휀𝑥𝑦
휀𝑦𝑦
휀𝑧𝑧
𝛾𝑦𝑧
𝛾𝑥𝑧
𝛾𝑥𝑦}

 
 

 
 

−

[
 
 
 
 
 
0 0 𝑒31
0 0 𝑒31
0 0 𝑒33
0 𝑒15 0
𝑒15 0 0
0 0 0 ]

 
 
 
 
 

{

𝐸𝑥
𝐸𝑦
𝐸𝑧

} 

(1.4a) 
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{

𝐷𝑥
𝐷𝑦
𝐷𝑧

} = [

0 0 0 0 𝑒15 0
0 0 0 𝑒15 0 0
𝑒31 𝑒31 𝑒33 0 0 0

]

{
 
 

 
 
휀𝑥𝑦
휀𝑦𝑦
휀𝑧𝑧
𝛾𝑦𝑧
𝛾𝑥𝑧
𝛾𝑥𝑦}

 
 

 
 

+ [
Ξ11 0 0
0 Ξ11 0
0 0 Ξ33

] {

𝐸𝑥
𝐸𝑦
𝐸𝑧

} 

(1.4b) 

 
The constitutive equations of the piezoelectric materials poled in the other 

directions (i.e., 𝑥 and 𝑦 directions) can be obtained by applying some mathematical 
operations (i.e., transformation or rotation) to the matrices presented in the 
constitutive equations of transversely polarized piezoelectric materials. For 
instance, for the piezoelectric materials poled in the 𝑥-direction, the respective 
equations can be derived through a 90o degree rotation around the 𝑦-direction, 
followed by a 180o rotation around the 𝑧-direction. A similar procedure has to be 
adopted for those poled though the 𝑦-direction. Accordingly, the resulting 
constitutive equations are given below: 

 
For the piezoelectrics poled through the 𝑥-direction (see Fig. 1.4): 

 

{
 
 

 
 
𝜎𝑥𝑦
𝜎𝑦𝑦
𝜎𝑧𝑧
𝜎𝑦𝑧
𝜎𝑥𝑧
𝜎𝑥𝑦}

 
 

 
 

=

[
 
 
 
 
 
𝑐33 𝑐13 𝑐13 0 0 0
𝑐13 𝑐11 𝑐12 0 0 0
𝑐13 𝑐12 𝑐11 0 0 0
0 0 0 𝑐66 0 0
0 0 0 0 𝑐55 0
0 0 0 0 0 𝑐55]

 
 
 
 
 

{
 
 

 
 
휀𝑥𝑦
휀𝑦𝑦
휀𝑧𝑧
𝛾𝑦𝑧
𝛾𝑥𝑧
𝛾𝑥𝑦}

 
 

 
 

−

[
 
 
 
 
 
𝑒33 0 0
𝑒31 0 0
𝑒31 0 0
0 0 0
0 0 𝑒15
0 𝑒15 0 ]

 
 
 
 
 

{

𝐸𝑥
𝐸𝑦
𝐸𝑧

} 

(1.5a) 
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{

𝐷𝑥
𝐷𝑦
𝐷𝑧

} = [

𝑒33 𝑒31 𝑒31 0 0 0
0 0 0 0 0 𝑒15
0 0 0 0 𝑒15 0

]

{
 
 

 
 
휀𝑥𝑦
휀𝑦𝑦
휀𝑧𝑧
𝛾𝑦𝑧
𝛾𝑥𝑧
𝛾𝑥𝑦}

 
 

 
 

+ [
Ξ33 0 0
0 Ξ11 0
0 0 Ξ11

] {

𝐸𝑥
𝐸𝑦
𝐸𝑧

} 

(1.5b) 

 

For the piezoelectrics poled through the 𝑦-direction (see Fig. 1.4): 

 

{
 
 

 
 
𝜎𝑥𝑦
𝜎𝑦𝑦
𝜎𝑧𝑧
𝜎𝑦𝑧
𝜎𝑥𝑧
𝜎𝑥𝑦}

 
 

 
 

=

[
 
 
 
 
 
𝑐11 𝑐13 𝑐12 0 0 0
𝑐13 𝑐33 𝑐13 0 0 0
𝑐12 𝑐13 𝑐11 0 0 0
0 0 0 𝑐55 0 0
0 0 0 0 𝑐66 0
0 0 0 0 0 𝑐55]

 
 
 
 
 

{
 
 

 
 
휀𝑥𝑦
휀𝑦𝑦
휀𝑧𝑧
𝛾𝑦𝑧
𝛾𝑥𝑧
𝛾𝑥𝑦}

 
 

 
 

−

[
 
 
 
 
 
0 𝑒31 0
0 𝑒33 0
0 𝑒31 0
0 0 𝑒15
0 0 0
𝑒15 0 0 ]

 
 
 
 
 

{

𝐸𝑥
𝐸𝑦
𝐸𝑧

} 

(1.6a) 

{

𝐷𝑥
𝐷𝑦
𝐷𝑧

} = [

0 0 0 0 0 𝑒15
𝑒31 𝑒33 𝑒31 0 0 0
0 0 0 𝑒15 0 0

]

{
 
 

 
 
휀𝑥𝑦
휀𝑦𝑦
휀𝑧𝑧
𝛾𝑦𝑧
𝛾𝑥𝑧
𝛾𝑥𝑦}

 
 

 
 

+ [
Ξ11 0 0
0 Ξ33 0
0 0 Ξ11

] {

𝐸𝑥
𝐸𝑦
𝐸𝑧

} 

(1.6b) 
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1.3 Functionally Graded Materials (FGMs) 
In late 1980’s, Japanese scientists discovered a type of multifunctional composites, 

called functionally graded materials (FGMs), which contain a spatial variation in 
composition, aiming to control variations in thermal, structural, or functional 
properties. The properties of FGMs can vary smoothly with respect to their 
dimensions based on a specific graduation. In other words, the microstructure of 
FGMs vary from one material to another, enabling the structure to have the best of 
both materials (see Fig. 1.5). For instance, when FGMs are designed for the purpose 
of thermal or corrosive resistance, both strengths of materials may be taken into 
account to avoid fracture, fatigue, and stress corrosion cracking. To fabricate 
FGMs, various procedures such as bulk (particulate processing), preform 
processing, layer processing, and melt processing are used [6]. The aircraft and 
aerospace industries, as well as the computer circuit industry are interested to 
develop materials capable of withstanding extremely high thermal gradients. This 
is often accomplished by using a ceramic layer connected with a metallic layer [7–

11]. 
 

 
Fig. 1.5: Composition of materials in microstructure of FGMs 

 
In structures made of FGMs, the volume fractions of two or more materials 

are varied continuously as a function of position along certain dimension(s) of the 
structure to achieve a required function. For example, thermal barrier plate 
structures for high-temperature applications may form from a mixture of ceramic 
and a metal. The composition is varied from a ceramic-rich surface to a metal-rich 
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surface, with a desired variation of the volume fractions of the two materials in 
between the two surfaces. The ceramic constituent of the material provides the high-
temperature resistance due to its low thermal conductivity. The gradual change of 
material properties can be tailored to different applications and working 
environments. This makes FGMs preferable in many applications. 

Consider a plate of total thickness 2ℎ and composed of functionally graded 
material through the thickness. It is assumed that the material is isotropic, and the 
grading is assumed to be only through the thickness. The profile for volume fraction 
variation can be expressed by [8] 

𝑃(𝑧) = 𝑃𝑏 + (𝑃𝑡 − 𝑃𝑏)𝑉(𝑧) (1.7a) 

𝑉(𝑧) = (
1

2
+
𝑧

2ℎ
)
𝑁

 (1.7b) 

where 𝑃(𝑧) denotes a generic material property such as modulus and mass density, 
𝑃𝑡 and 𝑃𝑏 denote the property of the top and bottom faces of the plate, respectively, 
and 𝑁 is a parameter that dictates the material variation profile through the 
thickness. Here we assume that moduli 𝐸 and 𝐺, and density vary according to 
equation (1.7). In case the constituents of the FGM structure are ceramic and metal, 
Eq. (1.7) can be rewritten as: 

𝑃(𝑧) = 𝑃𝑚 + (𝑃𝑐 − 𝑃𝑚) (
1

2
+
𝑧

2ℎ
)
𝑁

 (1.8) 

in which 𝑃𝑚 and 𝑃𝑐 denote the property of the metal and ceramic constituents. One 
can simply realize from Eq. (1.8) that setting 𝑁 = 0 results in a structure only made 
of a ceramic while it is made of only metal when very large values are considered 
for the power-law index (i.e., 𝑁 ≅ ∞). This can be achieved during fabrication of 
FGMs. 
 

 
Fig. 1.6: Cross-section of an FGM plate 
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Despite great features of FGMs, it is recently realized that micro pores occur 
in their structure as defects due to technical problems during their fabrication [12]. 
To include the effect of such undesired porosities, which significantly influence the 
mechanical response of FGMs (under various loading conditions), the modified rule 
of mixture is introduced to describe and approximate the corresponding effective 
material properties. To that, two types of porosity distribution, namely Even and 
Uneven patterns (see Fig. 1.7), have been usually considered in the literature, as: 

Even porosity distribution: 

𝑃(𝑧) = 𝑃𝑚 + (𝑃𝑐 − 𝑃𝑚) (
1

2
+
𝑧

2ℎ
)
𝑁

−
𝑒0(𝑃𝑐 + 𝑃𝑚)

2
 (1.9) 

Uneven porosity distribution: 

𝑃(𝑧) = 𝑃𝑚 + (𝑃𝑐 − 𝑃𝑚) (
1

2
+
𝑧

2ℎ
)
𝑁

− 𝑒0(𝑃𝑐 + 𝑃𝑚) (
1

2
−
|𝑧|

2ℎ
) (1.10) 

where the dimensionless parameter 𝑒0 (0 ≤ 𝑒0 < 1) denotes the porosity volume 
fraction of the Porous FGM substrate. It is worth noting that zero value for this 
parameter (i.e., 𝑒0 = 0) represents a FGM structure with no porosity, which is 
called Perfect FGM in the literature. 
 

 

(a) Even porosity distributiuon 

 

(b) Uneven porosity distributiuon 

Fig. 1.7: Schematic representation of Even and Uneven porosity distributions in FGMs 
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To provide a better illustration of the varying properties in FGM structures, 
variation of the effective Young’s modulus versus the power-law index is plotted 
in Fig. 1.8, for an FGM domain with the cross-section given in Fig. 1.6. The 
respective constituents are, for instance, assumed to be Aluminum (as the metal 
part) and Alumina (as the ceramic part) with the following properties: 
 
Aluminum: 𝐸𝑚 = 70 GPa, 𝜌𝑚 = 2700 kg/m3, 𝜈 = 0.3 
Alumina: 𝐸𝑐 = 380 GPa, 𝜌𝑐 = 3800 kg/m3, 𝜈 = 0.3 

 

 
Fig. 1.8: Variation of Young’s modulus with respect to the power-law index in perfect 
FGMs (2ℎ = 100𝑚𝑚) 

 
Since FGMs are isotropic materials, their constitutive stress-strain relations 

simply obey the Hooke’s law, and can be expressed in the general form of: 

{𝜎𝑖𝑗} = [𝑄𝑖𝑗]{휀𝑖𝑗} (1.11) 

where 𝜎𝑖𝑗 and 휀𝑖𝑗 are the components of the stress and strain fields, respectively, 
and 𝑄𝑖𝑗 represents the elastic coefficients. For the plane stress condition, Eq. (1.11) 

can be expressed in the following form: 
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 (1.12) 

where, for FGMs with varying properties through the thickness direction (which is 
usually considered as 𝑧-direction), 𝑄𝑖𝑗’s are given as: 

𝑄11 = 𝑄22 =
𝐸(𝑧)

1 − 𝜈2
 , 𝑄12 = 𝜈𝑄11 , 𝑄44 = 𝑄55 = 𝑄66 =

𝐸(𝑧)

2(1 + 𝜈)
 (1.13) 

 
 

1.4 Porous Materials 
Porous materials refer to those materials containing internal pores. Their properties 
are basically controlled by the internal micro pores (or voids) that are distributed in 
their structure. The internal pores are classified into two major types: open and 
closed pores. Open pores connect to the outside of the material while closed pores 
are isolated from the outside and may contain a fluid (see Fig. 1.9). For most 
industrial applications of porous materials, open pores are required. Porosity, either 
closed or open, is therefore a characteristic of porous media that strongly defines 
the properties of the material, such as density, stiffness, and specific surface area. 
Porous materials can be either natural such as rocks and soil, wood, and biological 
tissues (e.g., bone) or man-made such as ceramics, foams, and cellular metals (e.g. 
cellular Aluminum) [13]. Porous metals, ceramics and glasses are particularly 
important for industrial applications, in chemistry, mechanical engineering, 
biotechnology and electronics. 
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Fig. 1.9: Schematic illustration of different morphology of pores 

 
Foams and other porous materials with a cellular structure are known to have 

many interesting combinations of physical and mechanical properties, such as high 
stiffness in conjunction with very low specific weight or high gas permeability 
combined with high thermal conductivity. For this reason, nature frequently uses 
cellular materials for constructional or functional purposes (e.g. wood or bones). 
Metallic cellular materials (or porous metals) have the general attractive features of 
metals, such as high flow stress and toughness, solid state mechanical formability, 
resistance to thermal exposure and to many environments, coupled with high 
thermal and electrical conductivity, combined with the attributes of cellular 
materials. Microcellular metals are now commercially available; thus, these are 
nowadays an area of intense current research and development, in both academia 
and industry. Compared to dense solid metals, porous metals have low density, 
large specific surface area, good energy absorption, and greater specific strength 
and stiffness. A complete discussion on porous materials and their applications is 
beyond the scope of this chapter but comprehensive descriptions concerning 
fabrication techniques, characterization and application of cellular metals and metal 
foams can be found in [14,15]. 

The basic theory of poroelasticity, first developed by Biot [16], describes the 
coupling between changes in stress, strain, pore compressibility, and the material 
properties that relate these three variables. Based on this theory, the constitutive 
equations of the linear poroelastic materials can be expressed in the following form: 

𝜎𝑖𝑗 = 2𝐺휀𝑖𝑗 + 𝜆𝑢휀𝑘𝑘𝛿𝑖𝑗 − 𝛼𝑝𝛿𝑖𝑗 (1.14) 
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where 𝐺 is the shear modulus, 𝜆𝑢 is the Lame’s parameter, 𝑝 represents pore fluid 
pressure, 𝛿𝑖𝑗 indicates the Kronecker delta, and 𝛼 is the Biot coefficient of effective 
stress (0 ≤ 𝛼 < 1), which is the ratio of the increment in fluid content to 
the volumetric strain at constant pore pressure. The volumetric strain is shown by 
휀𝑘𝑘, and equals to 휀𝑘𝑘 = 휀𝑥𝑥 + 휀𝑦𝑦 + 휀𝑧𝑧. The mentioned parameters are defined as 

𝜆𝑢 =
2𝜈𝑢𝐺(𝑧)

1 − 2𝜈𝑢
 

(1.15) 
𝑝 = 𝑀(휁 − 𝛼휀𝑘𝑘) 

where: 

𝑀 =
2𝐺(𝑧)(𝜈𝑢 − 𝜈)

𝛼2(1 − 2𝜈𝑢)(1 − 2𝜈)
 

(1.16) 

𝜈𝑢 =
3𝜈 + 𝛼𝐵(1 − 2𝜈)

3 − 𝛼𝐵(1 − 2𝜈)
 

In the above relations, 𝑀 is the Biot modulus and is defined as the increase of the 
amount of fluid, 𝜈𝑢 is the undrained Poisson’s ratio (𝜈 ≤ 𝜈𝑢 < 0.5), 휁 is the 
variation of fluid volume content, and 𝐵 is the Skempton’s coefficient and has a 
value between 0 and 1 (0 < 𝐵 < 1), showing the fluid compressibility of the 
internal pores in cellular structures. A key feature of the response of fluid-infiltrated 
porous material is the difference between two different modes, namely undrained 
and drained conditions. These two modes represent limiting behaviors of the 
material: the undrained response characterizes the condition where the fluid is 
trapped in the porous solid such that 휁 = 0, while the drained response corresponds 
to zero pore pressure 𝑝 =  0 [16]. 

Various models have been presented in the literature for the distribution of 
porosities in porous structures [148,149,154]. In most cases, the mechanical 
properties of porous structures are assumed to vary along their thickness direction 
(usually defined by 𝑧-direction) based on various symmetric/asymmetric patterns. 
In Fig. 1.10, the most commonly used porosity patterns are schematically presented. 

 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/shear-modulus
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/volumetric-strain
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(a) Pattern I 

 
(b) Pattern II 

 
(c) Pattern III 

 
(d) Pattern IV 

Fig. 1.10: Cross-section of a porous structure with various porosity distributions (2ℎ is 
the constant thickness of the structure) 

As it is seen from Fig. 1.10, the presented porosity distributions are here 
called as Pattern I, Pattern II, Patterns III and Patterns IV three of which (i.e., the 
first three profiles) are symmetric with respect to the mid-plane, while the last case 
is an asymmetric pattern. The effective mechanical properties of porous structures 
with such porosity distributions can be expressed as [148,149,154]: 

𝐸(𝑧) = 𝐸0[1 − 𝑒0𝜓(𝑧)] 
(1.17) 𝐺(𝑧) = 𝐺0[1 − 𝑒0𝜓(𝑧)] 

𝜌(𝑧) = 𝜌0[1 − 𝑒𝑚𝜓(𝑧)] 

where 𝐸(𝑧), 𝐺(𝑧) and 𝜌(𝑧) are Young’s modulus, shear modulus and the mass 

density at any point of the porous structure, respectively. Moreover, 𝐸0, 𝐺0 and 𝜌0 
are also the properties of the parent material of the porous structure. The parameter 
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𝑒0 (in the range of 0 ≤ 𝑒0 < 1) represents the porosity coefficient, and 𝑒𝑚 is a 
dimensionless parameter related to the effective mass density and is equal to 𝑒𝑚 =

1 − √1 − 𝑒0. 

The function 𝜓(𝑧) in Eq. (1.17) is defined according to the type of porosity 
pattern, as follows: 

Pattern I: 𝜓(𝑧) = cos (
𝜋𝑧

2ℎ
) (1.18a) 

Pattern II: 𝜓(𝑧) = cos (|
𝜋𝑧

2ℎ
| −

𝜋

2
) (1.18b) 

Pattern IV: 𝜓(𝑧) = cos (
𝜋𝑧

4ℎ
+
𝜋

4
) (1.18c) 

For the porosity Pattern III, in which the internal pores are uniformly 
distributed within the structure, the respective mechanical properties do not vary 
along the thickness direction and are dependent on the porosity parameter only, as: 

𝐸(𝑧) = 𝐸𝑚𝑎𝑥[1 − 𝑒0𝜓0] 
(1.19) 𝐺(𝑧) = 𝐺𝑚𝑎𝑥[1 − 𝑒0𝜓0] 

𝜌(𝑧) = 𝜌𝑚𝑎𝑥√1 − 𝑒0𝜓0 

in which the parameter 𝜓0 is obtained based on the equivalent mass of the porous 
structure for any of the cases given in Fig. 1.10, and is: 

𝜓0 =
1

𝑒0
(1 − (

2

𝜋
√1 − 𝑒0 −

2

𝜋
+ 1)

2

) (1.20) 

 
 

1.5 Piezoelectric-Based Systems: Applications and State of 
the Art 

As briefly mentioned in the preceding sections, piezoelectricity exists in materials 
either naturally or synthetically. If not all, most engineering applications of 
piezoelectric materials consist of synthetic piezoelectric materials such as PZTs, 
and PVDFs. Although PVDFs have found diverse uses in industrial applications 
such as ultrasonic transducers, microphones, hydrophones, and vibration damping 
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[17,18], their low stiffness and electromechanical coupling coefficients (when 
compared to PZTs) have limited their utilization. PZTs, on the other hand, are the 
most popular piezoceramics for engineering applications due to their strong 
electromechanical coupling. Moreover, they have the ability to optimize their 
properties to suit specific applications (by appropriate adjustment of the zirconate-
titanate ratio). As a result, PZTs (in particular PZT-5H and PZT-5A) are today the 
most commonly used piezoceramics and are found to be ideal for a variety of 
electromechanical transducers such as generators (e.g., spark ignition, solid-state 
batteries), sensors (e.g., acceleration and pressure), actuators (e.g., pneumatic, and 
hydraulic valves), and energy harvesters [4]. Piezoceramics are usually integrated 
with elastic substrates, and are not often used as pure piezo structures due to their 
fragile nature. In the following subsections, some of the main applications of smart 
structures with piezoelectric elements, which are of interest to the subject of this 
dissertation, are discussed. 
 
 

1.5.1 Piezoelectric-Based Energy Harvesters 

Recent advancements in low-power, small-sized, and remote electronic devices 
have led to the introduction of non-conventional power sources during the past 
decades. Batteries are considered conventional power sources, yet suffer from 
severe problems such as limited lifetime, and low power efficiency and energy 
storage capacity, requiring frequent recharging or replacement [19]. Another 
serious concern with chemical batteries is the environmental panorama of battery 
disposal around the world. Millions of batteries are discarded into sanitary landfills, 
where heavy metals can result in groundwater contamination [20]. Thus, solutions 
that minimize or prevent battery discarding will certainly lead to massive 
environmental advantages. A promising solution to these shortcomings has been 
found in harvesting ambient energies available in the environment. Energy 
harvesters not also provide the chance to extend the working life of small-sized and 
low-power electronics but also offer specific application to inaccessible electronics 
or those subject to costly maintenance. Variety of abundant and consistent sources 
of energy in thermal, chemical, and mechanical forms available for energy 
harvesters exist in environment [21], ranging from the industrial machinery to 
vehicles, from the human body to wild animals, from large-scale buildings to 
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bridges, and from water flow to wind. These ambient energies can be harvested to 
be used immediately or stored for later use. Mechanical vibration, kinetic energy or 
deformation energy is a widespread source of ambient energy existed in many 
applications, where energy scavenging can be beneficial. The unused vibration 
energy can be converted to usable voltage by means of piezoelectric materials based 
on their direct effect [22,23,205-209]. Although there are some other basic 
mechanisms such as electromagnetic [24–26] and electrostatic [27,28] 
transductions for the vibration-to-electricity energy conversion, piezoelectric 
transduction has received the greatest attention during recent years. Over the last 
decade, several books [20,29] and review articles [5,30–37] have appeared on the 
use of all these three transduction mechanisms covering the theoretical and 
experimental research works for low power generation from ambient vibrations. 
The main advantages of piezoelectric energy harvesters are their high power 
density, architectural simplicity, and scalability. They can be produced both in 
macro-scale to micro-scale due to the well-established thick-film and thin-film 
fabrication methods [23,38]. It is however demonstrated that piezoelectric energy 
harvesting (PEH) usually focuses on harvesting low-level energy, on the order of 
microwatts to milliwatts [32]. The motivation in this research field is owing to the 
decreasing power requirement of small electronic components, such as low-power 
micro-electromechanical systems (MEMS) (e.g. MEMS sensors) used in wireless 
sensor networks (WSNs). Therefore, along with the rapid advancements in low-
power integrated circuits and high-efficiency energy storage devices, the ultimate 
objective of the energy harvesting concept is to reach autonomous operation of the 
small-sized electronics used for healthcare, automotive applications, and 
environmental monitoring. Basically, appropriate applications for the piezoelectric 
vibration energy harvesting (PVEH) should meet some general requirements; there 
needs to be a consistent source of vibration in the selected application, battery 
replacement has to be impractical, and there must be a need to sense something 
valuable. Several applications such as WSNs, shoes, implantable pacemakers, tire 
pressure monitoring systems, and bridge and building monitoring systems have 
been identified as the most promising and widely studied applications of PEH 
systems [5,39] (see Fig. 1.10). 
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Fig. 1.11: Widely considered applications of piezoelectric energy harvesters [5] 

 
Piezoelectric materials, that are usually used for kinetic energy harvesting, include 
Aluminum Nitride (AlN), ZnO, BaTiO3, PVDF, PZT, PMN-PT, PZN-PT, and 
various piezoelectric composites such as piezoelectric macro-fiber composites 
(MFCs) [40]. Even the concept of FGMs has been considered for the piezoelectric 
materials to improve the electromechanical response of PEHs [41–44]. In some 
other studies, piezoelectric materials containing porosities have been used to design 
particular energy scavengers for applications where lightweight is a concern [45–

53]. Nevertheless, it appears from the literature that, as far as PEH research is 
concerned, PZT-5H and PZT-5A are the most widely implemented piezoceramics 
in design of energy harvesting systems. It is known that for most piezoceramics, 
usually 𝑑15 ≫ 𝑑33 > 𝑑13 where 𝑑𝑖𝑗’s are the electromechanical coupling 

coefficients (for PZTs, 𝑑33 ≈ 2𝑑31). According to the direction of polarization and 
mechanical stress, piezoelectric energy scavengers can be categorized into three 
main operation modes, namely 𝑑31, 𝑑33 and 𝑑15. As represented in Fig. 1.11(a), in 
the 𝑑31 mode (or transverse mode), the direction of polarization (i.e., the electric 
field direction, which is “3”) is perpendicular to the direction of the applied 

mechanical force/stress (which is “1”). This is the most commonly implemented 
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piezoelectric operation mode for energy harvesting, and extensively exists in 
bending-beam scavengers. On the contrary, in the 𝑑33 mode (or axial mode), the 
direction of polarization and the applied stress are identical (see Fig. 1.11(b)). This 
mode is usually employed in tensile/compressive piezoelectric harvesters or 
scavengers with interdigitated electrodes [54,55]. The last case is the 𝑑15 mode (or 
the so-called shear mode), in which the polarization direction is perpendicular to 
the direction of applied electric filed. In this mode, the electrodes are made parallel 
to the poling direction while they are made perpendicular to the poling direction in 
both 𝑑31 and 𝑑33 modes (i.e., the electric field is aligned with the polarization). 
However, because the 𝑑15 piezoelectric shear coefficient is the highest coefficient 
compared to the commonly used axial and transverse modes (that utilize the 𝑑33 
and the 𝑑31 piezoelectric strain coefficients, respectively), some researchers have 
employed the shear operation mode to design piezoelectric harvesters with higher 
power generation [56–58]. 

 
(a) d31 mode 

 
(b) d33 mode 

Fig. 1.12: Schematic illustration of 𝑑31 and 𝑑33 operation modes [5] 
 

Typically, in its simplest form, a PEH system is a cantilevered beam with one 
or two piezoelectric layers (a unimorph or a bimorph, respectively), as shown in 
Fig. 1.12 (referred from Chapter 2) along with its equivalent electrical circuit 
model. 
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(a) 

 
(b) 

Fig. 1.13: (a) Unimorph cantilever energy harvester (b) equivalent electrical circuit 
model (referred from Chapter 2) 

 
The piezoelectric harvester device is supposed to be placed on a vibrating host 

structure (e.g. a vibratory machinery), so that the piezoelectric layer(s) undergoes 
the dynamic strain, and an electric charge will be generated across the connected 
electrodes through the direct effect of piezoelectric materials. It is a common 
practice to the research community focused on the PEH field to consider a simple 
resistive load (indicated by 𝑅𝐿 in Fig. 1.12) in the electrical domain for estimating 
the performance of the system in term of power generation [22,23,27]. This 
assumption is also included in the cases investigated in the present dissertation. 
From the particular viewpoint of electronic engineering or similar subjects, the 
conversation of the alternating voltage output to a constant voltage is often required. 
This can be achieved by using a rectifier bridge (AC-to-DC converter) and a 
smoothing capacitor so that the harvested energy can be stored in a rechargeable 
small battery or a capacitor. Because the voltage levels used to charge batteries and 
capacitors are not random, it is frequently necessary to utilize a DC-to-DC converter 
(step-up or step-down) to adjust the rectified voltage output of the piezoceramic to 
the voltage required for the specific charging application. These electrical 
engineering and power electronics aspects are beyond the scope of this dissertation 
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and the relevant electrical engineering research works can be found in the literature 
[59–61]. 

Research in the rapidly growing area of PVEH requires an insight into 
different aspects of this Multiphysics problem, which includes mechanics of 
vibrating structures, constitutive behaviors of selected materials, and basic 
electrical circuit theories. Starting with the early work of Williams and Yates [24] 
in 1996, this promising way of energizing small-sized electronics and remote 
sensors has received significant attention by researchers from different engineering 
disciplines [30,32,33,35–37,39]. So far, mechanical, electrical, and civil engineers 
and even researchers from the field of material science have considerably focused 
their attention on this field, as summarized in the following. 

As can be realized from Fig. 1.13, the objective of modeling piezoelectric 
energy harvesters is to estimate the output voltage 𝑉(𝑡) across the electrical 
resistance load 𝑅𝐿 in terms of the mechanical input (base motion). The output power 
generated by the harvester can then be obtained from the calculated output voltage 
and the applied electrical load through the use of Ohm’s law. In the early 

mathematical modelling of PVEH systems, different researchers employed lumped-
parameter solution to electromechanically model the energy harvesters [62,63]. 
Later, the lumped-parameter modelling was also used for studying the maximum 
power generation and parameter optimization in PVEH structures [64,65]. While 
lumped-parameter modeling provides an initial insight into the problem by allowing 
for simple expressions, it is a simplified approximation that is limited to a single 
vibration mode and ignores critical aspects of the coupled physical system, such as 
dynamic mode shapes and accurate strain distribution information, as well as their 
effects on the electrical response. For this, Sodano et al. [66] and duToit et al. [67] 
used an improved modeling approach, the Rayleigh-Ritz type discrete formulation 
originally derived by Hagood et al. [68] for piezoelectric actuation, to model 
cantilevered piezoelectric energy harvesters (based on the Euler-Bernoulli beam 
theory). The Rayleigh-Ritz model gives a discrete model of the distributed 
parameter system, and it is a more accurate approximation compared to lumped-
parameter modeling with a single degree of freedom. It can be seen that the 
modeling the force acting on the beam due to base excitation in the distributed-
parameter formulation caused some confusion [66]. The Rayleigh-Ritz model gives 
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an approximate representation of the distributed-parameter system (Fig. 1.1) as a 
discretized system by reducing its mechanical degrees of freedom from infinity to 
a finite dimension and usually it is computationally more expensive than the 
analytical solution (if available). A comprehensive work was done by Erturk and 
Inman [69], in which they developed analytical solutions for bimorph cantilever 
harvesters with both series and parallel electrical connections. A novel composite 
multi-layer PVEH device consisted of piezoelectric layers, carbon fiber and glass 
fiber composite laminates was proposed by Lu et al. [70], to improve the efficiency 
of linear harvesters. Benasciutti et al. [71] studied vibration energy harvesting via 
piezoelectric resonant bimorph beams of optimized shapes. The aim of their study 
was to increase the power generated per unit scavenger volume, by optimizing the 
shape of the cantilever beam. They used different analytical approaches as well as 
finite element modeling for the analysis of the systems of interest and verified the 
analytical and numerical results by performing experimental examinations. Some 
other important contributions concerning the design of optimized PVEH systems 
were identified in literature [72–75]. In most research works focused on design of 
PVEH devices, researchers have used PZTs as the material of piezoelectric layer(s). 
Since PZTs are brittle in nature, some other researchers have presented energy 
harvesters made of FGPMs [41,43,44,76–80]. In FGPMs, the mechanical and 
electrical properties vary continuously in the thickness directions, and they enable 
piezoelectric harvesters to produce larger displacements with smaller stress 
concentrations and therefore increase the lifetime of piezoelectric devices. 
Hundreds of other works (available in review articles, e.g., in Refs. [32]) have been 
published in the literature, dealing with analytical and numerical modelling, 
experimental investigations, and optimization techniques for piezoelectric energy 
harvesters.  

Due to the fact that this dissertation is devoted to electromechanical modeling 
of piezoelectric energy harvesters (in Chapters 2 and 3), available articles on 
experimentation, materials research, and circuit design for piezoelectric energy 
harvesters are not reviewed here; such works can be found in existing review papers 
[5,30,33,34,81]. Based on the literature review presented in this section, it is clear 
that throughout the previous two decades, a variety of modeling methodologies and 
piezoelectric smart layouts/structures have been proposed for vibration energy 
harvesting. These works originated from different engineering disciplines, 
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including mechanical, electrical, civil, and materials engineering. When one takes 
into consideration the rapidly growing applications of piezoelectric harvesters that 
are being used for vibration-to-electricity conversion in a variety of environments, 
it appears that it is necessary to propose new designs as well as reliable 
electromechanical piezoelectric energy harvester models for use by this particular 
research community from a variety of engineering disciplines. 
 
 

1.5.2 Structural Elements with Integrated Piezoelectric Layers 

Piezoelectric materials embedded into beams, plates and shells make the structures 
being capable of sensing and actuation, which directly relate electrical signals to 
material strains and vice versa. Such smart structures are frequently used for shape 
and vibration control, noise control, health monitoring, and energy harvesting. 
From the viewpoint of structural mechanics, a plate is a structural element with 
substantial plane form dimensions relative to its thickness and is subjected to loads 
that produce both bending and stretching deformation. The thickness is typically 
about one-tenth of the smallest in-plane dimension. Due to the smallness of the 
thickness dimension, it is frequently unnecessary to model the plate using three-
dimensional elasticity equations. Beams are also one-dimensional counterparts of 
plates. Additionally, a shell structure is a thin, curved plate structure shaped to 
transmit applied forces through compressive, tensile, and shear stresses acting in 
the plane of the surface. Essentially, a shell can be formed from a plate in two ways: 
by initially forming the middle surface as a singly or doubly curved surface, and by 
applying coplanar loads to the plane of the plate that cause considerable stresses. 
The governing equations of such structural elements under various loading 
conditions can be derived using either vector mechanics or energy and variational 
principles. In vector mechanics, the forces, and moments on a typical element of 
the structure are summed to obtain the equations of equilibrium or motion. In 
energy methods, the principles of virtual work or their derivatives, such as the 
principles of minimum potential energy, are employed to obtain the equations. 
While both approaches can give the same equations, the energy methods have the 
advantage of providing information on the form of the boundary conditions. 
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To the subject of the second part of this dissertation is important to provide 
reliable and comprehensive electromechanical models to give a precise prediction 
of static and dynamic behavior of structural elements including piezoelectric 
patches/layers. It appears from the literature that, so far, a number of laminate 
theories, and computational models have been reported for analysis of smart or 
adaptive structures involving piezoelectric patches or layers [82–85]. Some other 
examples include the analytical modeling and analysis of a beam equipped with 
surface-bonded or embedded piezoelectric sensors and actuators [86,87], the 
incorporation of piezoelectric materials into composite laminates, and the use of 
piezoelectric materials for vibration control [88,89]. The challenge of developing a 
basic mechanics model for the piezoelectric coupled structure has been met by 
many researchers. Crawley and de Luis [90] established a uniform strain model for 
a beam with surface bonded and embedded piezoelectric actuator patches, that took 
into consideration the shear lag effects of the adhesive layer between the 
piezoelectric actuator and the beam. A model to account for the coupling effect was 
later proposed by the same authors based on the Euler beam assumption [91]. Ding 
et al [92] obtained the general solutions for the coupled dynamic equations of a 
transversely isotropic piezoelectric medium. Models for composite structures with 
piezoelectric materials as sensors and actuators have also been published [93,94]. 
In most published literature on the mechanics model for the analysis of the coupled 
structure, the distribution of the electric potential is assumed to be uniform in the 
longitudinal direction of the piezoelectric actuator and linear in its thickness 
direction, which may violate the Maxwell static electricity equation. Wang and 
Quek [95,96] presented their research on the free vibration of a piezoelectric 
sandwich beam and circular plate structure, in which the piezoelectric effect on the 
resonance frequencies of the structure and the distribution of the electric potential 
are studied and analyzed. A potential application of piezoelectric material is to use 
it as an actuator in an ultrasonic motor. An analytical model for this application has 
been proposed by Hagood and McFarland [97]. They assumed that the distribution 
of electric potential is uniform in the radial direction of the circular plate and 
showed that resonance response in the plate structure will be initiated if the external 
electric voltage is well designed. Heyliger and Ramirez [98] studied the free 
vibration characteristics of laminated circular piezoelectric plates using a discrete-
layer model of the weak form of the equation of period motion. A general purpose 
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design scheme of actively controlled smart structures with piezoelectric sensors and 
actuators was presented by Xu and Koko [99]. 

Some other studies have dealt with FGM structures integrated with 
piezoelectric patches or layers. As was mentioned earlier, FGMs are generally 
nonhomogeneous composites consisting of ceramic and metal with high coupling 
in bending and stretching. Besides having the properties of both ceramic and metal, 
a combination of functionally graded structures with piezoelectric layers results in 
FGMs with controllable characters and, therefore, with unique applications in 
industry. Indeed, the electromechanical coupling characteristic in piezoelectric 
materials, which leads to mechanical deformation in electric field and electrical 
polarization under mechanical loads, make them good candidates for a variety of 
electromechanical devices. One of the primary research works on analysis of 
piezoelectric coupled FGM plates was done by He et al. [100], in which the free 
vibration response of the coupled plates was extracted through the use of classical 
plate theory and finite element approach. Hwang and Shen [101] studied the 
nonlinear vibration of FG plates with surface bonded piezoelectric layers in thermal 
environments. In this work, the problem, which was formulated based on higher 
order shear deformation plate theory (HSDT), was solved for the special case of 
simply supported plates. Vibration of a simply supported FG rectangular plate with 
piezoelectric rectangular patches on its top and/or bottom surfaces was analyzed by 
Kargarnovin et al. [102]. The use of refined plate theories on the analysis of 
functionally graded piezoelectric plates was investigated by Brischetto and Carrera 
[103]. Refined models with higher-orders of expansion in the thickness direction 
were implemented and their effectiveness on the static response in comparison with 
classical theories was studied. The effects of thickness, mass density and stiffness 
of the piezoelectric layer on the plate natural frequency were investigated by Liang 
and Batra [104] for a simply supported laminated plate with embedded piezoelectric 
layers. Furthermore, the role of electrical surface conditions on effective stiffness 
of piezoelectric materials was studied by Davis and Lesieutre [105]. Jin and Batra 
[106] showed that the natural frequency would change significantly when the closed 
circuit condition changed to the open one. Askari Farsangi and Saidi [107] 
presented an analytical approach for free vibration analysis of moderately thick 
functionally graded rectangular plates coupled with piezoelectric layers. Active 
vibration control of functionally graded beams with upper and lower surface-



30  Introduction 
 

bonded piezoelectric layers was studied by Bendine et al. [108]. The static and 
dynamic behavior of functionally graded sandwich structures with piezoelectric 
skins, using B-spline finite strip models, were investigated by Loja et al. [109]. 

Mechanical analysis of porous structural elements with integrated 
piezoelectric patches/layers have also been the subject of research in recent years. 
Having special capabilities, metal foams have been widely used in lightweight 
structures in aerospace, automotive, energy absorbing, and civil engineering. 
Introducing internal pores into the microstructure of porous media allows tailoring 
the local density of the structure to improve the structural performance and achieve 
the desired properties. Therefore, integrating piezoelectric layers with porous 
beams, plates, and shells results in smart bimorphs or unimorphs, with controllable 
characters and, consequently, with unique applications in industry. Limited works 
have been carried out to study mechanical problems of porous structures coupled 
with piezoelectric layers. For instance, Jabari et al. [50,51,52,53,54] studied the 
elastic and thermal buckling analysis of circular plates made of saturated porous 
materials integrated with piezoelectric patches, using linear and nonlinear 
displacement models, respectively. In their studies, they exploited several plate 
theories, such as the classical, the first-order, and the higher-order shear 
deformation displacement models, to write the governing equations of motion. 
Arshid et al. [55] used the classical plate theory to study the free vibration response 
of porous circular plates integrated with piezoelectric actuators by means of the 
differential quadrature method. There is a paucity of investigations dealing with the 
free vibration problem of porous shells integrated with piezoelectric layer. 
Furthermore, since employing shear deformation theories leads to highly-coupled 
and complicated governing equations, most of the published papers studied 
dynamic response of smart coupled structures through numerical methods, and 
analytical approaches are mostly limited to classical theories. 

Based on the literature review given in this subsection, it can be seen that 
most of the previous works have dealt with analysis of structural elements with 
piezoelectric layers based on the classical (Euler-Bernoulli/Kirchhoff) theories, but 
few include shear deformation theories. The classical beam/plate theory is not 
adequate in providing accurate bending, buckling, and vibration results when the 
thickness-to-length ratio of the beam/plate is relatively large. This is because the 
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effect of transverse shear strains, neglected in the classical theory, becomes 
significant in deep beams and thick plates. In such cases, shear deformation theories 
provide accurate solutions compared to the classical theory. Equations governing 
shear deformation theories are typically more complicated than those of the 
classical theory. Hence it is desirable to have exact relationships between solutions 
of the classical theory and shear deformation theories so that whenever classical 
theory solutions are available, the corresponding solutions of shear deformation 
theories can be readily obtained. Such relationships not only furnish benchmark 
solutions of shear deformation theories but also provide insight into the significance 
of shear deformation on the response. 
 
 

1.6 Objectives of the Dissertation 
Commonly used designs for piezoelectric-based devices employ cantilevered beam 
geometries subjected to base excitations from an ambient source. While this is an 
attractive option due to its simplicity in design, it still suffers from higher-than-
expected natural frequencies that require further tuning. The increasing demand to 
build a compact yet flexible energy harvester highlights the need for designs having 
low natural frequencies and higher power densities for a given footprint area. To 
achieve this goal, in the first part of this dissertation is presented a novel two-
dimensional piezoelectric energy harvester design of disc-like geometry. With the 
increased flexibility of the novel proposed geometry, this design has successfully 
achieved a smaller natural frequency and larger power density compared to the 
literature. Moreover, it provides high flexibility in matching its resonance 
frequency with those of variety of applications, yet offering high power density. 

For the specific research community of the multi-disciplinary and rapidly 
growing area of piezoelectric smart structures, development of computationally 
efficient but precise electromechanical models has always been of great importance 
both in academia and industry. Moreover, as long as analytical solutions are 
available, they are usually much faster compared to the numerical approaches such 
as finite element method (FEM) or other energy-based discretization techniques. In 
addition to this, the closed-form expressions extracted from the analytical solutions 
give the opportunity to explicitly understand the influences of the systems’ 
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parameters and the physics of the problem of interest. Thus, this dissertation is 
aimed to develop comprehensive analytical models for electromechanical energy 
harvesting, static and dynamic problems of smart structural elements such as beams, 
plates, and shells made of piezoelectric and FGM/porous materials. If not all, most 
of the existing models for studying electromechanical behavior of various structural 
elements (e.g., beams, plates, and shells) have been developed either based on 
classical theories or for simply supported boundary conditions. Classical theories 
ignore the effect of shear deformations, which are very important when analyzing 
moderately-thick or thick structures. On the other hand, the models based on higher-
order theories are mostly limited to either simply supported boundary conditions or 
coupled structures consisting of homogenous substrates (e.g., made of metals) and 
PZT layers. Therefore, in this dissertation, both conventional higher-order theories, 
and higher-order refined theories (which results in less governing equation) are used 
to establish the electromechanical models of the systems of interest, and reliable 
analytical solutions are presented to solve the governing equations for variety of 
boundary conditions. Considering its objectives, a major part of this dissertation is 
indeed covered by analytical formulations and equations, as well as the exact 
solution techniques that are developed for solving the respective equations. 

In addition to the above-mentioned objectives, it is also aimed to study the 
effects of various design parameters such as materials and geometrical properties 
of both substrate and piezoelectric layers, as well as the mechanical and electrical 
boundary conditions on the systems response. In the problems concerned with the 
hot topic of piezoelectric energy harvesting (presented in Chapters 2 and 3), the 
closed-form expressions obtained from the electromechanical models provide the 
chance to quickly and accurately calculate the optimum electrical load resistance, 
which results in the maximum power generation.  
 
 

1.7 Layout of the Dissertation 
The main body of the present dissertation is composed of seven chapters, that are 
divided into two parts. Part 1 consists of Chapters 2 and 3 dealing with analytical 
and numerical energy harvesting models of different piezoelectric smart structures 
proposed for vibration-to-electricity conversion. Part 2 consists of Chapters 4 to 7 
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covering dynamic and static problems of various structural elements such as beams, 
plates and shells integrated with piezoelectric layer(s). Starting with the second 
chapter, the main body of this dissertation is covered by the following contents: 

The Second Chapter starts with development of analytical energy harvesting 
model of a unimorph cantilevered beam, which is subjected to harmonic base 
excitation. The model is established based on the Euler-Bernoulli beam 
assumptions, and closed-form solutions are obtained as the harvester response to 
the harmonic base excitation. Next, the finite element model of the harvester is 
developed using COMSOL Multiphysics® software. Verification studies are 
conducted first by comparing the results of both analytical and numerical models 
to each other, then by updating the present COMSOL model, and comparing the 
respective results with experimental and numerical works reported in the literature. 
In the latter case, the 3D COMSOL model developed by the authors is updated to 
build the FE model corresponded to unimorph/bimorph harvesters investigated by 
others (analytically/numerically/experimentally). Once the model is verified, a 
novel multi-beam piezoelectric structure of disc-like geometry is proposed for 
vibration energy harvesting, and its numerical model is created in COMSOL 
through updating the FE model developed for the former case (i.e., the unimorph 
harvester). Finally, extensive parametric studies are conducted for different case 
studies of the novel layout, and its performance in terms of power generation is 
examined. 

The Third Chapter is concerned with analytical modeling and analysis of 
plate energy harvesters consist of porous substrates integrated with two 
piezoelectric layers under both parallel and series electrical connections. Plate-like 
piezoelectric harvesters can be used in many applications such as energy generation 
from pressure sources. Three different porosity patterns are considered for the 
distribution of porosities within the porous substrate. The energy harvesting model 
of the plate harvester is established based on the conventional shear deformation 
plate theories, and through the use of Hamilton’s principle and Gauss’s law. Such 
theories allow for consideration of transverse shear deformations, therefore, 
deriving a highly accurate model that can be used for analysis of relatively-thick 
and thick plate-like piezoelectric harvesters. An analytical solution is then applied 
to the governing equations, and closed-form expressions are obtained for the 
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voltage, current and power outputs as the scavenger response to harmonic 
excitation. Comparing the present results with some available in the literature, the 
proposed model is validated, and extensive parametric studies are then presented. 
The effects of design parameters such as the electrical load, porosity characteristics 
and geometrical parameters are studied in detail, and the results are presented with 
an eye toward guidelines for design of useful energy harvesting structures to be 
used in various applications. 

In Chapter 4, a higher-order beam theory is used to develop the 
electromechanical free vibration model of piezoelectric bimorph beams. It is 
assumed that the substrate layer of the bimorph beam is made of FGMs containing 
porosities, although the model allows to consider different types of material (with 
properties varying through the thickness), for this layer. The motivation is related 
to the effect of porosities, which occur in FGMs, being rarely investigated in the 
literature of piezoelectric coupled FGM structures. This is included in the present 
modeling by adopting the modified rule of mixture for variation of effective 
material properties within the FGM substrate. Besides, both thickness-poled and 
length-poled piezoelectric layers are considered in this smart structure. For the 
beam with each type of piezoelectric layers (i.e., either transversely or axially 
polarized), the governing equations are derived through the use of Hamilton’s 

principle and Maxwell’s electrostatic equation. Navier’s approach is then 

employed, and applied to the governing equations for extracting the natural 
frequencies of the beam with simply supported boundary condition. The developed 
model does not only allow to extract the analytical results for the free vibration 
response of the beam, but it also provides the opportunity to investigate the effect 
of the system parameters. 

Chapter 5 aims to present an accurate electromechanical model for the both 
problems of wave propagation and free vibration in/of plate-like structures with 
integrated piezoelectric layers. The model is derived, through the use of Hamilton’s 

principle and Maxwell’s equation, and based on a higher-order four-variable theory, 
which results in fewer governing equations compared to those of the conventional 
shear deformation theories. Again, the developed model allows to assign to the 
substrate layer different types of material with mechanical properties varying 
through the thickness (e.g., FGMs and porous materials). The refined plate theory 
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used in this study drops the need of any shear correction factor, and results in highly 
accurate results in comparison with the 3D solutions available in the literature for 
the simple counterparts. After deriving the governing equations in term of 
displacements and electric potential function, analytical solutions are applied to 
such equations for extracting the exact numerical results for two investigations: (I) 
the plane wave propagation of infinite smart plates and (II) the free vibration of 
smart rectangular plates with different boundary conditions. The solution approach 
proposed for the latter case provides the opportunity to compute the results for 
various combinations of the classical boundary conditions including simply 
supported, clamped and free edge conditions. After verifying the model, extensive 
numerical results are presented covering the effects of material properties, 
geometrical parameters on the wave and free vibration characteristics of the smart 
plate structure. 

In Chapter 6, the linear buckling problem of piezoelectric bimorph plates 
under various in-plane mechanical loading conditions is studied. The refined 
higher-order shear theory used in the previous chapter is herein employed to derive 
the governing equations of the loaded plate. A generalized Levy-type solution in 
conjunction with the State Space concept is then used to solve the respective 
equations for the smart coupled plate. The exact analytical solutions are obtained 
for thick and moderately thick plates as well as for thin plates. Although the model 
allows to consider the substrate layer to be made of materials with varying 
properties along the thickness, the case of saturated porous materials is of interest 
in this chapter. Accordingly, the constitutive equations of porous materials are 
considered based on Biot’s poroelasticity theory, which takes into account the effect 
of pore fluid compressibility, playing a critical role in tailoring the value of critical 
buckling load. For comparison, different symmetric and asymmetric patterns are 
considered for the distribution of porosities within the porous substrate. Exact 
buckling loads of the system are obtained for the system under different loading 
conditions, and arbitrary boundary conditions. 

For relatively complicated structural configurations, i.e., piezoelectric 
bimorph/unimorph doubly-curved panels, which are usually studied through 
numerical solutions, an analytical solution using Navier’s method is given in 
Chapter 7. The problem of free vibration of such structures with porous substrate 
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is considered, and the respective governing equations are derived based on the first-
order shear deformation theory (FSDT). The formulation given here should be 
preferred for thin, and moderately-thick shells, due to the assumptions of the 
adopted theory concerning the effect of transverse shear deformations. Once the 
proposed exact model is verified through conducting several comparison examples, 
extensive numerical results are presented for the smart bimorph/unimorph panel 
having different geometries such as spherical, cylindrical, hyperbolic paraboloidal, 
and plate shapes. In those tabulated results, the effect of piezoelectric 
characteristics, porosity, and other design parameters are studies.  

Finally, Chapter 8 summarizes the results of this work, draws conclusions 
from the chapters, and discuss the impact of the research works presented in the 
thesis. A summary of the scientific articles published in international journals and 
conferences as the outcomes of this dissertation is also provided in this chapter.



 
 

 
 
 
Chapter 2 
 
Piezoelectric Vibration Energy 
Harvesting via A Cantilevered 
Beam and A Novel Multi-beam 
Structure 
 
2.1 Overview 
In this chapter, electromechanical vibration energy harvester models of two systems 
including a piezoelectric unimorph cantilevered beam, and a novel multi-beam 
piezoelectric smart structure are presented. The content of the chapter is 
accordingly organized as follows: in section 2.3, the electromechanical energy 
harvesting model of the unimorph cantilevered beam is established by means of 
both analytical modeling based on Euler-Bernoulli assumptions, as well as 
numerical finite element modeling in COMSOL Multiphysics® software. Then, in 
section 2.4, using several of the unimorph beams represented in section 2.3, as well 
as two identical proof masses, a novel multi-beam reference configuration is 
proposed, aiming to design an energy scavenger for harvesting vibratory motion 
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from low frequency applications. In section 2.5, Verification studies are conducted 
first by comparing the results of both analytical and numerical models to each other, 
and then by updating the present COMSOL model, and comparing the respective 
results with experimental and numerical works reported in the literature. Then, 
different case studies of the reference multi-beam configuration are considered, the 
effects of various design parameters involved on the systems’ response are studied, 

and the obtained numerical results are deeply discussed. Finally, section 2.6 
concludes the work and highlights the main findings. 

The results of the research work presented in this chapter is published in the 
journal Mechanics of Advanced Materials and Structures [110]. 
 
 
2.2 State of the Art 
In recent years, different designs and harvesting materials, nonlinear methods, and 
optimization techniques (both in mechanical and electrical aspects) have been 
presented for vibration-to-electricity conversion. As was mentioned in the previous 
chapter, vibratory motion is a widely-available source of ambient energy, which 
can be effectively converted into useful electric charge or power, through the use 
of piezoelectric energy harvesters. The generated electric charge can be used for 
powering a wide range of small-sized devices in many applications. This interesting 
research topic has gained much attention of many researchers from different 
disciplines during the last decade. Various piezoelectric energy scavengers have 
been designed and proposed for either specific applications or in a general manner. 
The commonly used designs for piezoelectric-based energy harvesters employ 
cantilevered beam geometries subjected to base excitation. Although this layout is 
an attractive structure due to its simplicity in design and fabrication, it suffers from 
higher-than-expected natural frequencies and deficient power generation. 
Therefore, to expand the working frequency range and to maximize the power 
generation, variety of non-conventional piezoelectric structures have been 
introduced for vibration energy harvesting. For instance, Wu et al [111] proposed a 
compact two degree of freedom layout for harvesting mechanical vibration from its 
first and second vibrational modes. Their design consisted of a main cantilever and 
an inner secondary beam, both equipped with piezoelectric patches, for tuning the 
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resonance frequencies of the whole device to achieve a wide bandwidth. Toyabur 
et al. [112] presented a new configuration of a piezoelectric vibration energy 
harvester that utilizes both fundamental mode and high mode resonant frequencies 
of the structure, to be used for harnessing energy at lower frequency ranges. A novel 
trident-shaped multimodal piezoelectric energy harvester was designed by 
Upadrashta and Yang [113]. Their device was able to achieve three close resonant 
peaks, thereby being useful for broadband energy harvesting. Sun and Tse [114] 
presented T-folded and E-folded designs of vibration-based energy harvester model 
whose resonance frequencies were tunable. The main contribution of their work 
was to make optimal structures being able of scavenging the destructive vibration 
into the highest possible electric energy even when the attached machine is running 
at a low rotational frequency. Later, the same authors proposed another new 
horizontal U-shaped PVEH, and used COMSOL Multiphysics® to analyze the 
performance of their proposed device [115]. Fractal-inspired piezoelectric 
structures were introduced by Castagnetti [116,117] for harvesting vibration at 
frequencies below 100 Hz. Their proposed structures exhibited wideband frequency 
response and good energy conversion, specifically at the fundamental 
eigenfrequency. Several other configurations such as fan-folded structure, zigzag 
layout, spiral-shaped layout, S-shaped layout, and V-shaped layout, have been 
introduced by researchers [118–122] for harvesting ambient vibrational energy 
from various environments, in which the objectives were to increase the power 
density and/or to maintain the resonance frequency of the proposed device, to be 
compatible with characteristics of the target application.  

Although many geometries and layouts have been introduced by many 
researchers, there is still a need for new designs to be used for harvesting vibration 
in various environments. Not only such designs should be able to provide high 
power densities, but they also should offer variability in design, to be simply 
adjusted to a selected application (in terms of resonance frequency, for instance). 
To meet these targets, a novel multi-beam configuration composed of several 
unimorph beams and proof masses is proposed in this work. As a great advantage, 
the resonance frequency of this layout can be simply tailored through either altering 
the number of the unimorphs or modifying their shapes. Besides, it can generate 
relatively high amount of power density. However, one limitation of linear vibration 
energy harvesters is that they are only effective near resonance. This means that 
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even if the amplitude and frequency of the environmental vibration are known, the 
energy harvester needs to be accurately manufactured exactly at that resonance, to 
avoid any reduction in the maximum output power. Nevertheless, rapid advances 
in the relevant technologies allow accurate fabrication of such structures. 
 
 

2.3 Vibration Energy Harvesting via A Piezoelectric 
Unimorph Cantilevered Beam 

The schematic drawing of the unimorph cantilever beam, with length 𝐿 and width 
𝑏 , is shown in Fig. 2.1(a). The composite beam consists of a metallic substrate of 
thickness ℎ𝑠 integrated with a thickness-poled piezoelectric layer of thickness ℎ𝑝. 
The origin of the reference coordinate system is located on the neutral surface of 
the beam. Once the beam vibrates due to its base excitation, mechanical strain is 
induced inside the piezoelectric layer, that is then converted, through 
electromechanical coupling, into an electric charge distribution, so that inducing an 
electric field between the electrodes connected to the piezoelectric layer. Since the 
thickness of the electrodes is negligible, it is never shown in the sketch given in Fig. 
2.1. The upper and lower electrodes attached to the piezoelectric layer are assumed 
to be connected to an electrical resistive load represented by 𝑅𝐿. Most researchers 
have considered only a resistive electrical load in the read-out circuit, to come up 
with a simple model for predicting the electrical outputs for a given base excitation. 
The implementation of piezoelectric energy scavenging for charging a real battery 
in an efficient way is more sophisticated, owing to the AC-to-DC transformation 
process [59,123,124]. 
 

 
(a) 
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(b) 

Fig. 2.1: (a) Unimorph cantilever energy harvester (b) equivalent electrical circuit 
model 

 
In Fig. 2.1(b), the equivalent electrical circuit model of the cantilevered 

energy scavenger is represented, in which 𝐶0 denotes the capacitance of the 
piezoelectric layer that is considered as an external element parallel to the resistive 
load 𝑅𝐿. Later in future sections, it will be observed that the piezoelectric 
constitutive equations generate the electrical capacitance term in the circuit 
equation. Note that, in the right part of Fig. 2.1(b), 𝑉(𝑡) represents the electric 
voltage across the resistive load and 𝐼(𝑡) shows the current in the piezoelectric 
layer. Besides, in the left part of the figure, the inductor 𝐿𝑚 indicates the mass, the 
capacitor 𝐶𝑘 signifies the stiffness of the piezoelectric beam, the resistor 𝑅𝑏 shows 
the parasitic damping and 𝑉𝑚 simulates an alternating input force. 

 
 

2.3.1 Analytical Modelling 

2.3.1.1 Euler-Bernoulli Beam Theory 

It is assumed that the thickness of the beam is small compared to its length so that 
the shear deformation and rotary inertia can be neglected. For such as thin beam, 
Euler-Bernoulli beam theory can sufficiently be used to establish the analytical 
energy harvesting model of the considered unimorph cantilever. Typically, the 
maximal thickness of the beam is limited by assumptions of thin-beam theory, and 
on the contrary, the minimal thickness is given by manufacturing limitations. 

Since the electrodes attached to the piezoelectric layer are assumed to be 
perfectly conductive and fully cover the top and bottom surfaces of the piezoelectric 
layer, the electric potential function 𝜙 has no dependency on 𝑥 and 𝑦 coordinates 
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[125]. Moreover, due to small thickness of piezoelectric layers in practical cases, 
the variation of the electric potential within the beam thickness is assumed to be 
linear, hence, the applied electric field is only along the thickness direction as [125]: 

𝐸𝑥 = 𝐸𝑦 = 0,   𝐸𝑧 = −
𝑉(𝑡)

ℎ𝑝
 (2.1) 

According to the Euler-Bernoulli beam theory, the displacement field within 
the smart cantilevered beam can be expressed as [126]: 

𝑈𝑥 = −𝑧
𝜕𝑤

𝜕𝑥
,   𝑈𝑦 = 0,   𝑈𝑧 = 𝑤(𝑥, 𝑡) (2.2) 

Here, (𝑈𝑥, 𝑈𝑦, 𝑈𝑧) are the total displacements at any point of the beam and 𝑤(𝑥, 𝑡) 
is the relative deflection of the beam with respect to its base, thus, 𝑤(0, 𝑡) = 0. 
From the linear strain-displacement relationship, the strain field is obtained as: 

휀𝑥𝑥 = −𝑧
𝜕2𝑤

𝜕𝑥2
,   휀𝑦𝑦 = 휀𝑧𝑧 = 𝛾𝑥𝑦 = 𝛾𝑥𝑧 = 𝛾𝑦𝑧 = 0 (2.3) 

 
 

2.3.1.2 Constitutive Equations 

Based on the Euler-Bernoulli assumptions (i.e., Eqs. (2.2) and (2.3)), the 
constitutive equations of the metallic substrate and piezoelectric layer can be 
expressed as: 

𝜎𝑥𝑥
𝑠 = 𝑌𝑠휀𝑥𝑥 = −𝑌𝑠𝑧

𝜕2𝑤

𝜕𝑥2
 

(2.4) 𝜎𝑥𝑥
𝑝 = 𝑌𝑝(휀𝑥𝑥 − 𝑑31𝐸𝑧) = 𝑌𝑝 (−𝑧

𝜕2𝑤

𝜕𝑥2
+ 𝑑31

𝑉(𝑡)

ℎ𝑝
) 

𝐷𝑧 = 𝑑31𝑌
𝑝휀𝑥𝑥 + 𝜖33

𝑆 𝐸𝑧 = −𝑑31𝑌
𝑝𝑧
𝜕2𝑤

𝜕𝑥2
− 𝜖33

𝑆
𝑉(𝑡)

ℎ𝑝
 

Here, 𝑌𝑠 and 𝑌𝑝 are Young’s moduli of the materials of the substrate and 

piezoelectric layers, respectively, 𝑑31 is the piezoelectric constant and 𝜖33𝑆  is the 
permittivity at constant strain. 
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2.3.1.3 Equation of Motion 

The governing equation of motion for the cantilevered beam subjected to the base 
excitation 𝑧(𝑡) can be written as [29]: 

𝜕2𝑀(𝑥, 𝑡)

𝜕𝑥2
+ 𝑐𝑠𝐼

𝜕5𝑤(𝑥, 𝑡)

𝜕𝑥4𝜕𝑡
+ 𝑐𝑎

𝜕𝑤(𝑥, 𝑡)

𝜕𝑡
+ 𝑚

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑡2

= −𝑚
𝑑2𝑧(𝑡)

𝑑𝑡2
− 𝑐𝑎

𝑑𝑧(𝑡)

𝑑𝑡
 

(2.5) 

in which, 𝑀(𝑥, 𝑡) is the internal bending moment, 𝑧(𝑡) is the base displacement due 
to the input vibration. Two types of damping mechanisms, i.e., the strain-rate (or 
the so-called Kelvin-Voigt) damping and the viscous air damping, are included in 
Eq. (2.5), hence, the coefficients 𝑐𝑠 and 𝑐𝑎 denote the strain-rate and the viscous air 
damping coefficients, respectively. These damping mechanisms satisfy the 
proportional damping criterion, and they are mathematically convenient for the 
modal analysis solution procedure. The strain-rate damping accounts for the 
structural damping of the system owing to the internal friction of the beam particles, 
while the viscous air damping corresponds to the force acting on the beam due to 
the air particles displaced by the beam during the vibratory motion. Other beam 
damping mechanisms and the identification procedures of their respective damping 
parameters from experimental measurements are discussed by Banks and Inman 
[127]. However, since the considered damping mechanisms are introduced 
separately in the present modeling, a damping term is hence added to the inertial 
term in the resulting forcing function of the base excitation expression on the right 
side of Eq. (2.5). Moreover, 𝑚 in Eq. (2.5) is the mass per unit length of the beam 
and can be expressed as: 

𝑚 = 𝑏(𝜌𝑠ℎ𝑠 + 𝜌
𝑝ℎ𝑝) (2.6) 

in which 𝜌𝑠 and 𝜌𝑝 are the mass densities of the substrate and piezoelectric layer, 
respectively. 

The internal moment 𝑀(𝑥, 𝑡) along the unimorph cantilever beam can be 
obtained by integration of the first moment of the axial stress 𝜎𝑥𝑥 over the cross 
section 𝐴, as: 
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𝑀(𝑥, 𝑡) = −∬𝜎𝑥𝑥 𝑧 𝑑𝐴
 

𝐴

= −𝑏∫ 𝜎𝑥𝑥 𝑧 𝑑𝑧
ℎ𝑐

ℎ𝑎

= −𝑏 [∫ 𝜎𝑥𝑥
𝑠

ℎ𝑏

ℎ𝑎

𝑧 𝑑𝑧 + ∫ 𝜎𝑥𝑥
𝑝

ℎ𝑐

ℎ𝑏

𝑧 𝑑𝑧]

= −𝑏 [∫ −𝑌𝑠
𝜕2𝑤

𝜕𝑥2

ℎ𝑏

ℎ𝑎

𝑧2 𝑑𝑧

+ ∫ 𝑌𝑝 (−𝑧
𝜕2𝑤

𝜕𝑥2
+ 𝑑31

𝑉(𝑡)

ℎ𝑝
)

ℎ𝑐

ℎ𝑏

𝑧 𝑑𝑧]

=
𝜕2𝑤

𝜕𝑥2
(∫ 𝑌𝑠𝑏

ℎ𝑏

ℎ𝑎

𝑧2𝑑𝑧 + ∫ 𝑌𝑝𝑏 𝑧2
ℎ𝑐

ℎ𝑏

𝑑𝑧)

+ 𝑉(𝑡)∫ −
𝑌𝑝𝑏𝑑31
ℎ𝑝

𝑧 𝑑𝑧
ℎ𝑐

ℎ𝑏

= 𝑌𝐼
𝜕2𝑤

𝜕𝑥2
+ 𝜚 𝑉(𝑡)[𝐻(𝑥) − 𝐻(𝑥 − 𝐿)] 

(2.7) 

To avoid the omission of electrical term after substituting in Eq. (2.5), the 
electrical term of Eq. (2.7) is multiplied by [𝐻(𝑥) − 𝐻(𝑥 − 𝐿)] (where 𝐻 is the 
Heaviside function). In Eq. (2.7), ℎ𝑎 is the position of the bottom of the substructure 
layer from the neutral axis, ℎ𝑏 is the position of the bottom of the piezoelectric layer 
from the neutral axis, and ℎ𝑐 is the position of the top of the piezoelectric layer from 
the neutral axis. The mathematical calculations of ℎ𝑎, ℎ𝑏 and ℎ𝑐 are given in 
Relation (A.1) of Appendix A. Moreover, the effective transverse stiffness 𝐸𝐼 and 
the electromechanical coupling term 𝜚 are obtained as: 

𝑌𝐼 = ∫ 𝑌𝑠𝑏
ℎ𝑏

ℎ𝑎

𝑧2𝑑𝑧 + ∫ 𝑌𝑝𝑏 𝑧2
ℎ𝑐

ℎ𝑏

𝑑𝑧 =
𝑌𝑠𝑏(ℎ𝑏

3 − ℎ𝑎
3) + 𝑌𝑝𝑏(ℎ𝑐

3 − ℎ𝑏
3)

3
 

(2.8) 
𝜚 = −∫

𝑌𝑝𝑏𝑑31
ℎ𝑝

𝑧 𝑑𝑧
ℎ𝑐

ℎ𝑏

= −
𝑌𝑝𝑏𝑑31(ℎ𝑐

2 − ℎ𝑏
2)

2ℎ𝑝
 

Thus, the motion equation of the system can be derived by employing Eqs. 
(2.6) and (2.7) into Eq. (2.8), as: 
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𝑌𝐼
𝜕4𝑤(𝑥, 𝑡)

𝜕𝑥4
+ 𝑐𝑠𝐼

𝜕5𝑤(𝑥, 𝑡)

𝜕𝑥4𝜕𝑡
+ 𝑐𝑎

𝜕𝑤(𝑥, 𝑡)

𝜕𝑡

+ 𝑏(𝜌𝑠𝑡𝑠 + 𝜌
𝑝𝑡𝑝)

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑡2

+ 𝜚 𝑉(𝑡)
𝑑

𝑑𝑥
[𝛿(𝑥) − 𝛿(𝑥 − 𝐿)]

= −𝑏(𝜌𝑠𝑡𝑠 + 𝜌
𝑝𝑡𝑝)

𝑑2𝑧(𝑡)

𝑑𝑡2
− 𝑐𝑎

𝑑𝑧(𝑡)

𝑑𝑡
 

(2.9) 

in which 𝛿 is the Dirac delta function, which is the first derivative of Heaviside 
function. Eq. (2.9) constitutes the motion equation of the electromechanical system 
presented in Fig. 2.1. 

 
 

2.3.1.4 Electrical Circuit Equation 

The electric displacement equation, coupled with the induced mechanical strain 
throughout the smart beam, can be derived from the balance of applied and 
generated electric charge in the piezoelectric layer of the harvester. Therefore, the 
generated charge 𝑞(𝑡) due to the deformation in the beam can be expressed as:  

𝑞(𝑡) = ∬�⃗⃗� . �⃗�  𝑑𝐴
 

𝐴

=∬𝐷3 𝑑𝐴
 

𝐴

= 𝑏∫ (−𝑑31𝑌
𝑝ℎ𝑧

𝜕2𝑤

𝜕𝑥2
− 𝜖33

𝑆
𝑉(𝑡)

ℎ𝑝
)  𝑑𝑥

𝐿

0

= −∫ 𝑏𝑑31𝑌
𝑝ℎ𝑧

𝜕2𝑤

𝜕𝑥2
𝑑𝑥

𝐿

0

− 𝐶0𝑉(𝑡) 

(2.10) 

in which, �⃗�  denotes the unit outward normal and 𝐴 is the electrode area. Note that 
𝐶0 = 𝑏𝐿𝜖33

𝑆 /ℎ𝑝 is the internal capacitance of the piezoelectric layer and is parallelly 
connected to the resistive load 𝑅𝐿, as shown in Fig. 2.1(b). Moreover, ℎ𝑧 is 
generated due to averaging in 𝑧-direction since the average transverse strain is used 
to calculate the electrical displacement at position 𝑥 and time 𝑡. In fact, ℎ𝑧 is 
measured as the distance from the neutral axis to the center of the piezoelectric 
layer. The corresponding calculations of ℎ𝑧 are given in Relation (A.1) of Appendix 
A. 
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One can simply obtain the current generated by the piezoelectric layer as: 

𝐼(𝑡) =
𝑑𝑞(𝑡)

𝑑𝑡
= −∫ 𝑏𝑑31𝑌

𝑝ℎ𝑧
𝜕3𝑤

𝜕𝑥2𝜕𝑡
𝑑𝑥

𝐿

0

− 𝐶0
𝑑𝑉(𝑡)

𝑑𝑡
 (2.11) 

Here, the current generated is a function with two components: the first 
component is due to the vibratory motion of the beam and the second component 
includes the voltage across the piezoelectric layer. The voltage across the resistive 
load could be simply obtained from Ohm’s law (i.e., 𝑉(𝑡) = 𝑅𝐿𝐼(𝑡)), thus: 

𝑉(𝑡) = −𝑅𝐿 [∫ 𝑏𝑑31𝑌
𝑝ℎ𝑧

𝜕3𝑤

𝜕𝑥2𝜕𝑡
𝑑𝑥

𝐿

0

+ 𝐶0
𝑑𝑉(𝑡)

𝑑𝑡
] (2.12) 

Or: 

𝐶0
𝑑𝑉(𝑡)

𝑑𝑡
+
1

𝑅𝐿
𝑉(𝑡) = −∫ 𝑏𝑑31𝑌

𝑝ℎ𝑧
𝜕3𝑤

𝜕𝑥2𝜕𝑡
𝑑𝑥

𝐿

0

 (2.13) 

Eqs. (2.9) and (2.13) are the coupled electromechanical equations of motion 
for the cantilevered piezoelectric energy harvester subjected to the base excitation 
𝑧(𝑡). 
 
 
2.3.1.5 Modal Analysis 

The most common method of solving the coupled Eqs. (2.9) and (2.13) is to assume 
that the relative vibratory motion of the beam can be expressed as a series expansion 
with multiplying functions of separate variables: 

𝑤(𝑥, 𝑡) =∑𝜙𝑖(𝑥)휂𝑖(𝑡)

∞

𝑖=1

 (2.14) 

where 𝜙𝑖(𝑥) is the 𝑖th transverse mode normalized eigenfunction and 휂𝑖(𝑡) is the 
𝑖th modal displacement of the uniform clamped-free beam. Because the system is 
proportionally damped, the eigenfunctions represented by 𝜙𝑖(𝑥) are the mass 
normalized eigenfunctions of the corresponding undamped free vibration problem, 
so that employing Eq. (2.14) and the boundary conditions of the clamped-free beam 
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in the reduced form of Eq. (2.9) corresponded to the undamped free vibration 
problem, yield: 

𝜙𝑖(𝑥) = √
1

𝑚𝐿
(cos

𝜆𝑖𝑥

𝐿
− cosh

𝜆𝑖𝑥

𝐿

+
sinh 𝜆𝑖 − sin 𝜆𝑖
cosh 𝜆𝑖 − cos 𝜆𝑖

[sin
𝜆𝑖𝑥

𝐿
− sinh

𝜆𝑖𝑥

𝐿
]) 

(2.15) 

Eq. (2.15) represents the mode shape of the cantilevered beam at 𝑖th 
vibrational mode. In Eq. (2.15), the 𝜆𝑖’s are the dimensionless frequency numbers 

obtained from the following characteristic equation: 

1 + cos 𝜆 cosh 𝜆 = 0 (2.16) 

The 𝑖th modal short circuit natural frequency (i.e., 𝑉(𝑡) = 0) of the system 
can be determined as: 

𝜔𝑖 = 𝜆𝑖
2√

𝑌𝐼

𝑚𝐿4
 (2.17) 

Substituting Eq. (2.14) into Eq. (2.9) and taking advantage of the orthogonally 
conditions of the mode shapes, the electromechanically coupled ordinary equation 
including the modal damping term for the influence of the proportional damping 
can be obtained as: 

𝑑2휂𝑘(𝑡)

𝑑𝑡2
+ 2휁𝑘𝜔𝑘

𝑑휂𝑘(𝑡)

𝑑𝑡
+ 𝜔𝑘

2휂𝑘(𝑡) + Θ𝑘𝑉(𝑡) = −𝑚𝛾𝑘
𝑑2𝑧(𝑡)

𝑑𝑡2
 (2.18) 

where 휁𝑘 is the modal mechanical damping ratio, the coefficient Θ𝑘 is the modal 
electromechanical coupling coefficient for all 𝑘, and 𝛾𝑘 denotes the modal influence 
coefficient of the base excitation. These coefficients are given by the following 
expressions: 

Θ𝑘 = 𝜚
𝑑𝜙𝑘(𝑥)

𝑑𝑥
|
𝑥=𝐿

 (2.19a) 
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𝛾𝑘 = ∫ 𝜙𝑘(𝑥) 𝑑𝑥
𝐿

0

 (2.19b) 

휁𝑘 =
𝑐𝑠𝐼𝜔𝑘
2𝑌𝐼

+
𝑐𝑎

2𝑚𝜔𝑘
 (2.19c) 

As seen from Eq. (2.19c), the damping ratio 휁𝑘 includes the influences of both 
viscous air damping and strain-rate damping, and it can be expressed as 휁𝑘 = 휁𝑘

𝑠 +

휁𝑘
𝑎 where the strain-rate and the air damping components of the damping ratio are 
휁𝑘
𝑠 = 𝑐𝑠𝐼𝜔𝑘/2𝑌𝐼 and 휁𝑘𝑎 = 𝑐𝑎/2𝑚𝜔𝑘, respectively. It is clear from Eq. (2.19c) that 

the strain-rate damping coefficient is proportional to the effective structural 
stiffness and the viscous air damping is proportional to mass per unit length of the 
beam. It is also worth mentioning that obtaining the value of the damping ratio 
(hence, the damping coefficients 𝑐𝑠 and 𝑐𝑎) should be conducted through 
experimental measurements, which is generally difficult to assess. Consequently, 
in the present analytical modeling, all sources of mechanical damping are 
represented by a single damping ratio (i.e., 휁𝑘) and its value will be evaluated with 
reference to literature data for the selected materials. A comprehensive discussion 
on this very important parameter is provided in Ref. [29]. 

The electrical equation of motion can be rewritten in terms of the modal 
coordinates by employing Eq. (2.14) into Eq. (2.13), as: 

𝑑𝑉(𝑡)

𝑑𝑡
+

1

𝑅𝐿𝐶0
𝑉(𝑡) =

1

𝐶0
∑𝜓𝑖

∞

𝑖=1

𝑑휂𝑖(𝑡)

𝑑𝑡
 (2.20) 

where 

𝜓𝑖 = −∫ 𝑏𝑑31𝑌
𝑝ℎ𝑧

𝑑2𝜙𝑖(𝑥)

𝑑𝑥2
𝑑𝑥

𝐿

0

= −𝑏𝑑31𝑌
𝑝ℎ𝑧

𝑑𝜙𝑖(𝑥)

𝑑𝑥
|
𝑥=𝐿

 (2.21) 

Eq. (2.18) together with Eq. (2.20) provides a complete system of modal 
equations for the vibration energy harvesting model of the unimorph cantilevered 
beam. 
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2.3.1.6 Response to Harmonic Excitation 

In this subsection, the application of the above electromechanical model, 
established for energy harvesting from a unimorph cantilevered beam, is 
investigated. In a prototypical piezoelectric energy harvesting system, the 
cantilevered beam is subjected to base excitations in a wide band. Here, the case of 
harmonic base motion is taken into account, so that 𝑧(𝑡) = 𝑍0𝑒

𝑗𝜔𝑡, where 𝑍0 is the 
amplitude of the base excitation (considered real), 𝜔 is the deriving frequency, and 

𝑗 = √−1. It is also remembered that the external electrical load attached to the 
energy harvester device is assumed to be represented by a simple resistor with 
resistance load 𝑅𝐿, (see Fig. 2.1). Because the system of Eqs. (2.18) and (2.20) is 
linear, the output voltage and modal response are harmonic at the deriving 
frequency, therefore, 𝑉(𝑡) = 𝑉0𝑒𝑗𝜔𝑡 and 휂𝑘(𝑡) = 𝛨𝑘𝑒

𝑗𝜔𝑡, for all 𝑘, where 𝑉0 and 
𝛨𝑘 are complex. Substitution of these expressions into Eqs. (2.18) and (2.20) gives 
the magnitude of the modal response and the output voltage, as follows: 

𝛨𝑘 =
𝑚𝛾𝑘𝜔

2𝑍0 − Θ𝑘𝑉0

𝜔𝑘
2 − 𝜔2 + 2𝑗휁𝑘𝜔𝑘𝜔

 (2.22a) 

𝑉0 (𝑗𝜔 +
1

𝑅𝐿𝐶0
) =

1

𝐶0
∑𝜑𝑖𝑗𝜔𝛨𝑖

∞

𝑖=1

 (2.22b) 

One can simply observe from Eq. (2.22) that the two responses are coupled, 
so that to express 𝑉0 explicitly, the modal response has to be omitted from Eq. 
(2.22b), thus: 

𝑉0 =
𝑆1 𝐶0⁄

𝑗𝜔 +
1

𝑅𝐿𝐶0
+
𝑆2
𝐶0

 (2.23) 

where the functions 𝑆1 and 𝑆2 are here defined for the simplification of the function 
representing the output electric voltage, as follows: 

𝑆1 =∑
𝑗𝜔 𝑚 𝛾𝑖 𝜓𝑖(𝜔

2𝑍0)

𝜔𝑖
2 − 𝜔2 + 2𝑗휁𝑖𝜔𝑖𝜔

∞

𝑖=1

 (2.24a) 
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𝑆2 =∑
𝑗𝜔 Θ𝑖 𝜓𝑖

𝜔𝑖
2 − 𝜔2 + 2𝑗휁𝑖𝜔𝑖𝜔

∞

𝑖=1

 (2.24b) 

Now, the amplitude of the voltage frequency response can be simply obtained 
by determining the absolute value of the complex expression of 𝑉0 in Eq. (2.23). It 
is also very simple to determine the current 𝐼 and the power frequency response 𝑃 
using the Ohm’s law and the power equation as well, as follows: 

𝐼 =
|𝑉0|

𝑅𝐿
,        𝑃 =

|𝑉0|
2

𝑅𝐿
 (2.25) 

The obtained output voltage 𝑉0 can also be substituted into the modal 
response in Eq. (2.22a), to calculate the transverse displacement in each vibrational 
mode, and subsequently the modal response as a function of the excitation 
frequency 𝜔 and the time 𝑡. 

At this stage, a code is provided by using MATLAB® R2020a software, in 
which the data listed in Tables 2.1 and 2.2 are used as the material and geometrical 
parameters of the unimorph harvester. That code is then used to extract the 
numerical results of the analytical model developed for the unimorph PVEH device. 
In the next section, the FE modeling of the same PVEH system is performed in 
COMSOL Multiphysics® 5.5, and the modeling and the simulation procedure is 
explained in detail. 
 
 
2.3.2 Numerical Modelling 

COMSOL Multiphysics® 5.5. is used here for the development of the FE modeling. 
This software gives the opportunity of coupling different domains of physics to 
simply study their effects on each other, when analyzing Multiphysics problems. In 
order to analyze the PVEH systems in COMSOL, the Solid Mechanics module is 
coupled with Electrostatics and Electrical Circuit modules, to create the coupled 
electromechanical model. Modal analysis of the system is first performed using the 
Eigenfrequency study to obtain the resonant frequencies, the corresponding mode 
shapes, and the strain plots. Once the eigenfrequencies of the system are computed, 
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Frequency-Domain studies are carried out within confined frequency bands (which 
include the obtained resonance frequencies of the harvester) to extract the frequency 
response of the system. Note that frequency-domain study performs the FE analysis 
of the system for each given frequency, which is then used to extract extensive 
results presented in frequency response plots. 

Following the above procedure and adopting the material and geometrical 
parameters given in Tables 2.1 and 2.2, the 3D model of the cantilevered beam is 
created in COMSOL, as shown in Fig. 2.2. 

 

Table 2.1: Materials properties 

Property 
Substrate  PZT layer  

Aluminum Steel Bronze Titanium  PZT-5A  

Young modulus (GPa) 70 210 105 115.7  66  

Mass density (kg/m3) 2700 7800 9000 4506  7800  

Poisson’s ratio 0.30 0.30 0.30 0.32  -  
Coupling coefficient, 
𝑑31 (pm/V) 

- - - -  -190  

Permittivity, 𝜖33𝑠  (nF/m) - - - -  15.93  

 
 

Table 2.2: Geometrical parameters of the typical unimorph cantilever 

Parameter Substrate  PZT layer 

Length (mm), 𝐿𝑏, 𝐿𝑝 40 40 

Width (mm), 𝑏 7 7 
Thickness (mm), ℎ𝑠, ℎ𝑝 0.3 0.3 

 

The geometry of the unimorph beam consists of two subdomains of the 
substrate and the piezoelectric layer. To model the clamped boundary condition, 
Fixed Constraint is applied to the left boundaries of both layers of the beam (at 𝑥 =
0), while remaining boundaries are left free. The harmonic base excitation is 
modeled by applying a Body Load, along the 𝑧-direction, to the whole geometry 
(i.e. all subdomains). The substrate material is selected as the linear elastic material 
while the PZT layer is selected in the piezoelectric material subsection. The value 
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of the mechanical damping ratio, which represents a parameter that is generally 
difficult to assess, is evaluated with reference to literature data, thus, an Isotropic 
Damping Loss Factor of 5% is considered for both materials of substrate and 
piezoelectric layer [74,75,128,129]. Electrostatics module is used to match the 
nodes to the electrodes. In this module, the bottom surface of the piezoelectric layer 
(that is in contact with the substrate) is attached to a Ground electrode and the top 
surface is attached to a Terminal electrode. The type of terminal is chosen as circuit 
type, to be linked to the electrical load resistor in the Electrical Circuit module for 
obtaining the electrical response of the energy harvester. As the last step, the design 
is meshed to discretize the geometry for the FE analysis. It is true that using more 
mesh elements leads to more accurate approximation and solution, but it requires 
longer solution time. Therefore, a mesh convergence study is done first, to 
adequately select the type and number of mesh elements. According to what is just 
said, pre-defined tetrahedral elements with normal size is selected to mesh the 
unimorph beam for the FE simulations. 
 

 
Fig. 2.2: 3D COMSOL model of the unimorph cantilevered beam 

 
 

2.4 Vibration Energy Harvesting via A Novel Multi-beam 
Piezoelectric Smart Structure 

2.4.1 Harvester Layout 

In the previous section, both analytical and FE models of the unimorph piezoelectric 
energy harvester were established. In this section, a novel multi-beam smart 
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structure, composed of several of the unimorph beams investigated in the previous 
section as well as two identical proof masses, is proposed. A reference layout of the 
proposed energy scavenger, resting on its housing, is shown in Fig. 2.3, where 8 
unimorph beams are attached to an octagon-shaped part at the center of the 
structure. In fact, this smart structure is supposed to be consisted of 𝑛 unimorph 
beams attached to all sides of a regular 𝑛-sided polygon-shaped disc integrated by 
two proof masses at its top and bottom faces. Therefore, the layout shown in Fig. 
2.3 represents the structure for the particular case of 𝑛 = 8. As seen from Fig. 
2.3(a), all the beams are clamped to a housing case at their outer edges. For 
clarification, the proposed system is divided into three different parts including the 
Substrate Structure, the PZT Patches, and the two Proof Masses. The substrate 
structure consists of a regular 𝑛-sided polygon of side length 𝑎, that is located at 
the center of the layout, and is surrounded by 𝑛 identical unimorph beams of length 
𝐿𝑏, widths 𝑏𝑖 (at center) and 𝑏𝑜 (at clamped edge), and thickness ℎ𝑏. The substrate 
structure is, in fact, a continuous part, as is depicted in Fig. 2.3(b). Thickness-poled 
piezoelectric layers of length 𝐿𝑝, width 𝑏𝑝 and thickness ℎ𝑝, are attached to the 
substrate structure on the beams, to be used for the mechanical deformation-to-
electricity conversion. Moreover, two identical proof masses with the same shape 
of the regular 𝑛-sided polygon and having a thickness of ℎ𝑚 (for each mass) are 
also attached to the center of the layout on both top and bottom sides. The proof 
masses can be properly selected to adapt the resonance frequency of the harvester 
to that of ambient vibration source, therefore maximizing transmissibility. The 
proposed energy harvester is supposed to be attached to a vibrating machinery by 
bolting or gluing its housing part to the host structure. Once the harvester is excited 
along its thickness direction, the proof masses oscillate with respect to the housing, 
thus significant stress/strain is induced inside the piezo patches, which in turn 
electric voltage is generated. Similar to the case of the unimorph harvester in the 
previous subsection, the electrodes attached to the PZT patches of the new proposed 
device are assumed to be connected to an electrical resistive load 𝑅𝐿, for measuring 
the electrical outputs. 
 
 

2.4.2 Numerical Modelling 
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Following the same procedure used to model the unimorph harvester (presented in 
subsection 2.2.2), and using the provisional data listed in Table 2.3, the FE model 
of the proposed PVEH device is created in COMSOL software. Aluminum, Steel 
and PZT-5A (properties are given in Table 2.1) are considered as the materials of 
the substrate structure, the proof masses and the PZT patches, respectively. Also, 
in the meshing step of the FE simulations for this multi-beam layout, the type and 
size of mesh elements for discretizing the geometry are appropriately selected after 
performing mesh convergence studies. The mesh is accordingly built using 
tetrahedral elements with normal/fine size. 
 

 
(a) 

  
(b) (c) 

Fig. 2.3: (a) 3D sketch of the proposed multi-beam energy harvester resting on its 
housing (for 𝑛 = 8) (b) 2D sketch of the substrate structure (c) 2D sketch of the 
substrate structure equipped with PZT patches and proof masses 
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Table 2.3: Provisional dimensions of the novel multi-beam energy harvester 

Parameter Substrate PZT layer Central mass 

Side length of the central part (mm), 𝑎 - - 10 

Length (mm), 𝐿𝑏, 𝐿𝑝 40 40 - 

Inner width (mm), 𝑏𝑖 7 7 - 

Outer width (mm), 𝑏𝑜 7 7 - 

Thickness (mm), ℎ𝑏, ℎ𝑝, ℎ𝑚 0.3 0.3 5 

 
 

2.5 Parametric Studies and Discussion 
This section provides numerical results of both unimorph and the novel multi-beam 
energy harvesters. Because the fundamental vibration mode of the scavengers is of 
the highest practical importance for energy harvesting, attention is therefore given 
to this mode. In addition to frequency response functions, variations of the electrical 
outputs with load resistance and other design parameters are also investigated here, 
for excitations at short circuit (SC) and open circuit (OC) resonant frequencies. 
 
 

2.5.1 Numerical Results for the Unimorph Harvester 

The accuracy of the analytical modeling and the FE simulations is first evaluated in 
this subsection. To that, the resonance frequencies of the unimorph beam calculated 
from the analytical model and the FE COMSOL simulation are presented in Table 
2.4, in which different materials are assigned to the substrate layer of the harvester. 
Moreover, the transverse displacement and the strain plots associated to the first 
vibrational mode of the unimorph harvester are also extracted from the COMSOL 
simulations and given in Figure 2.4. It is noted that in the MATLAB computations, 
only stiffness, mass density and dimensions are considered, so that involved in the 
slight differences observed from Table 2.4. Nonetheless, one can observe from the 
table that the relative differences are less than 1%, confirming reliability of the FE 
COMSOL models and simulations for accurate prediction of resonance frequencies. 
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(a) Transverse displacement plot (b) Strain plot 

Fig. 2.4: Fundamental mode shape of the unimorph beam (top view–the beam is clamped 
at its left end) 

 

Table 2.4: Fundamental resonance frequency (Hz) of the unimorph beam calculated by 
MATLAB and COMSOL 

Reference 
Substrate material  

Aluminum Steel Bronze Titanium  

MATLAB code 217.95 227.31 189.46 226.14  

COMSOL simulation 216.62 225.32 188.01 224.49  

Relative difference (%) + 0.61 + 0.88 + 0.77 + 0.73  

 
Based on the geometrical properties given in Table 2.2, the developed 

analytical and FE COMSOL models are used to obtain the voltage, current and 
power response to base excitation for the unimorph harvester made of Aluminum 
and PZT-5A. Because the electrical load resistance 𝑅𝐿 is an important parameter 
which has a great influence on the dynamic behavior of the PVEH device, the first 
peak in the output electrical response of the unimorph beam is plotted in Figs. 2.5 
to 2.7, for different values of load resistance 𝑅𝐿: 102, 103, 104, 105, 106, 107 and 
108 Ω. These plots represent the magnitude of the output voltage, current and power 
for unimorph energy harvester when subjected to a harmonic base excitation with 
an amplitude of 0.4𝑔 (i.e., 𝜔2𝑍0 = 0.4𝑔), where 𝑔 is the acceleration of gravity 
(𝑔 ≈ 9.81 𝑚/𝑠2). It can be noticed that level of 0.4g is significant, in terms of 
applied acceleration, but it is remarkable that the PVEH system is aimed to recover 
at least a portion of energy dissipated in case of evident loss in the host structure 
and is compatible with some assumptions already made in the literature as well as 
in some specific application (see for instance rolling mill vibration or in 
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steelmaking plants [130,131]). As known, the SC condition is expected for low 
values of load resistance (i.e., 𝑅𝐿 → 0), whereas the PVEH device is expected to 
shift toward the OC condition for large values of 𝑅𝐿  (i.e., 𝑅𝐿 → ∞). 

From Figs. 2.5 to 2.7, again, excellent agreement between the results of 
MATLAB and COMSOL simulations, both in terms of values and overall trends, 
is seen, which clearly shows the consistency of the electromechanical models 
proposed here. Some other important points can be realized from these figures. For 
instance, Fig. 2.5 indicates that as 𝑅𝐿 increases from low values to large values, the 
amplitude of the voltage output rises monotonically for all the excitation 
frequencies until it reaches its maximum value at 𝑅𝐿 = 106 and then remains 
constant for 𝑅𝐿 ≥ 106. Moreover, with increasing the load resistance 𝑅𝐿, the 
resonance frequency of the unimorph moves from the SC resonance frequency to 
the OC frequency. The two important excitation frequencies are the SC and the OC 
resonance frequencies of the unimorph PVEH device, which can be calculated 
simply from Figs. 2.5 to 2.7. From Fig. 2.6, in which the output current is plotted 
against the driving frequency, it is observed that the amplitude of the electric current 
goes down monotonically (similar to output voltage) as the value of 𝑅𝐿 increases, 
which is the opposite of the output voltage behavior presented in Fig. 2.5. It is also 
obvious that for every considered driving frequency, the maximum amount of the 
electric current is achieved when the PVEH system is close to the SC condition. 
Fig. 2.7 shows that the output power does not represent a monotonic behavior when 
the value of 𝑅𝐿 increases. In fact, as the load resistance gets larger, the power output 
increases until it reaches its maximum value, which corresponds to 𝑅𝐿 = 105 
(among the sample values considered), then drops due to the large resistance value 
in the denominator which reduces the electric current. Using the frequency response 
plots given in Figs. 2.5 to 2.7, the SC and OC resonance frequencies, the maximum 
peak power, and its corresponding excitation frequency as well as the power density 
of the unimorph harvester, are extracted and listed in Table 2.5. It is noted that the 
maximum power output reported in Table 2.5 is achieved for 𝑅𝐿 = 105, which is 
among the sample values of the load resistance considered for plotting the 
frequency response plots. Therefore, the obtained value of the maximum peak 
power is not necessarily the maximum possible or the optimized power output that 
can be generated by the unimorph energy harvester. It is, however, a straightforward 
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practice to compute the optimum value of 𝑅𝐿 and its respective resonance frequency 
for the present unimorph energy harvester and it is beyond the discussion of this 
subsection, which intends to address more general points. 
 

 

 

Table 2.5: Dynamic and electric outputs of the unimorph cantilever PVEH device  

Parameter  MATLAB Code  COMSOL Simulations 

SC resonance frequency (Hz) 218.0  219.6  

OC resonance frequency (Hz) 221.6  223.0  

Total volume of the proposed PEH (mm3) 168  168  

Total volume of the PZT patches (mm3) 84  84  

Peak power at 𝑅𝐿 = 105Ω (𝜇W) 21.08  20.65  

Excitation frequency at the peak power (Hz) 221.0  222.2  

Power density 1 (𝜇W/mm3) 0.125  0.123  

Power density 2 (𝜇W/mm3) 0.251  0.246  

Power density 1 = Peak power per total volume of the energy harvester   

Power density 2 = Peak power per total volume of the PZT patches   

 
 
 

  
(a) MATLAB Code (b) COMSOL Simulations 

Fig. 2.5: Voltage response to base excitation for the typical unimorph beam 
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(a) MATLAB Code (b) COMSOL Simulations 

Fig. 2.6: Current response to base excitation for the typical unimorph beam 
 

  
(a) MATLAB Code (b) COMSOL Simulations 

Fig. 2.7: Power response to base excitation for the typical unimorph beam 
 

Although the good agreement between the results of the present analytical 
and FE numerical models (observed from Table 2.4 and Figs. 2.5 to 2.7) clearly 
shows the reliability of both developed models, the accuracy of the present FE 
model is further investigated by making some other comparison examples, with the 
help of some relevant numerical and experimental works available in literature. To 
that end, the present numerical COMSOL models are slightly modified and updated 
to build the FE model of some other PVEH layouts presented in literature. The first 
example is concerned with analysis of the cantilevered unimorph energy harvester 
proposed in Ref. [128], which is studied both numerically and experimentally. The 
present FE model is modified to build the 3D COMSOL model of that unimorph, 
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for comparing the results. Using this updated COMSOL model, the results of 
numerical modeling and experimental measurements of modal and frequency 
domain analyses presented in Ref. [128] (given in Figs. 2 and 4, and also Table 2 
of Ref. [128]) are recalculated, and given here in Table 2.6 and Fig. 2.8 alongside 
their counterparts. Good agreement between the obtained results is observed, which 
clearly shows the consistency of the FE electromechanical model proposed in the 
current contribution. 
 
Table 2.6: Comparison example between the results of the present simulations with those 
of Ref. [128] 

Parameter 
Ref. [128]   

Numerical Experimental  Our FE model 

Location of the PZT patch 0 0  0 

OC voltage (V) 24.21 23.05  23.69 

Resonance frequency (Hz) 94.5 93.7  94.4 

 
 

 
Fig. 2.8: OC voltage versus driving frequency for the unimorph beam proposed in Ref. 
[128] (here, 𝐿 is the distance of PZT patch from the fixed end of the beam) 

 
In a second comparison example, the authors have updated the present FE 

COMSOL model and simulated the bimorph harvester presented in Ref. [132], and 
listed in Table 2.7 the obtained results alongside their counterparts reported in Ref. 
[132]. The concurrence of the results listed in Table 2.7, once again, confirms that 
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the developed FE simulations exhibit good reliability in prediction of the dynamic 
and electric response of PVEH systems. 
 
Table 2.7: Comparison example between the results of the present simulations with 
those of Ref. [132] 
Parameter Ref. [132] Our FE model 

SC resonance frequency (Hz) 99.80 99.74 

OC resonance frequency (Hz) 105.50 106.6 

Displacement of the tip mass at optimal load (𝜇m) 127 131 

Harvested power at optimal load (mW) 0.323 0.334 

 
 

2.5.2 Numerical Results for the Novel Multi-beam Harvester 

The FE COMSOL model developed for the unimorph harvester was verified 
through the comparison examples presented in the previous subsection. This 
reliable model is here used and modified (in terms of geometry) to build the 
numerical model of the proposed multi-beam structure. Here and hereafter, 
different case studies of the multi-beam layout are considered, and comprehensive 
parametric studies are performed to assess the performance of the proposed device 
and to realize the effect of various design parameters. First, three different 
structures with 𝑛 = 4 (4-beam layout), 𝑛 = 6 (6-beam layout) and 𝑛 = 8 (8-beam 
layout) are selected the case studies of our interest for conducting the FE 
electromechanical analyses. In COMSOL Multiphysics® software, the FE models 
of these three cases are created, as depicted in Fig. 2.9. Aluminum, Steel and PZT-
5A (properties are given in Table 2.1) are considered as the materials of the 
substrate structure, the proof masses and the PZT patches, respectively. The 
geometrical dimensions are also considered based on the data listed in Table 2.3. 

In a first step, Eigenfrequency studies are carried out in COMSOL to obtain 
the resonance frequencies and the corresponding eigenmodes of the three 
considered layouts. As a result, in Figs. 2.10 to 2.12 are shown the obtained results 
of the fundamental mode shapes for all the considered layouts. From the figures, 
the existence of two curves throughout the length of each beam is observed, which 
shows the existence of two regions in which mechanical strain can be created when 
the fundamental mode of each layout is excited. Obviously, one should attach the 
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piezoelectric patches to the substrate structure within these two regions, so that 
considerable mechanical strain can be induced inside the PZT patches, which in 
turn leads to generation of electrical voltage. 
 

  
(a) The 4-beam layout (b) The 6-beam layout 

 

(c) The 8-beam layout 
Fig. 2.9: FE COMSOL models of the proposed energy harvester for 𝑛 = 4, 6, 8 

 
The next step is to perform Frequency-Domain simulations in COMSOL to 

determine the voltage and power generated by the considered layouts. Excitation of 
sinusoidal form is thus applied at the fixed ends of the selected layouts assuming 
constant excitation acceleration amplitude. In the following subsections, a number 
of frequency-domain studies are conducted to investigate how different design 
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parameters such as the length of piezoelectric patches, the proof masses, the type 
of electrical connection (i.e., parallel or series among the piezoelectric patches), as 
well as the selected materials influence the electric response of the layouts 
presented in Fig. 2.9. In the frequency-domain analyses presented in the future 
subsections, an isotropic damping loss factor of 휂𝑠 = 0.05 is considered for both 
materials of the substrate structure and PZT patches, with reference to the literature 
data for the same materials [74,128,129,133]. Moreover, the system is assumed to 
be subjected to a harmonic base acceleration of 0.4g. 
 
 
 

  

(a) Transverse displacement (top view) (b) Strain distribution (top view) 

 
(c) Transverse displacement (side view) 

Fig. 2.10: First mode shape corresponded to the fundamental frequency of 4-beam 
layout (133 Hz) 
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(a) Transverse displacement (top view) (b) Strain distribution (top view) 

 
(c) Transverse displacement (side view) 

Fig. 2.11: First mode shape corresponded to the fundamental frequency of 6-beam 
layout (104.3 Hz) 
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(a) Transverse displacement (top view) (b) Strain distribution (top view) 

 
(c) Transverse displacement (side view) 

Fig. 2.12: First mode shape corresponded to the fundamental frequency of 8-beam 
layout (89.5 Hz) 

 
 
2.5.2.1 Effect of length of the PZT Patches 

Assuming different values for the length of the PZT patches 𝐿𝑝, ranging from 6 to 
38 𝑚𝑚 (with a step of 2 𝑚𝑚), Frequency-Domain studies are performed for the 
three cases of interest, and the obtained results are given in Fig. 2.13, where the 
effects of variation of 𝐿𝑝 on resonance frequency of the harvester, peak voltage and 
peak power are illustrated. Note that parallel connection is used here for wiring the 
piezoelectric patches, in which the bottom surfaces of all the PZT patches are 
attached to a Ground electrode while all the top surfaces are connected to a Terminal 
electrode. An electrical load of 𝑅𝐿 = 105Ω is also considered as a fixed sample 
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value of the electrical load resistance, to extract the general trends of mechanical 
and electrical outputs against the length of PZT patches. 
 

 
(a) 

 
(b) 

 
(c) 

Fig. 2.13: Variation of resonance frequency and electric outputs of the 4-Beam, 6-
beam, and 8-beam harvesters versus the length of PZT patches 
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As a primary observation, it is abundantly clear from Fig. 2.13 that the more 
are the number of the adopted beams in the multi-beam harvester, the less is the 
resonance frequency of the harvester, and the more is its output voltage/power. 
Moreover, one can observe that changing the length of the piezo patches 
significantly affects the resonance frequency and the peak voltage/power for all the 
considered multi-beam harvesters. In fact, the resonance frequency of each of the 
considered smart layouts increases by increasing the length of the PZT patches. On 
the other hand, as the length of the piezo patches increases, the peak voltage (and 
also the peak power) in frequency response plots increases until it reaches its 
maximum value then drops dramatically. The physical reason behind the 
increasing/decreasing trends of the voltage/power peaks could be attributed to the 
bending strain distribution throughout the length of the beams. Actually, as we 
move from the clamped end of each beam to the center of the layout, the bending 
strain distribution changes sign (see Figs. 2.10(b), 2.11(b) and 2.12(b)), which 
indicates the existence of a Strain Node through the length of each beam. Note that 
a Strain Node corresponds to a location, in a mode shape, where the strain 
distribution (or the beam curvature) changes sign [134]. According to the definition 
of piezoelectric materials, the voltage produced on the electrodes of a piezoelectric 
layer is proportional to the strain induced in the piezoelectric layer. In fact, if an 
element of piezoelectric material has positive strain (tension) in one location and 
negative strain (compression) in another location (simultaneously), negative and 
positive voltages will be produced across the piezoelectric material, therefore, when 
a continuous electrode covers the entire piezoelectric layer, the negative and 
positive voltages will tend to cancel. This phenomenon results in significant 
reduction of the power output. Due to this phenomenon, it is therefore not efficient 
(in terms of the maximum voltage and power generation) to cover the entire length 
of the beams with continues piezoelectric patches. 

Optimal values are seen from Fig. 2.13 for the length of the PZT patches 
(among the considered values), in which the maximum peak voltage/power can be 
achieved from each of the considered layouts. These values and their respective 
frequencies, maximum peak powers and power densities (peak power per unit 
volume of the energy harvester) are extracted and listed in Table 2.8, for the three 
considered smart layouts. The results listed in Table 2.8 demonstrate that the 8-
beam harvester exhibits the lowest resonance frequency, which is 68.8 Hz, followed 
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by the 6-beam and the 4-beam layouts (81.8 and 107 Hz, respectively). Among the 
three considered layouts, the maximum peak voltage/power as well as the 
maximum power density are also achieved by the 8-beam structure, when the same 
harmonic base excitation is applied. Comparing the obtained results presented in 
Tables 2.5 and 2.8, it can be found that when the same base excitation (i.e., 0.4g) 
and the same load resistance (i.e., 𝑅𝐿 = 105Ω) are applied, the 4-beam, 6-beam, 
and 8-beam layouts provide power densities of almost 3.3, 5 and 6.3 times greater 
than that of the typical unimorph cantilever, respectively. Note that the value of 
load resistance used to obtain the plots presented in Fig. 2.13, was taken arbitrarily 
as a sample value to observe the general trends only, thereby, the maximum voltage 
and power outputs reported above, are for this sample value and they are not 
necessarily the maximum possible or the optimized power outputs. 
 
 
 
Table 2.8: Optimal length of the piezo patches and the respective output voltage/power 
for different multi-beam structures 
 Structure 

Parameter 4-beam layout 6-beam layout 8-beam layout 

Optimal length of the PZT patches (mm) 28 26 24 
Resonance frequency of the harvester 
(Hz) 

107 81.8 68.6 

Total weight of the whole harvester (gr) 10.62 24.39 43.01 

Total volume of the harvester (mm3) 1601.2 3507.6 5903.6 

Total volume of the PZT patches (mm3) 235.2 327.6 403.2 

Peak voltage (V) 9.2 16 23 

Peak power (mW) 0.85 2.6 5.3 

Power density 1 (𝜇W/mm3) 0.53 0.74 0.90 

Power density 2 (𝜇W/mm3) 3.61 7.94 13.14 

Power density 1 = Peak power per total volume of the energy harvester  

Power density 2 = Peak power per total volume of the PZT patches  
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2.5.2.2 Effect of Parallel and Series Connections 

In this subsection, the 8-beam PVEH device investigated in the preceding 
subsection (with 𝐿𝑝 = 24 mm) is selected as the case of our interest due to its 
highest power density compared to the other layouts, therefore, the FE COMSOL 
parametric studies are continued for this system only. For wiring the electrodes 
attached to the eight piezoelectric patches in the 8-beam smart layout, both parallel 
and series connections are used and simulated in COMSOL. The parallel 
connection is simulated in COMSOL simply by assigning a ground node to the 
bottom electrodes of all the PZT patches, and a terminal node to all the top 
electrodes. Regarding the configuration with series connection, the bottom 
electrode of the PZT patch of the first smart beam (beam No. 1 in Fig. 2.3c) is 
assigned to a ground node. Then, its top electrode is considered as a terminal node, 
shared with the bottom electrode of the PZT patch of the second smart beam. This 
pattern is repeated for the following patches as well. Eventually, the last remaining 
electrode of the smart beam No. 8 is attached to a separate terminal node. The type 
of this last terminal is considered as circuit, to be connected to the electrical circuit 
in electrical circuit module, for the measurement of the voltage generated across the 
load resistance. In order to investigate the effect of the type of electrical connection 
among the piezo patches, the frequency response of voltage and power outputs of 
the 8-beam PVEH system are plotted in Figs. 2.14 and 2.15, for different values of 
load resistance ranging from 100Ω (SC condition) to 100MΩ (OC condition). 
 

  
(a) Parallel connection (b) Series connection 
Fig. 2.14: Voltage response to base excitation for the 8-beam layout 
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(a) Parallel connection (b) Series connection 
Fig. 2.15: Power response to base excitation for the 8-beam layout 

 
The trends observed from Figs. 2.14 and 2.15 are expectedly similar to those 

presented for the unimorph harvester. However, Fig. 2.15 indicates that although 
the output voltage increases with increasing the value of 𝑅𝐿 for both types of 
electrical connections, a larger resistance load has to be applied to the PVEH system 
under series connection to reach its OC condition, compared to when the parallel 
connection is used. The output voltage rises with increasing the load resistance first, 
and then it remains constant in the OC voltage for 𝑅𝐿 ≥ 106Ω in parallel 
connection, while for 𝑅𝐿 ≥ 108Ω in series connection. As expected, the amount of 
the OC voltage provided by the series electrical configuration is much higher 
compared to the parallel configuration. It is also worth noticing that the type of 
electrical connections has no effect on the resonance frequencies corresponded to 
the SC and OC conditions of the PVEH system. From Fig. 2.14, the SC and OC 
resonance frequencies of the 8-beam layout are found to be 67.2 Hz and 68.8 Hz, 
respectively. On the other hand, Figs. 2.15(a) and 2.15(b) represent that among the 
sample values considered for 𝑅𝐿, the values of the maximum output power 
generated by the PVEH device under parallel and series connections correspond to 
𝑅𝐿 = 10

5Ω and 𝑅𝐿 = 106Ω, respectively, which are close to the OC condition of 
the system. Another interesting point, that can be seen from Fig. 2.15, is that some 
of the curves corresponded to various frequency response cross each other at 
different values of 𝑅𝐿, in which the crossing points are around the resonance 
frequency of the harvester. At these crossing frequencies, the two respective values 
of 𝑅𝐿 result in the same amount of power output. 
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To provide a deeper insight into the load resistance effect, variations of the voltage, 
current and power outputs with load resistance for excitations at the SC and OC 
resonance frequencies are plotted in Figs. 2.16 to 2.18, for the 8-beam PVEH 
system.  
 

  
(a) Parallel connection (b) Series connection 

Fig. 2.16: Variation of the voltage output with resistance load for the 8-beam PVEH 
device 

 
Fig. 2.16 indicates that for low values of load resistance 𝑅𝐿, the voltage output 

at the SC resonance frequency is higher than that of the OC excitation since the 
system is close to SC conditions. However, the SC and OC curves intersect at a 
certain value of 𝑅𝐿 (about 40.1 kΩ for parallel connection, and 2.6 MΩ for series 
connection), and for the values of 𝑅𝐿 greater than the value at the point of 
intersection, the voltage output at the OC resonance frequency becomes higher 
expectedly. Finally, the voltage output remains constant and insensitive to the 
variations of 𝑅𝐿 at OC conditions (i.e., for very large amounts of 𝑅𝐿). 
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(a) Parallel connection (b) Series connection 

Fig. 2.17: Variation of the current output with resistance load for the 8-beam PVEH 
device 

 

  
(a) Parallel connection (b) Series connection 

Fig. 2.18: Variation of the power output with resistance load for the 8-beam PVEH 
device 

 
Concerning the current output, one can simply observe from Fig. 2.17 that, 

for both parallel and series connections, the current is very insensitive to the 
changes in 𝑅𝐿 when it varies at the range of its low values. Since in this relatively 
low resistance domain the system is close to the SC conditions, higher current 
output is obtained at the SC resonance frequency compared to the OC one, similar 
to the case of voltage output. After, the output current starts declining with further 
increase in 𝑅𝐿, until both the curves (in both Figs. 2.17(a) and 2.17(b)) cross each 
other at a certain value of load resistance (again, around 40.1 kΩ for parallel 
connection, and 2.6 MΩ for series connection). For the values of 𝑅𝐿 greater than 
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the value at the crossing point, the output current corresponded to the excitation at 
the SC resonance frequency becomes higher than that of the OC resonance 
frequency. 

In regard to the power output, it is also realized from Fig. 2.18 that the same 
intersection points (around 40.1 kΩ for parallel connection, and 2.6 MΩ for series 
connection) are appeared for the curves associated to the power outputs of 
excitation at the SC and OC resonance frequencies. For both parallel and series 
types of connection among the PZT patches, the trends of the power output at the 
SC and the OC resonance frequencies in the regions before and after the crossing 
load resistance are similar to those of the voltage output plots. More important are 
the observed peak power values in both Figs. 2.18(a) and 2.18(b), that are 
corresponded to the optimum values of load resistance in both parallel and series 
connections, respectively. It is realized that when the optimum values of 𝑅𝐿 are 
used for each of the SC and OC excitations, the same values of maximum power 
output are obtained. In particular, from Fig. 2.18(a), when the parallel connection 
is used, the maximum power output generated by the 8-beam PVEH device is 5.9 
mW across the optimum resistance loads of 𝑅𝐿

𝑜𝑝𝑡 = 29.10 kΩ and 𝑅𝐿
𝑜𝑝𝑡 = 53.10 kΩ, 

for excitation at the SC and OC resonance frequencies, respectively. The same 
amount of peak power (i.e., 5.9 mW) is also obtained from Fig. 2.19(b) for the case 

of series connection, but at optimum resistance loads of 𝑅𝐿
𝑜𝑝𝑡 = 1.84 MΩ and 

𝑅𝐿
𝑜𝑝𝑡 = 3.42 MΩ for the SC and OC excitations, respectively. Therefore, the 

amounts of power output for these resistive loads are identical for excitation at the 
SC and the OC resonance frequency, as well as for the parallel and the series 
connections, separately. 

In Fig. 2.19, the relative motion frequency response of the central part of the 
8-beam harvester (i.e., the proof masses) is plotted for different values of 𝑅𝐿, for 
both parallel and series configurations. Although the relative motion response can 
be obtained for any point throughout the volume of the proposed layout, the motion 
of the central part of the layout is of particular interest since it is the position of the 
maximum transverse displacement when the system oscillates due to applying the 
base excitation. Therefore, the vibratory motion of the central part of the PVEH 
device plays an important role while deciding on the volume of the proposed energy 
scavenger. Fig. 2.19 represents that there are significant variations around the 



74                                                         Piezoelctric vibration energy harvesting … 
 

resonance frequencies extracted from the plots corresponded to different resistance 
loads. However, the same SC and OC resonance frequency behaviors (62.7 Hz and 
68.8 Hz, respectively) are observed. According to the figure, as the value of 
resistance load increases from 102Ω to 105Ω for the parallel configuration (and 
from 102Ω to 106Ω, for the series configuration), the vibration amplitude decreases 
remarkably, and when 𝑅𝐿 is further increased to 108Ω, the amplitude of vibration 
starts increasing sharply. Thus, it can be concluded that the dynamic response of 
the PVEH system is highly influenced by variation of load resistance, and the 
vibration amplitude does not necessarily represent a monotonic behavior with 
increasing or decreasing the value of load resistance, as was also seen in the plots 
corresponding to the voltage/current output. 
 

  
(a) Parallel connection (b) Series connection 

Fig. 2.19: Relative displacement response to base excitation for the 8-beam layout 
 
 
2.5.2.3 Effect of Proof Masses 

Generally speaking, proof masses are used in PVEH designs to match the resonance 
frequency of the harvester to that of ambient vibration available at the selected 
application. It also helps increasing the power output of the scavenger by increasing 
the amplitude of oscillation, which raises the level of mechanical strain induced in 
the active layers. In this subsection, to have a better understanding of the proof mass 
effect, the voltage and power frequency response are plotted in Fig. 2.20, for the 8-
beam PVEH system without/with proof masses having different thicknesses. Note 
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that a sample value of load resistance, equal to 𝑅𝐿 = 105Ω, is used here to obtain 
the voltage and power response. However, one can simply observe from the figure 
that the resonance frequency of the scavenger as well as the corresponding peak 
voltage/power in the obtained plots are significantly influenced by changing the 
thickness of the proof masses. In absence of the proof masses, the proposed 
structure has a resonance frequency of 353.5 Hz and produces a maximum power 
of 23.2 𝜇W. As expected, equipping the energy harvester with proof masses leads 
to a PVEH device with lower resonance frequency and higher output power. In 
particular, when the energy scavenger is equipped with the proof masses of 5 mm 
thickness, its resonance frequency reduces to 68.5 Hz, and its peak power touches 
the value of 5.3 mW, which is much more than that of the same harvester without 
proof masses.  
 

  
(a) (b) 

Fig. 2.20: Variation of resonance frequency and electric outputs of the 8-beam harvester 
versus the thickness of proof masses (𝑅𝐿 = 105Ω, Excitation amplitude = 0.4𝑔) 

 
 

2.5.2.4 Effect of Selected Materials 

In this subsection, the effect of materials used for the proof masses and the PZT 
patches on the performance of the energy scavenger is investigated. Note that in the 
analyses performed in this subsection, the material of the substrate structure is kept 
constant as Aluminum, and the dimensions of the Steel proof masses are also kept 
constant and are considered according to Table 2.3. A load resistance of 𝑅𝐿 = 105Ω 
is also adopted to measure the voltage and power outputs.  
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First, Bronze, Steel, Titanium and Aluminum are separately assigned to the 
proof masses in the FE COMSOL models developed for the 8-beam PVEH 
structure, and the corresponding voltage and power outputs are computed and 
presented in Fig. 21. Note that in this comparison example, PZT-5A is adopted as 
the material of the PZT patches. However, as seen from Fig. 2.21, for the proof 
masses made of Bronze, the scavenger generates the highest power output, that is 
6.7 mW, at a resonance frequency of approximately 63.8 Hz. In another comparison 
example, while keeping constant the materials the proof masses (which is Steel), 
the voltage and power frequency response of the PVEH system are plotted in Fig. 
2.22 for different materials of the PZT patches such as PZT-2, PZT-4, PZT-5H and 
PZT-5A. Among the systems made of the adopted piezoelectric materials, the one 
having PZT-5A patches exhibits the lowest resonance frequency (68.6 Hz) while 
giving the highest peak power (5.3 mW), when the same base excitation is applied 
to the PVEH device.  
 

 

  
Fig. 2.21: Voltage and power frequency response for the 8-beam layout with different 
materials assigned to the proof masses (𝑅𝐿 = 105Ω, base acceleration = 0.4𝑔) 
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Fig. 2.22: Voltage and power frequency response for the 8-beam layout with different 
materials assigned to the PZT patches (𝑅𝐿 = 105Ω, base acceleration = 0.4𝑔) 

 
 
2.5.2.5 Effect of Shape of the Unimorph Beams 

This last investigation is concerned with the effect of the shape of the unimorph 
beams on the dynamic behavior and the electric response of the proposed multi-
beam PVEH system. Using trapezoidal beams instead of rectangular beams in the 
proposed layout, various designs including 8, 10 and 12 smart beams as well as the 
case of a pure PZT-5A disc with Steel proof masses at the middle are considered 
and investigated here. These layouts are shown in Fig. 2.23, and their geometrical 
properties are given in Tables 2.9 and 2.10. Note that all the considered designs are 
clamped at their outer edges, so that when the base acceleration is applied to each 
of the systems, the proof masses can oscillate transversely. 
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Table 2.9: Geometrical properties of Designs 1, 2 and 3 presented in Figs. 2.23(a-c) 

PVEH system Design 1  Design 2 Design 3 

Number of the trapezoidal beams  8 10 12 

Side length of the central part 𝑎 (mm) 10 10 10 

Length of the Aluminum substrate 𝐿𝑏 (mm) 40 40 40 
Length of the PZT-5A patches 𝐿𝑝 (mm) 32 34 32 

Inner width of the substrate beams 𝑏𝑖𝑏  (mm) 7 7 7 
Inner width of the PZT patches 𝑏𝑖𝑝 (mm) 13.3 15.575 14.35 

Outer width 𝑏𝑜 (mm) 38.5 31.5 28 

Thickness of the Aluminum substrate ℎ𝑏 (mm) 0.3 0.3 0.3 
Thickness of the PZT-5A patches ℎ𝑝 (mm) 0.3 0.3 0.3 

Thickness of the Steel proof masses ℎ𝑚 (mm) 7 7 7 

 

 

 

 

Table 2.10: Geometrical properties of the pure PZT disc presented in Fig. 2.23(d) 

Parameter    

Radius of the PZT-5A disc (mm) 60   

Thickness of the PZT-5A disc (mm) 0.3   

Radius of the Steel proof masses (mm) 19   

Thickness of the Steel proof masses (mm) 7   
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(a) Design 1: 8-beam layout with trapezoidal shape 

 
(b) Design 2: 10-beam layout with trapezoidal shape 

 
(c) Design 3: 12-beam layout with trapezoidal shape 

 
(d) Pure PZT-5A disc with Steel proof masses in the middle 

Fig. 2.23: The proposed layout with trapezoidal unimorph beams and the pure PZT disc 
with proof masses at the middle 
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Frequency-domain studies are performed in COMSOL for the layouts 
presented in Fig. 2.23, and the corresponding vibration and electric outputs are 
obtained and given in Table 2.11. From the table, it is realized that the more beams 
are used in the proposed PVEH system the lower resonance frequency has the smart 
device and the higher power density is achieved. It is also concluded that, for the 
fixed harmonic base excitation of 0.4𝑔, the power densities provided by Designs 1, 
2 and 3 are much higher than that of the considered pure PZT disc. 

 
Table 2.11: Resonance frequencies and electric outputs of the systems presented in Fig. 
2.23 
Design property Design 1  Design 2 Design 3 Pure PZT disc 

Resonance frequency (Hz) 106.6 88.4 77.8 43.35 

Total volume (mm3) 11078 15149 20512 18921 

Total volume of the PZT patches 
(mm3) 

1989 1835.9 1982 3052.3 

Maximum power output (mW) 1.83 3.76 6.35 65.29 × 10-3 

Power density 1 (𝜇W/mm3) 0.17 0.25 0.31 0.003 

Power density 2 (𝜇W/mm3) 0.92 2.05 3.20 0.021 

Power density 1 = Peak power per total volume of the energy harvester  

Power density 2 = Peak power per total volume of the PZT patches  

 

Last but not least, it must be noted that all the analyses performed in the previous 
subsections assumed that the excitation amplitude is not large enough to cause 
failure in any of the studied PVEH systems. It is well known that the piezoceramic 
materials such as PZT-5A are very brittle compared to the classical engineering 
materials such as Aluminum and Steel. As reported in [135], the PZT-5A 
commercial product has an ultimate tensile strength of about 140 MPa and a fatigue 
strength of 55 MPa, at 5×106 cycles. Besides, Aluminum exhibits an ultimate 
tensile strength of about 483 MPa [136]. Because the maximum stress reached at 
the resonance frequency of any of those layouts was calculated and observed to be 
less than 20 MPa, both PZT-5A and Aluminum elements in the studied systems 
exhibit high safety factors, which ensures safe operation of the proposed devices in 
practice. 
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2.6 Summary and Conclusions 
In this chapter, analytical and numerical energy harvesting models were first 
developed for a unimorph cantilevered beam. Then, a novel multi-beam energy 
scavenger composed of several of that unimorph, and two identical proof masses 
was introduced, aiming to propose a scavenger with a resonance frequency of less 
than 100 Hz, still capable of providing high power density. For the case of harmonic 
base excitation, the performance of both PVEH systems was investigated through 
conducting comprehensive parametric studies. The existence of strain nodes was 
identified in the fundamental mode of the new structure; therefore, preliminary 
optimization studies were performed to efficiently equip the system with the PZT 
patches, and consequently, to avoid any voltage cancellation. The results 
demonstrated that this new multibeam harvester offers high flexibility in matching 
its resonance frequency to that of a target application, simply by changing the 
number/shape of the smart beams or altering the proof masses used to design the 
structure. It was also found that increasing the number of the smart beams 
significantly improves the electric outputs and reduces the resonance frequency of 
the scavenger. Under the same base excitation, the novel harvester was able to 
generate a power density of up to six times greater than that of the simple unimorph. 
Finally, among all those cases studied in previous section, the 8-beam structure 
demonstrated the lowest resonance frequency and could generate several milliwatts 
of power across its optimum load resistance, when a harmonic base acceleration of 
0.4g as applied.



 
 

 
 
 
Chapter 3 
 

Kinetic Energy Harvesting Via 
Piezoelectric Bimorph Plates 
 
3.1 Overview 
As an alternative to piezoelectric cantilevers, plate-like energy harvesters can be 
much more effective in marine, aerospace, and automotive applications. For 
instance, they can be used for energy generation from pressure sources. This chapter 
is concerned with exact electromechanical modelling and analysis of piezoelectric 
bimorph plate energy harvesters with substrates made of either homogenous or 
porous materials. For the case of plate harvester with porous substrate, three 
different porosity distributions across the thickness of the core layer are inspected, 
and the piezoelectric layers are considered to be wired in both parallel and series 
configurations. Rayleigh damping assumptions are also used to model the structural 
damping of the harvesting system. The energy harvesting model of the plate 
harvester is established based on the conventional shear deformation plate theories, 
and through the use of Hamilton’s principle and Gauss’s law. Such theories allow 
for consideration of transverse shear deformations, therefore, deriving a highly 
accurate model that can be used for analysis of relatively-thick and thick plate-like 
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piezoelectric harvesters. An analytical solution is then applied to the governing 
equations, and closed-form steady-state response expressions are obtained for the 
voltage, current and power outputs as the scavenger response to harmonic 
excitation. Comparing the present results with some available in the literature, the 
proposed model is validated, and extensive parametric studies are then presented. 
The effects of design parameters such as the electrical load, porosity characteristics 
and geometrical parameters are studied in detail, and the results are presented with 
an eye toward guidelines for design of useful energy harvesting structures to be 
used in various applications. 
 
 

3.2 State of the Art 
The theory behind cantilever-type piezoelectric scavengers is clear, but the plate-
like piezoelectric harvesters, which can be used in many applications such as energy 
generation from pressure sources, is not yet fully developed, and only very few 
studies (dealing with plate harvesters) are available in the literature. For instance, 
Kim et al. [137] studied power generation via a pressure-loaded unimorph circular 
plate harvester with clamped boundaries and investigated the effects of electrode 
patterns and the thickness ratio on the energy generation of the harvester. They also 
validated the results through experimental studies [138]. Junior et al. [136] used the 
Generalized Hamilton's principle to develop an electromechanical finite element 
model based on Kirchhoff theory for the piezoelectric energy harvester plates. A 
bistable composite plate having piezoelectric patches was proposed and 
investigated by Arrieta et al. [139] to be used for broadband nonlinear energy 
harvesting. A detailed analysis was performed by Solovyev and Duong [140] for 
optimization of bimorph piezoelectric circular plate energy harvesters through a 
reduced order finite element analysis. Abadi et al. [141] developed analytical 
solutions by means of Classical plate theory and Rayleigh-Ritz method for the 
analysis of annular sectorial piezoelectric plate harvesters made of elastic substrates 
integrated with piezoelectric layers. Vibration energy harvesting via a disk-type 
piezoelectric bimorph structure was studied by Darabi et al. [142]. The bimorph 
disk with free edge conditions was mounted on a vibrating base from its center, and 
the focus was placed on the fundamental axisymmetric vibration mode for energy 

https://www.sciencedirect.com/topics/engineering/hamiltons-principle
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harnessing. Using the classical laminate plate theory, an exact analytical solution 
was presented by Paknejad et al. [143] for a piezoelectric patch energy harvester 
attached to a thin multilayer orthotropic composite plate. The author then used finite 
element analysis in ANSYS for the verification of their proposed analytical model. 
Yoon et al. [144] proposed an electromechanically-coupled analytical model based 
on Kirchhoff plate theory for a rectangular surface-bonded piezoelectric energy 
harvesting skin considering the inertia and stiffness effects. Shukla and Pradyumna 
[145] proposed a variable stiffness composite laminate (VSCL) bimorph energy 
harvester, used the first-order shear deformation theory to establish the respective 
energy harvesting model, and extracted the results through the use of the finite 
element method. 

Recently, piezoelectric energy harvesters with elements containing porosities 
are introduced by several researchers [45–53,146,147], aiming to improve the 
respective voltage/power generation. Porosity, either closed or open, is a 
characteristic that strongly defines the properties of a given material, such as its 
density and stiffness. A properly engineered porous material, for instance, can 
provide the same performance as its bulk counterpart, but for a fraction of the 
weight, which is crucial for its use in applications where lightweight is a concern. 
Martínez-Ayuso et al. [50] developed an analytical model of impact energy 
harvester consisting of a cantilever beam with integrated porous piezoelectric 
patches. The material chosen to extract the energy was porous PZT, a composite 
material made of two phases: air and PZT. Very recently, Moradi-Dastjerdi and 
Behdinan [147] proposed a bridge-type piezoelectric energy harvester made of an 
advanced porous nanocomposite substrate activated by two piezoceramic layers. 
The results of their study demonstrated that embedding pores into the substrate 
layers leads to higher deflection/voltage peaks and consequently higher power 
generation. A lumped parameter model was used by Mahesh [53] to represent the 
dynamic behavior of a multifunctional composite harvester consisting of 
functionally graded materials with porosities. 

To the best of authors’ knowledge, so far, highly different modeling 

approaches have appeared in the literature of vibration energy harvesting for 
piezoelectric beam-based harvesters while plate-like scavengers are rarely 
investigated despite their broad applications. Even though piezoelectric energy 

https://www.sciencedirect.com/topics/engineering/piezoceramics
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harvesters are usually designed and manufactured as thin structures for larger 
flexibility and larger power, there might be need to use configurations where the 
structure might have moderate thickness (e.g., due to the limitations in the active 
material dimensions) where the shear deformation and the rotary inertia effects are 
pronounced. However, considering the issues in the existing literature, there seems 
to be an urgent need to develop reliable piezoelectric energy harvester models that 
can be used for analysis of thin, moderately thick, and thick plate-like scavengers. 
In this chapter, it is therefore aimed to use the higher-order shear deformation 
theories to develop a comprehensive analytical energy harvesting model for the 
bimorph plate harvesters. Another objective is to study the effect of utilizing porous 
substrates on the performance of piezoelectric energy harvesters. To that end, the 
case of plate harvester with substrate containing porosities is also considered, and 
three different porosity patterns are inspected for the distribution of internal pores. 
If not all, most of the previous works dealing with the analysis of porous plate 
structures have been focused on the problems of free vibration, bending, and 
buckling analysis [148–157], and a distinct lack of comprehensive studies on 
analyzing porous piezoelectric plate harvesters is observed. However, the 
electromechanical governing equations of the harvester are derived for both parallel 
and series connections between the piezoelectric layers. The obtained equations are 
then solved analytically, and closed-form steady-state response expressions are 
derived for the coupled electrical outputs and the structural vibration response. 
Finally, the model is validated, and the effects of a wide range of design parameters 
are studied in detail. 
 

 
3.3 Bimorph Plate Harvester 
Consider a rectangular bimorph plate harvester with two identical piezoelectric 
layers, as shown in Fig. 3.1. In the figure, 𝑎, 𝑏, 2ℎ and ℎ𝑝 indicate the length, width, 
substrate thickness, and the thickness of each piezoelectric layer, respectively. The 
piezoelectric layers are assumed to cover all the surface of the substrate and to be 
poled along the thickness direction. Therefore, the 𝑑31 mode of piezoelectric 
materials is here utilized for the conversion of vibratory energy. The electrodes 
covering the opposite faces of piezoelectric layers are assumed to be very thin when 
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compared to the overall thicknesses of the plate harvester so that their contribution 
to the thickness dimension is negligible. The origin of the reference coordinate 
system is located on the neutral surface of the plate (at 𝑧 = 0). Once the smart plate 
is subjected to external excitations (here along 𝑧-direction), mechanical strain is 
induced inside the smart layers, which is then converted into an electric charge 
distribution so that inducing an electric field between the electrodes connected to 
the smart layers. Deformations are assumed to be small, and the composite structure 
exhibits linear-elastic material behavior. Both parallel and series connections 
between the piezoelectric layers are considered (see Fig. 3.2), and the electrodes are 
assumed to be connected to an external resistive load 𝑅𝐿. The condition of having 
a pure resistive load, although not necessarily the most realistic one (electric load 
often consists of rechargeable batteries or other capacitive loads), is very useful for 
an immediate comparison of the harvested power levels [158]. In Fig. 3.2, 𝑉(𝑡) 
represents the electric voltage across the resistive load, which is applied to the 
piezoelectric layers. From the viewpoint of electrical engineering, it is often 
required to convert the alternating voltage output to a constant voltage using a 
rectifier bridge (AC-to-DC converter) and a smoothing capacitor in order to reach 
a constant level of voltage for charging a small battery or a capacitor using the 
harvested energy. Since the voltage levels for charging batteries and capacitors are 
not arbitrary, it is usually required to use a DC-to-DC converter (step-up or step-
down) in order to regulate the rectified voltage output of the piezoceramic 
according to the voltage requirement of the specific charging application. These 
electrical engineering and power electronics aspects are beyond the scope of this 
work and the relevant electrical engineering work can be found in the literature.  

It is assumed that the electrodes covering the piezoelectric layers are perfectly 
conductive so that the electric potential is only dependent on 𝑧-coordinate and time 
𝑡 and has no dependency on the in-plane coordinates. Moreover, due to the small 
thickness of piezoelectric layers in practical cases, the electric potential in the 
thickness direction can be assumed to have linear distribution. In the case of parallel 
configuration, the inner electrodes (i.e., at 𝑧 = ±ℎ) are assumed to be connected to 
a Ground node while the outer electrodes of both piezoelectric layers (i.e., at 𝑧 =
±(ℎ + ℎ𝑝)) are connected to a single terminal node. Thus, in this case, the electric 
potential may have the following form: 
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𝜙𝑝(𝑥‚ 𝑦‚ 𝑧‚ 𝑡) =

{
 
 

 
 +

𝑉(𝑡)

ℎ𝑝
(𝑧 − ℎ), +ℎ ≤ 𝑧 ≤ +ℎ + ℎ𝑝

−
𝑉(𝑡)

ℎ𝑝
(𝑧 + ℎ), −ℎ − ℎ𝑝 ≤ 𝑧 ≤ −ℎ

 (3.1) 

On the other hand, for the case of series configuration, the electric potential 
function may have the form of: 

𝜙𝑠(𝑥‚ 𝑦‚ 𝑧‚ 𝑡) =

{
 
 

 
 
𝑉(𝑡)

2ℎ𝑝
(𝑧 − ℎ), +ℎ ≤ 𝑧 ≤ +ℎ + ℎ𝑝

𝑉(𝑡)

2ℎ𝑝
(𝑧 + ℎ), −ℎ − ℎ𝑝 ≤ 𝑧 ≤ −ℎ

 (3.2) 

 
 
 

 
Fig. 3.1: 3D sketch of the piezoelectric bimorph plate harvester 

 

 
(a) 
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(b) 

Fig. 3.2: Cross section of the bimorph harvester with (a) parallel and (b) series 
connections (red arrays show the polarization directions) 

 
Considering the relation between electric potential function 𝜙 and electric 

field �⃗�  (i.e., �⃗� = −∇⃗⃗ 𝜙 where ∇⃗⃗  is the gradient vector), one can simply derive (from 
Eqs. (3.1) and (3.2)) the only non-zero component of electric field for both types of 
electrical configurations, as follows: 

 
For parallel connection: 

𝐸𝑧(𝑡) =

{
 
 

 
 −

𝑉(𝑡)

ℎ𝑝
, +ℎ ≤ 𝑧 ≤ +ℎ + ℎ𝑝

+
𝑉(𝑡)

ℎ𝑝
, −ℎ − ℎ𝑝 ≤ 𝑧 ≤ −ℎ

 (3.3) 

For series connection: 

𝐸𝑧(𝑡) =

{
 
 

 
 −

𝑉(𝑡)

2ℎ𝑝
, +ℎ ≤ 𝑧 ≤ +ℎ + ℎ𝑝

−
𝑉(𝑡)

2ℎ𝑝
, −ℎ − ℎ𝑝 ≤ 𝑧 ≤ −ℎ

 (3.4) 

On the other hand, the substrate layer is considered to be made of either 
homogenous metals (such as Aluminum, Steel, Bronze etc.) or materials containing 
porosities (such as cellular Aluminum etc.), according to the symmetric profiles 
(Pattern I, Pattern II, and Pattern III) given in Fig. 1.10 of Chapter 1. Therefore, 
the material properties in this layer (when it contains porosities) vary through the 
thickness direction, as were already defined in Eqs. (1.17) to (1.20) in Chapter 1. 
Note that for a given porosity, the masses of the three types of porous substrates are 
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equal, and is however less than that of the homogenous substrate. It is also important 
to note that due to both geometrical and material symmetry along the 𝑧-axis (with 
respect to the mid-plane of the plate), the neutral surface of the bimorph plate is 
located on the mid-plane (i.e., at 𝑧 = 0). 
 
 

3.4 Governing Equations 
3.4.1 Governing Equations in Physical Coordinates 
3.4.1.1 Displacement Model and Constitutive Equations 

Both the first-order (so-called FSDT) and the third-order shear deformation theories 
(so-called TSDT) are employed here, to derive the governing equations of the plate 
harvester. The components of the mechanical displacement filed can therefore be 
expressed as:  

𝑈𝑥(𝑥‚𝑦‚𝑧‚𝑡) = 𝑢0 + 𝑧𝜓𝑥 − 𝛼𝑧
3(𝜓𝑥 + 𝑤0,𝑥) 

(3.5) 𝑈𝑦(𝑥‚𝑦‚𝑧‚𝑡) = 𝑣0 + 𝑧𝜓𝑦 − 𝛼𝑧
3(𝜓𝑦 +𝑤0,𝑦) 

𝑈𝑧(𝑥‚𝑦‚𝑧‚𝑡) = 𝑤0 

where 𝑈𝑥, 𝑈𝑦 and 𝑈𝑧(𝑥‚𝑦‚𝑧‚𝑡) are the components of total displacement at any point 
of the smart plate along 𝑥-, 𝑦- and 𝑧-direction, respectively. Also, 𝑢0, 𝑣0, 𝑤0, 𝜓𝑥 
and 𝜓𝑦(𝑥‚𝑦‚𝑡) are displacements and rotations of the mid-plane of the plate. The 
coefficient 𝛼 must be set to zero for the case of FSDT (𝛼 = 0), while it equals to 
𝛼 = 4/[3ℎ𝑡

2] for the TSDT case (ℎ𝑡 is the total thickness of the bimorph harvester 
and equals to ℎ𝑡 = 2ℎ + 2ℎ𝑝). Here and hereafter, all the mathematical 
formulations and expressions are first derived based on the model given in Eq. (3.5), 
and later the values corresponding to FSDT or TSDT will be assigned to this 
parameter for the computation of numerical results. it is however easy to set 𝛼 = 0 
in the following mathematical expressions and equations, to simplify them for the 
case of FSDT. 

Considering Eq. (3.5), the linear strain components 휀𝑖𝑗’s, are obtained as: 

휀𝑥𝑥 = 𝑢0‚𝑥 + 𝑧𝜓𝑥,𝑥 − 𝛼𝑧
3(𝜓𝑥,𝑥 + 𝑤0,𝑥𝑥) (3.6) 
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휀𝑦𝑦 = 𝑣0‚𝑦 + 𝑧𝜓𝑦,𝑦 − 𝛼𝑧
3(𝜓𝑦,𝑦 + 𝑤0,𝑦𝑦) 

𝛾𝑥𝑦 = 𝑢0,𝑦 + 𝑣0,𝑥 + 𝑧(𝜓𝑥,𝑦 + 𝜓𝑦,𝑥) − 𝛼𝑧
3(𝜓𝑥,𝑦 + 𝜓𝑦,𝑥 + 2𝑤0,𝑥𝑦) 

𝛾𝑥𝑧 = (1 − 3𝛼𝑧
2)[𝜓𝑥 + 𝑤0,𝑥] 

𝛾𝑦𝑧 = (1 − 3𝛼𝑧
2)[𝜓𝑦 +𝑤0,𝑦] 

According to the linear elasticity, the constitutive equations of the porous 
materials (in which the pores are free of fluid) simply obey the Hooke’s law, as was 

already discussed for FGMs in Eqs. (1.11) to (1.13) in Chapter 1. However, due to 
the consideration of a shear correction factor in the models based on FSDT, such 
constitutive equations are rewritten here, as: 

𝜎𝑥𝑥 = 𝑄11휀𝑥𝑥 + 𝑄12휀𝑦𝑦 

(3.7) 

𝜎𝑦𝑦 = 𝑄21휀𝑥𝑥 + 𝑄11휀𝑦𝑦 

𝜎𝑦𝑧 = 𝐾𝑠
2𝑄44𝛾𝑦𝑧 

𝜎𝑥𝑧 = 𝐾𝑠
2𝑄55𝛾𝑥𝑧 

𝜎𝑥𝑦 = 𝑄66𝛾𝑥𝑦 

in which 𝐾𝑠2 denotes the shear correction factor that has to be considered in FSDT-
based analyses, for vanishing the shear stresses on the outer surfaces of the plate. 
In this study, the value of this coefficient is assumed to be 𝐾𝑠2 = 5/6 [150] for the 
case of FSDT. However, TSDT does not require any shear correction factor, 
therefore, setting 𝐾𝑠2 = 1 in Eq. (3.7) for this case. Note that the expressions related 
to 𝑄𝑖𝑗’s were given earlier in Eq. (1.13). 

On the other hand, since the piezoelectric layers are assumed to be polarized 
through the thickness direction (𝑧-direction), the respective electromechanically-
coupled stress-strain relations are considered based on Eq. (1.4). However, 
considering 𝜎𝑧𝑧 = 0, and applying such assumption to Eq. (1.4), the piezoelectric 
constitutive equation can be expressed as: 

𝜎𝑥𝑥 = 𝐶1̅1휀𝑥𝑥 + 𝐶1̅2휀𝑦𝑦 − �̅�31𝐸𝑧 

(3.8) 𝜎𝑦𝑦 = 𝐶1̅2휀𝑥𝑥 + 𝐶1̅1휀𝑦𝑦 − �̅�31𝐸𝑧 

𝜎𝑦𝑧 = 𝐾𝑠
2𝐶44𝛾𝑦𝑧 
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𝜎𝑥𝑧 = 𝐾𝑠
2𝐶55𝛾𝑥𝑧 

𝜎𝑥𝑦 = 𝐶66𝛾𝑥𝑦 

𝐷𝑥 = 𝑒15𝛾𝑥𝑧 
𝐷𝑦 = 𝑒15𝛾𝑦𝑧 

𝐷𝑧 = �̅�31휀𝑥𝑥 + �̅�31휀𝑦𝑦 + Ξ̅33𝐸𝑧 

in which 𝐶1̅1, 𝐶1̅2, �̅�31 and Ξ̅33 are the reduced coefficients and are given as: 

𝐶1̅1 = 𝐶11 −
𝐶13

2

𝐶33
‚ 𝐶1̅2 = 𝐶12 −

𝐶13
2

𝐶33
‚ �̅�31 = 𝑒31 −

𝐶13𝑒33
𝐶33

‚ Ξ̅33

= Ξ33 +
𝑒33

2

𝐶33
 

(3.9) 

In the following subsections, the energy harvesting model of the bimorph 
plate is established by means of both Hamilton’s principle and the integral form of 

Gauss’s law. 
 
 

3.4.1.2 Hamilton Principle  

The Hamilton’s principle for the present problem is of the form: 

𝛿𝑈 + 𝛿Ω = 0 (3.10) 

where 𝛿 is the variational operator, and 𝑈 and Ω represent the strain energy of the 
smart plate and the potential energy of the external loads, respectively. In Eq. (3.10), 
the terms 𝛿𝑈 and 𝛿Ω can be obtained with the help of the definition of strain energy 
and the virtual work done by the applied loads. However, using Eq. (3.10), the 
electromechanical equations of motion of the plate harvester are derived based on 
the displacement filed given in Eq. (3.5) and are expressed as: 

𝑁𝑥𝑥,𝑥 + 𝑁𝑥𝑦,𝑦 = 𝐼0�̈�0 + 𝐽1�̈�𝑥 − 𝛼𝐼3�̈�0,𝑥 (3.11a) 

𝑁𝑥𝑦,𝑥 + 𝑁𝑦𝑦,𝑦 = 𝐼0�̈�0 + 𝐽1�̈�𝑦 − 𝛼𝐼3�̈�0,𝑦 (3.11b) 

𝑀𝑥𝑥,𝑥 +𝑀𝑥𝑦,𝑦 − 𝑄𝑥𝑧 − 𝛼(𝑃𝑥𝑥,𝑥 + 𝑃𝑥𝑦,𝑦) + 3𝛼𝑅𝑥𝑧

= 𝐽1�̈�0 + 𝐾1�̈�𝑥 − 𝛼𝐽4�̈�0,𝑥 
(3.11c) 
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𝑀𝑥𝑦,𝑥 +𝑀𝑦𝑦,𝑦 − 𝑄𝑦𝑧 − 𝛼(𝑃𝑥𝑦,𝑥 + 𝑃𝑦𝑦,𝑦) + 3𝛼𝑅𝑦𝑧

= 𝐽1�̈�0 + 𝐾1�̈�𝑦 − 𝛼𝐽4�̈�0,𝑦 
(3.11d) 

𝑄𝑥𝑧,𝑥 + 𝑄𝑦𝑧,𝑦 + 𝛼(𝑃𝑥𝑥,𝑥𝑥 + 2𝑃𝑥𝑦,𝑥𝑦 + 𝑃𝑦𝑦,𝑦𝑦) − 3𝛼(𝑅𝑥𝑧,𝑥 + 𝑅𝑦𝑧,𝑦)

+ 𝐹𝑧(𝑡)

= 𝐼0�̈�0 − 𝛼
2𝐼6(�̈�0,𝑥𝑥 + �̈�0,𝑦𝑦) + 𝛼𝐼3(�̈�0,𝑥 + �̈�0,𝑦)

+ 𝛼𝐽4(�̈�𝑥,𝑥 + �̈�𝑦,𝑦) 

(3.11e) 

In Eq. (3.11), 𝐹𝑧(𝑡) is the mechanical load intensity per unit area. Moreover, 
𝑁𝑖𝑗, 𝑀𝑖𝑗, 𝑃𝑖𝑗, 𝑄𝑖𝑗 and 𝑅𝑖𝑗 are the stress resultants, and 𝐼𝑖 and 𝐽𝑘 are the inertia terms, 
with the following definitions: 

{𝑁𝑖𝑗, 𝑀𝑖𝑗 , 𝑃𝑖𝑗} = ∫ 𝜎𝑖𝑗{1, 𝑧, 𝑧
3} 𝑑𝑧

+ℎ+ℎ𝑝

−ℎ−ℎ𝑝

,       𝑖𝑗 = (𝑥𝑥, 𝑥𝑦, 𝑦𝑦) 

 {𝑄𝑖𝑗, 𝑅𝑖𝑗} = ∫ 𝜎𝑖𝑗{1, 𝑧
2} 𝑑𝑧

+ℎ+ℎ𝑝

−ℎ−ℎ𝑝

,                   𝑖𝑗 = (𝑥𝑧, 𝑦𝑧) 

{𝐼0, 𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼6} = ∫ {1, 𝑧, 𝑧2, 𝑧3, 𝑧4, 𝑧6} 𝜌(𝑧) 𝑑𝑧
+ℎ+ℎ𝑝

−ℎ−ℎ𝑝

 

{𝐽1, 𝐽4} = {𝐼1, 𝐼4} − 𝛼{𝐼3, 𝐼6},     𝐾1 = 𝐼2 − 2𝛼𝐼4 + 𝛼2𝐼6 (3.12) 

Here, the higher-order stress resultants 𝑃𝑖𝑗 and 𝑅𝑖𝑗 are observed in Eqs. 
(3.11c) to (3.11e) since the motion equations of the system are derived based on the 
model given in Eq. (3.5). However, in the motion equations, the terms including 𝑃𝑖𝑗 
and 𝑅𝑖𝑗 would vanish for the case of FSDT, as is simply observed by setting 𝛼 = 0. 

Substituting the stress fields of both porous and piezoelectric materials (given 
in Eqs. (3.7) and (3.8)) into Eqs. (3.12), one can simply rewrite the stress resultants 
in terms of the unknowns of the displacement field (𝑢0,𝑣0,𝜓𝑥,𝜓𝑦,𝑤0) as well as the 
electric voltage 𝑉(𝑡), as: 

𝑁𝑥𝑥 = 𝑎11
𝑁 𝑢0‚𝑥 + 𝑎12

𝑁 𝑣0‚𝑦 + 𝑏11
𝑁 𝜓𝑥,𝑥 + 𝑏12

𝑁 𝜓𝑦,𝑦 + 𝑓11
𝑁𝑤0,𝑥𝑥 + 𝑓12

𝑁𝑤0,𝑦𝑦

+ 𝛼𝑁𝑉(𝑡)[𝐻(𝑥) − 𝐻(𝑥 − 𝑎)][𝐻(𝑦) − 𝐻(𝑦 − 𝑏)] 
 

𝑁𝑦𝑦 = 𝑎12
𝑁 𝑢0‚𝑥 + 𝑎11

𝑁 𝑣0‚𝑦 + 𝑏12
𝑁 𝜓𝑥,𝑥 + 𝑏11

𝑁 𝜓𝑦,𝑦 + 𝑓12
𝑁𝑤0,𝑥𝑥 + 𝑓11

𝑁𝑤0,𝑦𝑦

+ 𝛼𝑁𝑉(𝑡)[𝐻(𝑥) − 𝐻(𝑥 − 𝑎)][𝐻(𝑦) − 𝐻(𝑦 − 𝑏)] 
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𝑁𝑥𝑦 = 𝑎66
𝑁 (𝑢0‚𝑦 + 𝑣0‚𝑥) + 𝑏66

𝑁 (𝜓𝑥,𝑦 + 𝜓𝑦,𝑥) + 𝑓66
𝑁𝑤0,𝑥𝑦  

𝑀𝑥𝑥 = 𝑎11
𝑀 𝑢0‚𝑥 + 𝑎12

𝑀 𝑣0‚𝑦 + 𝑏11
𝑀𝜓𝑥,𝑥 + 𝑏12

𝑀𝜓𝑦,𝑦 + 𝑓11
𝑀𝑤0,𝑥𝑥 + 𝑓12

𝑀𝑤0,𝑦𝑦

+ 𝛼𝑀𝑉(𝑡)[𝐻(𝑥) − 𝐻(𝑥 − 𝑎)][𝐻(𝑦) − 𝐻(𝑦 − 𝑏)] 
 

𝑀𝑦𝑦 = 𝑎12
𝑀 𝑢0‚𝑥 + 𝑎11

𝑀 𝑣0‚𝑦 + 𝑏12
𝑀𝜓𝑥,𝑥 + 𝑏11

𝑀𝜓𝑦,𝑦 + 𝑓12
𝑀𝑤0,𝑥𝑥 + 𝑓11

𝑀𝑤0,𝑦𝑦

+ 𝛼𝑀𝑉(𝑡)[𝐻(𝑥) − 𝐻(𝑥 − 𝑎)][𝐻(𝑦) − 𝐻(𝑦 − 𝑏)] 
 

𝑀𝑥𝑦 = 𝑎66
𝑀 (𝑢0‚𝑦 + 𝑣0‚𝑥) + 𝑏66

𝑀 (𝜓𝑥,𝑦 + 𝜓𝑦,𝑥) + 𝑓66
𝑀𝑤0,𝑥𝑦  

𝑃𝑥𝑥 = 𝑎11
𝑃 𝑢0‚𝑥 + 𝑎12

𝑃 𝑣0‚𝑦 + 𝑏11
𝑃 𝜓𝑥,𝑥 + 𝑏12

𝑃 𝜓𝑦,𝑦 + 𝑓11
𝑃𝑤0,𝑥𝑥 + 𝑓12

𝑃𝑤0,𝑦𝑦

+ 𝛼𝑃𝑉(𝑡)[𝐻(𝑥) − 𝐻(𝑥 − 𝑎)][𝐻(𝑦) − 𝐻(𝑦 − 𝑏)] 
 

𝑃𝑦𝑦 = 𝑎12
𝑃 𝑢0‚𝑥 + 𝑎11

𝑃 𝑣0‚𝑦 + 𝑏12
𝑃 𝜓𝑥,𝑥 + 𝑏11

𝑃 𝜓𝑦,𝑦 + 𝑓12
𝑃𝑤0,𝑥𝑥 + 𝑓11

𝑃𝑤0,𝑦𝑦

+ 𝛼𝑃𝑉(𝑡)[𝐻(𝑥) − 𝐻(𝑥 − 𝑎)][𝐻(𝑦) − 𝐻(𝑦 − 𝑏)] 
 

𝑃𝑥𝑦 = 𝑎66
𝑃 (𝑢0‚𝑦 + 𝑣0‚𝑥) + 𝑏66

𝑃 (𝜓𝑥,𝑦 + 𝜓𝑦,𝑥) + 𝑓66
𝑃𝑤0,𝑥𝑦  

𝑄𝑥𝑧 = 𝑎55
𝑄 (𝜓𝑥 + 𝑤0,𝑥)  

𝑄𝑦𝑧 = 𝑎55
𝑄 (𝜓𝑦 + 𝑤0,𝑦)  

𝑅𝑥𝑧 = 𝑎55
𝑅 (𝜓𝑥 + 𝑤0,𝑥)  

𝑅𝑦𝑧 = 𝑎55
𝑅 (𝜓𝑦 +𝑤0,𝑦) (3.13) 

Note that the above expressions will be later substituted into Eq. (3.11) to 
derive the electromechanical governing equations of the plate harvester, so that the 
electrical terms in Eq. (3.13) are already multiplied by Γ(𝑥, 𝑦) = [𝐻(𝑥) −
𝐻(𝑥 − 𝑎)][𝐻(𝑦) − 𝐻(𝑦 − 𝑏)] (where 𝐻 is the Heaviside step function), to avoid 
the omission of the electrical terms when substituting the stress resultants into the 
motion equations. Moreover, the definition of the constant coefficients 𝑎𝑖𝑗𝑁 , 𝑎𝑖𝑗𝑀, 𝑎𝑖𝑗𝑃 , 

𝑏𝑖𝑗
𝑁, 𝑏𝑖𝑗𝑀, 𝑏𝑖𝑗𝑃 , 𝑓𝑖𝑗𝑁, 𝑓𝑖𝑗𝑀, 𝑓𝑖𝑗𝑃, 𝑎55

𝑄 , 𝑎55𝑅 , 𝛼𝑁, 𝛼𝑀 and 𝛼𝑃 are given in Relations (B.1) to 
(B.3) of Appendix B, for both parallel and series connections. 

Substituting the stress resultants of Eq. (3.13) into Eq. (3.11) gives us the 
following governing equations: 
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𝑎11
𝑁 𝑢0‚𝑥𝑥 + 𝑎66

𝑁 𝑢0‚𝑦𝑦 + (𝑎12
𝑁 + 𝑎66

𝑁 )𝑣0‚𝑦𝑥 + 𝑏11
𝑁 𝜓𝑥,𝑥𝑥 + 𝑏66

𝑁 𝜓𝑥,𝑦𝑦

+ (𝑏12
𝑁 + 𝑏66

𝑁 )𝜓𝑦,𝑦𝑥 + 𝑓11
𝑁𝑤0,𝑥𝑥𝑥 + (𝑓12

𝑁 + 𝑓66
𝑁)𝑤0,𝑥𝑦𝑦

− 𝐼0�̈�0 − 𝐽1�̈�𝑥 + 𝛼𝐼3�̈�0,𝑥 = −𝛼𝑁𝑉(𝑡)Γ,𝑥 (3.14a) 

(𝑎66
𝑁 + 𝑎12

𝑁 )𝑢0‚𝑥𝑦 + 𝑎66
𝑁 𝑣0‚𝑥𝑥 + 𝑎11

𝑁 𝑣0‚𝑦𝑦 + (𝑏66
𝑁 + 𝑏12

𝑁 )𝜓𝑥,𝑥𝑦

+ 𝑏66
𝑁 𝜓𝑦,𝑥𝑥 + 𝑏11

𝑁 𝜓𝑦,𝑦𝑦 + (𝑓66
𝑁 + 𝑓12

𝑁)𝑤0,𝑦𝑥𝑥

+ 𝑓11
𝑁𝑤0,𝑦𝑦𝑦 − 𝐼0�̈�0 − 𝐽1�̈�𝑦 + 𝛼𝐼3�̈�0,𝑦 = −𝛼𝑁𝑉(𝑡)Γ,𝑦 (3.14b) 

(𝑎11
𝑀 − 𝛼𝑎11

𝑃 )𝑢0‚𝑥𝑥 + (𝑎66
𝑀 − 𝛼𝑎66

𝑃 )𝑢0‚𝑦𝑦

+ (𝑎12
𝑀 + 𝑎66

𝑀 − 𝛼𝑎12
𝑃 − 𝛼𝑎66

𝑃 )𝑣0‚𝑥𝑦

+ (−𝑎55
𝑄
+ 3𝛼𝑎55

𝑅 )𝜓𝑥 + (𝑏11
𝑀 − 𝛼𝑏11

𝑃 )𝜓𝑥,𝑥𝑥

+ (𝑏66
𝑀 − 𝛼𝑏66

𝑃 )𝜓𝑥,𝑦𝑦

+ (𝑏12
𝑀 + 𝑏66

𝑀 − 𝛼𝑏12
𝑃 − 𝛼𝑏66

𝑃 )𝜓𝑦,𝑥𝑦

+ (−𝑎55
𝑄 + 3𝛼𝑎55

𝑅 )𝑤0,𝑥 + (𝑓11
𝑀 − 𝛼𝑓11

𝑃 )𝑤0,𝑥𝑥𝑥

+ (𝑓12
𝑀 + 𝑓66

𝑀 − 𝛼𝑓12
𝑃 − 𝛼𝑓66

𝑃 )𝑤0,𝑥𝑦𝑦 − 𝐽1�̈�0 − 𝐾1�̈�𝑥

+ 𝛼𝐽4�̈�0,𝑥 = −(𝛼𝑀 − 𝛼𝛼𝑃)𝑉(𝑡)Γ,𝑥 (3.14c) 

(𝑎66
𝑀 + 𝑎12

𝑀 − 𝛼𝑎66
𝑃 − 𝛼𝑎12

𝑃 )𝑢0‚𝑥𝑦 + (𝑎66
𝑀 − 𝛼𝑎66

𝑃 )𝑣0‚𝑥𝑥

+ (𝑎11
𝑀 − 𝛼𝑎11

𝑃 )𝑣0‚𝑦𝑦

+ (𝑏66
𝑀 + 𝑏12

𝑀 − 𝛼𝑏66
𝑃 − 𝛼𝑏12

𝑃 )𝜓𝑥,𝑥𝑦

+ (−𝑎55
𝑄 + 3𝛼𝑎55

𝑅 )𝜓𝑦 + (𝑏66
𝑀 − 𝛼𝑏66

𝑃 )𝜓𝑦,𝑥𝑥

+ (𝑏11
𝑀 − 𝛼𝑏11

𝑃 )𝜓𝑦,𝑦𝑦 + (−𝑎55
𝑄 + 3𝛼𝑎55

𝑅 )𝑤0,𝑦

+ (𝑓66
𝑀 + 𝑓12

𝑀 − 𝛼𝑓66
𝑃 − 𝛼𝑓12

𝑃 )𝑤0,𝑥𝑥𝑦

+ (𝑓11
𝑀 − 𝛼𝑓11

𝑃 )𝑤0,𝑦𝑦𝑦 − 𝐽1�̈�0 − 𝐾1�̈�𝑦 + 𝛼𝐽4�̈�0,𝑦

= −(𝛼𝑀 − 𝛼𝛼𝑃)𝑉(𝑡)Γ,𝑦 (3.14d) 



Kinetic energy harvesting via piezoelectric bimorph plates 95 
 
𝛼𝑎11

𝑃 𝑢0‚𝑥𝑥𝑥 + (2𝛼𝑎66
𝑃 + 𝛼𝑎12

𝑃 )𝑢0‚𝑥𝑦𝑦 + 𝛼𝑎11
𝑃 𝑣0‚𝑦𝑦𝑦

+ (𝛼𝑎12
𝑃 + 2𝛼𝑎66

𝑃 )𝑣0‚𝑦𝑥𝑥 + (𝑎55
𝑄 − 3𝛼𝑎55

𝑅 )𝜓𝑥,𝑥

+ 𝛼𝑏11
𝑃 𝜓𝑥,𝑥𝑥𝑥 + (2𝛼𝑏66

𝑃 + 𝛼𝑏12
𝑃 )𝜓𝑥,𝑥𝑦𝑦

+ (𝑎55
𝑄 − 3𝛼𝑎55

𝑅 )𝜓𝑦,𝑦 + (𝛼𝑏12
𝑃 + 2𝛼𝑏66

𝑃 )𝜓𝑦,𝑦𝑥𝑥

+ 𝛼𝑏11
𝑃 𝜓𝑦,𝑦𝑦𝑦 + (𝑎55

𝑄 − 3𝛼𝑎55
𝑅 )𝑤0,𝑥𝑥

+ (𝑎55
𝑄 − 3𝛼𝑎55

𝑅 )𝑤0,𝑦𝑦 + 𝛼𝑓11
𝑃𝑤0,𝑥𝑥𝑥𝑥

+ (𝛼𝑓12
𝑃 + 2𝛼𝑓66

𝑃 + 𝛼𝑓12
𝑃 )𝑤0,𝑦𝑦𝑥𝑥 + 𝛼𝑓11

𝑃𝑤0,𝑦𝑦𝑦𝑦

− 𝐼0�̈�0 + 𝛼
2𝐼6(�̈�0,𝑥𝑥 + �̈�0,𝑦𝑦) − 𝛼𝐼3(�̈�0,𝑥 + �̈�0,𝑦)

− 𝛼𝐽4(�̈�𝑥,𝑥 + �̈�𝑦,𝑦) = −𝛼𝛼𝑃𝑉(𝑡)(Γ,𝑥𝑥 + Γ,𝑦𝑦) − 𝐹𝑧(𝑡) (3.14e) 

After deriving the set of equations (3.14) as the governing equations of the 
bimorph plate harvester, the last equation which should be determined is the 
electrical displacement equation. 
 
 
3.4.1.3 Gauss’s Law 

The electric displacement equation coupled with the induced mechanical strain 
throughout the bimorph plate can be derived with the help of Gauss’s law in integral 

form. Therefore, the generated charge 𝑞(𝑡) due to the induced deformation in the 
plate can be expressed as [29]: 

𝑞(𝑡) = ∬�⃗⃗� . �⃗� 
 

𝐴

𝑑𝐴 = ∫ ∫ 𝐷𝑧

𝑏

0

𝑎

0

𝑑𝑥𝑑𝑦

= ∫ ∫ (�̅�31휀𝑥𝑥 + �̅�31휀𝑦𝑦 + Ξ̅33𝐸𝑧)
𝑏

0

𝑎

0

𝑑𝑥𝑑𝑦 

(3.15) 

in which, �⃗�  is the unit outward normal and 𝐴 is the electrode surface area. One can 
simply obtain the electric current 𝐼(𝑡) delivered to the resistive load 𝑅𝐿 as: 

𝐼(𝑡) = �̇�(𝑡) = ∫ ∫ (�̅�31휀�̇�𝑥 + �̅�31휀�̇�𝑦 + Ξ̅33�̇�𝑧)
𝑏

0

𝑎

0

𝑑𝑥𝑑𝑦 (3.16) 
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Substituting the definition of the electric filed 𝐸𝑧(𝑡) for both parallel and 
series electrical configurations (given in Eq. (3.3)) and the expressions of 휀𝑥𝑥 and 
휀𝑦𝑦 into Eq. (3.16), and finally using the Ohm’s law yield the harvester circuit 

equation as follows: 

𝐶0�̇�(𝑡) +
1

�̂�𝐿
𝑉(𝑡) − �̅�31∫ ∫ (�̇�0‚𝑥 + �̇�0‚𝑦)

𝑏

0

𝑎

0

𝑑𝑥𝑑𝑦

− �̅�31ℎ̂ ∫ ∫ (�̇�𝑥,𝑥 + �̇�𝑦,𝑦)
𝑏

0

𝑎

0

𝑑𝑥𝑑𝑦

+ �̅�31𝛼ℎ̃∫ ∫ (�̇�𝑥,𝑥 + �̇�𝑦,𝑦 + �̇�0,𝑥𝑥 + �̇�0,𝑦𝑦)
𝑏

0

𝑎

0

𝑑𝑥𝑑𝑦

= 0 

(3.17) 

In Eq. (3.17), �̂�𝐿 denotes the equivalent resistance equal to �̂�𝐿 = 𝑅𝐿 and �̂�𝐿 =
2𝑅𝐿 for series and parallel connections, respectively. Moreover, 𝐶0 represents the 
equivalent capacitance, and is equal to 𝐶0 = Ξ̅33𝑎𝑏/ℎ𝑝 and 𝐶0 = Ξ̅33𝑎𝑏/2ℎ𝑝 for 

parallel and series connections, respectively. Note that ℎ̂ (which is equal to ℎ̂ = ℎ +

0.5ℎ𝑝) and ℎ̃ (which is equal to ℎ̃ = [(ℎ + ℎ𝑝)
4
− ℎ4] /4ℎ𝑝) in Eq. (3.20) are 

generated due to averaging in the thickness direction [29]. 
 
 

3.4.2 Governing Equations in Modal Coordinates 

Based on the standard modal analysis procedure, the vibration response of the 
rectangular plate harvester with simply-supported boundary conditions on its four 
edges can be represented as: 

𝑢0(𝑥, 𝑦, 𝑡) =
2

√𝑎𝑏
∑ ∑cos(𝛽𝑚𝑥) sin(𝛽𝑛𝑦) 휂𝑚𝑛

𝑢0 (𝑡)

∞

𝑛=1

∞

𝑚=1

 

(3.18) 𝑣0(𝑥, 𝑦, 𝑡) =
2

√𝑎𝑏
∑ ∑sin(𝛽𝑚𝑥) cos(𝛽𝑛𝑦) 휂𝑚𝑛

𝑣0 (𝑡)

∞

𝑛=1

∞

𝑚=1

 

𝜓𝑥(𝑥, 𝑦, 𝑡) =
2

√𝑎𝑏
∑ ∑cos(𝛽𝑚𝑥) sin(𝛽𝑛𝑦) 휂𝑚𝑛

𝜓𝑥 (𝑡)

∞

𝑛=1

∞

𝑚=1
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𝜓𝑦(𝑥, 𝑦, 𝑡) =
2

√𝑎𝑏
∑∑sin(𝛽𝑚𝑥) cos(𝛽𝑛𝑦) 휂𝑚𝑛

𝜓𝑦 (𝑡)

∞

𝑛=1

∞

𝑚=1

 

𝑤0(𝑥, 𝑦, 𝑡) =
2

√𝑎𝑏
∑ ∑sin(𝛽𝑚𝑥) sin(𝛽𝑛𝑦) 휂𝑚𝑛

𝑤0 (𝑡)

∞

𝑛=1

∞

𝑚=1

 

where 𝑚 and 𝑛 are the number of half-waves along 𝑥 and 𝑦 directions, respectively, 
and 𝛽𝑚 = 𝑚𝜋 𝑎⁄  and 𝛽𝑛 = 𝑛𝜋 𝑏⁄ . Also, the functions 휂𝑚𝑛

𝑖 ’s (𝑖 =

𝑢0, 𝑣0, 𝜓𝑥 , 𝜓𝑦, 𝑤0) are the modal mechanical coordinate expressions. It can be 
simply verified that the set of series expansions for the displacement components 
(proposed in Eq. (3.18)) satisfy the boundary conditions on the simply supported 
edges, which are: 

𝑣0 = 𝜓𝑦 = 𝑤 = 𝑁𝑥𝑥 = 𝑀𝑥𝑥 = 0 at  𝑥 = 0, 𝑎 
(3.19) 

𝑢0 = 𝜓𝑥 = 𝑤 = 𝑁𝑦𝑦 = 𝑀𝑦𝑦 = 0 at  𝑦 = 0, 𝑏 

Following the procedure of modal analysis for two-dimensional structures, 
one can derive the governing equations of the plate harvester in modal coordinates 
by introducing Eq. (3.18) into Eqs. (3.14) and (3.17) yields, as: 

[
𝐾11 ⋯ 𝐾15
⋮ ⋱ ⋮
𝐾51 ⋯ 𝐾55

]

{
  
 

  
 
휂𝑚𝑛
𝑢0

휂𝑚𝑛
𝑣0

휂𝑚𝑛
𝜓𝑥

휂𝑚𝑛
𝜓𝑦

휂𝑚𝑛
𝑤0 }
  
 

  
 

+ [
𝑀11 ⋯ 𝑀15
⋮ ⋱ ⋮
𝑀51 ⋯ 𝑀55

]

{
  
 

  
 
휂̈𝑚𝑛
𝑢0

휂̈𝑚𝑛
𝑣0

휂̈𝑚𝑛
𝜓𝑥

휂̈𝑚𝑛
𝜓𝑦

휂̈𝑚𝑛
𝑤0 }
  
 

  
 

= −

{
  
 

  
 

𝑉(𝑡)𝑋𝑚𝑛
𝑢0

𝑉(𝑡)𝑋𝑚𝑛
𝑣0

𝑉(𝑡)𝑋𝑚𝑛
𝜓𝑥

𝑉(𝑡)𝑋𝑚𝑛
𝜓𝑦

𝑉(𝑡)𝑋𝑚𝑛
𝑤0 + 𝐹𝑚𝑛(𝑡)}

  
 

  
 

 

(3.20a) 
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𝐶0�̇�(𝑡) +
1

�̂�𝐿
𝑉(𝑡) − ∑ ∑𝑠𝑚𝑛

𝑢0 휂̇𝑚𝑛
𝑢0

∞

𝑛=1

∞

𝑚=1

− ∑∑𝑠𝑚𝑛
𝑣0 휂̇𝑚𝑛

𝑣0

∞

𝑛=1

∞

𝑚=1

− ∑ ∑𝑠𝑚𝑛
𝜓𝑥 휂̇𝑚𝑛

𝜓𝑥

∞

𝑛=1

∞

𝑚=1

− ∑∑𝑠𝑚𝑛
𝜓𝑦 휂̇𝑚𝑛

𝜓𝑦

∞

𝑛=1

∞

𝑚=1

− ∑ ∑𝑠𝑚𝑛
𝑤0 휂̇𝑚𝑛

𝑤0

∞

𝑛=1

∞

𝑚=1

= 0 

(3.20b) 

In Eq. (3.20a), 𝐹𝑚𝑛(𝑡) = 𝐹0𝑒
𝑗𝜔𝑡𝐶𝑚𝑛/𝛽𝑚𝛽𝑛 where 𝐹0 is the amplitude of the 

applied force (considered real), 𝜔 is the deriving frequency, 𝑗 = √−1 and 𝐶𝑚𝑛 =

2(1 − cos(𝛽𝑚𝑎))(1 − cos(𝛽𝑛𝑏))/√𝑎𝑏. Moreover, the expressions corresponding 
to the components of the stiffness matrix [𝐾], mass matrix [𝑀], and 𝑋𝑚𝑛𝑖 ’s and 

𝑠𝑚𝑛
𝑖 ’s (𝑖 = 𝑢0, 𝑣0, 𝜓𝑥 , 𝜓𝑦, 𝑤0) are given in Relations (B.4) to (B.8) of Appendix B, 

for both FSDT and TSDT. Note that Eqs. (3.20a) and (3.20b) are the 
electromechanically coupled ordinary differential equations for the modal time 
response as well as the electrical circuit equation in modal coordinate, respectively, 
which are further discussed in the next section for the plate harvester under 
harmonic excitation. 

 
 

3.5 Steady-State Response to Harmonic Excitation 
The electromechanical equations for the piezoelectric bimorph harvester were 
derived and presented in Eqs. (3.14) and (3.17) in physical coordinates, as well as 
in Eq. (3.20) in modal coordinates. Since the acting force 𝐹𝑧(𝑡) is assumed to be 
harmonic (i.e., 𝐹𝑧(𝑡) = 𝐹0𝑒𝑗𝜔𝑡), and the system of governing equations is linear, 
the output voltage and the modal response are therefore harmonic at the deriving 
frequency (for all (𝑚,𝑛)), and can be expressed as: 

{
  
 

  
 
휂𝑚𝑛
𝑢0

휂𝑚𝑛
𝑣0

휂𝑚𝑛
𝜓𝑥

휂𝑚𝑛
𝜓𝑦

휂𝑚𝑛
𝑤0 }
  
 

  
 

=

{
  
 

  
 
𝐻𝑚𝑛
𝑢0

𝐻𝑚𝑛
𝑣0

𝐻𝑚𝑛
𝜓𝑥

𝐻𝑚𝑛
𝜓𝑦

𝐻𝑚𝑛
𝑤0}
  
 

  
 

𝑒𝑗𝜔𝑡,      𝑉(𝑡) = 𝑉0𝑒
𝑗𝜔𝑡 (3.21) 
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in which 𝐻𝑚𝑛 and 𝑉0 are complex. Introducing Eq. (3.21) into Eq. (3.20) results in: 

([𝐾] − 𝜔2[𝑀])

{
  
 

  
 
𝐻𝑚𝑛
𝑢0

𝐻𝑚𝑛
𝑣0

𝐻𝑚𝑛
𝜓𝑥

𝐻𝑚𝑛
𝜓𝑦

𝐻𝑚𝑛
𝑤0}
  
 

  
 

= −

{
  
 

  
 

𝑉0𝑋𝑚𝑛
𝑢0

𝑉0𝑋𝑚𝑛
𝑣0

𝑉0𝑋𝑚𝑛
𝜓𝑥

𝑉0𝑋𝑚𝑛
𝜓𝑦

𝑉0𝑋𝑚𝑛
𝑤0 + 𝐹0𝐶𝑚𝑛/𝛽𝑚𝛽𝑛}

  
 

  
 

 (3.22a) 

𝑉0 =
𝑗𝜔

(
1
𝑅𝐿
+ 𝑗𝜔𝐶0)

(∑ ∑𝑠𝑚𝑛
𝑢0

∞

𝑛=1

∞

𝑚=1

𝐻𝑚𝑛
𝑢0 + ∑∑𝑠𝑚𝑛

𝑣0

∞

𝑛=1

∞

𝑚=1

𝐻𝑚𝑛
𝑣0

+ ∑ ∑𝑠𝑚𝑛
𝜓𝑥𝐻𝑚𝑛

𝜓𝑥

∞

𝑛=1

∞

𝑚=1

+ ∑ ∑𝑠𝑚𝑛
𝜓𝑦

∞

𝑛=1

∞

𝑚=1

𝐻𝑚𝑛
𝜓𝑦

+ ∑ ∑𝑠𝑚𝑛
𝑤0

∞

𝑛=1

∞

𝑚=1

𝐻𝑚𝑛
𝑤0 ) 

(3.22b) 

One can simply observe from Eq. (3.22) that the two responses are coupled. 
However, setting the determinant of the coefficient matrix in Eq. (3.22a) (i.e., 
|[𝐾] − 𝜔2[𝑀]| = 0) gives the SC frequencies of the bimorph plate harvester, which 
corresponds to the free vibration problem of the respective system. To express 𝑉0 
explicitly, the modal response expressions have to be omitted from Eq. (3.22b). 
However, the effect of damping must be first added to the system of Eq. (3.22a) 
(will be added to the respective coefficient matrix), to avoid instability of responses 
in resonant frequency excitation. Rayleigh damping is therefore added to the system 
to include the effect of mechanical damping, as it may be expressed in the following 
matrix form: 

[𝐶] = 𝑎𝑀[𝑀] + 𝑎𝐾[𝐾] (3.23) 

where 𝑎𝑀 and 𝑎𝐾 are mass and stiffness proportionality constants with units of 𝑠−1 
and 𝑠, respectively, and can be simply calculated for a given damping ratio [159]. 
Based on Eq. (3.23), [𝐶] consists of a mass-proportional term and a stiffness-
proportional term. Finally, taking the effect of damping into account, the set of Eq. 
(3.22a) is altered to: 
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[𝐴]

{
  
 

  
 
𝐻𝑚𝑛
𝑢0

𝐻𝑚𝑛
𝑣0

𝐻𝑚𝑛
𝜓𝑥

𝐻𝑚𝑛
𝜓𝑦

𝐻𝑚𝑛
𝑤0}
  
 

  
 

= −

{
  
 

  
 

𝑉0𝑋𝑚𝑛
𝑢0

𝑉0𝑋𝑚𝑛
𝑣0

𝑉0𝑋𝑚𝑛
𝜓𝑥

𝑉0𝑋𝑚𝑛
𝜓𝑦

𝑉0𝑋𝑚𝑛
𝑤0 + 𝐹0𝐶𝑚𝑛/𝛽𝑚𝛽𝑛}

  
 

  
 

 (3.24) 

where 

[𝐴] = [𝐾] − 𝜔2[𝑀] + 𝑗𝜔[𝐶] (3.25) 

To obtain the closed-form solution of the output voltage 𝑉0, one has to first 
derive from Eq. (3.24) the vector {𝐻𝑚𝑛} in terms of 𝑉0 and other coefficients and 
then substitutes the resulting expressions into Eq. (3.22b). assuming [𝐵] = [𝐴]−1, 
{𝐻𝑚𝑛} may be obtained as: 

{
  
 

  
 
𝐻𝑚𝑛
𝑢0

𝐻𝑚𝑛
𝑣0

𝐻𝑚𝑛
𝜓𝑥

𝐻𝑚𝑛
𝜓𝑦

𝐻𝑚𝑛
𝑤0}
  
 

  
 

= −[𝐵]

{
  
 

  
 

𝑉0𝑋𝑚𝑛
𝑢0

𝑉0𝑋𝑚𝑛
𝑣0

𝑉0𝑋𝑚𝑛
𝜓𝑥

𝑉0𝑋𝑚𝑛
𝜓𝑦

𝑉0𝑋𝑚𝑛
𝑤0 + 𝐹0𝐶𝑚𝑛/𝛽𝑚𝛽𝑛}

  
 

  
 

= −𝑉0

{
 
 

 
 
𝑌𝑚𝑛
1

𝑌𝑚𝑛
2

𝑌𝑚𝑛
3

𝑌𝑚𝑛
4

𝑌𝑚𝑛
5 }
 
 

 
 

−
𝐹0𝐶𝑚𝑛
𝛽𝑚𝛽𝑛

{
 
 

 
 
𝐵15
𝐵25
𝐵35
𝐵45
𝐵55}

 
 

 
 

 

(3.26) 

in which 𝑌𝑚𝑛𝑖 ’s (𝑖 = 1,2,3,4,5) are given in Relation (B.9) of Appendix B, and 𝐵𝑖𝑗’s 

are the components of the fifth column of matrix [𝐵]. Substituting the above 
expressions obtained for 𝐻𝑚𝑛𝑖 ’s (𝑖 = 𝑢0, 𝑣0, 𝜓𝑥, 𝜓𝑦, 𝑤0) into Eq. (3.22b) gives the 
closed-form expression of the output voltage, as: 

𝑉0 =
𝐹0 𝑆1 𝐶0⁄

𝑗𝜔 +
1

𝑅𝐿𝐶0
+
𝑆2
𝐶0

 (3.27) 

where 𝑆1 and 𝑆2 are obtained as: 
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𝑆1 = −𝑗𝜔 {∑∑
𝐶𝑚𝑛𝑠𝑚𝑛

𝑢0 𝐵15
𝛽𝑚𝛽𝑛

∞

𝑛=1

∞

𝑚=1

+ ∑ ∑
𝐶𝑚𝑛𝑠𝑚𝑛

𝑣0 𝐵25
𝛽𝑚𝛽𝑛

∞

𝑛=1

∞

𝑚=1

+ ∑ ∑
𝐶𝑚𝑛𝑠𝑚𝑛

𝜓𝑥𝐵35
𝛽𝑚𝛽𝑛

∞

𝑛=1

∞

𝑚=1

+ ∑ ∑
𝐶𝑚𝑛𝑠𝑚𝑛

𝜓𝑦𝐵45
𝛽𝑚𝛽𝑛

∞

𝑛=1

∞

𝑚=1

+ ∑ ∑
𝐶𝑚𝑛𝑠𝑚𝑛

𝑤0𝐵55
𝛽𝑚𝛽𝑛

∞

𝑛=1

∞

𝑚=1

} 

(3.28a) 

𝑆2 = 𝑗𝜔 {∑ ∑𝑌𝑚𝑛
1 𝑠𝑚𝑛

𝑢0

∞

𝑛=1

∞

𝑚=1

+ ∑ ∑𝑌𝑚𝑛
2 𝑠𝑚𝑛

𝑣0

∞

𝑛=1

∞

𝑚=1

+ ∑ ∑𝑌𝑚𝑛
3 𝑠𝑚𝑛

𝜓𝑥

∞

𝑛=1

∞

𝑚=1

+ ∑ ∑𝑌𝑚𝑛
4 𝑠𝑚𝑛

𝜓𝑦

∞

𝑛=1

∞

𝑚=1

+ ∑ ∑𝑌𝑚𝑛
5 𝑠𝑚𝑛

𝑤0

∞

𝑛=1

∞

𝑚=1

} 

(3.28b) 

The amplitude of the voltage frequency response function 𝑉FRF can be 
obtained by determining the absolute value of the complex expression of output 
voltage given in Eq. (3.27), as: 

𝑉FRF = |
𝑉0
𝐹0
| (3.29) 

It is also very simple to determine the current and the power frequency 
response functions (𝐼FRF and 𝑃FRF, respectively) with the help of Ohm’s law and 

the power equation, as: 

𝐼 =
|𝑉0|

𝑅𝐿
,         𝑃 =

|𝑉0|
2

𝑅𝐿
,        𝐼FRF = |

𝐼

𝐹0
| ,        𝑃FRF = |

𝑃

𝐹0
| (3.30) 

The obtained output voltage 𝑉0 can also be substituted into the modal 
response in Eq. (3.26), to calculate the displacements in each vibrational mode, and 
subsequently the modal response as a function of the excitation frequency 𝜔 and 
the time 𝑡. 

 
 

3.6 Numerical Results 
3.6.1 Model Validation 
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First, the present results are compared with some available in the literature to verify 
the accuracy of the developed models. Setting the determinant of the coefficient 
matrix in Eq. (3.22a) to zero gives us the natural frequencies of the smart bimorph 
plate. However, the first three natural frequencies of a bimorph plate made of a 
homogeneous substrate and PZT-4 layers are computed and listed in Table 3.1 
along with their counterparts reported in Ref. [160]. Comparing these data, one can 
observe the excellent agreement among the results, which confirms the accuracy of 
the present model. In all the cases investigated in Table 3.1, the relative differences 
are less than 1%. Note that these slight differences are due to the employment of 
different displacement models and electric potential distributions in the present 
work and Ref. [160]. 
 

Table 3.1: Comparison of the first three natural frequencies for the bimorph plates with 
isotropic substrates 

2ℎ

𝑎
 

ℎ𝑝

2ℎ
 Source 

Natural frequency (Hz) 
 1st mode 

(1,1) 
2nd mode 
(1,2) 

3rd mode 
(2,2) 

0.05 0.1 Ref. [160] 426.818 1050.253 1655.040  
  Present (FSDT) 426.685 1049.563 1653.471  
  Present (TSDT) 426.884 1050.728 1656.272  
  Relative difference FSDT (%) 0.03 0.07 0.09  
  Relative difference TSDT (%) 0.03 0.04 0.07  
 0.2 Ref. [160] 408.836 1003.195 1576.867  
  Present (FSDT) 408.395 1001.108 1572.229  
  Present (TSDT) 408.808 1003.490 1577.893  
  Relative difference FSDT (%) 0.11 0.21 0.29  
  Relative difference TSDT (%) 0.01 0.03 0.07  
0.1 0.1 Ref. [160] 827.520 1957.398 2983.884  
  Present (FSDT) 826.735 1954.047 2977.766  
  Present (TSDT) 828.136 1961.074 2992.752  
  Relative difference FSDT (%) 0.09 0.17 0.21  
  Relative difference TSDT (%) 0.07 0.19 0.30  
 0.2 Ref. [160] 788.433 1849.607 2802.300  
  Present (FSDT) 786.115 1839.679 2783.353  
  Present (TSDT) 788.947 1853.347 2811.643  
  Relative difference FSDT (%) 0.29 0.54 0.68  
  Relative difference TSDT (%) 0.00 0.20 0.33  

Relative difference = (Present − Ref. [160])×100/ Ref. [160]  
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3.6.2 Parametric Study and Discussion 

Numerical results for the bimorph plate harvesters with piezoelectric layers under 
both parallel and series configurations are presented in this subsection. The parent 
material of the substrate layer is assumed to be Aluminum with the following 
mechanical properties: 

𝐸0 = 70 GPa,    𝜌0 = 2707 kg/m3,    𝜈 = 0.3 

Note that when the value of the porosity coefficient is set to zero (i.e., setting 
𝑒0 = 0 in either Eq. (1.17) or Eq. (1.19), which describe the material properties in 
the porous layer), the substrate layer is assumed to have no porosity (i.e., 
homogenous substrate), and consequently no variation along any direction is 
considered for the respective mechanical properties. However, 𝑒0 ≠ 0 represents a 
bimorph harvester with a porous Aluminum substrate whose mechanical properties 
vary along the thickness direction. In the latter case, the effective properties of the 
core layer are considered based on either Eq. (1.17) or Eq. (1.19), depending on the 
type of porosity distribution. 

The mechanical and electrical properties of some PZT materials used for the 
piezoelectric layers are also given in Table 3.2. 
 

Table 3.2: Mechanical and electrical properties of some PZT materials [148,161] 

Material Properties 

 Elastic moduli (GPa)  Dielectric moduli (nF/m) 

 𝐶11 𝐶12 𝐶33 𝐶13 𝐶55 𝐶66  Ξ11 Ξ33 

PZT-5H 127.2 80.2 117.4 84.7 23.0 23.5  15.1 12.7 

PZT-2 134.9 67.9 113.3 68.1 22.2 33.4  4.46 2.4 

 Piezoelectric moduli (C/m2)  Mass density (kg/m3) 

 𝑒31 𝑒33 𝑒15     𝜌 

PZT-5H -6.6 23.2 17.0     7500 

PZT-2 -1.82 9.05 9.8     7600 

 
First, PZT-5H is selected as the material of the piezoelectric layers. Therefore, 

the following tabulated results are obtained for the bimorph plate harvesters with 
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homogenous/porous Aluminum substrate and PZT-5H layers. Moreover, the 
following geometrical dimensions are also considered for the harvester device: 

𝑎 = 𝑏 = 200 𝑚𝑚, ℎ = 1 𝑚𝑚, ℎ𝑝 = 0.2 𝑚𝑚. 

Employing the material and geometrical properties (mentioned above) into 
the MATLAB codes provided for the present energy harvesting model, the voltage, 
current, and power FRFs are obtained and plotted in Figs. 3.4 to 3.5. Rather than 
specifying certain 𝐹0 and 𝜔 values for the input, it is preferred to obtain the results 
in terms of these parameters so that it becomes possible to represent the 
electromechanical outputs as FRFs. Moreover, since the electrical load resistance 
is an important parameter that significantly affects the dynamic and electric 
behavior of the harvester device, the first peak in the output electrical response of 
the bimorph plate is plotted for different values of 𝑅𝐿 ranging from 1Ω to 100MΩ. 
These plots represent the magnitude of the generated electric voltage, current, and 
power for the bimorph harvester, for both parallel and series electrical 
configurations. Due to the electromechanical coupling, each vibration mode has an 
SC resonance frequency (for 𝑅𝐿 → 0) and an OC resonance frequency (for 𝑅𝐿 →
∞). Therefore, the resonance frequency of the respective vibration mode takes 
values between the SC and OC frequencies.  

However, one can observe from Fig. 3.3 that, as 𝑅𝐿 increases from low values 
to large values, the amplitude of the output voltage increases monotonically for all 
the excitation frequencies until it reaches its maximum value at 𝑅𝐿 = 5kΩ and 𝑅𝐿 =
100kΩ, for parallel and series connections, respectively, and it then remains 
constant for larger values of 𝑅𝐿. Although the trends for variation of the output 
voltage against the electrical load are similar for both types of electrical 
connections, a larger resistance load has to be applied to the harvester under series 
connection to reach its OC condition, compared to when the parallel connection is 
used. Moreover, the amount of the OC voltage provided by the harvester with series 
configuration seems to be much higher than that of the scavenger with parallel 
configuration. It is also seen from Fig. 3.3 that with increasing the load resistance, 
the resonance frequency of the plate harvester moves from the SC frequency to the 
OC frequency, expectedly. These two resonance frequencies are important 
excitation frequencies in the analysis of energy harvesters, which can be calculated 
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for the bimorph harvester from either Fig. 3.3(a) or Fig. 3.3(b), since the type of 
electrical configuration does not affect the resonance frequencies of the SC and OC 
conditions. Accordingly, they are calculated and found to be 247.4 Hz and 261 Hz 
for the fundamental vibration mode at SC and OC conditions, respectively. 

Fig. 3.4 represents that the amplitude of the electric current goes down 
monotonically (similar to output voltage) as the value of 𝑅𝐿 increases. Unlike the 
voltage FRFs shown in Fig. 3.3, the amplitude of the current decreases with 
increasing load resistance. Indeed, this is the opposite of the voltage behavior 
shown in Fig. 3.3, but the behavior is still monotonic. For every excitation 
frequency, the maximum value of the current is obtained when the system is close 
to short circuit conditions. 

The power output FRFs for different resistance loads are displayed in Fig. 
3.5. Since it is the product of two FRFs that have the opposite behaviors with 
increasing load resistance, the behavior of the power output FRF with load 
resistance is more interesting than the previous two electrical outputs and it 
deserves more discussion. It is obvious from Fig. 3.5 that the output power does not 
represent a monotonic behavior when the value of 𝑅𝐿 increases. As the load 
resistance gets larger, the power output increases until it reaches its maximum 
value, at 𝑅𝐿 = 500Ω and 𝑅𝐿 = 1000Ω for parallel and series connections, 
respectively, then drops for larger values of 𝑅𝐿. What is just realized also shows 
that the maximum power in series configuration is achieved at a higher resistance 
load compared to the parallel case. One should note that the values of the load 
resistance we use in this analysis are taken arbitrarily to observe the general trends. 
Therefore, the maximum power outputs obtained from each electrical configuration 
are for these sample values and they are not necessarily the maximum possible (or 
the optimized) power outputs. Another interesting point to note is the switching 
between the curves of various values of 𝑅𝐿, which results in intersections between 
the FRFs. These intersections are seen not only around the resonance frequencies 
but also they are observed at the off-resonance frequencies. At these intersection 
frequencies, the two respective load resistance values yield the same power output. 
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(a) Parallel (b) Series 

Fig. 3.3: Voltage FRFs for the bimorph plate harvester under parallel and series 
electrical connections 

  

  
(a) Parallel (b) Series 

Fig. 3.4: Current FRFs for the bimorph plate harvester under parallel and series 
electrical connections 

  

  
(a) Parallel (b) Series 

Fig. 3.5: Power FRFs for the bimorph plate harvester under parallel and series 
electrical connections 
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Since the FRF plots for the harvester with porous Aluminum substrate and 
PZT-5H layers were found to be very similar (in terms of the general trends) to 
those given in Figs. 3.3 to 3.5, they are not therefore reported here. However, the 
effects of porosity coefficient and different types of porosity distributions on the 
dynamic and electric response of the plate harvester are here and hereafter 
discussed. As a primary examination on the effect of porosity, the SC and OC 
frequencies of the harvester with a porous Aluminum substrate of 𝑒0 = 0.4 are 
calculated and listed in Table 3.3 along with those of a bimorph harvester with no 
porosity in its substrate. These results show that the SC and OC frequencies of the 
energy harvester are significantly affected when the porous substrates are used 
instead of the homogenous substrate. In particular, the porous bimorph harvester 
with porosity Pattern I represents the lowest SC and OC frequencies, while the 
maximum frequencies are obtained when the porosity distribution with Pattern I is 
adopted. 
 

Table 3.3: Resonance frequency of the bimorph plate harvester with substrate having 
different porosity patterns 
   Porous substrate (𝑒0 = 0.4) 

Variable Solid Substrate  Pattern I Pattern II Pattern III 

SC frequency 247.4  247.8 229.6 237.4 

OC frequency 261.0  262.2 245.8 252.8 

 
The effect of porosity on the electric response of the plate harvester is 

investigated and the results are presented in Figs. 3.6 and 3.7. In these figures, the 
voltage and power FRFs are plotted against the excitation frequency for the 
homogenous bimorph harvester and the porous bimorph harvester with different 
porosity distributions and porosity coefficients, namely 𝑒0 = 0.2, 0.4, 0.6 and 0.8. 
The value of the resistance load in this investigation example is assumed to be 𝑅𝐿 = 
500Ω and type of electrical connection between the PZT layers is considered to be 
parallel. Again, it is seen that the harvester resonance frequency is significantly 
influenced by variation of the porosity parameter as well as the type of porosity 
distribution. When the porosity Patterns II and III are adopted for the distribution 
of the internal pores, increasing the value of 𝑒0 decreases the resonance frequency 
of the harvester, while an increasing trend is seen for porosity Pattern I. The changes 
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in frequency due to variation of porosity coefficient is attributed to the resulting 
changes in the effective structural stiffness and mass density of the system, which 
in turn can lead to higher/lower natural frequencies (depending on the type of 
porosity distribution) compared to the same system in the absence of porosities. 
Furthermore, the figures suggest that the sensitivity of the harvester resonance 
frequency to the porosity is more considerable when the pores are distributed 
according to the Pattern II with respect to the other profiles. For instance, when the 
value of 𝑒0 is shifted from zero to 0.8, the reduction in the harvester frequency is 
11.5% for the porosity Pattern II and 6.6% for the Pattern III, while it causes an 
increase of 4% in the scavenger frequency when the porosity Pattern I is adopted. 
More interesting are the enhancements of both voltage and power generations due 
to the introduction of porosity to the substrate layer. As is clear from the figures, 
the higher is the porosity coefficient the greater are the amounts of peak voltage and 
power, regardless of the type of porosity distribution. In other words, as the value 
of porosity coefficient changes from 0 to 0.8, an increase of 25.4%, 56.2% and 
47.7% in the peak power points are obtained for the harvester with porosity Pattern 
I, Pattern II and Pattern III, respectively. Again, the harvester with Pattern II is 
found to be more sensitive to the variation of porosity, in terms of the electric 
outputs. 

 

  

(a) Porosity Pattern I (b) Porosity Pattern II 
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(c) Porosity Pattern III (Uniform) 

Fig. 3.6: Voltage FRFs for the bimorph plate harvester under parallel configuration 
(𝑅𝐿 = 500Ω) 

 

  
(a) Porosity Pattern I (b) Porosity Pattern II 

 
(c) Porosity Pattern III (Uniform) 

Fig. 3.7: Power FRFs for the bimorph plate harvester under parallel configuration 
(𝑅𝐿 = 500Ω) 
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The effect of load resistance on the current, voltage and power outputs of the 
bimorph harvester with parallel and series connections is further investigated for 
excitations at SC and OC frequencies, and the corresponding results are given in 
Fig. 3.8. The results are presented only for the case of bimorph harvester with the 
Aluminum substrate having no porosity. Figs. 3.8(a) and 3.8(b) indicate that for low 
values of load resistance, the voltage outputs at both SC and OC excitation 
frequencies increase with the same slope (in log-log scale) and the voltage output 
at the SC resonance frequency is higher because the system is close to SC 
conditions. However, the SC and OC curves intersect at a certain value of 𝑅𝐿 
(around 85Ω for parallel, and 339Ω for series connection) and for the values of 𝑅𝐿 
greater than the value at the intersection point, the voltage output at the OC 
excitation frequency becomes higher expectedly. Finally, the voltage output 
remains constant and insensitive to the variations of 𝑅𝐿 at OC conditions. Figs. 
3.8(c) and 3.8(d) show the current outputs of both parallel and series connections 
as functions of load resistance for excitations at the SC and the OC resonance 
frequencies. It is clear from the figures that the current is highly insensitive to the 
variations of the load resistance at the range of its low values. In this relatively low 
load resistance region, the current output is higher at the SC resonance frequency, 
as in the case of voltage (see Figs. 3.8(a) and 3.8(b)), since the system is close to 
SC conditions. Then, current starts decreasing with further increasing the load 
resistance, and at a certain value of load resistance (again, around 85Ω for parallel, 
and 339Ω for series connection), the curves intersect. For the values of load 
resistance higher than the value at this intersection point, the current output at the 
OC resonance frequency becomes higher since the system approaches the OC 
conditions. The variation of power output with load resistance for excitations at the 
SC and OC resonance frequencies are further investigated through Figs. 3.8(e) and 
3.8(f), for the bimorph harvester under both parallel and series electrical 
connections. It can be remembered from Figs. 3.8(a) to 3.8(d) that the voltage and 
the current outputs obtained at the SC resonance frequency are higher than those 
obtained at the OC resonance frequency up to a certain value of 𝑅𝐿 (about 85Ω for 
parallel, and 339Ω for series connection) after which the opposite is valid. Because 
the power output is simply the product of the voltage and current, this observation 
is also valid for the power versus load resistance curves. As is evident from Figs. 
3.8(e) and 3.8(f), the same intersection points are seen (again, about 85Ω for 
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parallel, and 339Ω for series connection) and the power output at the SC resonance 
frequency is higher before this point, whereas the power output at the OC resonance 
frequency is higher after this point. More importantly, since the variation of power 
with changing the load resistance is not monotonic, all the power graphs shown in 
Figs. 3.8(e) and 3.8(f) display peak values, which correspond to the optimum values 
of load resistance. It must be noted that when the optimum values of resistance load 
are used for each of the SC and OC excitations, the same values of maximum power 
are obtained. For instance, from Fig. 3.8(e), the maximum power output generated 
by the plate harvester is about 10 𝜇𝑊/[𝑁/𝑚2] across the optimum resistance loads 

of 𝑅𝐿
𝑜𝑝𝑡 = 19Ω and 𝑅𝐿

𝑜𝑝𝑡 = 370Ω, for excitation at the SC and OC resonance 
frequencies, respectively. The same amount of peak power is also obtained from 
Fig. 3.8(f) for the case of series configuration but at higher optimum resistance 

loads, i.e., 𝑅𝐿
𝑜𝑝𝑡 = 76Ω and 𝑅𝐿

𝑜𝑝𝑡 = 1491Ω for the SC and OC excitations, 
respectively. 

For comparison purposes, the optimum resistance loads, and the respective 
peak powers are calculated for the bimorph harvester with porous substrate having 
different porosity patterns and porosity coefficients, namely 𝑒0 = 0.2 and 0.4. The 
respective results are listed in Table 3.4 along with those of the same harvester with 
no porosity. Excitations at both SC and OC frequencies are considered for all the 
cases. The results listed in Table 3.4 suggest that for a given porosity coefficient, 
the maximum peak power is generated by the harvester with porosity Pattern II, 
followed by those with Pattern III and Pattern I, respectively. However, the 
harvester with non-porous substrate provides the minimum peak power (among all) 
at its respective optimum resistance load. Such observations can be attributed to the 
fact that because the effective structural stiffness of the porous substrate is less than 
that of the non-porous substrate, the former system experiences more bending strain 
than the latter case, which in turn, leads to more power output generation. 
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Table 3.4: Optimum load resistance and output power for different porous bimorph 
harvester excited at the SC and OC resonance frequencies (Parallel configuration). 

   Porous substrate 

Parameter Solid Substrate  Pattern I Pattern II Pattern III 

   Porosity coefficient (𝑒0 = 0.2) 

SC frequency (Hz) 247.4  247.0 238.6 242.6 

Optimum load resistance (Ω) 19  18 17 18 

𝑃𝑚𝑎𝑥  (
𝜇𝑊

𝑁/𝑚2
) 10.00  10.39 10.88 10.72 

OC frequency (Hz) 261.0  261.4 253.4 257.0 

Optimum load resistance (Ω) 370  376 412 384 

𝑃𝑚𝑎𝑥  (
𝜇𝑊

𝑁/𝑚2
) 9.95  10.40 10.88 10.66 

   Porosity coefficient (𝑒0 = 0.4) 

SC frequency (Hz) 247.4  247.8 229.6 237.4 

Optimum load resistance (Ω) 19  17 16 16 

𝑃𝑚𝑎𝑥  (
𝜇𝑊

𝑁/𝑚2
) 10.00  11.00 12.06 11.61 

OC frequency (Hz) 261.0  262.2 245.8 252.8 

Optimum load resistance (Ω) 370  365 474 444 

𝑃𝑚𝑎𝑥  (
𝜇𝑊

𝑁/𝑚2
) 9.95  11.02 11.93 11.54 
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(a) Parallel (b) Series 

  

(c) Parallel (d) Series 

  

(e) Parallel (f) Series 

Fig. 3.8: Variations of the voltage, current and power outputs against the resistance 
load for the bimorph plate harvester under parallel and series electrical configurations 
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Keeping the volume of the harvester constant (𝑎𝑏 = 0.04 𝑚2, ℎ = 1 𝑚𝑚, 
ℎ𝑝 = 0.2 𝑚𝑚), the effects of the aspect ratio 𝑎/𝑏 on the frequencies and the power 
outputs of the plate harvester with homogenous and porous substrates are studied. 
In Table 3.5, the SC frequencies of the bimorph harvester with different values of 
𝑎/𝑏, namely 0.5, 0.7, 1.5 and 2, are listed. As is evident from the table, irrespective 
of the type of substrate, the square plate harvester (i.e., with 𝑎/𝑏 = 1) provides the 
lowest SC resonance frequencies. Similar result is observed for the case of OC 
condition. On the other hand, in Fig. 3.9, are plotted the output powers versus the 
electrical load resistance for both homogenous and porous bimorph scavengers with 
different aspect ratios. For all the cases, the results are obtained for excitation at 
their respective SC resonance frequencies. As is seen, the maximum peak power is 
obtained for the square plate scavenger, regardless of the type of substrate. Also, 
the optimum load resistance (which gives the peak power in each of the plots) is 
found to be the highest for the case of 𝑎/𝑏 = 1 compared to other cases. For every 
given value of 𝑎/𝑏, the porous bimorph energy harvester with porosity Pattern II 
exhibits the highest peak power, in comparison with the scavengers with other types 
of substrates. This last finding is consistent with the conclusions drawn from Table 
3.4. 
 
Table 3.5: SC resonance frequencies (Hz) of the porous bimorph harvesters for different 
aspect ratios (𝑎𝑏 = 0.04 𝑚2) 

   Porous substrate (𝑒0 = 0.4) 

𝑎/𝑏 Solid Substrate  Pattern I Pattern II Pattern III 

0.5 309.1  309.6 287.0 296.6 
0.6 280.2  280.7 260.2 268.9 
0.7 263.2  263.6 244.3 252.6 
0.8 253.5  253.9 235.3 243.2 
0.9 248.7  249.1 230.9 238.6 
1.0 247.4  247.8 229.6 237.4 
1.1 248.4  248.8 230.6 238.4 
1.2 251.4  251.8 233.4 241.3 
1.3 255.8  256.3 237.5 245.5 
1.4 261.4  261.8 242.7 250.9 
1.5 267.9  268.3 248.7 257.1 
2.0 309.1  309.6 287.0 296.6 
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(a) Solid Substrate (b) Pattern I 

  

(c) Pattern II (d) Pattern III 

Fig. 3.9: Effect of the aspect ratio on the power output for homogenous and porous 
bimorph plate harvesters under parallel configuration (𝑒0 = 0.4) 

 
The last investigation example is concerned with the effect of the material of 

piezoelectric layers on the frequencies and the electric response of the bimorph 
scavenger. For that purpose, two types of PZT materials, namely PZT-2 and PZT-
5H are considered with the Aluminum substrate with/without porosity. The 
respective optimal resistance loads, and the peak powers are computed for 
excitations at both SC and OC frequencies, and the obtained results are listed in 
Table 3.6. The results indicate that in all the cases, the harvester with PZT-5H layers 
exhibits lower SC and OC frequencies. Furthermore, higher peak powers for 
excitations at both frequencies are achieved when PZT-5H is used. Compared to 
the case of PZT-2, lower resistance loads need to be applied to the harvester with 
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PZT-5H layers to achieve the peak powers. Therefore, PZT-5H provides better 
properties for energy harvesting applications, and is capable of delivering more 
output power at lower optimum load resistance. 
 

Table 3.6: Optimum load resistance and output power for different bimorph harvester 
with three types of piezoelectric layers (𝑎/𝑏 = 1, 𝑎𝑏 = 0.04 𝑚2, 𝑒0 = 0.4) 

   Piezoelectric layers 

Substrate EC Parameter  PZT-2  PZT-5H 

Solid SC Resonance frequency (Hz)  265.8  247.4 
  Optimum load resistance (Ω)  195  19 

  𝑃𝑚𝑎𝑥  (
𝜇𝑊

𝑁/𝑚2
)  8.64  10.00 

 OC Resonance frequency (Hz)  273.0  261.0 
  Optimum load resistance (Ω)  1035  370 

  𝑃𝑚𝑎𝑥  (
𝜇𝑊

𝑁/𝑚2
)  8.64  9.95 

Pattern I SC Resonance frequency (Hz)  268.0  247.8 
  Optimum load resistance (Ω)  183  17 

  𝑃𝑚𝑎𝑥  (
𝜇𝑊

𝑁/𝑚2
)  9.49  11.00 

 OC Resonance frequency (Hz)  275.6  262.2 
  Optimum load resistance (Ω)  1055  365 

  𝑃𝑚𝑎𝑥  (
𝜇𝑊

𝑁/𝑚2
)  9.57  11.02 

Pattern II SC Resonance frequency (Hz)  251.6  229.6 
  Optimum load resistance (Ω)  176  16 

  𝑃𝑚𝑎𝑥  (
𝜇𝑊

𝑁/𝑚2
)  10.49  12.06 

 OC Resonance frequency (Hz)  259.6  245.8 
  Optimum load resistance (Ω)  1293  474 

  𝑃𝑚𝑎𝑥  (
𝜇𝑊

𝑁/𝑚2
)  10.48  11.93 

Pattern III SC Resonance frequency (Hz)  258.6  237.4 
  Optimum load resistance (Ω)  179  16 

  𝑃𝑚𝑎𝑥  (
𝜇𝑊

𝑁/𝑚2
)  10.07  11.61 

 OC Resonance frequency (Hz)  266.4  252.8 
  Optimum load resistance (Ω)  1186  444 

  𝑃𝑚𝑎𝑥  (
𝜇𝑊

𝑁/𝑚2
)  10.07  11.54 
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3.7 Summary and Conclusions 
A comprehensive analytical energy harvesting model based on shear deformation 
theories is developed for piezoelectric bimorph plate energy harvesters. The model 
allows to consider both homogenous materials and those containing porosities for 
the substrate layer. Closed-form expressions are obtained for the electrical outputs, 
and comprehensive parametric studies are reported to investigate the effect of the 
system parameters. It is found that the proposed energy harvesting model can 
accurately predict the electromechanical response of thin, moderately thick, and 
thick piezoelectric bimorph plate energy harvesters. Moreover, the following 
conclusions are drawn from the presented numerical results and simulations: 

• For the series and parallel configurations, the respective resonance frequencies 
are identical, the maximum power outputs are close to each other, but the 
optimum electrical load for the series connection is much higher than that of 
parallel connection. 

• Among the samples studied in the present work, the maximum power output 
occurs in an excitation frequency between the SC and OC fundamental natural 
frequencies. 

• The presence of porosities in the substrate layer helps enhancing the 
voltage/power generation of the harvester as compared to its counterpart with 
no porosity.  

• Both free vibration and electric response of the porous bimorph harvester with 
Pattern II are more sensitive to the porosity variation in comparison with the 
other porosity distributions. 

• The highest power output is provided by the porous bimorph scavenger with 
porosity Pattern II, followed by its counterparts with porosity Pattern III and 
Pattern I, respectively. 

• The trends for variation of the harvester resonance frequency versus the 
porosity parameter is highly dependent on the type of porosity distribution. 
Increasing the porosity coefficient results in a drop in the resonance frequency 
of the harvester with porosity Pattern II and Pattern III, while an ascending 
trend is observed for Pattern I. 
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• Keeping the harvester volume constant, the plate harvester with 𝑎/𝑏 = 1 
provides the highest power output and the lowest resonance frequency as 
compared to the cases with 𝑎/𝑏 ≠ 1. 

• PZT-5H provides better properties than PZT-2, for energy harvesting 
applications. 

 

 

 



 
 

 
 
 
Chapter 4 
 
Free Vibration Analysis of 
Piezoelectric Bimorph Beams 
 
4.1 Overview  

Starting from this chapter, exact electromechanically-coupled models are herein 
and hereafter presented for dynamic and static problems of 1D (beam) and 2D 
(shell) structures. There are a number of theories that are used to represent the 
kinematics of deformation. Presented in this chapter is an analytical model based 
on the classical, the first-order and the higher-order shear deformation beam 
theories, for the problem of free vibration of bimorph beams (or 1D structures) with 
transverse (d31) and shear (d15) piezoelectric layers. The latter two beam theories 
allow for the effect of transverse shear deformation which is neglected in the 
classical beam theory. Using the principle of minimum potential energy, the 
governing equation of motion and boundary conditions are derived for the bimorph 
beam on the basis of the kinematic assumptions of the aforementioned beam 
theories. Although the proposed model allows to consider different materials for 
the substrate layer (with varying properties along the beam thickness), this layer is 
herein assumed to be made of perfect and porous FGMs. Due to the existence of 
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internal pores in FGMs, their mechanical properties are considered according to the 
modified rule of mixture previously discussed in Chapter 1. The distribution of 
electric potential within the d31 and d15 piezoelectric layers is modeled based on 
nonlinear variations for both SC and OC conditions. The governing equations are 
finally solved analytically for simply supported boundary condition, and parametric 
studies are presented. After validating the model, a wide range of results covering 
the effects of porosity volume fraction, porosity distribution, various 
piezoelectricity modes, power-law index, and the beam theories on free vibration 
response of the beam are presented. The presented numerical results can be used as 
benchmarks to check the accuracy of the numerical models. 

The results of the research work presented in this chapter was published in 
The Journal of Strain Analysis for Engineering Design [161]. 
 
 

4.2 Problem Modelling 

The layouts of the considered FGM beam surrounded by d31 and d15 piezoelectric 
layers are shown in Fig. 4.1. The origin of the Cartesian reference system is located 
in the mid-plane of the FGM core layer. The geometrical properties 𝐿, 2ℎ and ℎ𝑝 
represent the length of the beam, and the thicknesses of the core layer and each 
piezoelectric layer, respectively. The composite beam consists of an FGM substrate 
containing porosities, and two integrated piezoelectric layers. The piezoelectric 
layers, which are polarized either through the thickness or the length direction, are 
symmetrically bonded on the top and bottom faces of the FGM substrate. 
Obviously, to each piezoelectric layer are attached two electrodes, one on its top 
surface and another on its bottom, but they are not shown in Fig. 4.1 due to their 
very small thicknesses that are negligible compared to the beam thickness.  
 

 
(a) 
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(b) 

Fig. 4.1: Layouts of the FGM beam surrounded by piezoelectric layers in (a) d31 and 
(b) d15 modes 

 
Mechanical properties of FGMs including porosities vary smoothly along the 

beam thickness, as were earlier described in Section 1.3 (Chapter 1). Both even and 
uneven porosity patterns, are here considered to describe the distribution of the 
internal pores in the substrate layer. Thus, the effective mechanical properties such 
as Young’s modulus 𝐸(𝑧) and mass density 𝜌(𝑧) are modeled based on the 
modified rule of mixture, as its mathematical expressions were given in Eqs. (1.9) 
and (1.10). It is reminded that, in those equations, the positive real number 𝑁 (0 ≤
𝑁 < ∞) and the parameter 𝑒0 (0 ≤ 𝑒0 < 1) represent the power-law index and the 
porosity volume fraction of FGMs, respectively. Setting the value of 𝑁 to zero in 
Eqs. (1.9) and (1.10), gives a fully ceramic structure while considering large values 
for 𝑁 presents the properties of a pure metal structure. However, the material 
properties of a homogenous beam with no porosity can be obtained by setting 𝑁 =

𝑒0 = 0 in the aforementioned equations. In Fig. 4.2, the cross section of the smart 
sandwich beam with both perfect and porous FGM substrates are schematically 
shown. It seems from Fig. 4.2(c) that in uneven pattern, the internal pores are mostly 
distributed in the middle area of the beam cross-section and the amount of porosity 
tends to linearly drop to zero at the top and bottom areas of the beam cross-section. 
According to the fundamental of multi-step infiltration process, which can be 
employed to fabricate FGM samples, most of the internal pores occur in the middle 
region. This is due to the reason that it is not easy to totally infiltrate the materials 
in this area, whilst at the top and bottom zones, the infiltration process of material 
can be carried out easier, which results in less porosities in these zones. 
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(a) Perfect FGM 

 
(b) Porous FGM with even porosity pattern 

 
(c) Porous FGM with uneven porosity pattern 

Fig. 4.2: Patterns of porosity distribution over the cross section of the sandwich beam 

 
Using piezoelectric materials in various operation modes leads to different 

electromechanical behaviors due to their different piezoelectric coupling 
coefficients. The shear mode is actually corresponded with the shear deformation 
of the piezoelectric layers when they are polarized in the axial direction of the beam. 
Therefore, to provide an accurate prediction, the effects of transverse shear 
deformation on the system behavior must be considered when analyzing 
piezoelectrics in shear mode.  

Here, the mechanical displacement field is modeled according to Eq. (4.1) in 
order to consider the shear deformation effects based on various higher-order beam 
theories: 
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𝑈𝑥(𝑥,𝑧,𝑡) = 𝑢0 − 𝑧𝑤0,𝑥 + 𝑓(𝑧)𝜓 

(4.1) 𝑈𝑦(𝑥,𝑧,𝑡) = 0 

𝑈𝑧(𝑥,𝑧,𝑡) = 𝑤0 

where 𝑈𝑥, 𝑈𝑦 and 𝑈𝑧(𝑥‚𝑦‚𝑧‚𝑡) are the components of total displacement at any point 
of the smart beam along 𝑥-, 𝑦- and 𝑧-direction, respectively. Moreover, 𝑢0(𝑥, 𝑡) 
and 𝑤0(𝑥, 𝑡) are the axial and transverse displacement components of the mid-plane 
of the beam along 𝑥- and 𝑧-axes, respectively. The rotation function of transverse 
normal of the mid-plane (at 𝑧 = 0) is also represented by 𝜓(𝑥, 𝑡). Moreover, 𝑡 is 
the time, and 𝑓(𝑧) is the shape function representing the effect of the transverse 
shear strain and stress along the thickness of the beam. For comparative purposes, 
various applicable shape functions corresponded to different beam displacement 
models and theories are employed in this study as listed in Table 4.1. Note that, in 
the expressions given in Table 4.1, 𝐻 is the total thickness of the sandwich beam 
that is equal to 𝐻 = 2ℎ + 2ℎ𝑝. 
 
Table 4.1: Various shape functions for different beam theories 

Theory Shape Function 

Classical Beam Theory (CBT) 𝑓(𝑧) = 0 

First-order Shear Deformation Beam Theory (FBT) 𝑓(𝑧) = 𝑧 

Parabolic Shear Deformation Beam Theory (PBT) 𝑓(𝑧) = 𝑧 [1 −
4

3
(
𝑧

𝐻
)
2

] 

Sinusoidal Shear Deformation Beam Theory (SBT) 𝑓(𝑧) =
𝐻

𝜋
sin (

𝜋𝑧

𝐻
) 

Exponential Shear Deformation Beam Theory (EBT) 𝑓(𝑧) = 𝑧 exp [−2 (
𝑧

𝐻
)
2

] 

 
Using the linear strain-displacement relationship, the components of the strain field 
for the sandwich beam can be derived from Eq. (4.1), as: 

휀𝑥𝑥 = 𝑢0,𝑥 − 𝑧𝑤0,𝑥𝑥 + 𝑓(𝑧)𝜓,𝑥 

(4.2) 𝛾𝑥𝑧 = 𝑓
′(𝑧)𝜓 

휀𝑦𝑦 = 휀𝑧𝑧 = 𝛾𝑥𝑦 = 𝛾𝑦𝑧 = 0 
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In CBT (see Table 4.1), since 𝑓(𝑧) = 0, the value of 𝛾𝑥𝑧 equals to zero at any 
point of the beam, meaning that the transverse shear deformation is neglected in 
this theory. This leads to make this theory not suitable for analyzing moderately-
thick and thick beams, unlike the higher-order shear deformation theories. 

In the current study, the piezoelectric materials are assumed to be 
homogenous and transversely isotropic, with the 𝑧 and 𝑥 axes as the axes of isotropy 
in d31 and d15 operation modes, respectively. The general constitutive equations for 
both transverse and shear modes are already given in Eq. (1.4) and Eq. (1.5) 
(Chapter 1). 

It should be mentioned that here and hereafter, the superscripts 31 and 15 
denote the corresponding variables for the transverse and shear modes of 
piezoelectric layers, respectively. From Eq. (1.4) and Eq. (1.5), it can be easily seen 
that the electromechanical relationships between stress and strain components as 
well as mechanical and electrical properties of piezoelectric materials are dependent 
on the polarization direction. Thus, these differences in the constitutive equations 
result in different electromechanical behaviors when using piezoelectric materials 
in transverse and shear modes. 

Approximation of the electric potential variation 𝜙 through the piezoelectric 
layers is an important issue. In this study, the electric potential is assumed to have 
a nonlinear variation [96,167] along the thickness of piezoelectric layers for both 
transverse and shear modes as well as SC and OC conditions. In the SC condition, 
both inner and outer surfaces of each piezoelectric layer are held at zero electric 
voltage, i.e., 𝜙(𝑥,±ℎ,𝑡) = 𝜙(𝑥,±(ℎ + ℎ𝑝),𝑡) = 0. On the other hand, applying 
these conditions only on the outer surfaces and electrically insulating the inner 
surfaces of each piezoelectric layer result in the OC electrical condition, 
𝜙(𝑥,±ℎ,𝑡) = 𝐷𝑧(𝑥,±(ℎ + ℎ𝑝),𝑡) = 0. Therefore, the electric potential function is 
first assumed to have the following form with respect to 𝑧-coordinate: 
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𝜙(𝑥,𝑧,𝑡)

=

{
 
 

 
 𝜙0(𝑥, 𝑡) [1 − (

+2𝑧 − 2ℎ − ℎ𝑝

ℎ𝑝
)

2

] + 𝐴𝑧 + 𝐵,   ℎ ≤ 𝑧 ≤ ℎ + ℎ𝑝        

𝜙0(𝑥, 𝑡) [1 − (
−2𝑧 − 2ℎ − ℎ𝑝

ℎ𝑝
)

2

] + 𝐶𝑧 + 𝐷,   − ℎ − ℎ𝑝 ≤ 𝑧 ≤ −ℎ

 
(4.3) 

In Eq. (4.3), 𝜙0(𝑥, 𝑡) denotes the electric potential distribution at the mid-
plane of each piezoelectric layer. Also, 𝐴, 𝐵, 𝐶 and 𝐷 are four unknowns, which 
are functions of the 𝑥-coordinate and time, and will be determined satisfying the 
electrical conditions. Therefore, for each of SC and OC conditions, different 
expressions will be obtained for 𝐴, 𝐵, 𝐶 and 𝐷. Applying the respective conditions 
of both SC and OC cases to Eq. (4.3), the final form of the electric potential function 
can be obtained for both top and bottom piezoelectric layers, as: 

For the top piezoelectric layer (ℎ ≤ 𝑧 ≤ ℎ + ℎ𝑝): 

𝜙(𝑥,𝑧,𝑡) = 𝜙0(𝑥, 𝑡) [1 − (
+2𝑧 − 2ℎ − ℎ𝑝

ℎ𝑝
)

2

]

+ (𝑧 − ℎ) [𝛼1 (
4

ℎ𝑝
𝜙0(𝑥, 𝑡) +

𝑒15휁1
Ξ11

𝜓(𝑥, 𝑡))

+ 𝛼2 (
4

ℎ𝑝
𝜙0(𝑥, 𝑡) +

𝑒31
Ξ33

𝜕𝑢0
𝜕𝑥

−
𝑒31(ℎ + ℎ𝑝)

Ξ33

𝜕2𝑤0
𝜕𝑥2

+
𝑒31휂1
Ξ33

𝜕𝜓

𝜕𝑥
)] 

(4.4) 

For the bottom piezoelectric layer (−ℎ − ℎ𝑝 ≤ 𝑧 ≤ −ℎ): 
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𝜙(𝑥,𝑧,𝑡) = 𝜙0(𝑥, 𝑡) [1 − (
−2𝑧 − 2ℎ − ℎ𝑝

ℎ𝑝
)

2

]

+ (𝑧 + ℎ) [𝛼3 (
−4

ℎ𝑝
𝜙0(𝑥, 𝑡) +

𝑒15휁2
Ξ11

𝜓(𝑥, 𝑡))

+ 𝛼4 (
−4

ℎ𝑝
𝜙0(𝑥, 𝑡) +

𝑒31
Ξ33

𝜕𝑢0
𝜕𝑥

+
𝑒31(ℎ + ℎ𝑝)

Ξ33

𝜕2𝑤0
𝜕𝑥2

+
𝑒31휂2
Ξ33

𝜕𝜓

𝜕𝑥
)] 

(4.5) 

where the coefficients 𝛼𝑖 (𝑖 = 1, 2, 3, 4) can be either 𝛼𝑖 = 0 or 𝛼𝑖 = 1, for the 
studied piezoelectric modes and electrical circuit conditions (see Table 4.2). 
Furthermore, the coefficients 휁1 = 𝑓′(𝑧 = ℎ + ℎ𝑝), 휁2 = 𝑓′(𝑧 = −ℎ − ℎ𝑝), 휂1 =

𝑓(𝑧 = ℎ + ℎ𝑝) and 휂2 = 𝑓(𝑧 = −ℎ − ℎ𝑝) have different values depending on the 
shape function 𝑓(𝑧), which is different for each theory (see Table 4.1). 
 
 
Table 4.2: Values of the parameters 𝛼𝑖  (𝑖 = 1, 2, 3, 4) for various piezoelectric modes 
and electrical boundary conditions 

Piezoelectric layers (Electrical Circuit Condition) 𝛼1 𝛼2 𝛼3 𝛼4 

𝑑31 Mode (SC condition) 0 0 0 0 

𝑑31 Mode (OC condition) 0 1 0 1 

𝑑15 Mode (SC condition) 0 0 0 0 

𝑑15 Mode (OC condition) 1 0 1 0 

 
Using the electric potential functions given in Eqs. (4.4) and (4.5), the 

components of the electric field in piezoelectric layers can be simply obtained from 
following relation: 

(𝐸𝑥, 𝐸𝑦, 𝐸𝑧) = −(𝜙,𝑥, 𝜙,𝑦, 𝜙,𝑧) (4.6) 

On the other hand, since FGMs are isotropic materials, they simply obey the 
Hooke’s law, and their constitutive equations are of the form already given in Eq. 
(1.12) in Chapter 1. 
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4.3 Governing Equations 

Employing the variational principle, the electromechanical equations of motion for 
the hybrid beam can be derived as: 

𝜕𝑁𝑥𝑥
𝑝𝑞

𝜕𝑥
− 𝐼0

𝜕2𝑢0
𝜕𝑡2

− 𝐼01
𝜕2𝜓

𝜕𝑡2
+ 𝐼1

𝜕3𝑤0
𝜕𝑥𝜕𝑡2

= 0 

(4.7) 𝜕2𝑀𝑥𝑥
𝑝𝑞

𝜕𝑥2
− 𝐼1

𝜕3𝑢0
𝜕𝑥𝜕𝑡2

− 𝐼11
𝜕3𝜓

𝜕𝑥𝜕𝑡2
− 𝐼0

𝜕2𝑤0
𝜕𝑡2

+ 𝐼2
𝜕4𝑤0
𝜕𝑥2𝜕𝑡2

= 0 

𝜕�̂�𝑥𝑥
𝑝𝑞

𝜕𝑥
− �̂�𝑥𝑧

𝑝𝑞 − 𝐼01
𝜕2𝑢0
𝜕𝑡2

− 𝐼02
𝜕2𝜓

𝜕𝑡2
+ 𝐼11

𝜕3𝑤0
𝜕𝑥𝜕𝑡2

= 0 

where 𝑁𝑥𝑥, 𝑀𝑥𝑥, �̂�𝑥𝑥 and �̂�𝑥𝑧 are the stress resultants. It should be noted that here 
and hereafter, the superscript pq represents the associated variables and coefficients 
for the transverse and shear modes of piezoelectric materials so that it can be either 
31 or 15. For instance, when pq is equal to 31, it means that the respective 
constitutive equations of d31 mode (given in Eq. (1.4) in Chapter 1) must be used to 
determine the related coefficients and variables such as the stress resultants. 
Moreover, the appearance of the terms �̂�𝑥𝑥

𝑝𝑞 and �̂�𝑥𝑧
𝑝𝑞 in Eq. (4.7) is due to the 

particular form of the mechanical displacement field and they are not appeared in 
the equations of motion, when using the classical beam theory (or CBT). The terms 
𝐼𝑖 and 𝐼𝑖𝑗 which represent the mass inertias of the sandwich beam are also defined 
as: 

𝐼𝑖 = ∫ 𝜌 𝑧𝑖
−ℎ

−ℎ−ℎ𝑝

𝑑𝑧 + ∫ 𝜌(𝑧) 𝑧𝑖
ℎ

−ℎ

𝑑𝑧 + ∫ 𝜌 𝑧𝑖
ℎ+ℎ𝑝

ℎ

𝑑𝑧,   (𝑖 = 0, 1, 2) (4.8a) 

𝐼𝑖𝑗 = ∫ 𝜌 𝑧𝑖  [𝑓(𝑧)]𝑗
−ℎ

−ℎ−ℎ𝑝

𝑑𝑧 + ∫ 𝜌 𝑧𝑖  [𝑓(𝑧)]𝑗
ℎ

−ℎ

𝑑𝑧

+ ∫ 𝜌 𝑧𝑖  [𝑓(𝑧)]𝑗
ℎ+ℎ𝑝

ℎ

𝑑𝑧,    (𝑖 = 0, 1 and 𝑗 = 1, 2)    

(4.8b) 

And similarly, the stress resultants are defined in terms of stress components 
in the following forms: 
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(𝑁𝑥𝑥
𝑝𝑞 , 𝑀𝑥𝑥

𝑝𝑞) = ∫ 𝜎𝑥𝑥
𝑝𝑞 (1, 𝑧)

−ℎ

−ℎ−ℎ𝑝

𝑑𝑧 + ∫ 𝜎𝑥𝑥
𝑐  (1, 𝑧)

ℎ

−ℎ

𝑑𝑧

+ ∫ 𝜎𝑥𝑥
𝑝𝑞 (1, 𝑧)

ℎ+ℎ𝑝

ℎ

𝑑𝑧 

(4.9a) 

�̂�𝑥𝑥
𝑝𝑞 = ∫ 𝜎𝑥𝑥

𝑝𝑞  𝑓(𝑧)
−ℎ

−ℎ−ℎ𝑝

𝑑𝑧 + ∫ 𝜎𝑥𝑥
𝑐  𝑓(𝑧)

ℎ

−ℎ

𝑑𝑧 + ∫ 𝜎𝑥𝑥
𝑝𝑞 𝑓(𝑧)

ℎ+ℎ𝑝

+ℎ

𝑑𝑧 (4.9b) 

�̂�𝑥𝑧
𝑝𝑞 = ∫ 𝜎𝑥𝑧

𝑝𝑞  𝑓′(𝑧)
−ℎ

−ℎ−ℎ𝑝

𝑑𝑧 + ∫ 𝜎𝑥𝑧
𝑐  𝑓′(𝑧)

ℎ

−ℎ

𝑑𝑧 + ∫ 𝜎𝑥𝑧
𝑝𝑞 𝑓′(𝑧)

ℎ+ℎ𝑝

ℎ

𝑑𝑧 (4.9c) 

Moreover, from the Hamilton’s principle, the following mechanical boundary 
conditions at the edges 𝑥 = 0 and 𝑥 = 𝐿 can be obtained: 

𝑢0 = 0 or 𝑁𝑥𝑥
𝑝𝑞 = 0 

(4.10) 
𝑤0,𝑥 = 0 or 𝑀𝑥𝑥

𝑝𝑞 = 0 
𝑤0 = 0 or 𝑀𝑥𝑥,𝑥

𝑝𝑞 = 0 

𝜓 = 0 or �̂�𝑥𝑥
𝑝𝑞 = 0 

Generally, the left-hand side boundary conditions in Eq. (4.10) are called 
essential or geometric conditions, because they correspond to prescribe 
displacements and rotations, and must be rigorously imposed according to the beam 
boundaries. Besides, the right-hand side ones are called natural boundary 
conditions, which are associated with the loads and moment resultants acting on 
each end of the beam, and they are implicitly contained in the Hamilton’s principle. 

In the next section, the expressions given in Eq. (4.10) will be summarized for a 
particular type of mechanical boundary condition at the beam boundaries. 

Using the mechanical displacement field and strain-displacement relations 
given in Eqs. (4.1) and (4.2), as well as with the help of constitutive equations of 
both piezoelectrics and FGMs, the stress resultants of Eq. (4.9) can be rewritten in 
terms of displacement components and electric potential function, as: 

𝑁𝑥𝑥
𝑝𝑞 = 𝑎1

𝑝𝑞 𝜕𝑢0
𝜕𝑥

+ 𝑎2
𝑝𝑞 𝜕

2𝑤0
𝜕𝑥2

+ 𝑎3
𝑝𝑞 𝜕𝜓

𝜕𝑥
+ 𝜇1

𝑝𝑞𝜙0 + 𝛽1
𝑝𝑞 𝜕𝜙0

𝜕𝑥
 (4.11a) 

𝑀𝑥𝑥
𝑝𝑞 = 𝑎4

𝑝𝑞 𝜕𝑢0
𝜕𝑥

+ 𝑎5
𝑝𝑞 𝜕

2𝑤0
𝜕𝑥2

+ 𝑎6
𝑝𝑞 𝜕𝜓

𝜕𝑥
+ 𝜇2

𝑝𝑞𝜙0 + 𝛽2
𝑝𝑞 𝜕𝜙0

𝜕𝑥
 (4.11b) 
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�̂�𝑥𝑥
𝑝𝑞 = 𝑎7

𝑝𝑞 𝜕𝑢0
𝜕𝑥

+ 𝑎8
𝑝𝑞 𝜕

2𝑤0
𝜕𝑥2

+ 𝑎9
𝑝𝑞 𝜕𝜓

𝜕𝑥
+ 𝜇3

𝑝𝑞𝜙0 + 𝛽3
𝑝𝑞 𝜕𝜙0

𝜕𝑥
 (4.11c) 

�̂�𝑥𝑧
𝑝𝑞 = 𝑎10

𝑝𝑞𝜓 + 𝑎11
𝑝𝑞 𝜕

2𝜓

𝜕𝑥2
+ 𝑎12

𝑝𝑞 𝜕
2𝜓

𝜕𝑥2
+ 𝑎13

𝑝𝑞 𝜕
3𝑤0
𝜕𝑥3

+ 𝜇4
𝑝𝑞𝜙0

+ 𝛽4
𝑝𝑞 𝜕𝜙0

𝜕𝑥
 

(4.11d) 

where the coefficients 𝑎𝑖
𝑝𝑞 (𝑖 = 1, 2, … , 13), 𝛽𝑖

𝑝𝑞 (𝑖 = 1, 2, … , 4), and 𝜇𝑖
𝑝𝑞 (𝑖 =

1, 2, … , 4) are functions of the geometry parameters, as well as mechanical and 
electrical properties of both FGM core and piezoelectric layers. The respective 
expressions of such coefficients are given in Relations (C.1-C.4) of the Appendix 
C. note that those coefficients have different values for transverse and shear modes, 
as well as for SC and OC electrical conditions, as are given separately the Appendix 
C. 

Substituting Eq. (4.11) into Eq. (4.7) leads to the beam equations of motion 
in terms of displacement field components and the electric potential function, as: 

𝑎1
𝑝𝑞 𝜕

2𝑢0
𝜕𝑥2

+ 𝑎2
𝑝𝑞 𝜕

3𝑤0
𝜕𝑥3

+ 𝑎3
𝑝𝑞 𝜕

2𝜓

𝜕𝑥2
+ 𝜇1

𝑝𝑞 𝜕𝜙0
𝜕𝑥

+ 𝛽1
𝑝𝑞 𝜕

2𝜙0
𝜕𝑥2

− 𝐼0
𝜕2𝑢0
𝜕𝑡2

− 𝐼01
𝜕2𝜓

𝜕𝑡2
+ 𝐼1

𝜕3𝑤0
𝜕𝑥𝜕𝑡2

= 0 
(4.12a) 

𝑎4
𝑝𝑞 𝜕

3𝑢0
𝜕𝑥3

+ 𝑎5
𝑝𝑞 𝜕

4𝑤0
𝜕𝑥4

+ 𝑎6
𝑝𝑞 𝜕

3𝜓

𝜕𝑥3
+ 𝜇2

𝑝𝑞 𝜕
2𝜙0
𝜕𝑥2

+ 𝛽2
𝑝𝑞 𝜕

3𝜙0
𝜕𝑥3

− 𝐼1
𝜕3𝑢0
𝜕𝑥𝜕𝑡2

− 𝐼11
𝜕3𝜓

𝜕𝑥𝜕𝑡2
− 𝐼0

𝜕2𝑤0
𝜕𝑡2

+ 𝐼2
𝜕4𝑤0
𝜕𝑥2𝜕𝑡2

= 0 
(4.12b) 

(𝑎7
𝑝𝑞 − 𝑎12

𝑝𝑞)
𝜕2𝑢0
𝜕𝑥2

+ (𝑎8
𝑝𝑞 − 𝑎13

𝑝𝑞)
𝜕3𝑤0
𝜕𝑥3

+ (𝑎9
𝑝𝑞 − 𝑎11

𝑝𝑞)
𝜕2𝜓

𝜕𝑥2
− 𝑎10

𝑝𝑞𝜓

+ (𝜇3
𝑝𝑞
− 𝛽4

𝑝𝑞
)
𝜕𝜙0
𝜕𝑥

+ 𝛽3
𝑝𝑞 𝜕

2𝜙0
𝜕𝑥2

− 𝜇4
𝑝𝑞
𝜙0 − 𝐼01

𝜕2𝑢0
𝜕𝑡2

− 𝐼02
𝜕2𝜓

𝜕𝑡2
+ 𝐼11

𝜕3𝑤0
𝜕𝑥𝜕𝑡2

= 0 

(4.12c) 
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The last equation, which is the electric displacement equation coupled with 
the induced mechanical displacements, can be determined according to the 
Maxwell’s electrostatic equation: 

∫ (𝐷𝑥,𝑥
𝑝𝑞 + 𝐷𝑧,𝑧

𝑝𝑞)
−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 + ∫ (𝐷𝑥,𝑥
𝑝𝑞 + 𝐷𝑧,𝑧

𝑝𝑞)
+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 = 0 (4.13) 

Substituting the expressions of electric displacement field components in Eq. 
(4.13), the last electromechanical governing equation can be derived for both 
transverse and shear modes as: 

𝑏1
𝑝𝑞𝜓 + 𝑏2

𝑝𝑞 𝜕𝜓

𝜕𝑥
+ 𝑏3

𝑝𝑞 𝜕
2𝜓

𝜕𝑥2
+ 𝑏4

𝑝𝑞 𝜕
3𝜓

𝜕𝑥3
+ 𝑏5

𝑝𝑞 𝜕
2𝑢0
𝜕𝑥2

+ 𝑏6
𝑝𝑞 𝜕

3𝑢0
𝜕𝑥3

+ 𝑏7
𝑝𝑞 𝜕

2𝑤0
𝜕𝑥2

+ 𝑏8
𝑝𝑞 𝜕

3𝑤0
𝜕𝑥3

+ 𝑏9
𝑝𝑞 𝜕

4𝑤0
𝜕𝑥4

+ 𝜇5
𝑝𝑞𝜙0

+ 𝛽5
𝑝𝑞 𝜕

2𝜙0
𝜕𝑥2

= 0 

(4.14) 

The coefficients 𝑏𝑖
𝑝𝑞 (𝑖 = 1,… ,9), 𝜇5

𝑝𝑞 and 𝛽5
𝑝𝑞 are defined in Relation (C.1-

C.4) of Appendix C, for both piezoelectric modes, as well as the electrical boundary 
conditions. 

 
 

4.4 Solution Procedure 

In the previous section, the four electromechanical governing equations of motion 
(4.12) and (4.14) were derived according to the considered mechanical 
displacement field. Here, it is assumed that the edges 𝑥 = 0 and 𝑥 = 𝐿 of the 
sandwich beam are mechanically simply supported and electrically grounded to 
zero potential in both transverse and shear modes. Therefore, the essential and 
natural boundary conditions (i.e., Eq. (4.10)) can be expressed for beams with 
simply supported edges, as: 

𝑁𝑥𝑥
𝑝𝑞 = 𝑤0 = 𝑀𝑥𝑥

𝑝𝑞 = �̂�𝑥𝑥
𝑝𝑞 = 𝜙0 = 0 (4.15) 

The Navier-type procedure is indeed employed to analytically solve the beam 
governing equations (4.12) and (4.14) for calculating the exact resonance 
frequencies. According to Navier’s technique, the unknown components of the 
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mechanical displacement field, as well as the electric potential function may be of 
the form: 

{

𝑢0
𝜓
𝑤0
𝜙0

} = ∑

{
 
 

 
 
𝑋𝑚
𝑢0 cos(𝛽𝑚𝑥)

𝑋𝑚
𝜓
cos(𝛽𝑚𝑥)

𝑋𝑚
𝑤0 sin(𝛽𝑚𝑥)

𝑋𝑚
𝜙0 sin(𝛽𝑚𝑥)}

 
 

 
 ∞

𝑚=1

𝑇(𝑡) (4.16) 

where 𝑚 denotes the number of half-waves in the axial direction, and 𝛽𝑚 = 𝑚𝜋 𝐿⁄ . 

Also, 𝑋𝑚
𝑢0, 𝑋𝑚

𝜓, 𝑋𝑚
𝑤0 and 𝑋𝑚

𝜙0 are the unknown coefficients, and 𝑇(𝑡) = 𝑒𝑖𝜔𝑡 in 

which 𝑖 = √−1, and 𝜔 is the natural frequency of the coupled beam. It can be 
verified that such set of series-type solution can satisfy the boundary conditions of 
simply supported beam given in Eq. (4.15). 

Substituting the expansions of 𝑢0, 𝜓, 𝑤0 and 𝜙0 from Eq. (4.16) into the 
governing equations (4.12) and (4.14) results in the following eigenvalue problem: 

([𝐾]4×4 − 𝜔
2[𝑀]4×4)

{
 
 

 
 
𝑋𝑚
𝑢0

𝑋𝑚
𝜓

𝑋𝑚
𝑤0

𝑋𝑚
𝜙0}
 
 

 
 

= {0} (4.17) 

in which [𝐾], [𝑀] and {𝑋𝑚
𝑢0 , 𝑋𝑚

𝜓
, 𝑋𝑚

𝑤0 , 𝑋𝑚
𝜙0}

𝑇

 denote the stiffness matrix, mass 

matrix and the vector of unknown coefficients, respectively. Eq. (4.17) represents 
a system of four algebraic homogenous equations in terms of the unknown 
coefficients. For a nontrivial solution of the vector of coefficients, the determinant 
of the coefficient matrix must be set to zero (i.e., |[𝐾] − 𝜔2[𝑀]| = 0), which yields 
a characteristic equation in terms of 𝜔. Positive real roots of that equation are the 
natural free vibration frequencies of the piezoelectric bimorph beam. 
 
 

4.5 Numerical Results 
4.5.1 Model Validation 
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To ensure the accuracy of the present models and formulations, the present 
numerical results are first compared with some available in the literature. It must 
be mentioned that due to slight variation of the Poisson’s ratio 𝜈 through the 
thickness direction, its value is assumed to be constant [8]. In Table 4.3, the present 
results are compared with those reported by Pradhan et al. [168], for a sandwich 
beam composed of an isotropic core and d31 piezoelectric layers. It is obvious that 
as the value of the thickness ration ℎ𝑝/2ℎ goes to zero, the natural frequencies of 
the sandwich beam approach those of the homogenous beam. The numerical results 
reported by Pradhan et al. [168] are numerically calculated based on Bernoulli-
Euler’s and Timoshenko’s beam theories (called CBT and TBT, respectively, in 
[168]), for the following material properties of an FGM beam: 
 

Alumina: 𝐸𝑐=380 GPa, 𝜌𝑐=3800 kg/m3, 𝜈𝑐=0.3 

Aluminum: 𝐸𝑚=70 GPa, 𝜌𝑚=2700 kg/m3, 𝜈𝑚=0.3 

 

Table 4.3: Comparison of the first five dimensionless frequencies, [𝜔𝐿2/2ℎ]√𝜌𝑚/𝐸𝑚, 
with those reported in [168] (𝑒0 = 0,𝑁 = 0) 

ℎ𝑝/2ℎ  Source 1st mode 2nd mode 3rd mode 4th mode 5th mode 

𝐿/2ℎ = 20 

10−1 CBT (Present) 6.1549 24.4738 54.5326 95.6643 126.7363 

10−2 CBT (Present) 6.8282 27.2202 60.9025 107.4347 149.8236 

10−3 CBT (Present) 6.9386 27.6686 61.9359 109.3302 153.0845 

10−4 CBT (Present) 6.9503 27.7160 62.0450 109.5302 153.4245 

10−5 CBT (Present) 6.9515 27.7207 62.0560 109.5503 153.4586 

0 CBT (Present) 6.9516 27.7212 62.0572 109.5525 153.4624 

0 CBT [168] 6.9516 27.7212 62.0573 109.5542 153.4624 

𝐿/2ℎ = 5 

10−1 CBT (Present) 5.9790 22.0144 31.6841 44.2232 63.3681 

10−2 CBT (Present) 6.7147 25.5444 37.4559 53.3843 74.9118 

10−3 CBT (Present) 6.8331 26.1012 38.2711 54.8405 76.5422 

10−4 CBT (Present) 6.8456 26.1599 38.3561 54.9946 76.7122 

10−5 CBT (Present) 6.8469 26.1658 38.3646 55.0102 76.7293 

0 CBT (Present) 6.8470 26.1665 38.3656 55.0119 76.7312 

0 CBT [168] 6.8470 26.1665 38.3655 55.0119 76.7312 
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The results of the second comparison study are presented in Table 4.4, where 
the fundamental frequencies of a simply supported beam made of FGMs are 
computed for different power-law indices (ranging from 0 to 10), and compared 
with those of Pradhan et al. [168], and Aydogdu and Taskin [169]. 

As one can see from Table 4.3 and the second column of Table 4.4, when 
𝑁 = 0, the present results correspond closely to those of Ref. [168] and Ref. [169]. 
For 𝑁 ≠ 0, again, excellent agreement is clearly seen when compared with the 
analytically computed results of Ref. [169]. However, in some cases, the differences 
between the results of the present analytical models and the Rayleigh-Ritz’s method 

(utilized in [168]) are greater than those with the frequency values predicted in  
[169]. It is possible that the numerical approach used in [168] did not give fully 
converged values of the frequencies. 
 
Table 4.4. Comparison of the dimensionless fundamental frequency, [𝜔𝐿2/
2ℎ]√𝜌𝑚/𝐸𝑚, for an FGM beam with those of Refs. [168,169] (𝐿/2ℎ = 20, 𝑒0 = 0) 

Source 𝑁 = 0 𝑁 = 0.5 𝑁 = 0.5 𝑁 = 2 𝑁 = 5 𝑁 = 10 

CBT [168] 6.9516 5.7627 5.2563 4.8259 4.3803 4.0208 

CBT [169] 6.9510 - 4.9070 4.3340 - 3.8040 

CBT (Present) 6.9516 5.5942 4.9039 4.3305 3.9814 3.7998 

FBT [168] 6.9317 5.7471 5.2417 4.8112 4.3647 4.0059 

FBT [169] 6.9310 - 4.8950 4.3230 - 3.7910 

FBT (Present) 6.9314 5.5797 4.8919 4.3197 3.9695 3.7870 

PBT (Present) 6.9273 5.5770 4.8895 4.3168 3.9643 3.7815 

SBT (Present) 6.9274 5.5771 4.8895 4.3168 3.9641 3.7814 

EBT (Present) 6.9275 5.5771 4.8895 4.3168 3.9641 3.7814 

 
In the last comparison example, the fundamental resonant frequencies of an 

FGM beam with 𝑁 = 1 are calculated for different values of 𝐿/2ℎ, and the 
respective dimensionless results along with those of Su et al. [170] are listed in 
Table 4.5. Note that in Ref. [170], Bernoulli-Euler’s beam theory is used in 
conjunction with the Wittrick-Williams’s algorithm to extract the natural 
frequencies of the FGM beam. A maximum difference of 3% is seen among the 
results, which may be appeared due to employing the different numerical and 
analytical solution approaches developed in the two studies. It is also interesting to 
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note that with increasing the thickness-to-length ratio (2ℎ/𝐿), the difference 
between the frequencies calculated by the classical (CBT) and the higher-order 
theories (e.g., FBT) increases. This is due to the fact that in classical theories, the 
transverse shear deformation effect is neglected so that the results predicted by such 
theories are not accurate for relatively-thick and thick structures. 
 
Table 4.5: Comparison of the dimensionless fundamental frequency of an FGM beam, 
[100𝜔(2ℎ)]√𝜌𝑚/𝐸𝑚, with those of Ref. [170] 

 𝐿/2ℎ   

Source 5 10 100 

CBT [170] 15.436 3.9059 0.039218 

CBT (Present) 15.912 4.0312 0.040492 

FBT (Present) 15.275 3.9868 0.040487 

PBT (Present) 15.157 3.9781 0.040486 

SBT (Present) 15.158 3.9782 0.040486 

EBT (Present) 15.162 3.9784 0.040486 

 
Having completed the above verification examples which confirm the 

accuracy of the present model, a parametric study covering the effects of various 
beam parameters and piezoelectric characteristics is presented in the next 
subsection. 
 
 

4.5.2 Parametric Study and Discussion 

In this section, new results are presented in both tabular and graphical forms, for 
the free vibration of FGM beams integrated with d31 and d15 piezoelectric layers. 
Aluminum (Al) and Alumina (Al2O3) are considered as the metal and ceramic 
constituents of the FGM core, respectively; and the piezoelectric layers are also 
assumed to be made of PZT-5H. 

In Tables 4.6 to 4.9, based on the presented CBT, FBT, PBT, SBT and EBT, 
the effects of porosity volume fraction 𝑒0, porosity distribution, power-law index 𝑁 
and electrical circuit condition on the resonance frequencies of both d31 and d15 
piezoelectric bimorph FGM beams are investigated. In those tables are listed the 
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first three SC and OC eigenfrequencies of smart FGM beams for different values 
of power-law index and porosity parameter. The tables imply that FGM beams 
sandwiched between d15 piezoelectric layers provide lower frequencies than those 
of FGM beams with d31 piezoelectric layers. In addition, when the bonded 
piezoelectric layers are polarized through their thickness, the OC natural 
frequencies are considerably larger than those of the similar beams with SC 
condition, whereas there is minimal differences between the SC and OC resonant 
frequencies when the beams are surrounded by d15 piezoelectric layers. The power-
law index also plays an important role on the frequency behavior of the 
piezoelectric coupled FGM beam. As seen in the tables, for both even and uneven 
porosity distributions, increasing the power-law index significantly decreases the 
first three natural frequencies of the smart sandwich beam irrespective of the value 
of 𝑒0, piezoelectricity mode and electrical boundary condition. This is due to the 
fact that an increase in the value of 𝑁 leads to a decrease in the effective modulus 
of elasticity, and consequently the beam becomes less rigid. Thus, as it is well-
known from mechanical vibration, resonance frequencies reduce as the structure 
stiffness decreases. It is obvious that the beam resonant frequencies are the same 
for both even and uneven porosity distribution, when 𝑒0 = 0. This is due to the 
considered functions for the mechanical properties of FGMs with porosities. For 
the studied power-law indices and porosity parameters, the bimorph FGM beams 
with uneven porosity pattern exhibit higher frequencies than those of the beams 
with evenly distributed pores. Inspection of these tables reveals that the natural 
frequencies predicted by CBT are comparatively greater than those forecasted by 
higher deformation beam theories, regardless of the considered electrical and 
material parameters of the hybrid beams. It is also observed that the results of the 
higher-order theories (i.e. PBT, SBT and EBT) are close to each other for all the 
considered beam parameters. 
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Table 4.6: First three SC resonance frequencies (Hz) of piezoelectric bimorph FGM beams 
with even porosity distribution (𝐿/2ℎ = 10, ℎ𝑝/2ℎ = 0.2) 

Source 
Mode 1 (𝑚 = 1)  Mode 2 (𝑚 = 2)  Mode 3 (𝑚 = 3) 

𝑁 = 0 𝑁 = 10  𝑁 = 0  𝑁 = 10  𝑁 = 0  𝑁 = 10 
𝑒0 = 0 
FGM beam with d31 piezoelectric layers 
CBT 435.309 349.683  1691.218  1353.334  3637.466  2894.397 
FBT 428.399 339.793  1600.435  1230.287  3286.992  2444.241 
PBT 427.996 337.747  1594.783  1207.247  3263.123  2367.621 
SBT 427.979 337.624  1594.517  1205.928  3261.883  2363.508 
EBT 427.974 337.529  1594.398  1204.915  3261.190  2360.444 
FGM beam with d15 piezoelectric layers 
CBT 429.433 340.917  1668.391  1319.352  3588.370  2821.552 
FBT 422.792 331.726  1581.021  1204.554  3250.641  2400.152 
PBT 422.360 329.753  1574.984  1182.130  3225.237  2324.884 
SBT 422.339 329.631  1574.662  1180.794  3223.773  2320.650 
EBT 422.329 329.533  1574.480  1179.743  3222.836  2317.404 
𝑒0 = 0.15 
FGM beam with d31 piezoelectric layers 
CBT 438.306 343.240  1700.688  1325.258  3651.151  2824.439 
FBT 431.172 331.531  1607.609  1183.332  3294.759  2318.360 
PBT 430.770 327.491  1602.029  1140.739  3271.113  2184.861 
SBT 430.763 327.167  1601.815  1137.516  3270.049  2175.412 
EBT 430.763 326.872  1601.754  1134.621  3269.554  2167.085 
FGM beam with d15 piezoelectric layers 
CBT 432.023 333.362  1676.310  1286.971  3598.814  2742.457 
FBT 425.183 322.589  1586.941  1155.814  3256.171  2272.850 
PBT 424.756 318.791  1580.953  1115.291  3230.911  2144.459 
SBT 424.739 318.483  1580.677  1112.175  3229.607  2135.195 
EBT 424.733 318.201  1580.548  1109.361  3228.849  2126.979 
𝑒0 = 0.3 
FGM beam with d31 piezoelectric layers 
CBT 441.771 333.189  1711.595  1281.583  3666.819  2715.761 
FBT 434.368 317.771  1615.777  1103.598  3303.404  2108.475 
PBT 433.977 303.600  1610.253  975.9310  3279.916  1755.067 
SBT 433.970 301.470  1610.100  959.1190  3279.057  1713.398 
EBT 433.976 299.089  1610.108  940.9700  3278.793  1669.579 
FGM beam with d15 piezoelectric layers 
CBT 435.020 321.571  1685.438  1236.523  3610.783  2619.086 
FBT 427.942 307.633  1593.686  1074.488  3262.293  2063.365 
PBT 427.518 294.665  1587.728  955.2960  3237.110  1728.135 
SBT 427.506 292.705  1587.508  939.4290  3235.992  1688.057 
EBT 427.505 290.511  1587.441  922.2590  3235.443  1645.799 
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Table 4.7: First three OC resonance frequencies (Hz) of piezoelectric bimorph FGM 
beams with even porosity distribution (𝐿/2ℎ = 10, ℎ𝑝/2ℎ = 0.2) 

Source 
Mode 1 (𝑚 = 1)  Mode 2 (𝑚 = 2)  Mode 3 (𝑚 = 3) 

𝑁 = 0 𝑁 = 10  𝑁 = 0  𝑁 = 10  𝑁 = 0  𝑁 = 10 
𝑒0 = 0 
FGM beam with d31 piezoelectric layers 
CBT 437.319 352.659  1699.004  1364.830  3654.124  2918.911 
FBT 430.260 342.382  1606.324  1237.283  3296.560  2453.361 
PBT 429.908 340.405  1601.322  1215.129  3275.147  2379.920 
SBT 429.895 340.288  1601.100  1213.873  3274.074  2376.040 
EBT 429.893 340.198  1601.024  1212.928  3273.551  2373.227 
FGM beam with d15 piezoelectric layers 
CBT 429.433 340.917  1668.391  1319.362  3588.370  2821.608 
FBT 423.017 332.786  1583.783  1216.734  3260.564  2441.427 
PBT 422.360 329.753  1574.984  1182.137  3225.237  2324.910 
SBT 422.339 329.631  1574.662  1180.801  3223.773  2320.676 
EBT 422.329 329.534  1574.480  1179.750  3222.836  2317.429 
𝑒0 = 0.15 
FGM beam with d31 piezoelectric layers 
CBT 440.454 346.592  1708.998  1338.171  3668.898  2851.946 
FBT 433.157 334.357  1613.855  1190.439  3304.845  2326.738 
PBT 432.816 330.351  1608.978  1148.459  3283.841  2195.712 
SBT 432.807 330.029  1608.812  1145.272  3282.957  2186.432 
EBT 432.811 329.736  1608.799  1142.420  3282.646  2178.294 
FGM beam with d15 piezoelectric layers 
CBT 432.023 333.363  1676.310  1286.991  3598.814  2742.571 
FBT 425.437 324.260  1590.035  1174.401  3267.203  2334.091 
PBT 424.756 318.792  1580.953  1115.303  3230.911  2144.497 
SBT 424.739 318.484  1580.677  1112.186  3229.607  2135.233 
EBT 424.733 318.202  1580.548  1109.372  3228.849  2127.015 
𝑒0 = 0.3 
FGM beam with d31 piezoelectric layers 
CBT 444.079 337.096  1720.506  1296.685  3685.808  2748.004 
FBT 436.494 320.876  1622.424  1110.363  3314.058  2114.974 
PBT 436.164 306.425  1617.666  981.4270  3293.427  1760.467 
SBT 436.161 304.244  1617.565  964.3930  3292.765  1718.554 
EBT 436.171 301.807  1617.626  946.0130  3292.702  1674.495 
FGM beam with d15 piezoelectric layers 
CBT 435.020 321.574  1685.438  1236.574  3610.783  2619.379 
FBT 428.232 310.864  1597.194  1108.407  3274.695  2169.794 
PBT 427.518 294.668  1587.728  955.3130  3237.110  1728.172 
SBT 427.506 292.707  1587.508  939.4440  3235.992  1688.087 
EBT 427.505 290.513  1587.441  922.2730  3235.443  1645.823 
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Table 4.8: First three SC resonance frequencies (Hz) of piezoelectric bimorph FGM beams 
with uneven porosity distribution (𝐿/2ℎ = 10, ℎ𝑝/2ℎ = 0.2) 

Sourc
e 

Mode 1 (𝑚 = 1)  Mode 2 (𝑚 = 2)  Mode 3 (𝑚 = 3) 

𝑁 = 0 𝑁 = 10  𝑁 = 0  𝑁 = 10  𝑁 = 0  𝑁 = 10 
𝑒0 = 0 
FGM beam with d31 piezoelectric layers 
CBT 435.309 349.683  1691.218  1353.334  3637.466  2894.397 
FBT 428.399 339.793  1600.435  1230.287  3286.992  2444.241 
PBT 427.996 337.747  1594.783  1207.247  3263.123  2367.621 
SBT 427.979 337.624  1594.517  1205.928  3261.883  2363.508 
EBT 427.974 337.529  1594.398  1204.915  3261.190  2360.444 
FGM beam with d15 piezoelectric layers 
CBT 429.433 340.917  1668.391  1319.352  3588.370  2821.552 
FBT 422.792 331.726  1581.021  1204.554  3250.641  2400.152 
PBT 422.360 329.753  1574.984  1182.130  3225.237  2324.884 
SBT 422.339 329.631  1574.662  1180.794  3223.773  2320.650 
EBT 422.329 329.533  1574.480  1179.743  3222.836  2317.404 
𝑒0 = 0.15 
FGM beam with d31 piezoelectric layers 
CBT 439.971 351.524  1707.924  1358.639  3669.067  2900.099 
FBT 432.801 340.421  1614.195  1222.581  3309.303  2409.524 
PBT 432.322 336.877  1607.598  1184.239  3281.976  2286.552 
SBT 432.297 336.543  1607.223  1180.804  3280.334  2276.160 
EBT 432.283 336.225  1606.996  1177.559  3279.244  2266.487 
FGM beam with d15 piezoelectric layers 
CBT 433.944 342.375  1684.530  1323.200  3618.811  2824.199 
FBT 427.057 332.084  1594.373  1196.535  3272.307  2365.818 
PBT 426.551 328.713  1587.402  1159.683  3243.480  2246.465 
SBT 426.521 328.393  1586.971  1156.340  3241.617  2236.224 
EBT 426.502 328.085  1586.682  1153.169  3240.285  2226.649 
𝑒0 = 0.3 
FGM beam with d31 piezoelectric layers 
CBT 444.932 353.235  1725.657  1363.125  3702.488  2903.019 
FBT 437.477 340.506  1628.719  1210.070  3332.682  2360.871 
PBT 436.907 333.870  1621.001  1142.228  3301.309  2153.628 
SBT 436.871 332.968  1620.492  1133.638  3299.182  2129.197 
EBT 436.846 331.997  1620.133  1124.572  3297.609  2103.865 
FGM beam with d15 piezoelectric layers 
CBT 438.746 343.640  1701.665  1325.973  3651.012  2823.493 
FBT 431.589 331.878  1608.471  1183.837  3295.021  2318.004 
PBT 430.993 325.630  1600.396  1119.174  3262.199  2118.325 
SBT 430.952 324.777  1599.832  1110.937  3259.855  2094.601 
EBT 430.923 323.859  1599.412  1102.234  3258.042  2069.968 
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Table 4.9: First three OC resonance frequencies (Hz) of piezoelectric bimorph FGM beams 
with uneven porosity distribution (𝐿/2ℎ = 10, ℎ𝑝/2ℎ = 0.2) 

Sourc
e 

Mode 1 (𝑚 = 1)  Mode 2 (𝑚 = 2)  Mode 3 (𝑚 = 3) 

𝑁 = 0 𝑁 = 10  𝑁 = 0  𝑁 = 10  𝑁 = 0  𝑁 = 10 
𝑒0 = 0 
FGM beam with d31 piezoelectric layers 
CBT 437.319 352.659  1699.004  1364.830  3654.124  2918.911 
FBT 430.260 342.382  1606.324  1237.283  3296.560  2453.361 
PBT 429.908 340.405  1601.322  1215.129  3275.147  2379.920 
SBT 429.895 340.288  1601.100  1213.873  3274.074  2376.040 
EBT 429.893 340.198  1601.024  1212.928  3273.551  2373.227 
FGM beam with d15 piezoelectric layers 
CBT 429.433 340.917  1668.391  1319.362  3588.370  2821.608 
FBT 423.017 332.786  1583.783  1216.734  3260.564  2441.427 
PBT 422.360 329.753  1574.984  1182.137  3225.237  2324.910 
SBT 422.339 329.631  1574.662  1180.801  3223.773  2320.676 
EBT 422.329 329.534  1574.480  1179.750  3222.836  2317.429 
𝑒0 = 0.15 
FGM beam with d31 piezoelectric layers 
CBT 442.033 354.626  1715.902  1370.618  3686.116  2925.620 
FBT 434.706 343.076  1620.188  1229.467  3318.972  2417.995 
PBT 434.279 339.576  1614.259  1191.799  3294.162  2297.641 
SBT 434.257 339.244  1613.928  1188.396  3292.690  2287.402 
EBT 434.247 338.927  1613.747  1185.187  3291.774  2277.899 
FGM beam with d15 piezoelectric layers 
CBT 433.944 342.376  1684.530  1323.214  3618.811  2824.277 
FBT 427.302 333.452  1597.366  1211.953  3283.004  2417.196 
PBT 426.551 328.714  1587.402  1159.691  3243.480  2246.495 
SBT 426.521 328.393  1586.971  1156.348  3241.617  2236.253 
EBT 426.502 328.086  1586.682  1153.177  3240.285  2226.677 
𝑒0 = 0.3 
FGM beam with d31 piezoelectric layers 
CBT 447.048 356.485  1733.838  1375.669  3719.949  2929.730 
FBT 439.427 343.226  1634.818  1216.747  3342.450  2368.464 
PBT 438.911 336.568  1627.787  1149.089  3313.654  2162.713 
SBT 438.879 335.654  1627.323  1140.446  3311.700  2138.260 
EBT 438.858 334.672  1627.010  1131.324  3310.303  2112.907 
FGM beam with d15 piezoelectric layers 
CBT 438.746 343.641  1701.665  1325.993  3651.012  2823.606 
FBT 431.857 333.713  1611.727  1204.022  3306.591  2383.878 
PBT 430.993 325.631  1600.396  1119.185  3262.199  2118.356 
SBT 430.952 324.778  1599.832  1110.947  3259.855  2094.631 
EBT 430.923 323.860  1599.412  1102.243  3258.042  2069.995 
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(a) Even (b) Uneven 

Fig. 4.3: Variation of 𝛽 versus the length-thickness ratio (𝐿/2ℎ) for an FGM beam 
without piezoelectric layers (𝑒0=0.3, ℎ𝑝 = 0, 𝑘 is power-law index) 

 
To gain a deeper insight into the effect of various beam theories on the 

eigenfrequency response, the variation of percentage difference in frequency 𝛽 
(defined by Eq. (4.18)) versus the length-to-thickness ratio 𝐿/2ℎ is plotted in Fig. 
4.3 for an FGM beam with different patterns of porosity distribution. 

𝛽 =
𝜔|Predicted by CBT − 𝜔|Predicted by PBT

𝜔|Predicted by PBT
× 100 (4.18) 

Since the frequencies predicted by higher-order beam theories are very close 
to each other, only PBT is used in Eq. (4.18). Figs. (4.3a) and (4.3b) show the 
variation of 𝛽 for the first three natural frequencies of the FGM beam with different 
values of power-law index, namely 0, 0.2 and 4. As expected, positive values are 
obtained for 𝛽 in all the vibration modes, which show that CBT predicts higher 
frequencies with respect to those calculated by PBT. As obvious in the figures, at a 
fixed value of length-to-thickness ratio, the amplitude of 𝛽 is the most for the 
frequency of the third vibrational mode, and the least value is determined for the 
fundamental frequency. This means that there is a considerable difference between 
the results of CBT and higher-order theories, when calculating the frequencies of 
higher vibrational modes, especially for thicker beams (i.e. 𝐿/2ℎ < 15). In other 
words, the influence of shear transverse deformation becomes more significant for 
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thick beams, and affects the respective results remarkably. Similar trends have been 
seen for FGM beams surrounded by surface-bonded piezoelectric layers.  

Hereafter, in order to increase the accuracy of the presented numerical 
simulations, all the figures are plotted based on the results of PBT, which virtually 
predicts the same frequencies as other higher-order theories presented in this study 
(i.e., SBT and EBT). 
 

  
(a) Even - d31 piezo layers                                                     (b) Uneven - d31 piezo layers 

  
(c) Even - d15 piezo layers                                                     (d) Uneven - d15 piezo layers 

Fig. 4.4: Variation of the fundamental natural frequency versus the power-law index for 
FGM beam with integrated piezoelectric layers in SC condition (𝐿/2ℎ = 10, ℎ𝑝/2ℎ =
0.2, 𝛼 is the porosity volume fraction) 

One may see a specific upward or downward trend in Tables 4.6 to 4.9 for the 
eigenfrequency behavior of the coupled FGM beam versus the porosity volume 
fraction for any given 𝑁, regardless of the pattern of porosity distribution. For 
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example, by carrying out a careful inspection of those tables, it can be ascertained 
that for 𝑁 = 0, the first three natural frequencies increase as the value of porosity 
parameter increases for both porosity distribution, whereas opposite trend is seen 
for frequencies of the beams with evenly distributed pores when the power-law 
index increases up to 1. To further investigate this matter, the effects of changes in 
the value of porosity parameter and the type of porosity distribution on variation of 
the SC fundamental frequency versus the power-law index are shown in Fig. 4.4 
for FGP beams with d31 and d15 piezoelectric layers. It can be observed that the free 
vibration behavior of the beam with even porosity distribution is influenced 
remarkably by changing the power-law index as well as the porosity parameter in 
comparison with the beam with uneven porosity distribution. Furthermore, it can 
be inferred from the figures that before the crossing point, the natural frequency 
increases as the value of porosity parameter rises, while the opposite trend is seen 
after the mentioned point, regardless of the porosity distribution pattern and the type 
of piezoelectric layers. Moreover, the value of the power-law index at the point of 
intersection is much higher for the hybrid FGM beam with unevenly distributed 
pores (around 𝑁 = 2.5) than that of the beam with even distribution (about 𝑁 =

0.3). Therefore, the trends for variation of the resonance frequencies versus porosity 
volume fraction depend on the value of power-law index for the beams with both 
even and uneven distribution. 

Fig. (4.5) shows the combined effects of changes in power-law index and porosity 
distribution on variation of the first three eigenfrequencies of smart FGM beam with 
respect to the porosity volume fraction. Inspection of the figures reveals that the 
curves corresponded to even porosity distribution tend to incrementally lie below 
those related to beam with unevenly distributed pores, as 𝑁 increases. Besides, for 
the small values of 𝑁, by increasing the porosity parameter, the SC and OC resonant 
frequencies of the first three vibrational modes increase, for both even and uneven 
porosity distribution. Nevertheless, the frequencies become lower as 𝑁 is increased 
up to a prescribed value, for FGM beams with even porosity distribution. This 
behavior can finally be seen for beams with unevenly distributed pores as the 
power-law index gets greater. These trends are seen mainly because the influence 
of dropping effective stiffness of the smart hybrid beam (due to increasing the value 
of 𝑁) overcomes its decreasing inertia at this point, which results in a downward 
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trend for resonance frequencies. Similar trends are also observed for the FGM 
beams with d15 piezoelectric layers. 

In the following, the influence of the piezoelectric layer thickness on the 
resonant frequencies of FGM beams are quantified for different power-law indices 
and porosity volume fractions. To this end, the new parameter 휃, which represents 
the relative difference in natural frequency of the beams with and without 
piezoelectric layers is defined as follows 

휃 =
𝜔|With Piezo Layers − 𝜔|Without Piezo Layers

𝜔|Without Piezo Layers
× 100 (4.19) 

For the coupled FGM beams with 𝐿/2ℎ = 15 and 𝑒0 = 0.2, the variation of 
휃 versus ℎ𝑝/2ℎ is plotted in Fig. 4.6. The figure reveals that, at a fixed value of the 
thickness ratio, the value of 휃 is more sensitive to 𝑁 for the beams with evenly 
distributed pores than that of the ones with uneven distribution. When 𝑁 is small, 
the values of 휃 are negative regardless of the type of piezoelectric layers and 
porosity distribution, meaning that the coupled FGM beams have lower frequencies 
than the corresponding core beams. This behavior is due to the fact that the mass 
density of the material of piezoelectric layers (here PZT-5H) is greater than that of 
the considered material for the core layer, and consequently the effective mass 
density of the hybrid beam increases. Furthermore, the elastic modulus of the 
material of the core layer is higher than that of piezoelectric material, resulting in a 
decrease in the effective structural stiffness of the sandwich beam. On the other 
hand, when coupling piezoelectric layers with the core layer, the electromechanical 
coupling effect of piezoelectrics tends to increase the natural frequency of the 
hybrid structure. Thus, negative values of 휃 show that the electromechanical 
coupling effect of piezoelectric layers is less than that of the combined effects 
coming from the reduction in overall mass density and the growth in the effective 
stiffness. In addition, when the power-law index gets larger, the addition of 
piezoelectric layers results in opposite changes in the effective mass density and 
stiffness of the hybrid structure which finally leads to increase the natural 
frequencies, as seen from the curves corresponded to 𝑁 = 0.5, 1 and 5. 
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(a) Mode 1 - SC condition                                                            (b) Mode 1 - OC condition 

  

(c) Mode 2 - SC condition                                                         (d) Mode 2 - OC condition 

  
(e) Mode 3 - SC condition                                                         (f) Mode 3 - OC condition 

Fig. 4.5: Variation of the first three natural frequencies of the coupled FGM beam 
versus porosity volume fraction (𝐿/2ℎ = 15, 2ℎ/ℎ𝑝 = 15, d31 mode) 
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(a) Even porosity distribution – d31 Mode                              (b) Even porosity distribution – d15 Mode 

  
(c) Uneven porosity distribution – d31 Mode                          (d) Uneven porosity distribution – d15 Mode 

Fig. 4.6: Variation of 휃 versus the thickness ratio for the FGM beam coupled with d31 
and d15 piezoelectric layers in SC condition (𝐿/2ℎ = 15, 𝑒0 = 0.2, 𝑘 is the power-law 
index) 

In Fig. 4.7, for different values of the porosity parameter 0, 0.15 and 0.3, and the 
power-law index 0.1 and 2, variation of 휃 versus the thickness ratio is plotted for 
the FGM beam with integrated d31 and d15 piezoelectric layers in OC electrical 
condition. Again, it is seen that the addition of both transverse and shear 
piezoelectric layers to FGM core beam has a greater effect on the natural 
frequencies when the internal pores are evenly distributed with respect to uneven 
distribution, regardless of the value of 𝑁. Moreover, by increasing the porosity 
volume fraction, the magnitude of 휃 increases for both even and uneven porosity 
distribution in such a way that this growth is more significant for the beam with 
even distribution and 𝑁 = 2 (see Fig. 4.7(c)). It is also observed that when 𝑁 =
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0.1, the magnitude of 휃 raises with an increase in the thickness of piezoelectric 
layers till ℎ𝑝/2ℎ = 0.25; subsequently, the magnitude of 휃 drops as the value of 
ℎ𝑝/2ℎ increases. It is due to the reason that when ℎ𝑝/2ℎ is less than 0.25, the 
combined effects of the rise in the effective mass density and the fall in the 
structural stiffness are more than the increasing electromechanical effect due to 
increasing the piezoelectric layers’ thickness. However, from ℎ𝑝/2ℎ = 0.25 to 0.5, 
the trend of 휃 changes reversely, as the thickness ratio increases, meaning that the 
electromechanical effect overcomes the other two mentioned effects, which leads 
to the increasing trend of 휃, as shown in Fig. 4.7(a) and 4.7(b). By examining the 
numerical results, it is simple to acquire the similar conclusions for SC condition. 
 

  
(a) Even porosity distribution (𝑁 = 0.1)                                     (b) Uneven porosity distribution (𝑁 = 0.1) 

  
(c) Even porosity distribution (𝑁 = 2) (d) Uneven porosity distribution (𝑁 = 2) 

Fig. 4.7. Variation of 휃 versus the thickness ratio for an FGM beam integrated with d31 
and d15 piezoelectric layers in OC condition (𝐿/2ℎ = 5) 
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The last numerical example is provided in Figure (8) to show the effect of the 
piezoelectric layers’ thickness on the SC fundamental frequency of FGP beams 
having 2tc/L=0.05, 0.1 and 0.2. As obvious, the value of 휃 decreases with an 
increase in the value of the core thickness for both d31 and d15 modes. It does mean 
that adding piezoelectric layers to FGP beams has a greater effect on the 
eigenfrequencies of the beams with lower core thickness. 
 

  
(c) Even porosity distribution                                             (d) Uneven porosity distribution 

Fig. 4.8: Variation of 휃 versus the thickness ratio for smart FGP beams in SC condition 
with different values of 𝐿/2ℎ (𝑁 = 5, 𝑒0 = 0.2) 

 
 

4.6 Summary and Conclusions 

In this chapter, an exact electromechanical model was presented to study the 
eigenfrequency behavior of d31 and d15 piezoelectric bimorph beams with FGM 
substrate containing porosities. The effects of material variation, porosity, beam 
dimensions, beam theories and piezoelectric characteristics on the resonance 
frequencies were investigated in detail. By analyzing the numerical simulations, the 
following conclusions are reached: 

• FGM beams coupled with d15 piezoelectric layers provide lower resonant 
frequencies than their counterparts with d31 piezoelectric layers. 
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• In d31 mode, the OC natural frequencies are greater than those of the SC 
condition, while there are slight differences between SC and OC frequencies 
when the FGM beam is surrounded by d15 piezoelectric layers. 

• Adding piezoelectric layers has more effects on the eigenfrequencies when 
the internal pores are evenly distributed, and the changes in natural 
frequency due to adding piezoelectric layers is highly dependent upon the 
value of 𝑁. 

• Variation of the eigenfrequencies versus porosity depends on the value of 
power-law index and the type of porosity distribution regardless of the 
piezoelectric characteristics. 

• The bimorph FGM beam with unevenly distributed pores usually provide 
higher resonant frequencies than those of the beams with even porosity 
pattern. 

• Increasing the power-law index remarkably decrease the eigenfrequencies 
irrespective of the type of porosity pattern. 

• The beam natural frequencies are more sensitive when the internal pores are 
evenly distributed. 

 



 
 

 
 
 
Chapter 5 
 
On Wave Propagation and Free 
Vibration Analysis of Piezoelectric 
Bimorph Plates 
 
5.1 Overview 

This chapter provides a comprehensive 2D model based on an efficient four-
variable higher-order shear deformation theory for analysis of piezoelectric 
bimorph plate structures. The problems of plane wave propagation and free 
vibration are herein addressed. As is well-known, higher-order theories often 
require solutions of more complicated governing equations. Based on the literature, 
closed-form solutions for the plate problems have been derived for some simple 
cases. Where these exact solutions cannot be obtained, the analysts can draw on 
very general finite element software, to solve the problems. Nevertheless, it is 
desirable to present exact models for such 2D structures based on higher-order 
theories, which allow for the effect of transverse shear deformation. The refined 
model employed here drops the need of any shear correction factor, and results in 
fewer governing equations compared to the conventional higher-order theories. The 
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exact model of the coupled plate structure is established through the use of 
Hamilton’s principle, and Maxwell’s equation. Analytical solutions are finally 
proposed to extract the results for two investigations: (I) the plane wave propagation 
of infinite smart plates and (II) the free vibration of smart rectangular plates 
considering different combinations of classical boundary conditions. After 
verifying the model, extensive numerical results are presented for the plate structure 
with perfect and porous FGM substrates, demonstrating the capability of the present 
model to provide accurate results with a strong reduction in the computational cost 
compared to the numerical approaches. 

The results of the research work presented in this chapter was published in 
the Journal of Intelligent Material Systems and Structures [171]. 
 
 

5.2 State of the Art 

With the development of new materials and structural solutions, a number of new 
structural models have been introduced in order to perform an accurate design of 
advanced structures. Classical structural models have been improved introducing 
more refined kinematics formulation. One- and two- dimensional models are widely 
used in aerospace structure design, and the limitations introduced by the classical 
models have been overcome by introducing refined kinematic formulations able to 
deal with the complexities of the problems. Regarding the analysis of travelling 
plane waves across piezoelectric and functionally graded structures, few studies are 
presented in the literature. For instance, phase velocity and attenuation quality 
factor of the waves travelling in porous piezoelectric materials was studied by 
Vashishth and Gupta [172], and the dependence of these parameters on phase 
direction was demonstrated. For a functionally graded piezoelectric substrate under 
SC and OC conditions, the existence and propagation behavior of transverse surface 
waves was examined by Qian et al. [173] through an analytical technique. Sun and 
Luo [174–176] analyzed the wave propagation in functionally grade plates in 
presence/absence of thermal environments and investigated the effect of material 
parameters on the dispersion behavior and the associated phase velocity. Ebrahimi 
et al. [177] analyzed wave dispersion behavior of size-dependent rotating 
inhomogeneous nanobeams according to nonlocal elasticity theory. Using a general 
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nonlocal higher-order beam model, wave propagation in two-dimensional rotating 
nano-beams made of FGMs was studied by Faroughi et al. [178]. Ebrahimi and 
Seyfi [179] investigated propagation of wave in metal foam cylindrical shells rested 
on variable elastic substrates. In the framework of classical and shear deformation 
plate theories, Gao et al. [180] dealt with wave propagation of porous plates 
reinforced with graphene platelets using Halpin-Tsai model for expressing the 
corresponding material properties. The study examines the effect of different 
material and geometrical parameters on the dispersion characteristics of the system. 
A semi-analytical approach was presented by Li et al. [181] to investigate wave 
propagation characteristics in functionally graded piezoelectric composite plates 
reinforced with graphene platelets. Most recently, other types of geometries, such 
as shells were also considered in this regard. For instance, Aminpour et al. [182] 
investigated the propagation of waves in functionally graded doubly curved shells 
via higher-order shear deformation theory by adopting different types of FGMs 
including FG porous ceramic-metal and FG carbon nanotubes-reinforced 
composites.  

On the other hand, numerous contributions have discussed the dynamic 
response including vibration of thin-walled structures with a core composed of 
functionally graded materials as well as piezoelectric sandwich structures with 
FGM substrate [84,100,165,183–188]. For instance, the classical plate theory was 
adopted by He et al. [100] for active control of FGM plates with integrated 
piezoelectric sensors and actuators, and the effect of volume fraction index and 
feedback control gain was studied of the static and dynamic response of the system. 
Vel and Batra [189] investigated the vibration of simply supported FGM 
rectangular plates by providing a three-dimensional exact solution. The approach, 
which takes the advantage of power series method is capable of extracting valid 
results for both thin and thick plates. Askari et al. [190] developed an analytical 
work to study the free vibration problem of simply supported porous FGM beams 
integrated with thickness-poled and length-poled piezoelectric layers, in both SC 
and OC electrical conditions. Besides, many research works have been presented to 
study the response of functionally graded porous materials due to growing interest 
in lightweight structures. In this context, Rezaei et al. [191] presented an analytical 
solution based on a simple shear deformation theory containing four unknowns for 
rectangular plates with Levy boundary conditions. Highly accurate natural 
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frequencies of thick functionally graded porous rectangular plates with arbitrary 
boundary conditions were extracted by Zhao et al. [192] using Rayleigh-Ritz 
procedure. 

Due to the complexity of the governing equations based on shear deformation 
theories, most published papers studied the free vibration of piezoelectric bimorph 
plates with FGM substrates through numerical techniques. Moreover, the existing 
analytical approaches for such problems are either limited to Navier-type and Levy-
type boundary conditions or are proposed for analyses based on classical plate 
theories. Therefore, an exact solution for the free vibration of thick rectangular 
FGM plates integrated with piezoelectric layers under various boundary conditions 
can be helpful to check the accuracy of numerical analysis in this field. On the other 
hand, no studies can be found for the analysis of plane wave propagation in infinite 
sandwich plates composed of either perfect or porous FGM substrates with 
integrated piezoelectric layers. Therefore, the gaps just mentioned have motivated 
us to develop analytical solutions in the present work for the problems of plane 
wave propagation and free vibration of perfect and porous FGM plate structures 
coupled with piezoelectric sensors/actuators. 
 
 

5.3 Problem Modelling 

Consider a piezoelectric bimorph plate structure with schematic representation the 
same as what is already given in Fig. 3.1. It is reminded that the thicknesses of the 
substrate and each piezoelectric layer of the plate are defined by the symbols 2ℎ 
and ℎ𝑝, respectively. Although the smart composite plate is represented as a finite 
rectangular plate with length 𝑎 and width 𝑏, it will be assumed as an unbonded plate 
structure (with infinite in-plane dimensions) in subsection 5.5.1, where the bulk 
wave propagation of this system is investigated. The core layer of the coupled plate 
is assumed to be made of FGMs (both perfect and porous FGMs) with metal and 
ceramic constituents, and the piezoelectric layers are polarized though the thickness 
direction (with constitutive relations given in Eq. (3.8), and 𝐾𝑠2 = 1 ). The effective 
mechanical properties of perfect and porous FGMs were earlier given in Eqs. (1.8) 
to (1.10) (see Chapter 1) so that it avoided to re-express those equations here. In 
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those equations, the parameter 𝑁 was used to indicate the power-law index, and the 
porosity volume fraction was also represented by 𝑒0.  

Based on the four-variable higher-order shear deformation theory, the three 
components of the displacement field at any point of the smart plate can be 
expressed as: 

𝑈𝑥(𝑥‚ 𝑦‚ 𝑧, 𝑡) = 𝑢0 − 𝑧𝑤𝑏,𝑥 − 𝑓(𝑧)𝑤𝑠,𝑥 

(5.1) 𝑈𝑦(𝑥‚ 𝑦‚ 𝑧, 𝑡) = 𝑣0 − 𝑧𝑤𝑏,𝑦 − 𝑓(𝑧)𝑤𝑠,𝑦 

𝑈𝑧(𝑥‚ 𝑦‚ 𝑧, 𝑡) = 𝑤𝑏 + 𝑤𝑠 

where 𝑈𝑥, 𝑈𝑦 and 𝑈𝑧(𝑥‚ 𝑦‚ 𝑧, 𝑡) are the components of total displacement along 𝑥, 
𝑦, and 𝑧 directions, respectively. Moreover, 𝑢0(𝑥‚ 𝑦, 𝑡) and 𝑣0(𝑥‚ 𝑦, 𝑡) represent the 
in-plane displacements of the mid-surface of the plate (at 𝑧 = 0) through 𝑥 and 𝑦 
directions, respectively. The transverse displacement 𝑈𝑧 includes two components 
of bending 𝑤𝑏(𝑥‚ 𝑦, 𝑡) and shear 𝑤𝑠(𝑥‚ 𝑦, 𝑡). Both of these components are 
functions of the coordinates 𝑥 and 𝑦. The function 𝑓(𝑧) is the shape function, 
representing the effect of the transverse shear strain and stress along the thickness 
of the plate. Various applicable shape functions have been derived and presented in 
the literature by different researchers. For instance, the shape functions presented 
by Shimpi [193] and Touratier [194] are listed in Table 5.1. Note that, in the 
expressions given in Table 1, 𝐻 is the total thickness of the sandwich plate that is 
equal to 𝐻 = 2ℎ + 2ℎ𝑝. 
 
Table 5.1: Different shape functions for the proposed displacement model 

Model Shape function Source 

Sinusoidal shear plate theory (SSPT) 𝑓(𝑧) = 𝑧 −
𝐻

𝜋
sin (

𝜋𝑧

𝐻
) Touratier [194] 

Polynomial shear plate theory (PSPT) 𝑓(𝑧) = −
𝑧

4
+
5

3

𝑧3

𝐻2
 Shimpi [193] 

 
Unlike the first-order shear deformation theory, the higher-order refined 

theory does not require any shear correction factor to vanish the shear stresses 𝜎𝑥𝑧 
and 𝜎𝑦𝑧 at the top and bottom faces of the plate. In the present work, the transverse 
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normal stress 𝜎𝑧𝑧 is assumed to be negligible compared to in-plane normal stresses 
𝜎𝑥𝑥 and 𝜎𝑦𝑦 [195]. 

Based on the linear strain-displacement assumptions, the components of the 
strain field can be derived from the displacement field (i.e., Eq. (5.1)), as: 

휀𝑥𝑥 = 𝑢0‚𝑥 − 𝑧𝑤𝑏,𝑥𝑥 − 𝑓(𝑧)𝑤𝑠,𝑥𝑥 

(5.2) 

휀𝑦𝑦 = 𝑣0‚𝑦 − 𝑧𝑤𝑏,𝑦𝑦 − 𝑓(𝑧)𝑤𝑠,𝑦𝑦 

𝛾𝑥𝑦 = 2휀𝑥𝑦 = 𝑢0,𝑦 + 𝑣0,𝑥 − 2𝑧𝑤𝑏,𝑥𝑦 − 2𝑓(𝑧)𝑤𝑠,𝑥𝑦 

𝛾𝑥𝑧 = 2휀𝑥𝑧 = 𝑔(𝑧)𝑤𝑠,𝑥 

𝛾𝑦𝑧 = 2휀𝑦𝑧 = 𝑔(𝑧)𝑤𝑠,𝑦 

Here and hereafter, comma stands for partial differentiation with respect to 
the corresponding coordinate. The function 𝑔(𝑧) in Eq. (5.2) is given as: 

𝑔(𝑧) = {
1 − 𝑓′(𝑧), 𝑓(𝑧) ≠ 0

𝑘2, 𝑓(𝑧) = 0
 (5.3) 

with 𝑘2 being a shear correction factor. Also, 𝑓′(𝑧) is the first derivative of the 
shape function with respect to 𝑧-coordinate. Obviously, for 𝑓(𝑧) ≠ 0, no shear 
correction factor needs to be included in the strain-displacement relations, while it 
is compulsory to consider a shear correction factor for the case of 𝑓(𝑧) = 0 [191], 
to satisfy the condition of zero shear stresses on the outer surfaces of the composite 
plate. 

Approximation of the electric potential variation within the piezoelectric 
layers is an important issue. Here, the sinusoidal profile presented in [196] is used 
for the distribution of electric potential 𝜙 through the top and bottom piezoelectric 
layers of the bimorph plate, as: 

𝜙𝑡(𝑥‚ 𝑦‚ 𝑧, 𝑡) = 𝜙0(𝑥‚ 𝑦, 𝑡) sin (
𝜋(+𝑧 − ℎ)

ℎ𝑝
) + 𝐴𝑡(𝑥, 𝑦, 𝑡)

+ 𝑧𝐵𝑡(𝑥, 𝑦, 𝑡) 
(5.4a) 

𝜙𝑏(𝑥‚ 𝑦‚ 𝑧, 𝑡) = 𝜙0(𝑥‚ 𝑦, 𝑡) sin (
𝜋(−𝑧 − ℎ)

ℎ𝑝
) + 𝐴𝑏(𝑥, 𝑦, 𝑡)

+ 𝑧𝐵𝑏(𝑥, 𝑦, 𝑡) 
(5.4b) 
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in which subscript’s “t” and “b” are associated with the top and bottom piezoelectric 

layers, respectively. The function 𝜙0(𝑥‚ 𝑦, 𝑡) denotes the electric potential at the 
mid-plane of the piezoelectric layers. Moreover, 𝐴(𝑥, 𝑦, 𝑡) and 𝐵(𝑥, 𝑦, 𝑡) are two 
unknown functions to be obtained later by considering the electrical circuit 
conditions applied to the piezoelectric layers. Both SC and OC circuit conditions 
are herein considered, as are shown in Fig. 5.1. 

 

  
(a) SC condition (b) OC condition 

Fig. 5.1: Electrical circuit conditions applied to piezoelectric layers 
 

SC Condition: Both inner and outer surfaces of each piezoelectric layer are 
kept at zero voltage (see Fig. 5.1(a)). The SC condition is usually used when 
employing piezoelectric patches/layers for sensing applications. This case can be 
mathematically described as 

𝜙𝑏(𝑥‚ 𝑦‚ − ℎ, 𝑡) = 𝜙𝑏(𝑥‚ 𝑦‚ − ℎ − ℎ𝑝, 𝑡) = 𝜙𝑡(𝑥‚ 𝑦‚ + ℎ, 𝑡)

= 𝜙𝑡(𝑥‚ 𝑦‚ + ℎ + ℎ𝑝, 𝑡) = 0 
(5.5) 

Substituting Eq. (5.5) into Eq. (5.4), the form of electric potential functions 
in SC condition can be obtained as 

𝜙𝑡(𝑥‚ 𝑦‚ 𝑧, 𝑡) = 𝜙0(𝑥‚ 𝑦, 𝑡) sin (
𝜋(+𝑧 − ℎ)

ℎ𝑝
) (5.6a) 

𝜙𝑏(𝑥‚ 𝑦‚ 𝑧, 𝑡) = 𝜙0(𝑥‚ 𝑦, 𝑡) sin (
𝜋(−𝑧 − ℎ)

ℎ𝑝
) (5.6b) 

OC Condition: In this case, the inner surfaces of both top and bottom 
piezoelectric layers are held at zero voltage, while outer surfaces are electrically 
insulated (see Fig. 5.1(b)), thus: 
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𝜙𝑏(𝑥‚ 𝑦‚ − ℎ, 𝑡) = 𝐷𝑧(𝑥‚ 𝑦‚ − ℎ − ℎ𝑝, 𝑡) = 𝜙𝑡(𝑥‚ 𝑦‚ + ℎ, 𝑡)

= 𝐷𝑧(𝑥‚ 𝑦‚ + ℎ + ℎ𝑝, 𝑡) = 0 
(5.7) 

Similar to the previous case, the functions of electric potential in OC condition can 
be simply obtained by employing Eq. (5.7) into Eq. (5.4), as: 

𝜙𝑡(𝑥‚ 𝑦‚ 𝑧) = 𝜙0(𝑥‚ 𝑦) {sin (
𝜋(𝑧 − ℎ)

ℎ𝑝
) +

𝜋(𝑧 − ℎ)

ℎ𝑝
}

+
�̅�31(𝑧 − ℎ)

Ξ̅33
{𝑢0‚𝑥 + 𝑣0‚𝑦 − (ℎ + ℎ𝑝)(𝑤𝑏,𝑥𝑥 + 𝑤𝑏,𝑦𝑦)

− 𝛼𝑡(𝑤𝑠,𝑥𝑥 + 𝑤𝑠,𝑦𝑦)} 

(5.8a) 

𝜙𝑏(𝑥‚ 𝑦‚ 𝑧) = 𝜙0(𝑥‚ 𝑦) {sin (
𝜋(−𝑧 − ℎ)

ℎ𝑝
) −

𝜋(𝑧 + ℎ)

ℎ𝑝
}

+
�̅�31(𝑧 + ℎ)

Ξ̅33
{𝑢0‚𝑥 + 𝑣0‚𝑦 + (ℎ + ℎ𝑝)(𝑤𝑏,𝑥𝑥 + 𝑤𝑏,𝑦𝑦)

− 𝛼𝑏(𝑤𝑠,𝑥𝑥 + 𝑤𝑠,𝑦𝑦)} 

(5.8b) 

In Eq. (5.8), 𝛼𝑡 = 𝑓(ℎ + ℎ𝑝) and 𝛼𝑏 = 𝑓(−ℎ − ℎ𝑝) where 𝑓 is the shape function 
of the displacement model presented by Eq. (5.1). 

Considering Eqs. (5.6) and (5.8), and the relation between electric potential and 

electric field (i.e., �⃗� = ∇⃗⃗ 𝜙), the components of the electric field in piezoelectric 
domains can be simply obtained. 
 
 

5.4 Governing Equations 

Based on the higher-order refined theory given in Eq. (5.1), the following four 
governing equations are derived through the use of Hamilton’s principle: 

𝑁𝑥𝑥,𝑥 + 𝑁𝑥𝑦,𝑦 = 𝐼0�̈�0 − 𝐼1�̈�𝑏,𝑥 − 𝐽1�̈�𝑠,𝑥 (5.9a) 

𝑁𝑥𝑦,𝑥 + 𝑁𝑦𝑦,𝑦 = 𝐼0�̈�0 − 𝐼1�̈�𝑏,𝑦 − 𝐽1�̈�𝑠,𝑦 (5.9b) 
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𝑀𝑥𝑥,𝑥𝑥
𝑏 + 2𝑀𝑥𝑦,𝑥𝑦

𝑏 +𝑀𝑦𝑦,𝑦𝑦
𝑏

= 𝐼0(�̈�𝑏 + �̈�𝑠) + 𝐼1(�̈�0,𝑥 + �̈�0,𝑦) − 𝐼2(�̈�𝑏,𝑥𝑥 + �̈�𝑏,𝑦𝑦)

− 𝐽2(�̈�𝑠,𝑥𝑥 + �̈�𝑠,𝑦𝑦) 
(5.9c) 

𝑀𝑥𝑥,𝑥𝑥
𝑠 + 2𝑀𝑥𝑦,𝑥𝑦

𝑠 +𝑀𝑦𝑦,𝑦𝑦
𝑠 + 𝑄𝑥𝑧,𝑥 + 𝑄𝑦𝑧,𝑦

= 𝐼0(�̈�𝑏 + �̈�𝑠) + 𝐽1(�̈�0,𝑥 + �̈�0,𝑦) − 𝐽2(�̈�𝑏,𝑥𝑥 + �̈�𝑏,𝑦𝑦)

− 𝐾2(�̈�𝑠,𝑥𝑥 + �̈�𝑠,𝑦𝑦) 
(5.9d) 

in which dot-superscript denotes the differentiation with respect to the time 𝑡. The 
stress resultants 𝑁𝑖, 𝑀𝑖 and 𝑄𝑗 (𝑖 = 𝑥𝑥, 𝑦𝑦, 𝑥𝑦 and 𝑗 = 𝑥𝑧, 𝑦𝑧) and the mass inertias 
𝐼𝑖 (𝑖 = 0,1,2), 𝐽𝑖 (𝑖 = 1,2) and 𝐾2 are defined as: 

{𝑁𝑖, 𝑀𝑖
𝑏 , 𝑀𝑖

𝑠} = ∫ {1, 𝑧, 𝑓(𝑧)} 𝜎𝑖 𝑑𝑧
+ℎ+ℎ𝑝

−ℎ−ℎ𝑝

,   (𝑖 = 𝑥𝑥, 𝑦𝑦, 𝑥𝑦) 

(5.10) 𝑄𝑗 = ∫ 𝑔(𝑧) 𝜎𝑗  𝑑𝑧
+ℎ+ℎ𝑝

−ℎ−ℎ𝑝

,   (𝑗 = 𝑥𝑧, 𝑦𝑧) 

{𝐼0, 𝐼1, 𝐼2, 𝐽1, 𝐽2, 𝐾2} = ∫ {1, 𝑧, 𝑧2, 𝑓, 𝑧𝑓, 𝑓2} 𝜌(𝑧) 𝑑𝑧
+ℎ+ℎ𝑝

−ℎ−ℎ𝑝

 

The above stress resultants can be expressed in terms of the displacement field 
unknowns, as: 

𝑁𝑥𝑥 = (𝑎11 + 𝜆1)𝑢0‚𝑥 + (𝑎12 + 𝜆1)𝑣0‚𝑦 − (𝑏11 + 𝜆2)𝑤𝑏,𝑥𝑥

− (𝑏12 + 𝜆2)𝑤𝑏,𝑦𝑦 − (𝑑11 + 𝜆3)𝑤𝑠,𝑥𝑥

− (𝑑12 + 𝜆3)𝑤𝑠,𝑦𝑦 + 𝜇1𝜙0 

(5.11) 

𝑁𝑦𝑦 = (𝑎12 + 𝜆1)𝑢0‚𝑥 + (𝑎11 + 𝜆1)𝑣0‚𝑦 − (𝑏12 + 𝜆2)𝑤𝑏,𝑥𝑥

− (𝑏11 + 𝜆2)𝑤𝑏,𝑦𝑦 − (𝑑12 + 𝜆3)𝑤𝑠,𝑥𝑥

− (𝑑11 + 𝜆3)𝑤𝑠,𝑦𝑦 + 𝜇1𝜙0 

𝑁𝑥𝑦 = 𝑎66(𝑢0‚𝑦 + 𝑣0‚𝑥) − 2𝑏66𝑤𝑏,𝑥𝑦 − 2𝑑66𝑤𝑠,𝑥𝑦 

𝑀𝑥𝑥
𝑏 = (𝑏11 + �̂�1)𝑢0‚𝑥 + (𝑏12 + �̂�1)𝑣0‚𝑦 − (𝑓11 + �̂�2)𝑤𝑏,𝑥𝑥

− (𝑓12 + �̂�2)𝑤𝑏,𝑦𝑦 − (𝑔11 + �̂�3)𝑤𝑠,𝑥𝑥

− (𝑔12 + �̂�3)𝑤𝑠,𝑦𝑦 + �̂�1𝜙0 
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𝑀𝑦𝑦
𝑏 = (𝑏12 + �̂�1)𝑢0‚𝑥 + (𝑏11 + �̂�1)𝑣0‚𝑦 − (𝑓12 + �̂�2)𝑤𝑏,𝑥𝑥

− (𝑓11 + �̂�2)𝑤𝑏,𝑦𝑦 − (𝑔12 + �̂�3)𝑤𝑠,𝑥𝑥

− (𝑔11 + �̂�3)𝑤𝑠,𝑦𝑦 + �̂�1𝜙0 

𝑀𝑥𝑦
𝑏 = 𝑏66(𝑢0‚𝑦 + 𝑣0‚𝑥) − 2𝑓66𝑤𝑏,𝑥𝑦 − 2𝑔66𝑤𝑠,𝑥𝑦 

𝑀𝑥𝑥
𝑠 = (𝑑11 + �̃�1)𝑢0‚𝑥 + (𝑑12 + �̃�1)𝑣0‚𝑦 − (𝑔11 + �̃�2)𝑤𝑏,𝑥𝑥

− (𝑔12 + �̃�2)𝑤𝑏,𝑦𝑦 − (ℎ11 + �̃�3)𝑤𝑠,𝑥𝑥

− (ℎ12 + �̃�3)𝑤𝑠,𝑦𝑦 + 𝜇1𝜙0 

𝑀𝑦𝑦
𝑠 = (𝑑12 + �̃�1)𝑢0‚𝑥 + (𝑑11 + �̃�1)𝑣0‚𝑦 − (𝑔12 + �̃�2)𝑤𝑏,𝑥𝑥

− (𝑔11 + �̃�2)𝑤𝑏,𝑦𝑦 − (ℎ12 + �̃�3)𝑤𝑠,𝑥𝑥

− (ℎ11 + �̃�3)𝑤𝑠,𝑦𝑦 + 𝜇1𝜙0 

𝑀𝑥𝑦
𝑠 = 𝑑66(𝑢0‚𝑦 + 𝑣0‚𝑥) − 2𝑔66𝑤𝑏,𝑥𝑦 − 2ℎ66𝑤𝑠,𝑥𝑦 

𝑄𝑥𝑧 = 𝑎55𝑤𝑠,𝑥 + 𝜆4[𝑢0‚𝑥𝑥 + 𝑣0‚𝑦𝑥] + 𝜆5[𝑤𝑏,𝑥𝑥𝑥 + 𝑤𝑏,𝑦𝑦𝑥]

+ 𝜆6[𝑤𝑠,𝑥𝑥𝑥 + 𝑤𝑠,𝑦𝑦𝑥] + 𝜇2𝜙0,𝑥 

𝑄𝑦𝑧 = 𝑎55𝑤𝑠,𝑦 + 𝜆4[𝑢0‚𝑥𝑦 + 𝑣0‚𝑦𝑦] + 𝜆5[𝑤𝑏,𝑥𝑥𝑦 + 𝑤𝑏,𝑦𝑦𝑦]

+ 𝜆6[𝑤𝑠,𝑥𝑥𝑦 + 𝑤𝑠,𝑦𝑦𝑦] + 𝜇2𝜙0,𝑦 

The constant coefficients in Eq. (5.11), i.e., 𝑎𝑖, 𝑏𝑖, 𝑑𝑖, 𝑓𝑖, 𝑔𝑖, ℎ𝑖 (𝑖 =
11,12,66), 𝑎55, 𝜆𝑗, �̂�𝑗, �̃�𝑗 (𝑗 = 1,2,3), 𝜇1, 𝜇2, �̂�1, 𝜇1 and 𝜆𝑘 (𝑘 = 4,5,6) are given in 
Relations (D.1) to (D.3) of Appendix D, for both SC and OC electrical conditions. 

One can simply obtain the governing equations of motion in terms of the 
displacement field unknowns and the electric potential function by substituting Eq. 
(5.11) into Eq. (5.9), as: 

(𝑎11 + 𝜆1)𝑢0‚𝑥𝑥 + 𝑎66𝑢0‚𝑦𝑦 + (𝑎12 + 𝑎66 + 𝜆1)𝑣0‚𝑦𝑥

− (𝑏11 + 𝜆2)𝑤𝑏,𝑥𝑥𝑥 − (𝑏12 + 2𝑏66 + 𝜆2)𝑤𝑏,𝑦𝑦𝑥

− (𝑑11 + 𝜆3)𝑤𝑠,𝑥𝑥𝑥 − (𝑑12 + 2𝑑66 + 𝜆3)𝑤𝑠,𝑦𝑦𝑥

+ 𝜇1𝜙0,𝑥 = 𝐼0�̈�0 − 𝐼1�̈�𝑏,𝑥 − 𝐽1�̈�𝑠,𝑥 

(5.12a) 

𝑎66𝑣0‚𝑥𝑥 + (𝑎11 + 𝜆1)𝑣0‚𝑦𝑦 + (𝑎12 + 𝑎66 + 𝜆1)𝑢0‚𝑦𝑥

− (𝑏11 + 𝜆2)𝑤𝑏,𝑦𝑦𝑦 − (𝑏12 + 2𝑏66 + 𝜆2)𝑤𝑏,𝑥𝑥𝑦

− (𝑑11 + 𝜆3)𝑤𝑠,𝑦𝑦𝑦 − (𝑑12 + 2𝑑66 + 𝜆3)𝑤𝑠,𝑥𝑥𝑦

+ 𝜇1𝜙0,𝑦 = 𝐼0�̈�0 − 𝐼1�̈�𝑏,𝑦 − 𝐽1�̈�𝑠,𝑦 

(5.12b) 
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(𝑏11 + �̂�1)𝑢0‚𝑥𝑥𝑥 + (𝑏12 + 2𝑏66 + �̂�1)𝑢0‚𝑦𝑦𝑥

+ (𝑏12 + 2𝑏66 + �̂�1)𝑣0‚𝑦𝑥𝑥 + (𝑏11 + �̂�1)𝑣0‚𝑦𝑦𝑦

− (𝑓11 + �̂�2)𝑤𝑏,𝑥𝑥𝑥𝑥 − 2(𝑓12 + 2𝑓66 + �̂�2)𝑤𝑏,𝑦𝑦𝑥𝑥

− (𝑓11 + �̂�2)𝑤𝑏,𝑦𝑦𝑦𝑦 − (𝑔11 + �̂�3)𝑤𝑠,𝑥𝑥𝑥𝑥

− 2(𝑔12 + 2𝑔66 + �̂�3)𝑤𝑠,𝑦𝑦𝑥𝑥 − (𝑔11 + �̂�3)𝑤𝑠,𝑦𝑦𝑦𝑦

+ �̂�1𝜙0,𝑥𝑥 + �̂�1𝜙0,𝑦𝑦

= 𝐼0(�̈�𝑏 + �̈�𝑠) + 𝐼1(�̈�0,𝑥 + �̈�0,𝑦) − 𝐼2(�̈�𝑏,𝑥𝑥 + �̈�𝑏,𝑦𝑦)

− 𝐽2(�̈�𝑠,𝑥𝑥 + �̈�𝑠,𝑦𝑦) 

(5.12c) 

(𝑑11 + �̃�1 + 𝜆4)𝑢0‚𝑥𝑥𝑥 + (𝑑12 + 2𝑑66 + �̃�1 + 𝜆4)𝑢0‚𝑥𝑦𝑦

+ (𝑑12 + 2𝑑66 + �̃�1 + 𝜆4)𝑣0‚𝑦𝑥𝑥

+ (𝑑11 + �̃�1 + 𝜆4)𝑣0‚𝑦𝑦𝑦 − (𝑔11 + �̃�2 + 𝜆5)𝑤𝑏,𝑥𝑥𝑥𝑥

+ 2(−𝑔12 − 2𝑔66 − �̃�2 + 𝜆5)𝑤𝑏,𝑦𝑦𝑥𝑥

− (𝑔11 + �̃�2 − 𝜆5)𝑤𝑏,𝑦𝑦𝑦𝑦 − (ℎ11 + �̃�3 − 𝜆6)𝑤𝑠,𝑥𝑥𝑥𝑥

+ 2(−ℎ12 − 2ℎ66 − �̃�3 + 𝜆6)𝑤𝑠,𝑦𝑦𝑥𝑥

− (ℎ11 + �̃�3 − 𝜆6)𝑤𝑠,𝑦𝑦𝑦𝑦 + 𝑎55(𝑤𝑠,𝑥𝑥 + 𝑤𝑠,𝑦𝑦)

+ (�̃�1 + 𝜇2)𝜙0,𝑥𝑥 + (�̃�1 + 𝜇2)𝜙0,𝑦𝑦

= 𝐼0(�̈�𝑏 + �̈�𝑠) + 𝐽1(�̈�0,𝑥 + �̈�0,𝑦) − 𝐽2(�̈�𝑏,𝑥𝑥 + �̈�𝑏,𝑦𝑦)

− 𝐾2(�̈�𝑠,𝑥𝑥 + �̈�𝑠,𝑦𝑦) 

(5.12d) 

The last governing equation of the smart composite plate can be derived from 
the integral form of Maxwell’s equation, as: 

∫ (𝐷𝑥,𝑥 + 𝐷𝑦,𝑦 + 𝐷𝑧,𝑧)
−ℎ

−ℎ−ℎ𝑝

+∫ (𝐷𝑥,𝑥 + 𝐷𝑦,𝑦 + 𝐷𝑧,𝑧)
+ℎ+ℎ𝑝

+ℎ

= 0 (5.13) 

Substituting the definitions of 𝐷𝑖’s (𝑖 = 𝑥, 𝑦, 𝑧) from Eq. (5.4(b)) into Eq. 
(5.13), and taking into account Eqs. (5.6) and (5.8), yield: 

𝜆7(𝑤𝑠,𝑥𝑥 + 𝑤𝑠,𝑦𝑦) + 𝜆8(𝑤𝑏,𝑥𝑥 + 𝑤𝑏,𝑦𝑦) + 𝜆9𝜙0 + 𝜆10(𝜙0,𝑥𝑥 + 𝜙0,𝑦𝑦)

+ 𝜆11(𝑢0,𝑥𝑥𝑥 + 𝑣0,𝑦𝑥𝑥 + 𝑢0,𝑥𝑦𝑦 + 𝑣0,𝑦𝑦𝑦)

+ 𝜆12(𝑤𝑏,𝑥𝑥𝑥𝑥 + 2𝑤𝑏,𝑥𝑥𝑦𝑦 + 𝑤𝑏,𝑦𝑦𝑦𝑦)

+ 𝜆13(𝑤𝑠,𝑥𝑥𝑥𝑥 + 2𝑤𝑠,𝑥𝑥𝑦𝑦 +𝑤𝑠,𝑦𝑦𝑦𝑦) = 0 

(5.14) 
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The constant coefficients 𝜆𝑖  (𝑖 = 7,8, . . ,13) are given in Relations (D.4) and 
(D.5) of Appendix D, for both SC and OC conditions. 

 
 

5.5 Solution Procedure 

Five coupled electromechanical governing equations of motion (i.e., Eqs. (5.12) 
and (5.14)) have been derived for the smart plate. In the following subsections, 
analytical solutions are presented for two problems of plane wave propagation and 
free vibration of the smart plate structures. 
 
 

5.5.1 Wave Propagation Analysis 

The analytical solution of governing equations for the bulk wave dispersion in an 
unbonded smart plate structure is proposed in this subsection. Bulk waves exist in 
infinite domains and propagate indefinitely without being interrupted by boundaries 
or interfaces. Thus, to investigate the bulk wave propagation in the unbonded smart 
plate, one must consider that the plate has to be expanded from all sides to infinite 
(except its thickness). The generalized displacements can then be expressed as: 

{
 
 

 
 
𝑢0(𝑥, 𝑦, 𝑡)

𝑣0(𝑥, 𝑦, 𝑡)

𝑤𝑏(𝑥, 𝑦, 𝑡)

𝑤𝑠(𝑥, 𝑦, 𝑡)

𝜙0(𝑥, 𝑦, 𝑡)}
 
 

 
 

=

{
 
 

 
 
𝑢0
∗

𝑣0
∗

𝑤𝑏
∗

𝑤𝑠
∗

𝜙0
∗}
 
 

 
 

𝑒−𝑗(𝜔𝑡−𝛽1𝑥−𝛽2𝑦) (5.15) 

where 𝛽1 and 𝛽2 indicate the wavenumbers along 𝑥-axis and 𝑦-axis directions, 
respectively, 𝜔 is the angular frequency, and 𝑗 is the imaginary unit. The vector 
{𝑢0

∗ , 𝑣0
∗, 𝑤𝑏

∗, 𝑤𝑠
∗, 𝜙0

∗}𝑇 represents the amplitude of the generalized displacements, 
namely physical field including the displacement and the electric potential. It is, 
again, noted that because the current study considers wave propagation in 
unbounded elastic domains, it is not necessary to consider the boundary conditions 
in this subsection [197,198]. 

By substituting Eq. (5.15) and its derivatives into the governing Eqs. (5.12) 
and (5.14), such set of equations is simplified as: 
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[
 
 
 
 
𝐾11 𝐾12 𝐾13 𝐾14 𝐾15
𝐾21 𝐾22 𝐾23 𝐾24 𝐾25
𝐾31 𝐾32 𝐾33 𝐾34 𝐾35
𝐾41 𝐾42 𝐾43 𝐾44 𝐾45
𝐾51 𝐾52 𝐾53 𝐾54 𝐾55]

 
 
 
 

{
 
 

 
 
𝑢0
∗

𝑣0
∗

𝑤𝑏
∗

𝑤𝑠
∗

𝜙0
∗}
 
 

 
 

= 0 (5.16) 

where the components of the matrix [𝐾] are given in Relation (D.6) of Appendix 
D.  

The dispersion relation that relates the wavenumber of the wave propagation 
in the infinite plate to its frequency is given by 

|𝐾| = 0 (5.17) 

Assuming 𝛽1 = 𝛽2 = 𝛽, Eq. (5.17) can be rewritten as: 

𝜔8 + 𝛼1𝜔
6 + 𝛼2𝜔

4 + 𝛼3𝜔
2 + 𝛼4 = 0 (5.18) 

where 𝛼𝑖’s are functions of 𝛽. For a given 𝛽, the dispersion relation provides four 
positive eigenvalues for 𝜔2 or eight real solutions for the frequency 𝜔, once it is 
solved. When 𝛽 varies continuously, each pair of the solution represents a wave 
propagation mode. The roots of Eq. (5.18) can be expressed as: 

𝜔1 = 𝑊1(𝛽), 𝜔2 = 𝑊2(𝛽), 𝜔3 = 𝑊3(𝛽), 𝜔4 = 𝑊4(𝛽) (5.19) 

in which the frequencies 𝜔1, 𝜔2, 𝜔3 and 𝜔4 correspond to the wave modes 𝑀0, 𝑀1, 
𝑀2 and 𝑀3, respectively.  

Additionally, the phase velocity of wave propagation in the unbonded smart 
plate can be expressed as: 

𝐶𝑖 =
𝑊𝑖(𝛽)

𝛽
            (𝑖 = 1, 2, 3, 4) 

(5.20) 

 
 

5.5.2 Free Vibration Analysis 

In this subsection, an analytical solution is proposed to study the free vibration of 
the smart coupled FG plate having various boundary conditions. According to 
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Hamilton’s principle, for the plate with clamped, simply-supported, and free edges, 
the mechanical boundary conditions can be expressed as: 

Simply-Supported (S): 

at edges 𝑥 = 0, 𝑎: 

𝑣0 = 𝑤𝑏 = 𝑤𝑠 = 𝑁𝑥𝑥 = 𝑀𝑥𝑥
𝑏 = 𝑀𝑥𝑥

𝑆 = 0 (5.21) 

at edges 𝑦 = 0, 𝑏: 

𝑢0 = 𝑤𝑏 = 𝑤𝑠 = 𝑁𝑦𝑦 = 𝑀𝑦𝑦
𝑏 = 𝑀𝑦𝑦

𝑆 = 0 (5.22) 

Clamped (C): 

at edges 𝑥 = 0, 𝑎: 

𝑢0 = 𝑣0 = 𝑤𝑏 = 𝑤𝑠 = 𝑤𝑏,𝑥 = 𝑤𝑠,𝑥 = 0 (5.23) 

at edges 𝑦 = 0, 𝑏: 

𝑢0 = 𝑣0 = 𝑤𝑏 = 𝑤𝑠 = 𝑤𝑏,𝑦 = 𝑤𝑠,𝑦 = 0 (5.24) 

Free (F): 

at edges 𝑥 = 0, 𝑎: 

𝑁𝑥𝑥 = 𝑁𝑥𝑦 = 𝑀𝑥𝑥
𝑏 = 𝑀𝑥𝑥

𝑠 = 𝑄𝑥𝑧 = 0     (5.25) 

at edges 𝑦 = 0, 𝑏: 

𝑁𝑦𝑦 = 𝑁𝑥𝑦 = 𝑀𝑦𝑦
𝑏 = 𝑀𝑦𝑦

𝑠 = 𝑄𝑦𝑧 = 0     (5.26) 

 

To satisfy different types of boundary conditions, the following expressions 
of the displacement components and the electric potential function are considered: 
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{
 
 

 
 
𝑢0(𝑥, 𝑦, 𝑡)

𝑣0(𝑥, 𝑦, 𝑡)

𝑤𝑏(𝑥, 𝑦, 𝑡)

𝑤𝑠(𝑥, 𝑦, 𝑡)

𝜙0(𝑥, 𝑦, 𝑡)}
 
 

 
 

= ∑ ∑

{
 
 

 
 
𝐴𝑚𝑛𝐹𝑚

′ (𝑥)𝐹𝑛(𝑦)

𝐵𝑚𝑛𝐹𝑚(𝑥)𝐹𝑛
′(𝑦)

𝐶𝑚𝑛𝐹𝑚(𝑥)𝐹𝑛(𝑦)

𝐷𝑚𝑛𝐹𝑚(𝑥)𝐹𝑛(𝑦)

𝐸𝑚𝑛𝐹𝑚(𝑥)𝐹𝑛(𝑦)}
 
 

 
 

𝑒𝑗𝜔𝑡
∞

𝑛=1

∞

𝑚=1

 (5.27) 

 
where 𝜔 = 𝜔𝑚𝑛 is the eigenfrequency associated with (mth, nth) eigenmode, and 
(𝐴𝑚𝑛, 𝐵𝑚𝑛, 𝐶𝑚𝑛, 𝐷𝑚𝑛, 𝐸𝑚𝑛) are the unknown coefficients. The functions 𝐹𝑚(𝑥) 
and 𝐹𝑛(𝑦) are the admissible functions that are given in Table 5.2 for various types 
of boundary conditions [199]. Note that, in Table 5.2, the parameters 𝛽𝑚 = 𝑚𝜋/𝑎 
and 𝛽𝑛 = 𝑛𝜋𝑏 are the wave numbers along 𝑥-axis and 𝑦-axis directions, 
respectively. 
 
Table 5.2: Admissible functions 𝐹𝑚(𝑥) and 𝐹𝑛(𝑦) for various boundary conditions 

 
Boundary conditions 

 Admissible functions 
At edges: 𝑥 = 0, 𝑎 At edges: 𝑦 = 0, 𝑏 

SSSS 𝐹𝑚(0) = 𝐹𝑚
′′(0) = 0 𝐹𝑛(0) = 𝐹𝑛

′′(0) = 0  𝐹𝑚(𝑥) = sin(𝛽𝑚𝑥) 

 𝐹𝑚(𝑎) = 𝐹𝑚
′′(𝑎) = 0 𝐹𝑛(𝑏) = 𝐹𝑛

′′(𝑏) = 0  𝐹𝑛(𝑦) = sin(𝛽𝑛𝑦) 

CSCS 𝐹𝑚(0) = 𝐹𝑚
′ (0) = 0 𝐹𝑛(0) = 𝐹𝑛

′(0) = 0  𝐹𝑚(𝑥) = sin(𝛽𝑚𝑥) [cos(𝛽𝑚𝑥) − 1] 

 𝐹𝑚(𝑎) = 𝐹𝑚
′′(𝑎) = 0 𝐹𝑛(𝑏) = 𝐹𝑛

′′(𝑏) = 0  𝐹𝑛(𝑦) = sin(𝛽𝑛𝑦) [cos(𝛽𝑛𝑦) − 1] 

CCCS 𝐹𝑚(0) = 𝐹𝑚
′ (0) = 0 𝐹𝑛(0) = 𝐹𝑛

′(0) = 0  𝐹𝑚(𝑥) = sin
2(𝛽𝑚𝑥) 

 𝐹𝑚(𝑎) = 𝐹𝑚
′ (𝑎) = 0 𝐹𝑛(𝑏) = 𝐹𝑛

′′(𝑏) = 0  𝐹𝑛(𝑦) = sin(𝛽𝑛𝑦) [cos(𝛽𝑛𝑦) − 1] 

CCCC 𝐹𝑚(0) = 𝐹𝑚
′ (0) = 0 𝐹𝑛(0) = 𝐹𝑛

′(0) = 0  𝐹𝑚(𝑥) = sin
2(𝛽𝑚𝑥) 

 𝐹𝑚(𝑎) = 𝐹𝑚
′ (𝑎) = 0 𝐹𝑛(𝑏) = 𝐹𝑛

′(𝑏) = 0  𝐹𝑛(𝑦) = sin2(𝛽𝑛𝑦) 

CCFF 𝐹𝑚(0) = 𝐹𝑚
′ (0) = 0 𝐹𝑛

′′(0) = 𝐹𝑛
′′′(0) = 0  𝐹𝑚(𝑥) = sin

2(𝛽𝑚𝑥) 

 𝐹𝑚(𝑎) = 𝐹𝑚
′ (𝑎) = 0 𝐹𝑛

′′(𝑏) = 𝐹𝑛
′′′(𝑏) = 0  𝐹𝑛(𝑦) = cos2(𝛽𝑛𝑦) [sin

2(𝛽𝑛𝑦) + 1] 

WXYZ means W, X, Y and Z boundary conditions on the edges 𝑥 = 0, 𝑥 = 𝑎, 𝑦 = 0 and 𝑦 = 𝑏, 
respectively. 

(… )′ shows the derivative with respect to the corresponding coordinates, i.e., 𝑥 or 𝑦. 

Substituting the proposed solution (i.e., Eq. (5.27)) into the electromechanical 
governing Eqs. (5.12) and (5.14), multiplying each equation by the corresponding 
eigenfunction then integrating over the domain of solution (0 ≤ 𝑥 ≤ 𝑎, 0 ≤ 𝑦 ≤
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𝑏), and finally doing some mathematical simplification result in the following 
equation: 

[
 
 
 
 
 
𝐾11
′ 𝐾12

′ 𝐾13
′ 𝐾14

′ 𝐾15
′

𝐾21
′ 𝐾22

′ 𝐾23
′ 𝐾24

′ 𝐾25
′

𝐾31
′ 𝐾32

′ 𝐾33
′ 𝐾34

′ 𝐾35
′

𝐾41
′ 𝐾42

′ 𝐾43
′ 𝐾44

′ 𝐾45
′

𝐾51
′ 𝐾52

′ 𝐾53
′ 𝐾54

′ 𝐾55
′ ]
 
 
 
 
 

{
 
 

 
 
𝐴𝑚𝑛
𝐵𝑚𝑛
𝐶𝑚𝑛
𝐷𝑚𝑛
𝐸𝑚𝑛}

 
 

 
 

= 0 (5.28) 

in which the components of the matrix [𝐾′] are given in Relation (D.7) of Appendix 
D. Setting the determinant of matrix [𝐾′] in Eq. (5.28) to zero (i.e., |𝐾′| = 0), one 
can obtain the natural frequency 𝜔𝑚𝑛 of the (𝑚th, 𝑛th) eigenmode. The 
fundamental natural frequency of the smart plate is obviously the smallest value of 
𝜔𝑚𝑛 that is obtained for 𝑚 = 𝑛 = 1. 
 
 

5.6 Numerical Results 
5.6.1 Model Validation 

First, to confirm the reliability of the proposed solutions and the mathematical 
formulations developed in the previous sections, comparative examples are 
provided here. To that end, the present natural frequencies are compared with some 
available in the literature. In Table 5.3, eigenfrequencies of a thin smart sandwich 
plate have been calculated and compared with those reported in Askari Farsangi et 
al. [165] and He et al. [100]. In the works presented by He et al. [100] and Askari 
Farsangi et al. [165], the classical plate theory and the first-order shear deformation 
theory were employed, respectively, for the free vibration of coupled plates with 
Navier-type and Levy-type boundary conditions. 
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Table 5.3: Comparison of the first eight natural frequencies (Hz) for an isotropic plate 
integrated with piezoelectric layers 

Mode 

Source 

Present 
(SSPT) 

Present 
(PSPT) 

He et al. 
[100] 

Difference 
(%) 

Askari Farsangi et 
al. [165] 

Difference 
(%) 

1 144.94 144.94 144.25 0.48 145.35 0.28 

2 362.01 362.01 359.00 0.84 363.05 0.29 

3 362.01 362.01 359.00 0.84 363.05 0.29 

4 578.70 578.70 564.10 2.59 580.35 0.28 

5 722.95 722.95 717.80 0.72 725.00 0.28 

6 722.95 722.95 717.80 0.72 725.00 0.28 

7 938.98 938.98 908.25 3.38 941.64 0.28 

8 938.98 938.98 908.25 3.38 941.64 0.28 

 
In a second validation example, the natural frequencies of an isotropic plate 

coupled with piezoelectric layers are extracted from the present study are listed in 
Table 5.4 alongside their counterparts reported in [200]. 

 
Table 5.4: Comparison of the fundamental frequency (Hz) of an isotropic plate integrated 
with piezoelectric layers 

𝑎

𝑏
 

2ℎ𝑝

2ℎ
 

Source 

Present (SSPT) Present (PSPT) Ref. [200] Difference (%) 

1 0.5 875 875 873 0.23 

 1.0 797 797 791 0.76 

2 0.5 1093 1093 1091 0.18 

 1.0 996 996 988 0.81 

3 0.5 1457 1457 1454 0.21 

 1.0 1328 1328 1317 0.84 

 
Tables 5.3 and 5.4 show good agreements between the results of the present 

study and those available in the literature, confirming reliability and accuracy of the 
present models and numerical results. Note that minor differences among the results 
originate from employing various electric potential distributions and plate theories 
in the current work and the mentioned papers. For instance, the electric potential 
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function considered in Ref. [200] is a linear function of 𝑧-coordinate only, while in 
the present study, the electric potential distribution is assumed to be a function of 
all three coordinates. 

 
 

5.6.2 Parametric Study and Discussion 

In this section, the numerical results of both wave propagation and free vibration of 
the smart composite plate are presented for a wide range of design parameters such 
as power-law index, porosity volume fraction, porosity distribution boundary 
conditions, as well as piezoelectric characteristics. Note that the FG core layer is 
assumed to be made of Aluminum and Alumina with the following material 
properties [161]: 

Aluminum: 𝐸 = 70 GPa, 𝜌 = 2700 kg/m3, 𝜈 = 0.3  
Alumina: 𝐸 = 380 GPa, 𝜌 = 3800 kg/m3, 𝜈 = 0.3  

The electrical and mechanical properties of several common piezoelectric 
materials such as PZT-4, PZT-5H, and PZT-5A are listed in Table 5.5. In the present 
work, PZT-4 is considered as the material of piezoelectric layers to extract all the 
numerical results in all the following tabulated results. 
 
Table 5.5: Mechanical and electrical properties of PZT materials 

Material Properties 

 Elastic moduli (GPa)  Dielectric moduli (nF/m) 

 𝐶11  𝐶12  𝐶33 𝐶13 𝐶55 𝐶66  Ξ11  Ξ33 

PZT-4 139.0 77.8 115.0 74.3 25.6 30.6  6.75 5.90 

PZT-5H 127.2 80.2 117.4 84.7 23.0 23.5  15.1 12.7 

PZT-5A 99.2 54.0 86.9 50.8 21.1 22.6  15.3 15.0 

 Piezoelectric moduli (C/m2)  Mass density (kg/m3) 

 𝑒31 𝑒33 𝑒15     𝜌 

PZT-4 -5.2 15.1 12.7     7500 

PZT-5H -6.6 23.2 17.0     7500 

PZT-5A -7.2 15.1 12.3     7750 
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5.6.2.1 Numerical Results of Wave Propagation Analysis 

The dispersion relation (i.e., Eq. (5.18)) provides the chance to study the dispersion 
behavior and the corresponding phase velocity for various smart FG plates. Three 
different cases are here taken into account: i) smart plates with the core layer made 
of perfect FGM, ii) smart plates with the core made of porous FGM having even 
porosity distribution, and iii) smart plates with the core made of porous FGM 
having uneven porosity distribution. To examine the wave characteristics of these 
cases, the corresponding dispersion curves are plotted in Fig. 5.2 for a plate under 
SC condition. It is seen from Fig. 5.2 that, in all cases, the wave frequencies 
corresponded to all wave modes, namely 𝑀0, 𝑀1, 𝑀2 and 𝑀3 increase with an 
increase of the wavenumber 𝛽. Based on the figure, one can observe that the smart 
plate with perfect FG substrate provides the highest wave frequencies followed by 
porous FGM plates with uneven and even porosity distribution, respectively.  

  
(a) M0 (b) M1 

  
(c) M2 (d) M3 

Fig. 5.2: Variation of wave frequency versus wave number for smart sandwich plates 
in SC condition (2ℎ = 0.1𝑚, ℎ𝑝 2ℎ⁄ = 0.05,𝑁 = 2, 𝑒0 = 0.4) 
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The phase velocity response of the system is shown in Fig. 5.3 for all four 
wave modes. The trend of phase velocity curves is highly dependent on the wave 
mode and the porosity distribution profile. Fig. 5.3a exhibits an increasing trend of 
phase velocity for the mode 𝑀0, when 𝛽 is rising, regardless of the type of material 
selected for the core layer. Regarding the second mode, Fig. 5.3b suggests a 
constant phase velocity for the smart plates with the core layer made of perfect 
FGM and uneven FGM while a non-flat curve is associated with even porosity 
distribution. The phase velocity corresponding to the third and fourth modes 
decreases and then gradually tends to a constant value as the wavenumber increases. 
However, the drop in the value of curves associated with the fourth mode in the low 
wavenumber band is considerably sharper with respect to the third mode. 

  
(a) M0 (b) M1 

  
(c) M2 (d) M3 

Fig. 5.3: Variation of wave velocity versus wave number for SC smart plates with four 
different porosity distributions (2ℎ = 0.1𝑚, ℎ𝑝 2ℎ⁄ = 0.05,𝑁 = 2, 𝑒0 = 0.4) 
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To indicate the influences of the electrical and mechanical properties of the 
piezoelectric layers on dispersion characteristics of the systems under investigation, 
Fig. 5.4 and Fig. 5.5 present the dispersion and phase velocity curves of the first 
mode, respectively, when the core plate is made of perfect and porous FG materials. 
As demonstrated in these figures, the electrical effect in the SC condition is 
negligibly higher than a case in which only the mechanical effect of the 
piezoelectric layers (stiffness) is taken into account. However, the electrical effect 
in the OC condition causes a rather significant increase in the value of frequency. 
Consequently, the curve associated with the OC condition lies above the other two 
cases, regardless of the adopted porosity distribution and the power-law index 𝑁. 
Regarding the overall trend of the dispersion and phase velocity curves, it is 
observed that they follow a similar path in comparison to what is already portrayed 
in Fig. 5.2a and Fig. 5.3a. 

 
(a) Porous FGM - Even 

 
(b) Porous FGM - Uneven 
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(c) Perfect FGM 

Fig. 5.4: Electrical and mechanical effects of piezoelectric layers on wave frequency  
(𝑀0, 2ℎ = 0.1𝑚, ℎ𝑝 2ℎ⁄ = 0.05, 𝑒0 = 0.2) 
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(c) Perfect FGM 

Fig. 5.5: Electrical and mechanical effects of piezoelectric layers on phase velocity  
(𝑀0, 2ℎ = 0.1𝑚, ℎ𝑝 2ℎ⁄ = 0.05, 𝑒0 = 0.2) 

 
The variation of wave frequency associated with the first mode against the 

power-law index is plotted in Fig. 5.6, for different values of porosity volume 
fraction 𝑒0, porosity distribution and electrical circuit conditions. According to the 
figures, the wave frequencies are significantly influenced by the variation of the 
power-law index. Regardless of the type of porosity distribution, the wave 
frequencies decrease with increasing the value of 𝑁, although a sharper decline in 
the value of frequencies is observed for the system with even porosity distribution 
compared to the case with uneven porosity distribution. Besides, the existence of a 
switching power-law index is identified, before which the wave frequencies 
increase by a drop in 𝑒0 (for a fixed value of 𝑁) while the opposite behavior is seen 
after the switching point for both even and uneven porosity distributions. This value 
depends on the adopted porosity distribution and electrical boundary conditions. 
For instance, the switch power-law index for the hybrid plate with a core 
characterized by the even porosity profile is around 0.3, whereas this point appears 
around 0.8 for the system with uneven porosity distribution. Furthermore, the figure 
suggests that the sensitivity of the system to the porosity is more considerable when 
the pores are evenly distributed inside the core layer with respect to the uneven 
distribution profile.  
 

Wave number (rad/m)

Ph
as

e
ve

lo
ci

ty
(x

10
3

m
/s

)

0 20 40 60 80 100
0

1

2

3

4

5

6

7

N=5.0, Only stiffness
N=5.0, SC condition
N=5.0, OC condition
N=0.5, Only stiffness
N=0.5, SC condition
N=0.5, OC condition

N=0.5
N=5.0



172                 On wave propagation and free vibration analysis … 
 

  
(a) OC Porous FGM - Even (b) OC Porous FGM - Uneven 

Fig. 5.6: Variation of wave frequency versus power-law index for OC smart plates  
(𝑀0, 𝐾 = 10, 2ℎ = 0.1𝑚, ℎ𝑝 2ℎ⁄ = 0.05) 

 
The combined effects of the power-law index and porosity volume fraction 

are further investigated in Fig. 5.7, where the variation of wave frequency of all 
four modes is plotted versus the porosity parameter for both even and uneven 
porosity profiles. The curves shown in this figure confirm the decreasing trend for 
wave frequency due to the increase in value of 𝑒0 for the adopted 𝑁, a conclusion 
drawn from the previous figure (i.e., Fig. 5.6).  

 

  
(a) Even porosity distribution (b) Uneven porosity distribution 

Fig. 5.7. Variation of wave velocity versus porosity volume fraction for smart plates 
under SC condition (𝑁 = 1, 2ℎ = 0.1𝑚, ℎ𝑝 2ℎ⁄ = 0.05,𝐾 = 10) 
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5.6.2.2 Numerical Results of Free Vibration Analysis 

The results obtained from the mathematical formulation presented in subsection 
5.5.2 will be discussed here for smart square plates. For that matter, Table 5.6 
provides a comprehensive parametric study to realize the effect of electrical and 
mechanical boundary conditions, porosity volume fraction, type of porosity 
distribution, and the adopted plate theory on the natural frequencies of the hybrid 
plate. As the primary observation, the table suggests that the PSPT yields higher 
frequencies with respect to SSPT, which can be attributed to the definition of the 
shape function 𝑓(𝑧) for each theory. Besides, similar to what is found in the 
previous subsection (i.e., subsection 5.6.2.1.), the plates under OC condition deliver 
higher frequencies compared to their counterpart under SC condition. This fact can 
be attributed to the various electric potential distributions in the thickness direction 
of the piezoelectric layers in these two cases. It is worth noticing that in the case of 
SC condition, a large amount of electrical energy is released through the outer 
electrodes connected to each piezoelectric layer; therefore, the significant drop in 
the effectiveness of the piezoelectric effect causes the smart hybrid plate stiffness 
to increase slightly. Conversely, the electrical energy of the bonded piezoelectric 
layers cannot be released whilst the hybrid plate is vibrating freely in the OC mode, 
which ultimately results in considerable growth in effective stiffness of the coupled 
piezoelectric FG plate and its natural frequencies as well. Furthermore, according 
to the table, the plate under CCFF boundary conditions provides the highest 
frequencies with respect to other cases, followed by CCCC, CCCS, CCSS, and 
SSSS boundary conditions, irrespective of other considered parameters. As 
expected, it appears that the coupled plate with a perfect FGM core owns the highest 
frequencies. Comparing the frequencies of plates with the substrate made of porous 
FGM characterized by uneven and even distribution profiles, the former yields 
higher frequencies, which is in agreement with the results portrayed in Fig. 5.4. 
Eventually, higher sensitivity of natural frequency to porosity for the case of even 
distribution compared to the uneven porosity profile can also be perceived from the 
table, compliant with what is demonstrated in Fig. 5.6. 

In this subsection, the graphical presentation of results is given in terms of 
natural frequency relative difference 휃, defined as: 
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휃 =
𝜔𝐻𝑃 − 𝜔𝑃

𝜔𝑃
× 100 (31) 

where 𝜔𝐻𝑃 and 𝜔𝑃 are the natural frequency of the hybrid plate and that of the same 
plate in absence of piezoelectric layers, respectively. Fig. 5.8 surveys the impact of 
the thickness ratio ℎ𝑝/2ℎ and power-law index 𝑁 on the value of 휃, for a simply 
supported square plate. The figure reveals that the trend of curves is alike when the 
core plate is either made of perfect FGM or porous FGM with uneven profile though 
curve path can differ for the coupled plates with substrates composed of porous 
FGM with even profile depending on 𝑁. In the former case, 휃 initially decreases as 
the piezoelectric thickness ratio rises and then adopts an increasing trend owing to 
further growth of ℎ𝑝/2ℎ, and the porosity distribution profile. A similar trend can 
also be observed for the curves corresponding to the latter case as long as the power-
law index does not exceed a certain threshold. Outside that threshold, the relative 
difference 휃 follows an ever-increasing trend. It is worth mentioning that the higher 
the 𝑁, the greater the 휃 is, irrespective of the distribution in the core plate. 
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Table 5.6: Eigenfrequencies (Hz) of perfect and porous FG plates integrated with 
piezoelectric layers (𝑎 = 𝑏 = 1𝑚, 2ℎ/𝑎 = 0.1, ℎ𝑝/2ℎ = 0.05, 𝑁 = 5). 

BC’s 𝑒0 EC’s Model 
Substrate material 
Perfect FGM Porous FGM-Even Porous FGM-Uneven 

SSSS 

0.1 
SC 

SSPT 589.651 555.624 583.768 
PSPT 589.935 555.966 584.219 

OC 
SSPT 605.946 574.973 600.948 
PSPT 606.474 575.620 601.692 

0.3 
SC 

SSPT 589.651 402.639 563.213 
PSPT 589.935 403.099 564.456 

OC 
SSPT 605.946 440.236 582.583 
PSPT 606.474 441.346 584.320 

CCCC 

0.1 
SC 

SSPT 1048.481 986.515 1032.877 
PSPT 1049.648 987.916 1034.713 

OC 
SSPT 1075.877 1018.777 1061.361 
PSPT 1078.075 1021.453 1064.414 

0.3 
SC 

SSPT 1048.481 718.610 980.443 
PSPT 1049.648 720.536 985.316 

OC 
SSPT 1075.877 780.088 1011.097 
PSPT 1078.075 784.696 1017.889 

CSCS 

0.1 
SC 

SSPT 1024.159 963.833 1010.537 
PSPT 1025.070 964.924 1011.971 

OC 
SSPT 1051.371 995.984 1038.972 
PSPT 1053.082 998.067 1041.357 

0.3 
SC 

SSPT 1024.159 699.612 964.378 
PSPT 1025.070 701.073 968.223 

OC 
SSPT 1051.371 761.418 995.493 
PSPT 1053.082 764.962 1000.869 

CCCS 

0.1 
SC 

SSPT 1035.236 974.181 1020.747 
PSPT 1036.261 975.409 1022.359 

OC 
SSPT 1062.569 1006.426 1049.243 
PSPT 1064.495 1008.772 1051.925 

0.3 
SC 

SSPT 1035.236 708.291 971.818 
PSPT 1036.261 709.956 976.122 

OC 
SSPT 1062.569 770.033 1002.767 
PSPT 1064.495 774.048 1008.777 

CCFF 

0.1 
SC 

SSPT 1100.263 1034.939 1082.453 
PSPT 1101.677 1036.638 1084.674 

OC 
SSPT 1128.482 1068.090 1111.681 
PSPT 1131.153 1071.340 1115.379 

0.3 
SC 

SSPT 1100.263 755.505 1023.104 
PSPT 1101.677 757.873 1028.946 

OC 
SSPT 1128.482 818.263 1054.167 
PSPT 1131.153 823.889 1062.299 
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(a) Perfect FGM 

  
(b) Porous FGM - Even (c) Porous FGM - Uneven 

Fig. 5.8: Effect of piezoelectric layers on the fundamental frequency of the smart FGM 
plates in SC condition (𝑎 = 𝑏 = 1𝑚, 2ℎ/𝑎 = 0.1, 𝑒0 = 0.3, S-S-S-S) 

 
The effect of boundary conditions, namely SSSS, CSCS, CCCS, CCCC and 

CCFF on the relative difference 휃 versus the piezoelectric thickness ratio ℎ𝑝/2ℎ is 
highlighted in Figure 5.9, for both SC and OC conditions. From the figure, it is 
perceived that the integration of piezoelectric layers with the core plate is more 
influential for the simply supported plate, followed by CSCS, CCCS, CCCC, and 
CCFF boundary conditions. For instance, the natural frequency of the simply-
supported hybrid plate with ℎ𝑝/2ℎ = 0.5 under OC condition increases by 16% 
due to the introduction of piezoelectric layers while this value is around 11% for its 
clamped counterpart. It is worth mentioning that the aforementioned increase is 
more considerable for plates under OC condition compared to those under SC 
condition.  
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Fig. 5.9: Effect of piezoelectric layers on the fundamental frequency of the perfect 
FGM plate having different boundary conditions (𝑎 = 𝑏 = 1𝑚, 2ℎ/𝑎 = 0.1, 𝑁 = 1) 

 
The variation of natural frequency with piezoelectric thickness ratio ℎ𝑝/2ℎ is 

plotted in Fig. 5.10, for different values of porosity volume fraction 𝑒0 considering 
both OC and SC conditions. It is observed that by increasing the value of  𝑒0, the 
effect of piezoelectric layers on the response becomes more dominant. This is due 
to the fact that these three curves approach each other at the termination point 
(ℎ𝑝/2ℎ = 0.5) though their starting points are widely separated. In fact, the share 
of piezoelectric layers in the effective stiffness of the system rises while the share 
of the substrate is dropping. Another crucial point is related to the impact of porosity 
on the trend of curves. For instance, in both Fig. 5.10(a) and Fig. 5.10(b), by 
increasing the value of ℎ𝑝/2ℎ, the curves corresponding to “Perfect FGM” 

experience a drop initially and then start growing after touching the local minimum 
of the curves at a particular piezoelectric thickness ratio. However, natural 
frequencies of systems associated with “Porous FGM - Even (𝑒0 = 0.4)” follow a 

constantly growing path, unlike those of “Perfect FGM”. 
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(a) SC condition 

 
(b) OC condition 

Fig. 5.10: Effect of piezoelectric layers on the fundamental frequency of the smart 
porous FGM plate (𝑎 = 𝑏 = 1𝑚, 2ℎ/𝑎 = 0.1, 𝑁 = 2, S-S-S-S) 

 
The combined effects of the power-law index, porosity distribution, and 

mechanical and electrical boundary conditions are demonstrated in Fig. 5.11 by 
plotting the variation of natural frequency against the porosity volume fraction. 
Regarding the case of smart porous FGM plate with uneven porosity profile, the 
natural frequency increases as 𝑒0 grows in the range plotted, regardless of other 
considered factors, including boundary conditions and power-law index. On the 
other hand, the curves associated with the core composed of porous FGM with the 
even porosity profile can either have an ascending or descending trend depending 
upon the value of 𝑁. Furthermore, choosing a higher power-law index results in 
lower frequencies due to the drop in the effective stiffness of the plate, which is 
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consistent with the results of Fig. 5.8. Note that the figure also confirms the previous 
findings concerning the relation of frequencies with electrical and mechanical 
boundary conditions. 

 

  
(a) Porous FGM – Even (S-S-S-S) (b) Porous FGM – Uneven (S-S-S-S) 

  
(c) Porous FGM – Even (C-C-C-C) (d) Porous FGM – Uneven (C-C-C-C) 

Fig. 5.11: Effect of piezoelectric layers on the fundamental frequency of FG porous 
smart plate in SC condition (𝑎 = 𝑏 = 1𝑚, 2ℎ/𝑎 = 0.1, ℎ𝑝/2ℎ = 0.05) 

 
 

5.7 Summary and Conclusions 

In this chapter, an efficient and simple four-variable shear deformation theory is 
used to establish a 2D model for the wave propagation and free vibration analysis 
of perfect and porous FGM plates integrated with piezoelectric layers. The 
respective governing equations are derived using Hamilton’s principle and 
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Maxwell’s equation. The plane wave solution is considered to address the problem 

of wave propagation in infinite smart coupled plates. Regarding the exact solution 
for the free vibration analysis, general boundary conditions are satisfied by 
assigning particular admissible functions to each type. It is concluded that the 
adopted theory is not only accurate but also efficient in prediction of the wave 
propagation and free vibration characteristics of the smart plates compared to other 
shear deformation theories. The existence of porosities in the FGM core leads to 
hybrid plates with lower wave frequency and phase velocity (in the context of wave 
propagation) and natural frequencies (in the context of free vibration), compared to 
the smart plates with perfect FGM substrate. Moreover, some other important 
conclusions are drawn from the parametric studies, as:  

• Higher frequencies (in both contexts) and higher wave velocities are 
obtained for the smart porous FGM plates with uneven porosity distribution 
compared to their counterparts with even distribution. 

• Depending on the value of the power-law index, an increase in the porosity 
volume fraction can lead to either an increase or decrease in the 
wave/natural frequencies of the smart porous FGM plates. 

• In the context of wave propagation, wave frequency always grows while the 
phase velocity can adopt both uptrend and downtrend, as the wavenumber 
increases. 

• In both context, higher sensitivity of the response (wave/natural frequency) 
to the porosity is demonstrated for the case of even porosity distribution as 
compared to the uneven one. 

• In both contexts, the changes in frequencies (due to adding piezoelectric 
layers) of the plates with porous FGM substrates is more significant as 
compared with the corresponding results for the plates without porosities. 

• In the context of free vibration, significant effect of boundary conditions on 
the respective response is realized. The hybrid plate under CCFF boundary 
condition owns the highest natural frequencies, followed by its counterparts 
with CCCC, CCCS, CSCS and SSSS edge conditions, respectively.  



 
 

 
 
 
Chapter 6 
 
Buckling Analysis of Piezoelectric 
Bimorph Plates 
 
6.1 Overview 

Based on the higher-order displacement model employed in the previous chapter, 
an exact solution with the help of state space approach is herein presented to study 
the buckling behavior of the composite bimorph plate. The smart plate is assumed 
to be subjected to different in-plane mechanical loadings so that it buckles and 
undergoes a deviation from the flat state when the applied loads are increased up to 
a certain value, which is called critical buckling load. Since the developed model 
allows to consider the substrate layer made of materials with varying properties 
along the thickness, it is assumed (in this analysis) to be made of saturated porous 
materials, in which the internal pore pressure is included in the stress-strain 
relationships. Accordingly, the constitutive equations of porous materials are 
considered based on Biot’s poroelasticity theory, which takes into account the effect 
of pore fluid compressibility. For comparison, different symmetric and asymmetric 
patterns are considered for the distribution of porosities within the porous substrate. 
A generalized Levy-type solution in conjunction with the State Space concept is 
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used to solve the respective equations for the smart coupled plate. Exact buckling 
loads of the system are obtained for the system under different loading conditions, 
and arbitrary boundary conditions. It is finally shown that the magnitude of the 
buckling load depends on geometry, material properties, piezoelectric 
characteristics, and the buckling mode shape, i.e., geometric configuration of the 
plate at buckling.  
 
 

6.2 Problem Modelling 

When a plate is subjected to uniform compressive forces applied in the middle plane 
of the plate, and if the forces are sufficiently small, the force-displacement response 
is linear. The linear relationship holds until a certain load is reached. At that load, 
called the buckling load, the stable state of the plate is disturbed, and the plate seeks 
an alternative equilibrium configuration accompanied by a change in the load 
deflection behavior. The phenomenon of changing the equilibrium configuration at 
the same load and without drastic changes in deformation is termed bifurcation. 

It is assumed here that the piezoelectric bimorph plate (which is 
schematically shown in Fig. 1.3) undergoes three different loading condition, as 
presented in Fig. 6.1. Note that the in-plane loads are acting at the middle plane of 
the plate. 

 

  
(a) Biaxial compressive loading (b) Biaxial compressive and tension loading 
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(c) Uniaxial compressive loading 

Fig. 6.1: Cross-section of the porous bimorph plate with various porosity distributions 
 
As mentioned earlier, the substrate layer is considered to be made of saturated 

porous materials (here, Tennessee marble), which means the material properties in 
the core layer vary from one point to another within the thickness direction (due to 
the presence of porosities). In the analysis performed in this chapter, all the porosity 
profiles presented in Fig. 1.10 of Chapter 1 are considered as the patterns of porosity 
distribution within the porous substrate, in which the related formulations 
(corresponding to the effective material properties) are given in Eqs. (1.17) to 
(1.20).  

According to the Biot’s poroelasticity theory, the linear constitutive equations 

describing stress-strain relationships for a fluid-filled porous material can be 
expressed as [16]: 

𝜎𝑖𝑗 = 2𝐺(𝑧)휀𝑖𝑗 +
2𝐺(𝑧)𝜈𝑢
1 − 2𝜈𝑢

휀𝛿𝑖𝑗 − 𝛼𝑀휁𝛿𝑖𝑗 (6.1) 

It is reminded that the parameter 𝑀 represents the Biot modulus, defined as the rise 
in the amount of fluid, 𝜈𝑢 is the undrained Poisson ratio, and 휀 denotes the 
volumetric strain. 𝛿𝑖𝑗 is the Kronecker delta function, 휁 is the variation of fluid 
volume content inside the pores, and 𝛼 denotes the Biot coefficient of effective 
stress which is defined as 𝛼 = 𝛼(𝑧) = 1 − 𝐺(𝑧)/𝐺𝑡 (0 < 𝛼 < 1). The parameters 
𝑀 and 𝜈𝑢 are defined in terms of other material properties as follows: 

𝑀 =
2𝐺(𝑧)(𝜈𝑢 − 𝜈)

𝛼2(1 − 2𝜈𝑢)(1 − 2𝜈)
 (6.2a) 
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𝜈𝑢 =
3𝜈 + 𝛼𝐵(1 − 2𝜈)

3 − 𝛼𝐵(1 − 2𝜈)
 (6.2b) 

𝛼 = 1 −
𝐺(𝑧)

𝐺𝑡
= 𝑒1cos (

𝜋𝑧

2ℎ
+
𝜋

4
) (6.2c) 

Here, 𝐵 and 𝜈 represent the Skempton pore pressure coefficient and the drained 
Poisson’s ratio (𝜈 ≤ 𝜈𝑢 ≤ 0.5), respectively. It should be noted that the Skempton 
coefficient 𝐵 is a measure, determining the degree of saturation in the porous body. 
In particular, when the value of 𝐵 equals zero, it refers to nearly absent pore fluid, 
thus estimating the porous solid as a dry porous medium. In this study, the porous 
media is considered to operate under undrained condition, implying the entrapment 
of fluid in the porous solid accompanied by no variation in the fluid volume content 
in the internal pores, i.e. 휁 = 0. Therefore, the constitutive Eq. (6.1) for plane-stress 
condition take the form [16]: 

{
 
 

 
 
𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦
𝜎𝑥𝑧
𝜎𝑦𝑧}

 
 

 
 

=

[
 
 
 
 
𝑄11 𝑄12 0 0 0
𝑄12 𝑄11 0 0 0
0 0 𝑄22 0 0
0 0 0 𝑄22 0
0 0 0 0 𝑄22]

 
 
 
 

{
 
 

 
 
휀𝑥𝑥
휀𝑦𝑦
휀𝑥𝑦
휀𝑥𝑧
휀𝑦𝑧}
 
 

 
 

 (6.3) 

where 𝑄11, 𝑄12 and 𝑄22 are the material stiffness coefficients as: 

𝑄11 =
2𝐺(𝑧)

1 − 𝜈𝑢
, 𝑄12 =

2𝐺(𝑧)𝜈𝑢
1 − 𝜈𝑢

, 𝑄22 = 𝐺(𝑧) (6.4) 

in which 𝜈𝑢 is defined in Eq. (6.2b). 
 
 

6.3 Governing Equations 

The displacement field at any point of the smart plate is considered based on the 
four-variable higher-order shear deformation theory given in Eq. (5.1) of Chapter 
5. Based on such displacement model, the stability equations of the plate can be 
derived by means of principle of minimum total potential energy, as: 

𝛿(𝑈 + 𝑉) = 0 (6.5) 
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where 𝛿 denotes a variation with respect to 𝑥 and 𝑦; 𝑈 and 𝑉 are the strain energy 
of the coupled plate and potential energy of external loads, respectively. Performing 
the mathematical calculations for 𝛿𝑈 and 𝛿𝑉, the stability equations can be obtained 
as follows: 

𝑁𝑥𝑥,𝑥 + 𝑁𝑥𝑦,𝑦 = 0 (6.6a) 

𝑁𝑥𝑦,𝑥 + 𝑁𝑦𝑦,𝑦 = 0 (6.6b) 

𝑀𝑥𝑥,𝑥𝑥
𝑏 + 2𝑀𝑥𝑦,𝑥𝑦

𝑏 +𝑀𝑦𝑦,𝑦𝑦
𝑏 + 𝑁(𝑤) = 0 (6.6c) 

𝑀𝑥𝑥,𝑥𝑥
𝑠 + 2𝑀𝑥𝑦,𝑥𝑦

𝑠 +𝑀𝑦𝑦,𝑦𝑦
𝑠 + 𝑄𝑥𝑧,𝑥 + 𝑄𝑦𝑧,𝑦 + 𝑁(𝑤) = 0 (6.6d) 

The term 𝑁(𝑤) in Eq. (6.6), is appeared due to the loads applied to the bimorph 
plate, and is given in the following expression for the in-plane loading condition:  

𝑁(𝑤) = 𝑁𝑥𝑥
0 (𝑤𝑏,𝑥𝑥 + 𝑤𝑠,𝑥𝑥) + 𝑁𝑦𝑦

0 (𝑤𝑏,𝑦𝑦 + 𝑤𝑠,𝑦𝑦)

+ 2𝑁𝑥𝑦
0 (𝑤𝑏,𝑥𝑦 + 𝑤𝑠,𝑥𝑦) 

(6.7) 

in which 𝑁𝑥𝑥0 , 𝑁𝑦𝑦0  and 𝑁𝑥𝑦0  are the in-plane pre-buckling forces. In case the in-plane 
forces are assumed to be acting only in two-direction (i.e., 𝑥 and 𝑦, see Fig. 6.1), 
we may have: 

𝑁𝑥𝑥
0 = 𝑟𝑥𝑁𝑐𝑟, 𝑁𝑦𝑦0 = 𝑟𝑦𝑁𝑐𝑟, 𝑁𝑥𝑦0 = 0 (6.8) 

where 𝑟𝑥 = 𝑟𝑦 = −1 for the biaxial compressive uniform loading (see Fig. 6.1(a)), 
𝑟𝑥 = −1 and 𝑟𝑦 = +1 for the compressive-tension uniform loading (see Fig. 
6.1(b)), and finally 𝑟𝑥 = −1 and 𝑟𝑦 = 0 when there is only compressive loading 
applied in the 𝑥-direction (see Fig. 6.1(c)). However, considering Eq. (6.8), Eq. 
(6.7) can be rewritten as: 

𝑁(𝑤) = 𝑟𝑥𝑁𝑐𝑟(𝑤𝑏,𝑥𝑥 + 𝑤𝑠,𝑥𝑥) + 𝑟𝑦𝑁𝑐𝑟(𝑤𝑏,𝑦𝑦 + 𝑤𝑠,𝑦𝑦) (6.9) 

The stress resultants in Eq. (6.6) (i.e., 𝑁𝑖𝑗, 𝑀𝑖𝑗
𝑏 , 𝑀𝑖𝑗

𝑠  and 𝑄𝑖𝑗) can be expressed 

in terms of the displacement field unknowns, and the electric potential function (see 
Eq. 5.13 in Chapter 5). One can simply obtain the stability equations in terms of the 
displacement field unknowns and the electric potential function by substituting the 
stress resultants (which are derived in terms of the unknowns) into Eq. (6.6), as: 
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(𝑎11 + 𝜆1)𝑢0‚𝑥𝑥 + 𝑎66𝑢0‚𝑦𝑦 + (𝑎12 + 𝑎66 + 𝜆1)𝑣0‚𝑦𝑥

− (𝑏11 + 𝜆2)𝑤𝑏,𝑥𝑥𝑥 − (𝑏12 + 2𝑏66 + 𝜆2)𝑤𝑏,𝑦𝑦𝑥

− (𝑑11 + 𝜆3)𝑤𝑠,𝑥𝑥𝑥 − (𝑑12 + 2𝑑66 + 𝜆3)𝑤𝑠,𝑦𝑦𝑥

+ 𝜇1𝜙0,𝑥 = 0 (6.10a) 
𝑎66𝑣0‚𝑥𝑥 + (𝑎11 + 𝜆1)𝑣0‚𝑦𝑦 + (𝑎12 + 𝑎66 + 𝜆1)𝑢0‚𝑦𝑥

− (𝑏11 + 𝜆2)𝑤𝑏,𝑦𝑦𝑦 − (𝑏12 + 2𝑏66 + 𝜆2)𝑤𝑏,𝑥𝑥𝑦

− (𝑑11 + 𝜆3)𝑤𝑠,𝑦𝑦𝑦 − (𝑑12 + 2𝑑66 + 𝜆3)𝑤𝑠,𝑥𝑥𝑦

+ 𝜇1𝜙0,𝑦 = 0 (6.10b) 

(𝑏11 + �̂�1)𝑢0‚𝑥𝑥𝑥 + (𝑏12 + 2𝑏66 + �̂�1)𝑢0‚𝑦𝑦𝑥

+ (𝑏12 + 2𝑏66 + �̂�1)𝑣0‚𝑦𝑥𝑥 + (𝑏11 + �̂�1)𝑣0‚𝑦𝑦𝑦

− (𝑓11 + �̂�2)𝑤𝑏,𝑥𝑥𝑥𝑥 − 2(𝑓12 + 2𝑓66 + �̂�2)𝑤𝑏,𝑦𝑦𝑥𝑥

− (𝑓11 + �̂�2)𝑤𝑏,𝑦𝑦𝑦𝑦 − (𝑔11 + �̂�3)𝑤𝑠,𝑥𝑥𝑥𝑥

− 2(𝑔12 + 2𝑔66 + �̂�3)𝑤𝑠,𝑦𝑦𝑥𝑥 − (𝑔11 + �̂�3)𝑤𝑠,𝑦𝑦𝑦𝑦

+ �̂�1𝜙0,𝑥𝑥 + �̂�1𝜙0,𝑦𝑦 + 𝑟𝑥𝑁𝑐𝑟(𝑤𝑏,𝑥𝑥 + 𝑤𝑠,𝑥𝑥)

+ 𝑟𝑦𝑁𝑐𝑟(𝑤𝑏,𝑦𝑦 + 𝑤𝑠,𝑦𝑦) = 0 (6.10c) 
(𝑑11 + �̃�1 + 𝜆4)𝑢0‚𝑥𝑥𝑥 + (𝑑12 + 2𝑑66 + �̃�1 + 𝜆4)𝑢0‚𝑥𝑦𝑦

+ (𝑑12 + 2𝑑66 + �̃�1 + 𝜆4)𝑣0‚𝑦𝑥𝑥

+ (𝑑11 + �̃�1 + 𝜆4)𝑣0‚𝑦𝑦𝑦 − (𝑔11 + �̃�2 + 𝜆5)𝑤𝑏,𝑥𝑥𝑥𝑥

+ 2(−𝑔12 − 2𝑔66 − �̃�2 + 𝜆5)𝑤𝑏,𝑦𝑦𝑥𝑥

− (𝑔11 + �̃�2 − 𝜆5)𝑤𝑏,𝑦𝑦𝑦𝑦 − (ℎ11 + �̃�3 − 𝜆6)𝑤𝑠,𝑥𝑥𝑥𝑥

+ 2(−ℎ12 − 2ℎ66 − �̃�3 + 𝜆6)𝑤𝑠,𝑦𝑦𝑥𝑥

− (ℎ11 + �̃�3 − 𝜆6)𝑤𝑠,𝑦𝑦𝑦𝑦 + 𝑎55(𝑤𝑠,𝑥𝑥 + 𝑤𝑠,𝑦𝑦)

+ (�̃�1 + 𝜇2)𝜙0,𝑥𝑥 + (�̃�1 + 𝜇2)𝜙0,𝑦𝑦

+ 𝑟𝑥𝑁𝑐𝑟(𝑤𝑏,𝑥𝑥 + 𝑤𝑠,𝑥𝑥) + 𝑟𝑦𝑁𝑐𝑟(𝑤𝑏,𝑦𝑦 + 𝑤𝑠,𝑦𝑦) = 0 (6.10d) 

The constant coefficients in Eq. (6.10), i.e., 𝑎𝑖, 𝑏𝑖, 𝑑𝑖, 𝑓𝑖, 𝑔𝑖, ℎ𝑖 (𝑖 =
11,12,66), 𝑎55, 𝜆𝑗, �̂�𝑗, �̃�𝑗 (𝑗 = 1,2,3), 𝜇1, 𝜇2, �̂�1, 𝜇1 and 𝜆𝑘 (𝑘 = 4,5,6) are the same 
as those given in Relations (D.1) to (D.3) of Appendix D, for both SC and OC 
electrical conditions. 

The last governing equation of the smart composite plate can be derived from 
the integral form of Maxwell’s equation, as: 
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𝜆7(𝑤𝑠,𝑥𝑥 + 𝑤𝑠,𝑦𝑦) + 𝜆8(𝑤𝑏,𝑥𝑥 + 𝑤𝑏,𝑦𝑦) + 𝜆9𝜙0 + 𝜆10(𝜙0,𝑥𝑥 + 𝜙0,𝑦𝑦)

+ 𝜆11(𝑢0,𝑥𝑥𝑥 + 𝑣0,𝑦𝑥𝑥 + 𝑢0,𝑥𝑦𝑦 + 𝑣0,𝑦𝑦𝑦)

+ 𝜆12(𝑤𝑏,𝑥𝑥𝑥𝑥 + 2𝑤𝑏,𝑥𝑥𝑦𝑦 + 𝑤𝑏,𝑦𝑦𝑦𝑦)

+ 𝜆13(𝑤𝑠,𝑥𝑥𝑥𝑥 + 2𝑤𝑠,𝑥𝑥𝑦𝑦 +𝑤𝑠,𝑦𝑦𝑦𝑦) = 0 

(6.11) 

The constant coefficients 𝜆𝑖  (𝑖 = 7,8, . . ,13) are the same as those given in 
Relations (D.4) and (D.5) of Appendix D, for both SC and OC conditions. 
 
 

6.4 Solution Procedure 
6.4.1 Navier-type Solution 

Considering simply supported boundary conditions on all the edges of the 
piezoelectric bimorph plate structure, we may have: 

𝑣0 = 𝑤𝑏 = 𝑤𝑠 = 𝑁𝑥𝑥 = 𝑀𝑥𝑥
𝑏 = 𝑀𝑥𝑥

𝑠 = 𝜙0 = 0      on edges 𝑥 = 0, 𝑎 (6.12a) 
𝑢0 = 𝑤𝑏 = 𝑤𝑠 = 𝑁𝑦𝑦 = 𝑀𝑦𝑦

𝑏 = 𝑀𝑦𝑦
𝑠 = 𝜙0 = 0 on edges 𝑦 = 0, 𝑏 (6.12b) 

Based on the Navier method, the following expansions of displacements 
(𝑢0, 𝑣0, 𝑤𝑏 , 𝑤𝑠), and electric potential function 𝜙0 are chosen to automatically 
satisfy the boundary conditions in Eq. (6.12): 

𝑢0(𝑥, 𝑦) = ∑ 𝑈0𝑚𝑛 cos(휂𝑚𝑥) sin(휂𝑛𝑦)

∞

𝑚=1

 

(6.13) 

𝑣0(𝑥, 𝑦) = ∑ 𝑉0𝑚𝑛 sin(휂𝑚𝑥) cos(휂𝑛𝑦)

∞

𝑚=1

 

𝑤𝑏(𝑥, 𝑦) = ∑ 𝑊𝑏𝑚𝑛 sin(휂𝑚𝑥) sin(휂𝑛𝑦)

∞

𝑚=1

 

𝑤𝑠(𝑥, 𝑦) = ∑ 𝑊𝑠𝑚𝑛 sin(휂𝑚𝑥) sin(휂𝑛𝑦)

∞

𝑚=1

 

𝜙0(𝑥, 𝑦) = ∑ 𝜙0𝑚𝑛 sin(휂𝑚𝑥) sin(휂𝑛𝑦)

∞

𝑚=1
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where 휂𝑚 = 𝑚𝜋 𝑎⁄ , 휂𝑛 = 𝑛𝜋 𝑏⁄ , and (𝑈0𝑚𝑛, 𝑉0𝑚𝑛, 𝑊b𝑚𝑛, 𝑊𝑠𝑚𝑛, 𝜙0𝑚𝑛) are 
unknown functions to be determined. Substituting Eq. (6.13) into Eqs. (6.10) and 
(6.11), the closed-form solution of buckling load 𝑁𝑐𝑟 can be obtained from: 

[
 
 
 
 
𝐵11 𝐵12 𝐵13 𝐵14 𝐵15
𝐵21 𝐵22 𝐵23 𝐵24 𝐵25
𝐵31 𝐵32 𝐵33 𝐵34 𝐵35
𝐵41 𝐵42 𝐵43 𝐵44 𝐵45
𝐵51 𝐵52 𝐵53 𝐵54 𝐵55]

 
 
 
 

{
 
 

 
 
𝑈0𝑚𝑛
𝑉0𝑚𝑛
𝑊b𝑚𝑛

𝑊𝑠𝑚𝑛
𝜙0𝑚𝑛}

 
 

 
 

=

{
 
 

 
 
0

0

0

0

0}
 
 

 
 

 (6.14) 

The buckling load term 𝑁𝑐𝑟 is included in the components of the coefficient 
matrix [𝐵]. Therefore, for nontrivial solution, the determinant of the coefficient 
matrix in Eq. (6.14) must be zero. That solution gives closed-form solution for 𝑁𝑐𝑟, 
in which for each choice of 𝑚 and 𝑛, there is a corresponsive unique value of 𝑁𝑐𝑟. 
The critical buckling load is the smallest value of 𝑁𝑐𝑟 (𝑚, 𝑛). 

 
 

6.4.2 Levy-type Solution by Means of State Space Concept 

In Levy-type solution presented in this subsection, it is assumed that the two 
opposite edges of the plate that are parallel to the 𝑥-axis (i.e., edges 𝑦 = 0 and 𝑦 =
𝑏) have simply supported and the other two edges can have any arbitrary conditions 
such as free, simply supported, or clamped conditions. The simply supported 
boundary conditions on two opposite edges parallel to the 𝑥-axis are given in Eq. 
(6.12b), and the boundary conditions for the remaining two edges (at 𝑥 = 0 and 
𝑥 = 𝑎) are: 

Simply supported (S): 

𝑣0 = 𝑤𝑏 = 𝑤𝑠 = 𝑁𝑥𝑥 = 𝑀𝑥𝑥
𝑏 = 𝑀𝑥𝑥

𝑠 = 0 (6.15a) 

Clamped (C): 

𝑢0 = 𝑣0 = 𝑤𝑏 = 𝑤𝑠 = 𝑤𝑏,𝑥 = 𝑤𝑠,𝑥 = 0 (6.15b) 

Free (F): 

𝑁𝑥𝑥 = 𝑁𝑥𝑦 = 𝑀𝑥𝑥
𝑏 = 𝑀𝑥𝑥

𝑠 = 0 (6.15c) 
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𝑀𝑥𝑥,𝑥
𝑏 + 2𝑀𝑥𝑦,𝑦

𝑏 + 𝑁𝑥𝑥
0 (𝑤𝑏,𝑥 + 𝑤𝑠,𝑥) = 0 

𝑀𝑥𝑥,𝑥
𝑠 + 2𝑀𝑥𝑦,𝑦

𝑠 + 𝑄𝑥𝑧 + 𝑁𝑥𝑥
0 (𝑤𝑏,𝑥 + 𝑤𝑠,𝑥) = 0 

Moreover, the edges 𝑥 = 0 and 𝑥 = 𝑎 are considered to be electrically 
isolated, so that the respective electrical boundary conditions can be obtained from 
the following equation: 

∫ 𝐷𝑥(𝑥, 𝑦, 𝑧)
−ℎ

−ℎ−ℎ𝑝

𝑑𝑧 + ∫ 𝐷𝑥(𝑥, 𝑦, 𝑧)
+ℎ+ℎ𝑝

+ℎ

= 0 (6.16) 

Substituting the electrical displacement field into the above equation gives 
us: 

𝑇1𝑤𝑠,𝑥 + 𝑇2𝜙0,𝑥 = 0 
(6.17) 

𝑇1𝑊𝑠𝑚
′ + 𝑇2𝜙0𝑚

′ = 0 

In order to solve the stability equations (6.10) and (6.11) with the prescribed 
boundary conditions, a generalized Levy-type approach in conjunction with state 
space concept is employed to obtain the closed-form solutions. Assuming simply 
supported boundary conditions on 𝑦 = 0 and 𝑦 = 𝑏, the following solutions for the 
transverse displacement unknowns as well as the electric potential are chosen to 
automatically satisfy the boundary conditions: 

𝑢0(𝑥, 𝑦) = ∑𝑈0𝑚(𝑥) sin(휂𝑛𝑦)

∞

𝑛=1

 

(6.18) 

𝑣0(𝑥, 𝑦) = ∑𝑉0𝑚(𝑥) cos(휂𝑛𝑦)

∞

𝑛=1

 

𝑤𝑏(𝑥, 𝑦) = ∑𝑊𝑏𝑚(𝑥) sin(휂𝑛𝑦)

∞

𝑛=1

 

𝑤𝑠(𝑥, 𝑦) = ∑𝑊𝑠𝑚(𝑥) sin(휂𝑛𝑦)

∞

𝑛=1

 

𝜙0(𝑥, 𝑦) = ∑𝜙0𝑚(𝑥) sin(휂𝑛𝑦)

∞

𝑛=1
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Substituting Eq. (6.18) into Eqs. (6.10) and (6.11), a system of ordinary 
differential equations along the 𝑥-axis is obtained. In the following, the resulting 
equations of the case of bimorph plate under SC condition is given: 

𝑈0𝑚
′′ = 𝑍1𝑈0𝑚 + 𝑍2𝑉0𝑚

′ + 𝑍3𝑊𝑏𝑚
′ + 𝑍4𝑊𝑏𝑚

′′′ + 𝑍5𝑊𝑠𝑚
′ + 𝑍6𝑊𝑠𝑚

′′′ (6.19a) 

𝑉0𝑚
′′ = �̃�1𝑈0𝑚

′ + �̃�2𝑉0𝑚 + �̃�3𝑊𝑏𝑚 + �̃�4𝑊𝑏𝑚
′′ + �̃�5𝑊𝑠𝑚 + �̃�6𝑊𝑠𝑚

′′  (6.19b) 

𝜙0𝑚
′′ = 𝛽1𝜙0𝑚 + 𝛽2𝑊𝑏𝑚

′′ + 𝛽3𝑊𝑏𝑚 + 𝛽4𝑊𝑠𝑚
′′ + 𝛽5𝑊𝑠𝑚 (6.19c) 

𝜉1𝑈0𝑚
′′′ + 𝜉2𝑈0𝑚

′ + 𝜉3𝑉0𝑚
′′ + 𝜉4𝑉0𝑚 + 𝜉5𝑊𝑏𝑚

′′′′ + 𝜉6𝑊𝑏𝑚
′′ + 𝜉7𝑊𝑏𝑚

+ 𝜉8𝑊𝑠𝑚
′′′′ + 𝜉9𝑊𝑠𝑚

′′ + 𝜉10𝑊𝑠𝑚 + 𝜉11𝜙0𝑚
′′ + 𝜉12𝜙0𝑚

= 0 
(6.19d) 

𝜉1𝑈0𝑚
′′′ + 𝜉2𝑈0𝑚

′ + 𝜉3𝑉0𝑚
′′ + 𝜉4𝑉0𝑚 + 𝜉5𝑊𝑏𝑚

′′′′ + 𝜉6𝑊𝑏𝑚
′′ + 𝜉7𝑊𝑏𝑚

+ 𝜉8𝑊𝑠𝑚
′′′′ + 𝜉9𝑊𝑠𝑚

′′ + 𝜉10𝑊𝑠𝑚 + 𝜉11𝜙0𝑚
′′ + 𝜉12𝜙0𝑚

= 0 
(6.19e) 

The coefficients 𝑍𝑖 and �̃�𝑖 (𝑖 = 1,2, … ,6), 𝛽𝑖 (𝑖 = 1,2, … ,5), as well as 휁𝑖 and 
휁̃𝑖 (𝑖 = 1,2, … ,12) in Eq. (6.19) are given in Relation (E.1) of Appendix E. 

Substituting Eqs. (6.19a), (6.19b) and (6.19c) into Eq. (6.19d) yields: 

𝛼1𝑊𝑏𝑚
′′′′ + 𝛼2𝑊𝑠𝑚

′′′′ + 𝛼3𝑈0𝑚
′ + 𝛼4𝑉0𝑚 + 𝛼5𝑊𝑏𝑚 + 𝛼6𝑊𝑏𝑚

′′ + 𝛼7𝑊𝑠𝑚
+ 𝛼8𝑊𝑠𝑚

′′ + 𝛼9𝜙0𝑚 = 0 
(6.20) 

Similarly, substituting Eqs. (6.19a), (6.19b) and (6.19c) into Eq. (6.19e) 
yields: 

�̃�1𝑊𝑏𝑚
′′′′ + �̃�2𝑊𝑠𝑚

′′′′ + �̃�3𝑈0𝑚
′ + �̃�4𝑉0𝑚 + �̃�5𝑊𝑏𝑚 + �̃�6𝑊𝑏𝑚

′′ + �̃�7𝑊𝑠𝑚
+ �̃�8𝑊𝑠𝑚

′′ + �̃�9𝜙0𝑚 = 0 
(6.21) 

One can simply derive the following expression for the term 𝑊𝑏𝑚
′′′′ by 

multiplying Eq. (6.20) by 1/𝛼2 and Eq. (6.21) by 1/�̃�2, and performing some 
simple mathematical operations between the resulting equations, as: 

𝑊𝑏𝑚
′′′′ = 𝑍8𝑈0𝑚

′ + 𝑍9𝑉0𝑚 + 𝑍10𝑊𝑏𝑚 + 𝑍11𝑊𝑏𝑚
′′ + 𝑍12𝑊𝑠𝑚 + 𝑍13𝑊𝑠𝑚

′′

+ 𝑍14𝜙0𝑚 
(6.22) 

Similarly, the following expression can be obtained for the term 𝑊𝑠𝑚′′′′, as: 
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𝑊𝑠𝑚
′′′′ = �̃�8𝑈0𝑚

′ + �̃�9𝑉0𝑚 + �̃�10𝑊𝑏𝑚 + �̃�11𝑊𝑏𝑚
′′ + �̃�12𝑊𝑠𝑚 + �̃�13𝑊𝑠𝑚

′′

+ �̃�14𝜙0𝑚 
(6.23) 

The coefficients 𝛼𝑖 and �̃�𝑖 (𝑖 = 1,2, … ,9), as well as 𝑍𝑖 and �̃�𝑖 (𝑖 = 8,9… ,14) 
in Eqs. (6.20) to (6.23) are given in Relation (E.2) of Appendix E. 

Now, one can observe that substituting the Levy-type solution into the 
stability equations, as well as performing some mathematical operations, have led 
to the following set of ordinary equations to be solved through the use of the state 
space concept: 

𝑈0𝑚
′′ = 𝑍1𝑈0𝑚 + 𝑍2𝑉0𝑚

′ + 𝑍3𝑊𝑏𝑚
′ + 𝑍4𝑊𝑏𝑚

′′′ + 𝑍5𝑊𝑠𝑚
′ + 𝑍6𝑊𝑠𝑚

′′′ (6.24a) 

𝑉0𝑚
′′ = �̃�1𝑈0𝑚

′ + �̃�2𝑉0𝑚 + �̃�3𝑊𝑏𝑚 + �̃�4𝑊𝑏𝑚
′′ + �̃�5𝑊𝑠𝑚 + �̃�6𝑊𝑠𝑚

′′  (6.24b) 

𝜙0𝑚
′′ = 𝛽1𝜙0𝑚 + 𝛽2𝑊𝑏𝑚

′′ + 𝛽3𝑊𝑏𝑚 + 𝛽4𝑊𝑠𝑚
′′ + 𝛽5𝑊𝑠𝑚 (6.24c) 

𝑊𝑏𝑚
′′′′ = 𝑍8𝑈0𝑚

′ + 𝑍9𝑉0𝑚 + 𝑍10𝑊𝑏𝑚 + 𝑍11𝑊𝑏𝑚
′′ + 𝑍12𝑊𝑠𝑚 + 𝑍13𝑊𝑠𝑚

′′

+ 𝑍14𝜙0𝑚 (6.24d) 

𝑊𝑠𝑚
′′′′ = �̃�8𝑈0𝑚

′ + �̃�9𝑉0𝑚 + �̃�10𝑊𝑏𝑚 + �̃�11𝑊𝑏𝑚
′′ + �̃�12𝑊𝑠𝑚 + �̃�13𝑊𝑠𝑚

′′

+ �̃�14𝜙0𝑚 (6.24e) 

Such equations can be rewritten in the following matrix form: 

{𝑍′(𝑥)} = [𝑇]{𝑍(𝑥)} (6.25) 

in which: 
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{𝑍(𝑥)} =

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 
𝑈0𝑚
𝑈0𝑚
′

𝑉0𝑚
𝑉0𝑚
′

𝑊𝑏𝑚

𝑊𝑏𝑚
′

𝑊𝑏𝑚
′′

𝑊𝑏𝑚
′′′

𝑊𝑠𝑚
𝑊𝑠𝑚

′

𝑊𝑠𝑚
′′

𝑊𝑠𝑚
′′′

𝜙0𝑚
𝜙0𝑚
′ }
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 (6.26) 

and: 

[𝑇] =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0 1 0 0 0 0 0 0 0 0 0 0 0 0
𝑍1 0 0 𝑍2 0 𝑍3 0 𝑍4 0 𝑍5 0 𝑍6 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 �̃�1 �̃�2 0 �̃�3 0 �̃�4 0 �̃�5 0 �̃�6 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 𝑍8 𝑍9 0 𝑍10 0 𝑍11 0 𝑍12 0 𝑍13 0 𝑍14 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 �̃�8 �̃�9 0 �̃�10 0 �̃�11 0 �̃�12 0 �̃�13 0 �̃�14 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 𝛽3 0 𝛽2 0 𝛽5 0 𝛽4 0 𝛽1 0]

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 (6.27) 

A formal solution of Eq. (6.25) is given by: 

{𝑍(𝑥)} = 𝑒𝑇𝑥{𝐾}14×1 (6.28) 

where {𝐾} is a constant column vector determined from the boundary 
conditions of the two edges parallel to the 𝑦-axis (𝑥 = 0 and 𝑥 = 𝑎), and 𝑒𝑇𝑥 is the 
general matrix solution of Eq. (6.25), which can be expressed by: 



Buckling analysis of piezoelectric bimorph plates 193 
 

𝑒𝑇𝑥 = [𝐸] [
𝑒𝜆1𝑥  0
 ⋱  
0  𝑒𝜆14𝑥

] [𝐸]−1 (6.29) 

where 𝜆𝑖 (𝑖 = 1,2, …14) and [𝐸] are distinct eigenvalues and the 
corresponding matrix of eigenvectors, respectively, associated with the matrix [𝑇]. 
Substituting Eq. (6.28) into the appropriate fourteen boundary conditions of the two 
edges along the 𝑦-axis (𝑥 = 0 and 𝑥 = 𝑎), a homogeneous system of equations is 
obtained, as: 

[𝑀]14×14{𝐾}14×1 = 0 (6.30) 

The buckling load 𝑁𝑐𝑟(𝑛) associated with the 𝑛th mode can be obtained by 
setting the determinant of matrix [𝑀] equal to zero. The critical buckling load is the 
smallest value of 𝑁𝑐𝑟(𝑛). It should be noted that this solution procedure cannot 
provide buckling load directly because the undetermined buckling load 𝑁𝑐𝑟 is 
included in matrix [𝑇]. Hence, a trial and error procedure needs to be used to obtain 
the buckling results. The following iteration procedure has been used in the present 
study to calculate the critical bucking load: 

 
Step 1. Assign a small initial value to 𝑁𝑐𝑟. 
Step 2. Form matrix T and compute the eigenvalues 𝜆𝑖 and eigenvectors [𝐸] of [𝑇]. 
Step 3. Form matrix [𝑀] on the basis of appropriate boundary conditions given in 

Eqs. (6.15) and (6.17). 
Step 4. Check if the determinant of matrix [𝑀] changes sign. 

(a) If no, increase the buckling load and go back to Step 2. 
(b) If yes, decrease the buckling load by a small amount and go to next step. 

Step 5. Check if the relative error between two successive iterations is within a 
given tolerance, stop the iteration. Otherwise, return to Step 2. 

 
 

6.5 Numerical Results 
6.5.1 Model Validation 
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For the sake of verification of the presented formulation, the numerical results are 
first compared with those of some studies available in the literature. Table 2 
compares the extracted results with the spline strip solution of Shufrin and 
Eisenberger [201] for the buckling response of a simply supported isotropic 
rectangular plate. The results are given for rectangular plates with three different 
thickness-length ratios, namely 0.1, 0.2 and 0.3, subjected to both biaxial and 
uniaxial compressive in-plane loading conditions. 
 
Table 6.1: Comparison of the buckling loads obtained from the present model with those 
of Ref. [201], for a simply supported plate 

𝑎

𝑏
 

2ℎ

𝑎
 Source  

Loading Type 

𝑟𝑥 = −1, 𝑟𝑦 = 0 𝑟𝑥 = 0, 𝑟𝑦 = −1 𝑟𝑥 = −1, 𝑟𝑦 = −1 

1 

0.1 
FSDT [201]  3.7865 3.7865 1.8932 
TSDT [201]  3.7866 3.7866 1.8933 
Present  3.7854 3.7854 1.8920 

0.2 
FSDT [38]  3.2637 3.2637 1.6327 
Present  3.2652 3.2652 1.6325 

0.3 
FSDT [201]  2.6586 2.6586 1.3293 
TSDT [201]  2.6586 2.6586 1.3293 
Present  2.6586 2.6586 1.3292 

2 

0.1 
FSDT [201]  3.7865 1.5093 1.2074 
TSDT [201]  3.7866 1.5093 1.2075 
Present  3.7862 1.5075 1.2074 

0.2 
FSDT [201]  3.2637 1.3694 1.0955 
TSDT [201]  3.2653 1.3697 1.0958 
Present  3.2653 1.3696 1.0956 

0.3 
FSDT [201]  2.5726 1.1862 0.9498 
TSDT [201]  2.5839 1.1873 0.9498 
Present  2.5839 1.1872 0.9498 

One can observe the excellent agreement between the results, confirming 
reliability and accuracy of the analytical model presented in this chapter. 
 
 

6.5.2 Parametric Study and Discussion 
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In this section, a piezoelectric bimorph rectangular plate with two opposite edges 
simply supported, and the other two edges having arbitrary boundary conditions is 
considered. The core layer of the coupled plate is assumed to be made of saturated 
porous materials, that is, Tennessee marble, here. For convenience, a two letter 
notation is used to describe the boundary conditions of the remaining edges. For 
instance, FC indicates that one edge is free (F) and the other is clamped (C). Three 
different in-plane loading conditions are used in this study: (i) biaxial compression 
along the 𝑥- and 𝑦-axis; (ii) compression along the 𝑥-axis, while tension along 𝑦-
axis; and (iii) uniaxial compression along 𝑥-axis (see Fig. 6.3). The following 
material properties are used for the substrate layers, and piezoelectric layers: 

Substrate layer [16]: 

Tennessee marble: 𝐺0 = 24 GPa, 𝜈 = 0.25, 𝐵 = 0.51 

Piezoelectric layers: 

PZT-5H: Electrical and mechanical properties are given in Table 1.2 in Chapter 1. 

As a primary observation, the electromechanical effect of piezoelectric layers 
on the buckling behavior of the smart plate is investigated in Fig. 6.2. In general, 
regardless of the electrical condition, the figure demonstrate that 𝑁𝑐𝑟 of the coupled 
piezoelectric system is considerably higher with respect to that of the core porous 
plate without embedded piezoelectric layers. When the system is in OC mode, the 
critical buckling load is higher with respect to its counterpart in SC mode, i.e., zero 
electric potential on the top and bottom surfaces of the piezoelectric layers. This 
could be attributed to the prominence of electrical effects in the OC case with 
respect to the SC one, indeed, the effect induced by piezoelectric layers in the SC 
mode is majorly concerned with their mechanical characteristics and the 
corresponding electrical effects are negligible. This point is clear in the figure, 
where the curves associated to the SC and OC smart plates alongside that of a plate, 
when the electrical effects are absent, i.e. 𝑒𝑖𝑗 = 0 [34]. As observed, the plot of the 
SC case lies almost perfectly on the top of the curve corresponding to the plate with 
missing electrical effects. 
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Fig. 6.2: The electromechanical effect of piezoelectric layers on critical buckling load 
(SS) 

 
One of the main focuses of this present work concerns with the effect of 

porosity on the buckling response of the bimorph plate under investigation. In Fig. 
6.3 are plotted variation of the critical buckling load with respect to the porosity 
parameter for the smart porous plate having different porosity distribution profiles. 
It must be mentioned that higher porosity coefficient induces larger occupying pore 
volume at the initial step and hence higher population of pores at the substrate layer, 
leading to overall decrease in the effective rigidity of the plate. The effect promoted 
by the decrease in rigidity is shown in the figure, where the 𝑁𝑐𝑟 drops substantially 
as 𝑒0 grows. It is clear from the figure that the drop in the buckling load (as 
𝑒0 increases) is the most for the Pattern I (or symmetric 2), followed by the Pattern 
III (asymmetric), Pattern IV (uniform), and Patterns II (symmetric 1), respectively. 
Note that the recognized trends remains true regardless of the adopted electrical and 
mechanical boundary conditions and geometrical parameters. Furthermore, it is 
realized that the corresponding decrease for plates with piezoelectric layers is 
smaller with respect to that without the layers. 
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Fig. 6.3: The combined effect of porosity parameter and porosity distribution on the 
critical buckling load (SS) 

 
Are presented in Fig. 6.4 variation of the buckling load versus the porosity 

parameter, for the three different loading conditions, as are: i) biaxial compressive 
loading of the same magnitude acting on all the plate edges, ii) biaxial compressive 
(on edges parallel to 𝑥-axis) and tension loading (on edges parallel to 𝑦-axis) of the 
same magnitude, and iii) uniaxial compressive loading acting on edges parallel to 
𝑥-axis. As expected, the first type of loading drives the system towards buckling 
failure earlier with respect to other two cases, followed by the third and the second 
type, in the order given. In fact, exceeding from the safety threshold in terms of 
stress, when tensile loading act on horizontal edges, occurs the latest due to the 
induction of higher equivalent rigidity. Moreover, it is observed from the figure, in 
case of biaxial compressive loading, that the buckling phenomenon occurs in a 
higher mode (here, mode (2,1)), meaning that the first mode extracted from the 
mathematical framework is not essentially the fundamental buckling mode, and the 
phenomenon may take place by exerting even a smaller 𝑁cr, in terms of magnitude, 
which is produced by higher modes. In a general sense, the buckling mode transition 
is seen for the plates with stiffer edge conditions, especially when the plates undergo 
dissimilar loading types on it corresponding horizonal and vertical edges.  
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Fig. 6.4: The effect of porosity parameter on the critical buckling load for the bimorph 
plate under different loading conditions (SS) 

 
In Fig. 6.5, variation of the critical buckling load against the pore pressure 

coefficient 𝐵 is plotted for the bimorph plate with various porosity distributions. 
Form the figure, an increment in 𝑁cr is observed for all the porosity profiles, when 
the pore fluid compressibility, i.e., 𝐵, increases. This indeed refers to the increasing 
equivalent stiffness of the plate as the result of increase in pore pressure. As the 
matter of fact, the entrapment of fluid in the interconnected network of pores causes 
the solid and fluid to behave as an integrated body, sustaining the forces the applied 
to the boundaries in a more productive way with respect to the case in which the 
pores are free of fluid. For this reason, the buckling load of a fluid-saturated plate 
is higher comparing with the corresponding fluid-free plate. 
 

 
Fig. 6.5: The effect of porosity parameter on the critical buckling load for the bimorph 
plate under different loading conditions (SS) 
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In Tables 6.2 to 6.4, the buckling load is calculated for rectangular porous 
plates of different aspect ratio and thickness-length ratio for several porosity 
coefficients under various saturation and loading conditions. Each table is devoted 
to presenting the data for two of the six possible Levy-type boundary conditions. 
Note that only the principal buckling mode is given in the tables. Several point can 
be realized from the tables including the effect of geometrical parameters, loading 
and saturation on the critical buckling load of the plate. As can be seen, the 
magnitude of force required for reaching the unstable phase, is related to the type 
of constraints applied on edges. For instance, if an edge is clamped, higher loads 
are requited for buckling as compared to the similar system with this edge adopting 
free and simply support boundary conditions. This indeed is concerned with degrees 
of freedom being divested by the boundary condition of the edge. Some of the 
buckling loads 𝑁cr shown in the tables are accompanied by the “*” symbol, 
implying the occurrence of buckling in a higher mode, meaning that the first mode 
extracted from the mathematical framework presented above is not essentially the 
fundamental buckling mode, and the phenomenon may take place by exerting even 
a smaller 𝑁cr, in terms of magnitude, which is produced by higher modes. In a 
general sense, the buckling mode transition is seen for the plates with stiffer edge 
conditions including CC, SC, and SS, especially when the plates undergo dissimilar 
loading types on it corresponding horizonal and vertical edges. The effect of 
geometrical parameters on the critical buckling load of the plates under studying is 
also demonstrated in tables. Tables imply that an increase in the value of thickness-
length ratio, when all other parameters are fixed, leads to higher buckling loads. 
The underlying reason may be realized intuitively since higher 2ℎ/𝑎 is in direct 
correspondence to the equivalent rigidity of the plate. Based on the tables, doubling 
the value of 2ℎ/𝑎 is accompanied by a few hundred percent increase in 𝑁cr. Thus, 
higher thicknesses may be considered as a qualified solution for avoiding low 𝑁cr 
in systems; however, the geometrical and weight constraints of the desired 
component are of importance as well. Regarding the effect of aspect ratio on the 
output, one observes that 𝑁cr rises as the aspect ratio increases for all boundary 
conditions expect for the plate with vertical edges free. In fact, the plate under FF 
boundary condition behaves like a beam which becomes slenderer by increase in 
𝑎/𝑏, and thereby a decrease in 𝑁cr. 
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Table 6.2: The critical buckling load (MN/m) for a rectangular plate with FF and SS 
boundary conditions (ℎ𝑝/2ℎ = 0) 

𝑒0   
𝑎 𝑏⁄ = 0.5 𝑎 𝑏⁄ = 1 

2ℎ/𝑎 = 0.1 2ℎ/𝑎 = 0.2 2ℎ/𝑎 = 0.1 2ℎ/𝑎 = 0.2 

(𝑟𝑥 = −1, 𝑟𝑦 = +1), 𝐹𝐹 boundary condition 
0 Homogenous  50.544 375.313 49.874 370.233 
0.3 Fluid-free  41.203 305.562 40.6580 301.426 
 Fluid-saturated  42.161 312.045 41.514 307.901 
0.5 Fluid-free  34.167 253.489 33.714 250.058 
 Fluid-saturated  35.578 262.983 34.974 258.502 
(𝑟𝑥 = −1, 𝑟𝑦 = 0), 𝐹𝐹 boundary condition 
0 Homogenous  50.289 373.339 49.500 367.390 
0.3 Fluid-free  40.996 303.955 40.350 299.150 
 Fluid-saturated  41.906 310.093 41.144 304.409 
0.5 Fluid-free  33.995 252.156 33.460 248.140 
 Fluid-saturated  35.331 261.159 34.633 255.958 
(𝑟𝑥 = 𝑟𝑦 = −1), 𝐹𝐹 boundary condition 
0 Homogenous  49.434 365.310 48.641 359.865 
0.3 Fluid-free  40.432 297.323 39.650 292.972 
 Fluid-saturated  41.036 302.050 40.304 297.096 
0.5 Fluid-free  33.416 247.600 32.880 243.050 
 Fluid-saturated  34.506 253.442 33.853 249.220 
(𝑟𝑥 = −1, 𝑟𝑦 = +1), 𝑆𝑆 boundary condition 
0 Homogenous  106.170 775.416 387.708(*) 2303.979(*) 
0.3 Fluid-free  86.541 631.062 315.531(*) 1867.216(*) 
 Fluid-saturated  88.752 645.681 322.840(*) 1898.756(*) 
0.5 Fluid-free  71.765 523.586 261.793(*) 1551.427(*) 
 Fluid-saturated  74.992 544.897 272.448(*) 1597.169(*) 
(𝑟𝑥 = −1, 𝑟𝑦 = 0), 𝑆𝑆 boundary condition 
0 Homogenous  79.628 581.562 200.029 1392.047 
0.3 Fluid-free  64.906 473.297 162.992 1131.690 
 Fluid-saturated  66.564 484.261 167.072 1156.091 
0.5 Fluid-free  53.824 392.689 135.178 939.285 
 Fluid-saturated  56.244 408.673 141.132 974.816 
(𝑟𝑥 = 𝑟𝑦 = −1), 𝑆𝑆 boundary condition 
0 Homogenous  63.702 465.250 100.014 696.023 
0.3 Fluid-free  51.925 378.637 81.496 565.845 
 Fluid-saturated  53.251 387.409 83.535 578.045 
0.5 Fluid-free  43.059 314.151 67.588 469.642 
 Fluid-saturated  44.995 326.938 70.566 487.407 
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Table 6.3: The critical buckling load (MN/m) for a rectangular plate with CC and SC 
boundary conditions (ℎ𝑝/2ℎ = 0) 

𝑒0   
𝑎 𝑏⁄ = 0.5 𝑎 𝑏⁄ = 1 

2ℎ/𝑎 = 0.1 2ℎ/𝑎 = 0.2 2ℎ/𝑎 = 0.1 2ℎ/𝑎 = 0.2 

(𝑟𝑥 = −1, 𝑟𝑦 = +1), 𝐶𝐶 boundary condition 
0 Homogenous  134.077 933.601 466.800(*) 2573.541(*) 
0.3 Fluid-free  109.246 759.137 379.568(*) 2083.840(*) 
 Fluid-saturated  111.968 775.639 387.819(*) 2115.674(*) 
0.5 Fluid-free  90.607 630.089 315.044(*) 1732.426(*) 
 Fluid-saturated  94.580 654.126 327.063(*) 1778.519(*) 
(𝑟𝑥 = −1, 𝑟𝑦 = 0), 𝐶𝐶 boundary condition 
0 Homogenous  96.472 681.242 340.621(*) 1902.521(*) 
0.3 Fluid-free  78.615 554.051 277.026(*) 1540.593(*) 
 Fluid-saturated  80.591 566.289 283.145(*) 1564.386(*) 
0.5 Fluid-free  65.199 459.808 229.904(*) 1280.592(*) 
 Fluid-saturated  68.083 477.638 238.819(*) 1315.059(*) 
(𝑟𝑥 = 𝑟𝑦 = −1), 𝐶𝐶 boundary condition 
0 Homogenous  74.608 530.789 179.215 1089.372 
0.3 Fluid-free  60.802 431.743 145.871 883.365 
 Fluid-saturated  62.336 441.375 149.274 898.880 
0.5 Fluid-free  50.424 358.280 121.023 733.8508 
 Fluid-saturated  52.664 372.315 125.985 756.3798 
(𝑟𝑥 = −1, 𝑟𝑦 = +1), 𝑆𝐶 boundary condition 
0 Homogenous  118.406 846.9825 423.491(*) 2431.200(*) 
0.3 Fluid-free  96.499 689.037 344.518(*) 1969.496(*) 
 Fluid-saturated  98.938 704.559 352.279(*) 2001.255(*) 
0.5 Fluid-free  80.028 571.783 285.891(*) 1636.854(*) 
 Fluid-saturated  83.589 594.403 297.201(*) 1682.881(*) 
(𝑟𝑥 = −1, 𝑟𝑦 = 0), 𝑆𝐶 boundary condition 
0 Homogenous  86.769 625.012 276.889 1791.870 
0.3 Fluid-free  70.719 508.516 225.489 1454.766 
 Fluid-saturated  72.514 520.067 230.924 1482.983 
0.5 Fluid-free  58.647 421.955 187.048 1208.098 
 Fluid-saturated  61.267 438.790 194.978 1249.126 
(𝑟𝑥 = 𝑟𝑦 = −1), 𝑆𝐶 boundary condition 
0 Homogenous  68.055 492.070 129.743 854.051 
0.3 Fluid-free  55.469 400.381 105.674 693.560 
 Fluid-saturated  56.879 409.522 108.247 707.333 
0.5 Fluid-free  45.999 332.216 87.654 575.867 
 Fluid-saturated  48.058 345.540 91.408 595.899 

 



202                     Buckling analysis of piezoelectric bimorph plates 
 

Table 6.4: The critical buckling load (MN/m) for a rectangular plate with CF and SF 
boundary conditions (ℎ𝑝/2ℎ = 0) 

𝑒0   
𝑎 𝑏⁄ = 0.5 𝑎 𝑏⁄ = 1 

2ℎ/𝑎 = 0.1 2ℎ/𝑎 = 0.2 2ℎ/𝑎 = 0.1 2ℎ/𝑎 = 0.2 

(𝑟𝑥 = −1, 𝑟𝑦 = +1), C𝐹 boundary condition 
0 Homogenous  62.469 458.846 124.922 869.720 
0.3 Fluid-free  50.866 373.642 101.913 707.216 
 Fluid-saturated  52.019 381.149 103.736 718.919 
0.5 Fluid-free  42.199 309.868 84.389 586.985 
 Fluid-saturated  43.872 321.091 88.765 604.147 
(𝑟𝑥 = −1, 𝑟𝑦 = 0), C𝐹 boundary condition 
0 Homogenous  57.569 423.879 84.606 601.172 
0.3 Fluid-free  46.928 345.043 68.975 489.029 
 Fluid-saturated  47.917 351.728 69.992 495.339 
0.5 Fluid-free  38.915 286.261 57.180 406.110 
 Fluid-saturated  40.369 295.876 58.997 415.405 
(𝑟𝑥 = 𝑟𝑦 = −1), C𝐹 boundary condition 
0 Homogenous  51.991 381.311 58.869 418.053 
0.3 Fluid-free  42.377 310.366 47.971 340.086 
 Fluid-saturated  43.037 316.666 48.391 342.362 
0.5 Fluid-free  35.145 257.500 39.785 282.212 
 Fluid-saturated  36.241 264.074 40.458 285.959 
(𝑟𝑥 = −1, 𝑟𝑦 = +1), 𝑆𝐹 boundary condition 
0 Homogenous  60.462 446.954 99.810 728.642 
0.3 Fluid-free  49.320 363.852 81.369 591.968 
 Fluid-saturated  50.419 371.450 83.013 602.454 
0.5 Fluid-free  40.871 301.875 67.468 491.975 
 Fluid-saturated  42.530 312.972 71.234 506.656 
(𝑟𝑥 = −1, 𝑟𝑦 = 0), 𝑆𝐹 boundary condition 
0 Homogenous  56.224 415.510 72.526 528.882 
0.3 Fluid-free  45.832 338.255 59.115 430.437 
 Fluid-saturated  46.821 344.840 60.116 436.789 
0.5 Fluid-free  38.006 280.620 49.023 357.127 
 Fluid-saturated  39.459 290.370 50.516 366.634 
(𝑟𝑥 = 𝑟𝑦 = −1), 𝑆𝐹 boundary condition 
0 Homogenous  51.512 378.024 54.704 395.036 
0.3 Fluid-free  41.968 310.229 44.938 321.460 
 Fluid-saturated  42.883 311.479 45.085 324.336 
0.5 Fluid-free  34.803 255.308 36.974 266.724 
 Fluid-saturated  36.241 261.130 37.749 271.196 
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6.6 Summary and Conclusions 

The numerical results presented in the previous section enable one to draw the 
following conclusions: 

• Generalized Levy-type solutions are obtained for the linear buckling 
problem of porous piezoelectric bimorph thick plates using the four-variable 
higher-order theory. It is shown that the state space concept can be used to 
obtain exact solutions of the critical buckling loads for thin, moderately 
thick, and thick piezoelectric bimorph plates. 

• It is revealed that the increase in pore volume fraction is accompanied by a 
decrease in the critical buckling load.  

• Increasing pore pressure coefficient leads to higher critical buckling loads.  
• Sensitivity of the buckling load growth, as the consequence of increasing 

pore fluid compressibility, to various parameters including the loading and 
boundary conditions is demonstrated.  

• The inclusion of piezoelectric layers to the core porous plate causes a 
substantial rise in the associated buckling load.  

• Higher buckling loads are met, when the piezoelectric layers are in open-
circuit mode with respect to short-circuit case due to the prominence of 
electrical effects.  



 
 

 
 
 
Chapter 7 
 
Free Vibration Analysis of 
Piezoelectric Bimorph/Unimorph 
Doubly-Curved Shells 
 
7.1 Overview 

For relatively complicated structural configurations, i.e., piezoelectric 
bimorph/unimorph doubly-curved panels, which are usually studied through 
numerical solutions, an analytical solution using Navier’s method is provided in 
this chapter. The problem of free vibration of such structures with porous substrate 
is considered here, and the respective governing equations are derived based on the 
first-order shear deformation theory (FSDT). The formulation given here should be 
preferred for thin, and moderately-thick shells, due to the assumptions of the 
adopted theory concerning the effect of transverse shear deformations. Applying 
Navier’s technique to the governing equations, a closed-form expression is obtained 
for the free vibration response of the smart panel. After conducting several 
comparison examples for the validation of the model, extensive numerical results 
are presented for the smart bimorph/unimorph panel having different geometries 
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such as spherical, cylindrical, hyperbolic paraboloidal, and plate shapes. The 
presented results cover the effect of a wide range of parameters such as piezoelectric 
characteristics, porosity, and other design parameters. The analysis confirms that 
the mentioned parameters play major roles on the natural frequency response of the 
smart system and must be carefully considered in the mechatronic design of this 
smart structure, although they allow to tailor the system behavior to the selected 
application. Moreover, It is shown that the model developed in this chapter can be 
used as a benchmark solution, and the obtained results are found suitable for 
validating the accuracy and reliability of numerical approaches. 

The results of the research work presented in this chapter was published in 
the journal Actuators [202]. 
 
 

7.2 Problem Modelling 

The layouts of the bimorph and unimorph doubly-curved panels made of porous 
media and piezoelectric materials are presented in Fig. 7.1. As is shown, the 
bimorph structure is composed of a porous core integrated with two identical 
thickness-poled piezoelectric layers (ℎ𝑝𝑡 = ℎ𝑝𝑏), while the unimorph panel has 
only one piezoelectric layer (ℎ𝑝𝑏 = 0) mounted on the top surface of its substrate. 
Both the panels have arc lengths 𝐿1 and 𝐿2, and 𝑅𝑥 and 𝑅𝑦 are the curvature radii 
of the mid-surface of the substrate layer. Also, 2ℎ is the thickness of the substrate 
and ℎ𝑝𝑡 and ℎ𝑝𝑏 are corresponded to the thicknesses of the top and bottom 
piezoelectric layers, respectively. To extract the mathematical formulations, the 
origin of the coordinate system is located on the middle-surface of the substrate 
layer. 
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(a) Bimorph panel 

 
(b) Unimorph panel 

Fig. 7.1: Sketch of porous bimorph and unimorph doubly curved panels 

 
In the coupled structures given in Fig. 7.1, it is assumed that the piezoelectric 

layers are perfectly bonded on the substrate layer with an adhesive layer of 
negligible thickness, therefore there is no relative displacement between the layers 
of the sandwich panel. For the variation of porosities within the porous substrate, 
only the case of asymmetric profile is considered in this work (see Fig. 6.2(c)). 
Therefore, the respective mechanical properties are (referred to Eqs. (6.1) and 
(6.2)): 
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𝐸(𝑧) = 𝐸0 (1 − 𝑒0 cos (
𝜋𝑧

4ℎ
+
𝜋

4
)) 

(7.1) 
𝐺(𝑧) = 𝐺0 (1 − 𝑒0 𝑐𝑜𝑠 (

𝜋𝑧

4ℎ
+
𝜋

4
)) 

𝜌(𝑧) = 𝜌0 (1 − 𝑒𝑚 cos (
𝜋𝑧

4ℎ
+
𝜋

4
)) 

𝑒𝑚 = 1 − √1 − 𝑒0 

Note that the definition of the parameters of Eq. (7.1) are already given the 
preceding chapters. The constitutive equations of both porous media and 
piezoelectric materials were also given in the preceding chapters, therefore, it is 
avoided to repeat those equations here. 

In this present analysis, the first-order shear deformation theory is employed, 
in which the effects of the transverse shear deformations are taken into account. 
Based on this theory, the components of mechanical displacement filed can be 
expressed as: 

𝑈𝑥(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢0(𝑥, 𝑦, 𝑡) + 𝑧𝜓𝑥(𝑥, 𝑦, 𝑡) 

(7.2) 𝑈𝑦(𝑥, 𝑦, 𝑧, 𝑡) = 𝑣0(𝑥, 𝑦, 𝑡) + 𝑧𝜓𝑦(𝑥, 𝑦, 𝑡) 

𝑈𝑧(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤0(𝑥, 𝑦, 𝑡) 

where 𝑢0, 𝑣0 and 𝑤0 are the mechanical displacements of any point of the shell 
mid-surface along the orthogonal curvilinear coordinates. The functions 𝜓𝑥 and 𝜓𝑦 
represent the rotations of normal to mid-plane about 𝑦 and 𝑥 axes, respectively, and 
t is the time variable. One can simply derive the strain field using Eq. (7.2), as: 

휀𝑥𝑥 = 𝑢0,𝑥 + 𝑧𝜓𝑥,𝑥 +
𝑤0
𝑅𝑥

 

(7.3) 

휀𝑦𝑦 = 𝑣0,𝑦 + 𝑧𝜓𝑦,𝑦 +
𝑤0
𝑅𝑦

 

휀𝑧𝑧 = 0 
𝛾𝑥𝑦 = 𝑢0,𝑦 + 𝑣0,𝑥 + 𝑧(𝜓𝑥,𝑦 + 𝜓𝑦,𝑥) 

𝛾𝑥𝑧 = 𝜓𝑥 + 𝑤0,𝑥 −
𝑢0
𝑅𝑥
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𝛾𝑦𝑧 = 𝜓𝑦 + 𝑤0,𝑦 −
𝑣0
𝑅𝑦

 

Moreover, it is assumed that the electric potential has nonlinear variations 
with respect to the 𝑧-coordinate. In the following relations, the electric potential 
functions are given for the top and bottom piezoelectric layers, respectively: 

𝜙(𝑥, 𝑦, 𝑧, 𝑡) = 𝐴𝑧 + 𝐵 + (1 − (
2𝑧 − 2ℎ − ℎ𝑝𝑡

ℎ𝑝𝑡
)

2

)𝜙0(𝑥, 𝑦, 𝑡) 

(7.4) 

𝜙(𝑥, 𝑦, 𝑧, 𝑡) = 𝐶𝑧 + 𝐷 + (1 − (
−2𝑧 − 2ℎ − ℎ𝑝𝑏

ℎ𝑝𝑏
)

2

)𝜙0(𝑥, 𝑦, 𝑡) 

where the function 𝜙0 is the electric potential function in the mid-surface of 
piezoelectric layers; 𝐴, 𝐵, 𝐶 and 𝐷(𝑥, 𝑦, 𝑡) are four unknown functions, which equal 
to zero for the case of short circuit (SC) condition, while they are obtained for the 
open circuit (OC) as follows: 

𝐴 =
𝑒31
𝛯33

(𝑢0,𝑥 + 𝑣0,𝑦 + (ℎ + ℎ𝑝𝑡)[𝜓𝑥,𝑥 + 𝜓𝑦,𝑦] + (
1

𝑅𝑥
+
1

𝑅𝑦
)𝑤0)

+
4𝜙0
ℎ𝑝𝑡

 

(7.5) 𝐶 =
𝑒31
𝛯33

(𝑢0,𝑥 + 𝑣0,𝑦 − (ℎ + ℎ𝑝𝑏)[𝜓𝑥,𝑥 + 𝜓𝑦,𝑦] + (
1

𝑅𝑥
+
1

𝑅𝑦
)𝑤0)

−
4𝜙0
ℎ𝑝𝑏

 

𝐵 = −𝐴ℎ 

𝐷 = +𝐶ℎ 

 
 

7.3 Governing Equations 

Employing Hamilton’s principle, the following five equations of motion are 
obtained for doubly-curved shells based on the first-order shear deformation theory: 
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𝑁𝑥𝑥,𝑥 + 𝑁𝑥𝑦,𝑦 +
𝑄𝑥𝑧
𝑅𝑥

= 𝐼0�̈�0 + 𝐼1�̈�𝑥 

(7.6) 

𝑁𝑥𝑦,𝑥 + 𝑁𝑦𝑦,𝑦 +
𝑄𝑦𝑧

𝑅𝑦
= 𝐼0�̈�0 + 𝐼1�̈�𝑦 

𝑀𝑥𝑥,𝑥 +𝑀𝑥𝑦,𝑦 − 𝑄𝑥𝑧 = 𝐼1�̈�0 + 𝐼2�̈�𝑥 

𝑀𝑥𝑦,𝑥 +𝑀𝑦𝑦,𝑦 − 𝑄𝑦𝑧 = 𝐼1�̈�0 + 𝐼2�̈�𝑦 

𝑄𝑥𝑧,𝑥 + 𝑄𝑦𝑧,𝑦 −
𝑁𝑥𝑥
𝑅𝑥

−
𝑁𝑦𝑦

𝑅𝑦
= 𝐼0�̈�0 

where the stress resultants 𝑁𝑖𝑗, 𝑀𝑖𝑗 and 𝑄𝑖𝑗, and the mass inertias 𝐼𝑖 are defined as 
follows: 

(𝑁𝑥𝑥, 𝑁𝑥𝑦, 𝑁𝑦𝑦) = ∫ (𝜎𝑥𝑥, 𝜎𝑥𝑦, 𝜎𝑦𝑦)
+ℎ+ℎ𝑝𝑡

−ℎ−ℎ𝑝𝑏

𝑑𝑧 

(7.7) 
(𝑀𝑥𝑥, 𝑀𝑥𝑦, 𝑀𝑦𝑦) = ∫ (𝜎𝑥𝑥, 𝜎𝑥𝑦, 𝜎𝑦𝑦)

+ℎ+ℎ𝑝𝑡

−ℎ−ℎ𝑝𝑏

𝑧𝑑𝑧 

(𝑄𝑥𝑧, 𝑄𝑦𝑧) = ∫ (𝜎𝑥𝑧 , 𝜎𝑦𝑧)
+ℎ+ℎ𝑝𝑡

−ℎ−ℎ𝑝𝑏

𝑑𝑧 

(𝐼0, 𝐼1, 𝐼2) = ∫ 𝜌(𝑧)(1, 𝑧, 𝑧2)
+ℎ+ℎ𝑝𝑡

−ℎ−ℎ𝑝𝑏

𝑑𝑧 

To derive the electromechanical governing equations, the stress resultants 
must be obtained in terms of mechanical displacement components (𝑢0, 𝑣0, 𝑤0) and 
electric potential (𝜙0), through substitution of the constitutive equation of both 
porous substrate and piezoelectric layers into Eq. (7.7). The resulting equation are: 

𝑁𝑥𝑥 = 𝑎11𝑢0,𝑥 + 𝑎12𝑣0,𝑦 + 𝑏11𝜓𝑥,𝑥 + 𝑏12𝜓𝑦,𝑦 + 𝑝11𝑤0 + 𝛽5𝜙0 

(7.8) 

𝑁𝑦𝑦 = 𝑎12𝑢0,𝑥 + 𝑎11𝑣0,𝑦 + 𝑏12𝜓𝑥,𝑥 + 𝑏11𝜓𝑦,𝑦 + 𝑝11
′ 𝑤0 + 𝛽5𝜙0 

𝑁𝑥𝑦 = 𝑎66(𝑢0,𝑦 + 𝑣0,𝑥) + 𝑏66(𝜓𝑥,𝑦 + 𝜓𝑦,𝑥) 

𝑀𝑥𝑥 = 𝑏11𝑢0,𝑥 + 𝑏12𝑣0,𝑦 + 𝑑11𝜓𝑥,𝑥 + 𝑑12𝜓𝑦,𝑦 + 𝑞11𝑤0 + 𝛽6𝜙0 

𝑀𝑦𝑦 = 𝑏12𝑢0,𝑥 + 𝑏11𝑣0,𝑦 + 𝑑12𝜓𝑥,𝑥 + 𝑑11𝜓𝑦,𝑦 + 𝑞11
′ 𝑤0 + 𝛽6𝜙0 

𝑀𝑥𝑦 = 𝑏66(𝑢0,𝑦 + 𝑣0,𝑥) + 𝑑66(𝜓𝑥,𝑦 + 𝜓𝑦,𝑥) 
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𝑄𝑥𝑧 = 𝑎55 (𝜓𝑥 + 𝑤0,𝑥 −
𝑢0
𝑅𝑥
) + 𝛽7𝜙0,𝑥

+ 𝛽8 (𝑢0,𝑥𝑥 + 𝑣0,𝑦𝑥 +
𝑤0,𝑥
𝑅𝑥

+
𝑤0,𝑥
𝑅𝑦

) + 𝛽9(𝜓𝑥,𝑥𝑥 + 𝜓𝑦,𝑦𝑥) 

𝑄𝑦𝑧 = 𝑎55 (𝜓𝑦 + 𝑤0,𝑦 −
𝑣0
𝑅𝑦
) + 𝛽7𝜙0,𝑦

+ 𝛽8 (𝑢0,𝑥𝑦 + 𝑣0,𝑦𝑦 +
𝑤0,𝑦

𝑅𝑥
+
𝑤0,𝑦

𝑅𝑦
) + 𝛽9(𝜓𝑥,𝑥𝑦 + 𝜓𝑦,𝑦𝑦) 

where the constant coefficients 𝑎𝑖𝑗, 𝑏𝑖𝑗, 𝑑𝑖𝑗, 𝑝𝑖𝑗, 𝑞𝑖𝑗 and 𝛽𝑖 (𝑖 =5, 6, 7, 8, 9) are 
given in Appendix F. 

Introducing Eq. (7.8) into Eq. (7.6) leads to the following coupled partial 
differential governing equations: 

(𝑎11 +
𝛽8
𝑅𝑥
) 𝑢0,𝑥𝑥 + 𝑎66𝑢0,𝑦𝑦 + (𝑎12 + 𝑎66 +

𝛽8
𝑅𝑥
) 𝑣0,𝑥𝑦

+ (𝑏11 +
𝛽9
𝑅𝑥
)𝜓𝑥,𝑥𝑥 + 𝑏66𝜓𝑥,𝑦𝑦

+ (𝑏12 + 𝑏66 ++
𝛽9
𝑅𝑥
)𝜓𝑦,𝑥𝑦 −

𝑎55

𝑅𝑥
2 𝑢0 +

𝑎55
𝑅𝑥

𝜓𝑥

+ (𝑝11 +
𝑎55
𝑅𝑥

+
𝛽8

𝑅𝑥
2 +

𝛽8
𝑅𝑥𝑅𝑦

)𝑤0,𝑥 + (𝛽5 +
𝛽7
𝑅𝑥
)𝜙0,𝑥

= 𝐼0�̈�0 + 𝐼1�̈�𝑥 (7.9a) 

(𝑎12 + 𝑎66 +
𝛽8
𝑅𝑦
)𝑢0,𝑥𝑦 + (𝑎11 +

𝛽8
𝑅𝑦
)𝑣0,𝑦𝑦 + 𝑎66𝑣0,𝑥𝑥

+ (𝑏12 + 𝑏66 +
𝛽9
𝑅𝑦
)𝜓𝑥,𝑥𝑦 + (𝑏11 +

𝛽9
𝑅𝑦
)𝜓𝑦,𝑦𝑦

+ 𝑏66𝜓𝑦,𝑥𝑥 −
𝑎55

𝑅𝑦
2 𝑣0 +

𝑎55
𝑅𝑦

𝜓𝑦

+ (𝑝11
′ +

𝑎55
𝑅𝑦

+
𝛽8
𝑅𝑦
+

𝛽8
𝑅𝑥𝑅𝑦

)𝑤0,𝑦 + (𝛽5 +
𝛽7
𝑅𝑦
)𝜙0,𝑦

= 𝐼0�̈�0 + 𝐼1�̈�𝑦 (7.9b) 
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(𝑏11 − 𝛽8)𝑢0,𝑥𝑥 + 𝑏66𝑢0,𝑦𝑦 + (𝑏12 + 𝑏66 − 𝛽8)𝑣0,𝑥𝑦

+ (𝑑11 − 𝛽9)𝜓𝑥,𝑥𝑥 + 𝑑66𝜓𝑥,𝑦𝑦 + (𝑑12 + 𝑑66 − 𝛽9)𝜓𝑦,𝑥𝑦

+
𝑎55
𝑅𝑥

𝑢0 − 𝑎55𝜓𝑥 + (𝑞11 − 𝑎55 −
𝛽8
𝑅𝑥
−
𝛽8
𝑅𝑦
)𝑤0,𝑥

+ (𝛽6 − 𝛽7)𝜙0,𝑥 = 𝐼1�̈�0 + 𝐼2�̈�𝑥 (7.9c) 

(𝑏12 + 𝑏66 − 𝛽8)𝑢0,𝑥𝑦 + (𝑏11 − 𝛽8)𝑣0,𝑦𝑦 + 𝑏66𝑣0,𝑥𝑥

+ (𝑑12 + 𝑑66 − 𝛽9)𝜓𝑥,𝑥𝑦 + (𝑑11 − 𝛽9)𝜓𝑦,𝑦𝑦

+ 𝑑66𝜓𝑦,𝑥𝑥 +
𝑎55
𝑅𝑦

𝑣0 − 𝑎55𝜓𝑦

+ (𝑞11
′ − 𝑎55 −

𝛽8
𝑅𝑥
−
𝛽8
𝑅𝑦
)𝑤0,𝑦 + (𝛽6 − 𝛽7)𝜙0,𝑦

= 𝐼1�̈�0 + 𝐼2�̈�𝑦 (7.9d) 

(𝑎55 +
𝛽8
𝑅𝑥
+
𝛽8
𝑅𝑦
)𝛻2𝑤0 + 𝛽7𝛻

2𝜙0 − (
𝑎11
𝑅𝑥

+
𝑎12
𝑅𝑦

+
𝑎55
𝑅𝑥
)𝑢0,𝑥

− (
𝑎12
𝑅𝑥

+
𝑎11
𝑅𝑦

+
𝑎55
𝑅𝑦
)𝑣0,𝑦 − (

𝑏11
𝑅𝑥

+
𝑏12
𝑅𝑦
)𝜓𝑥,𝑥

− (
𝑏12
𝑅𝑥

+
𝑏11
𝑅𝑦
)𝜓𝑦,𝑦 + 𝑎55𝜓𝑥,𝑥 + 𝑎55𝜓𝑦,𝑦

− (
𝑝11
𝑅𝑥

+
𝑝11

′

𝑅𝑦
)𝑤0 − (

𝛽5
𝑅𝑥
+
𝛽5
𝑅𝑦
)𝜙0 + 𝛽8𝛻

2𝑢0,𝑥

+ 𝛽8𝛻
2𝑣0,𝑥 + 𝛽9𝛻

2𝜓𝑥,𝑥 + 𝛽9𝛻
2𝜓𝑦,𝑦 = 𝐼0�̈�0 (7.9e) 

With the help of the electrostatic Maxwell’s equation, the last equation of 
motion can be derived as: 

𝛽1 (𝜓𝑥,𝑥 + 𝜓𝑦,𝑦 + 𝛻
2𝑤0 −

𝑢0,𝑥
𝑅𝑥

−
𝑣0,𝑦

𝑅𝑦
) + 𝛽2(𝜓𝑥,𝑥 + 𝜓𝑦,𝑦) + 𝛽3𝜑0

+ 𝛽4𝛻
2𝜑0

+ 휂1 (𝛻
2(𝑢0,𝑥) + 𝛻

2(𝑣0,𝑦) + (
1

𝑅𝑥
+
1

𝑅𝑦
)𝛻2𝑤0)

+ 휂2 (𝛻
2(𝜓𝑥,𝑥) + 𝛻

2(𝜓𝑦,𝑦)) = 0 

(7.10) 
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where ∇2(…) is Laplace operator, and the coefficients 𝛽𝑖 (𝑖 =1, 2, 3, 4) and 
휂𝑗 (𝑗 =1, 2) are defined for both the SC and OC electrical conditions, in Appendix 
F. 

 
 

7.4 Solution Procedure 

To solve the dynamic equations (7.9), and the electrostatic Maxwell’s 

equation (7.10), mechanical and electrical boundary conditions must be applied to 
the plate edges. In this study, simply supported mechanical boundary conditions are 
assumed for all the four edges of the doubly-curved panel. Also, it is considered 
that all the edges are electrically grounded to zero potential for both bimorph and 
unimorph structures. With the help of the variational method and divergence 
theorem, these conditions can be mathematically expressed as: 

𝑣0 = 𝜓𝑦 = 𝑤0 = 𝑁𝑥𝑥 = 𝑀𝑥𝑥 = 𝜙0 = 0 at 𝑥 = 0 and 𝑥 = 𝐿1 
(7.11) 

𝑢0 = 𝜓𝑥 = 𝑤0 = 𝑁𝑦𝑦 = 𝑀𝑦𝑦 = 𝜙0 = 0 at 𝑦 = 0 and 𝑦 = 𝐿2 

Here, Navier’s method is employed to solve the governing equations. Based 
on this approach, the unknown mechanical displacement components 𝑢0, 𝑣0, 𝑤0, 
𝜓𝑥 and 𝜓𝑥, as well as the electric potential 𝜙0 are assumed to have the following 
trigonometric expansions: 

𝑢0(𝑥, 𝑦, 𝑡) = ∑ ∑cos( 𝜇𝑚𝑥) sin( 𝜇𝑛𝑦)

∞

𝑛=1

∞

𝑚=1

휂𝑚𝑛
𝑢0 (𝑡) 

(7.12) 

𝑣0(𝑥, 𝑦, 𝑡) = ∑ ∑sin( 𝜇𝑚𝑥) cos( 𝜇𝑛𝑦)

∞

𝑛=1

∞

𝑚=1

휂𝑚𝑛
𝑣0 (𝑡) 

𝑤0(𝑥, 𝑦, 𝑡) = ∑ ∑sin( 𝜇𝑚𝑥) sin( 𝜇𝑛𝑦)

∞

𝑛=1

∞

𝑚=1

휂𝑚𝑛
𝑤0 (𝑡) 

𝜓𝑥(𝑥, 𝑦, 𝑡) = ∑∑cos( 𝜇𝑚𝑥) sin( 𝜇𝑛𝑦)

∞

𝑛=1

∞

𝑚=1

휂𝑚𝑛
𝜓𝑥 (𝑡) 

𝜓𝑦(𝑥, 𝑦, 𝑡) = ∑∑sin( 𝜇𝑚𝑥) cos( 𝜇𝑛𝑦)

∞

𝑛=1

∞

𝑚=1

휂𝑚𝑛
𝜓𝑦 (𝑡) 
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𝜙0(𝑥, 𝑦, 𝑡) = ∑ ∑sin( 𝜇𝑚𝑥) sin( 𝜇𝑛𝑦)

∞

𝑛=1

∞

𝑚=1

휂𝑚𝑛
𝜙0 (𝑡) 

The solution given in Eq. (7.12) satisfy the boundary conditions (7.11). In Eq. 
(7.12), the parameters 𝜇𝑚 and 𝜇𝑛 are equal to 𝑚𝜋/𝐿1 and 𝑛𝜋/𝐿2, respectively, 
where 𝑚 and 𝑛 are number of half-waves through 𝑥 and 𝑦 directions, respectively.  

By assuming the harmonic motion for the system, the functions 휂𝑚𝑛(𝑡) can 
be defined as: 

{
 
 
 

 
 
 
휂𝑚𝑛
𝑢0

휂𝑚𝑛
𝑣0

휂𝑚𝑛
𝑤0

휂𝑚𝑛
𝜓𝑥

휂𝑚𝑛
𝜓𝑦

휂𝑚𝑛
𝜙0 }
 
 
 

 
 
 

=

{
 
 
 

 
 
 
𝑆𝑚𝑛
𝑢0

𝑆𝑚𝑛
𝑣0

𝑆𝑚𝑛
𝑤0

𝑆𝑚𝑛
𝜓𝑥

𝑆𝑚𝑛
𝜓𝑦

𝑆𝑚𝑛
𝜙0}
 
 
 

 
 
 

𝑒𝑖𝜔𝑡 (7.13) 

In which 𝑖 = √−1 and 𝜔 is the natural frequency of the smart doubly-curved panel. 

Substitution of Eqs. (7.12) and (7.13) into Eqs. (7.9) and (7.10) results in the 
following eigenproblem: 

([𝐾] − 𝜔2[𝑀])

{
 
 
 

 
 
 
𝑆𝑚𝑛
𝑢0

𝑆𝑚𝑛
𝑣0

𝑆𝑚𝑛
𝑤0

𝑆𝑚𝑛
𝜓𝑥

𝑆𝑚𝑛
𝜓𝑦

𝑆𝑚𝑛
𝜙0}
 
 
 

 
 
 

=

{
 
 

 
 
0
0
0
0
0
0}
 
 

 
 

 (7.14) 

where [𝐾] and [𝑀] are the stiffness and inertia matrices, respectively. 

The solution of the eigenproblem (7.14) allows to extract the 
eigenfrequencies of the smart shell. In the next section, the natural frequencies are 
presented for bimorphs and unimorphs, a wide range of parameters, as well as 
various geometries. 
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7.5 Numerical Results 
7.5.1 Model Validation 

Comparison examples are first presented to verify the accuracy of the presented 
model. Due to slight variation of Poisson’s ratio along the thickness of the substrate 

layer, its value is considered to be constant, and equal to 0.3. The parameter 𝐻𝑝 in 
the following tables and figures represents the total thickness of piezoelectric 
layers, which is equal to 𝐻𝑝 = ℎ𝑝𝑡 + ℎ𝑝𝑏 and 𝐻𝑝 = ℎ𝑝𝑡 for bimorph and unimorph 
structures, respectively (see Fig. 7.1). In Table 7.11, the SC and OC fundamental 
frequencies are compared with their counterparts in Ref. [203], for a bimorph 
doubly curved shell, consisted of a homogenous core surrounded by two identical 
PZT-4 layers. In Ref. [203], the authors considered shell through-thickness 
kinematics based on the higher-order shear deformation theory, and used a 
quadratic variation for the electric potential distribution in piezoelectric layers. 
 
Table 7.1: Comparison of the fundamental eigenfrequency (Hz) of a bimorph 
isotropic shell. 

Electrical boundary condition (EBC) 𝐿1/𝑅𝑥 𝐻𝑝/2ℎ Ref. [203] Present 
SC 0.0 0.1 839.368 838.273 
 0.2 801.794 799.360 
 0.1 0.1 853.147 852.075 
 0.2 813.413 811.024 
OC 0.0 0.1 856.455 854.844 
 0.2 833.781 829.958 
 0.1 0.1 870.057 868.476 
 0.2 845.108 841.347 

 
In Table 7.2, the first ten SC natural frequencies of an isotropic plate with 

piezoelectric layers are listed along with their counterparts reported in 
[100,105,160], to check the accuracy of this study to predict natural frequencies of 
higher vibrational modes. 

The last comparative study is presented in Table 7.3 for the SC fundamental 
frequencies of the present formulations and those reported in [200], for bimorph 
and unimorph structures having different geometries. In [200], the electric potential 
distribution within piezoelectric layers is considered as function of z coordinate 
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only, whereas in the current study it is modeled by a function of all three 
coordinates.  

However, since various mechanical displacement models and electric 
potential distributions are employed in the current study and the above-mentioned 
references, some slight differences are observed among the results. Nevertheless, it 
is evident from Tables 7.1 to 7.3 that the results of the present exact solution based 
on the first-order shear deformation theory are in close agreement with those 
reported in the literature. 
 
Table 7.2: Comparison of the first ten eigenfrequencies (Hz) of a bimorph 
isotropic plate in SC condition. 

Mode (𝑚, 𝑛) Ref. [100] Ref. [105] Ref. [161] Present 
1st (1,1) 144.25 145.35 145.35 144.49 
2nd (1,2) 359.00 363.05 363.06 360.89 
3rd (2,1) 359.00 363.05 363.06 360.89 
4th (2,2) 564.10 580.35 580.37 576.90 
5th (1,3) 717.80 725.00 725.03 720.70 
6th (3,1) 717.80 725.00 725.03 720.70 
7th (2,3) 908.25 941.64 941.69 936.06 
8th (3,2) 908.25 941.64 941.69 936.06 
9th (1,4) 1223.14 1229.88 1229.96 1222.61 
10th (4,1) 1223.14 1229.88 1229.96 1222.61 

 
 
Table 7.3. Comparison of the fundamental eigenfrequencies (Hz) for piezoelectric 
bimorphs and unimorphs with isotropic substrate. 

Geometry 𝐻𝑝/2ℎ 
Bimorph  Unimorph 

Ref. [200]  Present  Ref. [200] Present 
Spherical 0.5 2652 2653  2654 2654 
 1.0 2405 2408  2411 2411 
 2.0 2211 2215  2217 2217 
Cylindrical 0.5 1526 1527  1531 1531 
 1.0 1383 1387  1393 1393 
 2.0 1273 1280  1285 1285 
Plate 0.5 873 875  887 887 
 1.0 791 797  813 813 
 2.0 730 743  755 755 
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7.5.2 Parametric Study and Discussion 

In the following, new results are presented for SC and OC eigenfrequencies of 
porous bimorph and unimorph panels having spherical (𝑅𝑥, 𝑅𝑦 > 0), hyperbolic 
paraboloidal (𝑅𝑥 > 0, 𝑅𝑦 < 0), cylindrical (𝑅𝑥 ≠ 0, 𝑅𝑦 ≈ ∞) and plate (𝑅𝑥 ≈ ∞), 
𝑅𝑦 ≈ ∞)) geometries. Aluminum (𝐸0 = 70 GPa, 𝜌0 = 2700 kg/m3), and PZT-5H 
(properties are given in Table 1.2, Chapter 1) are assumed as the materials of the 
substrate and piezoelectric layers, respectively. To be able of making comparisons 
among various geometries of bimorph and unimorph panels, the same volume of 
materials is considered for all the considered cases. 

In Table 7.4, for length ratio 𝐿1/𝐿2 = 1, thickness-length ratio 2ℎ/𝐿1 =
0.05, and thickness ratio 𝐻𝑝/2ℎ = 0.2, the SC and OC resonance frequencies are 
listed for porous bimorph and unimorph panels having different geometries with 
identical volumes. The results show that increasing the porosity parameter causes a 
decrease in the value of natural frequency regardless of the type of smart panel (i.e. 
bimorph or unimorph), as well as the electrical condition. This behavior is observed 
for all the panel geometries and structures studied here. In fact, it is due to the fact 
that when the porosity increases, the structural stiffness drops, which leads to 
reduction in eigenfrequencies. Furthermore, it is seen that for the same materials 
composition and the constant volume, various geometries exhibit different natural 
frequencies in such a way that the highest values are related to spherical shells 
followed by cylindrical, plate and hyperbolic paraboloidal panels. Also, the table 
illustrates that both bimorph and unimorph structures have higher frequencies in 
OC condition in comparison with when the piezoelectric layers are kept at SC 
condition. 

Fundamental natural frequencies of different bimorphs and unimorphs in SC 
condition are depicted in Tables 7.5 and 7.6 for wide range of parameters including 
2ℎ/𝐿1, 𝐻𝑝/2ℎ and 𝑅𝑥/𝐿1. These tables indicate that by increasing the shell 
curvature, the eigenfrequencies decrease for all the studied curved panels (i.e. 
spherical and cylindrical shells) except for hyperbolic paraboloidal shell in which 
the natural frequency significantly rises, as the radius increases. In addition, it 
seems that increasing the thickness of the substrate layer raises the natural 
frequency in such a manner that this growth is more remarkable for hybrid shells 
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with higher values of 𝑅𝑥/𝐿1. For example, when 𝑅𝑥/𝐿1 = 1, the natural frequency 
of bimorph spherical shell has a growth of 11.5 % due to increasing the thickness-
length ratio (2ℎ/𝐿1) from 0.1 to 0.15, while the value of this growth is about 42.5 
% when 𝑅𝑥/𝐿1 = 10, as seen in Table 7.5. Similar behaviors can be observed for 
other geometries. Moreover, the tables reveal that the natural frequencies for 
bimorph panels are usually greater than those of unimorphs in same composition of 
materials, owing to asymmetry of unimorph structures. 
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Table 7.4: Fundamental eigenfrequencies (Hz) of smart porous panels having 
various geometries (𝐿1/𝐿2 = 1, 𝑅𝑥/𝐿1 = 5, 2ℎ/𝐿1 = 0.05, 𝐻𝑝/2ℎ = 0.2). 

EBC 𝑒0 Spherical 
(Ry/L1=Rx/L1) 

Cylindrical 
(Ry/L1=∞) 

Plate 
(Ry/L1=Rx/L1=∞) 

Hyperbolic 
Paraboloidal 
(Ry/L1=-Rx/L1) 

Bimorph     

SC 0.0 280.488 253.228 244.123 242.135 

 0.1 277.570 251.004 242.163 240.189 

 0.2 274.537 248.677 240.104 238.147 

 0.3 271.374 246.232 237.931 235.992 

 0.4 268.070 243.653 235.627 233.706 

 0.5 264.614 240.924 233.173 231.271 

OC 0.0 299.762 273.571 264.980 262.815 

 0.1 297.286 271.846 263.589 261.434 

 0.2 294.738 270.074 262.168 260.023 

 0.3 292.116 268.254 260.720 258.586 

 0.4 289.423 266.391 259.252 257.129 

 0.5 286.673 264.500 257.784 255.672 

Unimorph     

SC 0.0 281.395 254.198 245.202 243.203 

 0.1 276.825 250.150 241.350 239.382 

 0.2 271.804 245.632 237.019 235.086 

 0.3 266.223 240.522 232.082 230.189 

 0.4 259.937 234.655 226.365 224.520 

 0.5 252.739 227.794 219.620 217.829 
OC 0.0 308.683 278.646 265.389 263.218 

 0.1 303.993 274.389 261.260 259.123 

 0.2 298.796 269.602 256.590 254.491 

 0.3 292.975 264.155 251.242 249.186 

 0.4 286.368 257.868 245.028 243.023 

 0.5 278.758 250.492 237.683 235.739 
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Table 7.5: Fundamental SC eigenfrequencies (Hz) of porous bimorph panels (𝐿1/𝐿2 =
1, 𝑒0 = 0.2). 

Geometry of the Smart Panel Rx/L1=1 Rx/L1=2 Rx/L1=5 Rx/L1=10 

2h/L1=0.1, Hp/2h=0.05                 

Spherical (Ry/L1=Rx/L1) 817.439 572.816 474.190 458.105 

Cylindrical (Ry/L1=∞) 549.656 480.008 457.156 453.776 

Plate (Ry/L1=Rx/L1=∞) 452.686 452.686 452.686 452.686 

Hyperbolic Paraboloidal (Ry/L1=-Rx/L1) 369.247 429.736 448.902 451.736 

2h/L1=0.1, Hp/2h=0.1                  

Spherical (Ry/L1=Rx/L1) 794.466 564.937 473.786 459.051 

Cylindrical (Ry/L1=∞) 541.781 478.626 458.098 455.074 

Plate (Ry/L1=Rx/L1=∞) 454.102 454.102 454.102 454.102 

Hyperbolic Paraboloidal (Ry/L1=-Rx/L1) 370.360 431.054 450.301 453.147 

2h/L1=0.15, Hp/2h=0.05                

Spherical (Ry/L1=Rx/L1) 911.460 727.852 662.487 652.559 

Cylindrical (Ry/L1=∞) 694.283 661.115 651.139 649.757 

Plate (Ry/L1=Rx/L1=∞) 649.386 649.386 649.386 649.386 

Hyperbolic Paraboloidal (Ry/L1=-Rx/L1) 526.775 615.218 643.723 647.963 

2h/L1=0.15, Hp/2h=0.1             

Spherical (Ry/L1=Rx/L1) 889.776 720.098 660.438 651.429 

Cylindrical (Ry/L1=∞) 686.543 658.381 650.006 648.858 

Plate (Ry/L1=Rx/L1=∞) 648.562 648.562 648.562 648.562 

Hyperbolic Paraboloidal (Ry/L1=-Rx/L1) 525.963 614.352 642.888 647.136 

 
 
 
 



220 Free vibration analysis of piezoelectric bimorph/unimorph … 
 

 
 
 
 
 
 
 
 
 

Table 7.6: Fundamental SC eigenfrequencies (Hz) of porous unimorph panels 
(𝐿1/𝐿2 = 1, 𝑒0 = 0.2). 

Geometry of the Smart Panel Rx/L1=1 Rx/L1=2 Rx/L1=5 Rx/L1=10 

2h/L1=0.1, Hp/2h=0.05                 

Spherical (Ry/L1=Rx/L1) 819.827 572.226 472.471 456.188 

Cylindrical (Ry/L1=∞) 548.928 478.424 455.241 451.794 

Plate (Ry/L1=Rx/L1=∞) 450.657 450.657 450.657 450.657 

Hyperbolic Paraboloidal (Ry/L1=-Rx/L1) 367.585 427.808 446.890 449.711 

2h/L1=0.1, Hp/2h=0.1                  

Spherical (Ry/L1=Rx/L1) 798.410 563.822 470.813 455.765 

Cylindrical (Ry/L1=∞) 540.425 475.869 454.816 451.688 

Plate (Ry/L1=Rx/L1=∞) 450.646 450.646 450.646 450.646 

Hyperbolic Paraboloidal (Ry/L1=-Rx/L1) 367.510 427.764 446.872 449.698 

2h/L1=0.15, Hp/2h=0.05                

Spherical (Ry/L1=Rx/L1) 914.868 727.352 660.50 650.254 

Cylindrical (Ry/L1=∞) 693.449 659.300 648.835 647.317 

Plate (Ry/L1=Rx/L1=∞) 646.825 646.825 646.825 646.825 

Hyperbolic Paraboloidal (Ry/L1=-Rx/L1) 524.677 612.786 641.183 645.407 

2h/L1=0.15, Hp/2h=0.1             

Spherical (Ry/L1=Rx/L1) 895.375 719.168 657.105 647.585 

Cylindrical (Ry/L1=∞) 685.017 655.306 646.164 644.804 

Plate (Ry/L1=Rx/L1=∞) 644.319 644.319 644.319 644.319 

Hyperbolic Paraboloidal (Ry/L1=-Rx/L1) 522.440 610.305 638.677 642.901 
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To discuss the observed behaviors of resonance frequencies for the SC and 
OC electrical conditions, the fundamental frequencies of various porous hybrid 
structures are listed in Tables 7.7 and 7.8, for different values of ℎ𝑝/2ℎ. In the 
second and fifth columns of this table, the listed frequencies are quantified by 
eliminating the electrical effect of piezoelectric layers, to show only the mechanical 
effect of piezoelectric layers on the results. By inspecting the values in the table, 
one can realize that the electrical effect in SC condition is negligible, whilst it plays 
a key role in the OC condition to increase the value of eigenfrequencies. It does 
mean that the observed changes in natural frequency, due to mounting the SC 
piezoelectric layers on the substrate, are associated with the stiffening effect of 
piezoelectric layers only, whereas the frequencies are significantly influenced by 
the electrical part (in addition to mechanical part), when keeping piezoelectric 
layers in OC condition. This behavior could be ascribed to various electric potential 
distributions in SC and OC conditions. Furthermore, both the SC and OC natural 
frequencies increase by raising the thickness ratio, regardless of the type of 
structure. It is also observed that in case of spherical porous smart panel, the 
electrical effect associated with OC piezoelectric layer is more remarkable for 
unimorphs compared to that of bimorphs, while the opposite result is seen for other 
geometries. 
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Table 7.7: Fundamental eigenfrequencies (Hz) of smart porous bimorph panels 
(L1/L2=1, Rx/L1=5, 2h/L1=0.1, 𝑒0=0.3). 

Hp/2h (eij=01) SC (Ω(%)2) OC (Ω(%)2)  

Spherical (Ry/L1=Rx/L1)   

0.0 468.898 468.898 (0.00) 468.898 (0.00)  

0.1 467.185 467.205 (0.00) 490.957 (5.09)  

0.2 473.266 473.395 (0.03) 512.563 (8.30)  

0.3 483.409 483.762 (0.07) 533.559 (10.4)  

0.4 495.832 496.527 (0.14) 553.864 (11.7)  

Cylindrical (Ry/L1=∞)   

0.0 450.644 450.644 (0.00) 450.644 (0.00)  

0.1 451.961 451.982 (0.00) 476.423 (5.41)  

0.2 460.132 460.265 (0.03) 500.343 (8.74)  

0.3 471.819 472.182 (0.08) 522.934 (10.8)  

0.4 485.438 486.150 (0.15) 544.411 (12.1)  

Plate (Ry/L1=Rx/L1=∞)   

0.0 445.780 445.780 (0.00) 445.780 (0.00)  

0.1 448.158 448.180 (0.00) 473.069 (5.56)  

0.2 457.080 457.215 (0.03) 497.912 (8.93)  

0.3 469.339 469.707 (0.08) 521.138 (11.0)  

0.4 483.415 484.136 (0.15) 543.091 (12.3)  

Hyperbolic Paraboloidal (Ry/L1=-Rx/L1)  

0.0 442.057 442.057 (0.00) 442.057 (0.00)  

0.1 444.406 444.427 (0.00) 469.070 (5.55)  

0.2 453.234 453.368 (0.03) 493.662 (8.92)  

0.3 465.365 465.730 (0.08) 516.631 (11.0)  

0.4 479.293 480.006 (0.15) 538.329 (12.3)  

1Natural frequency without piezo effect, 2 Ω = ((𝜔(sc/oc) − 𝜔(𝑒𝑖𝑗=0)) /𝜔(𝑒𝑖𝑗=0))*100  
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Table 7.8: Fundamental eigenfrequencies (Hz) of smart porous unimorph panels 
(L1/L2=1, Rx/L1=5, 2h/L1=0.1, 𝑒0=0.3). 

Hp/2h (eij=01) SC (Ω(%)2) OC (Ω(%)2)  

Spherical (Ry/L1=Rx/L1)   

0.0 468.898 468.898 (0.00) 468.898 (0.00)  

0.1 461.490 461.490 (0.00) 488.044 (5.75)  

0.2 464.088 464.088 (0.00) 506.619 (9.16)  

0.3 472.066 472.066 (0.00) 524.660 (11.1)  

0.4 483.163 483.163 (0.00) 542.115 (12.2)  

Cylindrical (Ry/L1=∞)   

0.0 450.644 450.644 (0.00) 450.644 (0.00)  

0.1 445.870 445.870 (0.00) 470.093 (5.43)  

0.2 450.444 450.444 (0.00) 489.287 (8.62)  

0.3 459.984 459.984 (0.00) 508.060 (10.5)  

0.4 472.363 472.363 (0.00) 526.285 (11.4)  

Plate (Ry/L1=Rx/L1=∞)   

0.0 445.780 445.780 (0.00) 445.780 (0.00)  

0.1 441.867 441.867 (0.00) 463.333 (4.86)  

0.2 447.164 447.164 (0.00) 481.775 (7.74)  

0.3 457.328 457.328 (0.00) 500.345 (9.41)  

0.4 470.262 470.262 (0.00) 518.664 (10.3)  

Hyperbolic Paraboloidal (Ry/L1=-Rx/L1)  

0.0 442.057 442.057 (0.00) 442.057 (0.00)  

0.1 438.167 438.167 (0.00) 459.427 (4.85)  

0.2 443.398 443.398 (0.00) 477.665 (7.73)  

0.3 453.449 453.449 (0.00) 496.020 (9.93)  

0.4 466.240 466.240 (0.00) 514.118 (10.3)  

1Natural frequency without piezo effect, 2 Ω = ((𝜔(sc/oc) − 𝜔(𝑒𝑖𝑗=0)) /𝜔(𝑒𝑖𝑗=0))*100  

 
In Fig. 7.2, for different values of porosity parameter namely 0.2 and 0.5, 

variations of the SC fundamental frequency with respect to 𝐻𝑝/2ℎ are plotted. 
Regardless of the panel geometry, it seems that by increasing the value of 𝐻𝑝/2ℎ, 
the shell natural frequencies considerably increase, in such a way that this growth 
is more remarkable for bimorph structures. As obvious, at any fixed value of 
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𝐻𝑝/2ℎ, the frequencies of bimorphs are higher than those of unimorphs and this 
difference increases by raising the porosity parameter. In addition, for the bimorph 
panels, the curves corresponded to 𝑒0 = 0.5 have greater slopes in comparison with 
the ones associated with 𝑒0 = 0.2, which means that the natural frequency of 
bimorph panels with higher coefficient of porosity are more influenced by changing 
the thickness ratio 𝐻𝑝/2ℎ, whereas the curves related to unimorph structures seem 
to be parallel for the studied values of 𝑒0. By investigating the numerical results, 
similar trends can be observed for the OC electrical condition. 
 

  
(a) Spherical panel (b) Cylindrical panel 

  
(c) Plate panel (d) Hyperbolic paraboloidal panel 

Fig. 7.2: Variation of the fundamental eigenfrequency versus the thickness ratio for 
coupled smart panels under SC condition. 

 
Fig. 7.3 shows the effect of changes in the shell curvature on variation of the 

SC natural frequencies of smart doubly curved panels, with respect to the porosity 
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parameter. As observed, changing the shell radius significantly affects the natural 
frequency. It is seen that by increasing the value of curvature, the fundamental 
frequency of spherical shells decreases, while opposite trend is seen for hyperbolic 
paraboloidal shells. Moreover, those figures reveal that changing the porosity 
parameter has greater effect on the natural frequencies of unimorph panels with 
respect to bimorphs. 

 

  
(a) Bimorph spherical panel (b) Unimorph spherical panel 

  
(c) Bimorph hyperbolic paraboloidal panel (d) Unimorph hyperbolic paraboloidal panel 

Fig. 7.3: Variation of the fundamental eigenfrequency with respect to porosity 
coefficient. 

 
In Fig. 7.4, variations of the first two resonance frequencies of spherical smart 

shells with respect to 𝑅𝑥/𝐿1 are plotted for the SC and OC electrical conditions. 
Again, it is seen that by increasing the shell curvature, the frequencies of both 
vibrational modes decrease. When the value of 𝑅𝑥/𝐿1 increases from 1 to around 
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3, the frequencies greatly reduce, while by further increasing the curvature, very 
smooth decreasing trends are observed for both Mode 1 and Mode 2. 

Parameters 𝐿1 and 𝐿2 have direct influence on the eigenfrequencies. By 
changing the length ratio in constant surface area, the variation of resonance 
frequency versus 𝐿2/𝐿1 is shown in Fig. 7.5 for spherical porous bimorphs and 
unimorphs in SC electrical condition. The value of 𝐿2/𝐿1 is considered to change 
from 1/5 to 5, while the surface area is kept constant (equal to 𝐿2 × 𝐿1 = 1𝑚2). It 
is observed that for any considered value of the substrate thickness, the minimum 
frequency is achieved at 𝐿2/𝐿1 = 1, and the frequency response has symmetric 
behavior around 𝐿2/𝐿1 = 1. This behavior originates from the induced increase in 
the panel stiffness due to declining/raising the length ratio. For other geometries 
and electrical condition, similar results can be obtained. 

 

  
(a) Mode 1 (b) Mode 2 

Fig. 7.4: Variations of the first two frequencies of spherical porous bimorph and 
unimorph shells with respect to 𝑅𝑥/𝐿1 (𝐿1/𝐿2 = 1, 𝑅𝑦/𝐿1 = 5, 2ℎ/𝐿1 = 0.05, 
𝐻𝑝/2ℎ = 0.5, 𝑒0 = 0.2). 
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(a) Bimorph spherical panel (b) Unimorph spherical panel 
Fig. 7.5: Variation of the fundamental frequency versus the length ratio (𝐻𝑝/2ℎ =
0.5, 𝑒0 = 0.2). 

 
To gain a deeper insight into the effect of piezoelectric layers on the frequency 

response of the system, the parameter 휃, representing the relative difference in 
frequency is defined as follows: 

휃 =
𝜔|With Piezoelectric Layers − 𝜔|Without Piezoelectric Layers

𝜔|Without Piezoelectric Layers
× 100  (7.15) 

For smart panels with 𝐿1/𝐿2 = 1 , 2ℎ/𝐿2 = 0.1, 𝑅𝑥/𝐿1 = 𝑅𝑦/𝐿1 = 5 and 
𝑒0 = 0.3, the variation of 휃 with respect to 𝐻𝑝/2ℎ is plotted in Fig. 7.6. Those 
figures show that at a fixed value of the thickness ratio, the magnitude of 휃 is the 
most for both plate and hyperbolic paraboloidal panels and the least for spherical 
shells irrespective of the electrical condition. It does mean that the addition of 
piezoelectric layers to the porous substrate has quantitatively different effects on 
the frequencies of panels with various geometries. Moreover, it seems that in the 
SC condition, by adding piezoelectric layers, the natural frequencies of coupled 
panels initially decrease till 𝐻𝑝/2ℎ = 0.15, and subsequently increase as the value 
of Hp/2h rises. This descending/ascending trend is regarded to the changes in the 
effective mass density and structural stiffness of the coupled smart panels due to 
increasing the thickness ratio. Differently, since the electrical effect of piezoelectric 
layers plays a significant role in the growth of OC frequencies, only ascending 
trends are seen for the variation of eigenfrequencies from 𝐻𝑝/2ℎ = 0 to 𝐻𝑝/2ℎ =
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0.5 in OC condition. In addition, it is clear that for the same thickness of 
piezoelectric layers, the value of 휃 for bimorphs is greater than that of unimorph 
panels, in both SC and OC conditions. 

 

  

(a) Bimorph-SC (b) Unimorph-SC 

  
(c) Bimorph-OC (d) Unimorph-OC 

Fig. 7.6: The effect of piezoelectric layers’ thickness on the fundamental 

frequency of bimorphs and unimorphs. 
 
 To investigate the influence of electrical circuits (i.e. SC and OC), thickness 

ratio 𝐻𝑝/2ℎ and electrical and mechanical effects of piezoelectric layers on 
frequencies of various vibration modes, Figs. 7.7 and 7.8 are plotted for spherical 
shells with 2ℎ/𝐿1 = 0.1, 𝐿1/𝐿2 = 1, and 𝑅𝑥/𝐿1 = 𝑅𝑦/𝐿1 = 5. Particularly in Fig. 
7.7, the variation of 휃 with respect to 𝐻𝑝/2ℎ  is presented for both spherical 
bimorphs and unimorphs under SC and OC conditions. In addition, by setting 𝑒𝑖𝑗 =
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0, the stiffness effect of piezoelectric layers on the first three frequencies is 
examined in Fig. 7.8(a), while Figs. 7.8(b) and 7.8(c) show the variation of Ω versus 

thickness ratio 𝐻𝑝/2ℎ, in which the parameter Ω (defined in Table 7.7) is related to 
electrical effect of piezoelectric layers. From Fig. 7.8, it can be simply observed 
that the natural frequencies associated with higher vibration modes are less 
influenced by changing the value of 𝐻𝑝/2ℎ in comparison with the fundamental 
frequency. Moreover, the change in the value of natural frequency due to the effects 
of both electrical and mechanical parts of piezoelectric layers is the most for Mode 
1 and the least for Mode 3, as obvious in Fig. 7.8. 

 

  
(a) SC condition (b) OC condition 

Fig. 7.7: The effect of the thickness ratio on the first three resonance frequencies of 
porous bimorph and unimorph spherical shells (𝑒0 = 0.3). 

 

 

 
(a) Stiffness effect 
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(b) Electrical effect-bimorph shell (c) Electrical effect-unimorph shell 

Fig. 7.8: The mechanical and electrical effects of piezoelectric layers on the first 
three natural frequencies of spherical bimorphs and unimorph 

 
In the following, the parameter 𝛤 is defined to investigate the sensitivity of 

various vibration modes to the variation of porosity: 

𝛤 =
𝜔|Shell with Porosity − 𝜔|Shell without Porosity

𝜔|Shell without Porosity
× 100  (7.16) 

 Fig. 7.9 represents the variation of 𝛤 with respect to e for the first three 
resonance frequencies of spherical bimorph shells under SC and OC conditions. 

 

 
Fig. 7.9: The effect of porosity parameter on the first three resonance frequencies 
of porous bimorph spherical shells (𝐿1/𝐿2 = 1, 𝑅𝑥/𝐿1 = 𝑅𝑦/𝐿1 = 5, 2ℎ/𝐿1 = 0.1, 
𝐻𝑝/2ℎ = 0.2). 
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It is seen that in both SC and OC conditions, all the three eigenfrequencies of 
Mode 1, Mode 2 and Mode 3 are linearly reduced by increasing the value of porosity 
in such a way that the frequencies of higher modes are more sensitive to the porosity 
parameter. In addition, it seems that changing the value of porosity has more effect 
on SC frequencies compared to OC ones. 
 
 

7.6 Summary and Conclusions 

The electromechanical free vibration of porous piezoelectric bimorph and unimorph 
doubly curved panels has been studied via FSDT. Employing the variational 
principle and the Maxwell’s equation, the governing equations have been derived 
in terms of mechanical displacement variables and electric function. Assuming 
simply supported mechanical boundary condition on all the four edges of the panel, 
the exact eigenfrequencies are extracted analytically. Finally, the influence of 
various parameters such as porosity, electrical condition, thickness ratio and 
electrical and mechanical effects of piezoelectric layers on natural frequencies are 
studied in detail. By investigating the presented numerical simulations, the 
following conclusions may be drawn: 

• It is necessary to consider the electrical effects for the smart panels under 
OC condition unlike the SC one. 

• Bimorph structures usually exhibit higher frequencies compared to the 
unimorph ones. 

• Increasing the porosity parameter reduces the natural frequencies, having 
greater effect on the frequencies of unimorphs compared to those of bimorph 
panels. 

• By increasing the curvature, the resonant frequencies of spherical and 
cylindrical shells remarkably decline, while ascending trend is seen for 
hyperbolic paraboloidal panels. 

• Keeping the volume constant, spherical shells exhibit the highest 
frequencies followed by cylindrical, plate and hyperbolic paraboloidal 
panels, in descending order of frequency. 
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• Keeping the surface area 𝐿1 × 𝐿2 constant, the least value of natural 
frequency is achieved when 𝐿2/𝐿1 = 1, irrespective of the value of 
curvature. 

• Frequencies of higher vibration modes are more influenced by variation of 
porosity and thickness ratio, compared to the fundamental frequency. 

The existence of internal pores within the substrate significantly affects the 
frequency response of smart structures so that introducing porosity makes it 
possible to modify the resonance frequency in a desired manner. 



 
 

 
 
 
Chapter 8 
 
Summary and Conclusions 
 
8.1 Summary and Conclusions 

In the first chapter, an introduction to the smart piezoelectric structures, that are 
widely used for different applications such as vibration and shape control, energy 
harvesting, etc., is first given. In addition to describe great properties of 
piezoelectric materials and their broad applications, two particular types of 
engineering materials, namely FGMs and porous materials, are also introduced, and 
the motivation behind their use in piezoelectric coupled structures is presented, and 
finally possible applications are discussed. A comprehensive literature survey is 
conducted in not only the growing area of vibration-to-electricity energy conversion 
via piezoelectric materials, but also in the research field related to the smart 
structures (such as beams, plates, and shells) including piezoelectric elements. The 
gaps and the shortcomings of available studies in the above research fields are 
realized, and highlighted. It is shown that, if not all, most of the commonly used 
designs for piezoelectric vibration energy harvesting, which employ cantilevered 
beam geometries, suffer from higher-than-expected natural frequencies (compared 
to those of ambient vibrations), which require further tuning. Thus, design of 
flexible energy harvesters having low resonance frequencies and higher power 
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densities is of particular importance. Furthermore, the conducted literature survey 
reveals that most of the existing models for studying electromechanical behavior of 
various piezoelectric coupled structures (e.g., beams, plates, and shells) have been 
developed either based on classical theories or for simply supported boundary 
conditions. Classical theories ignore the effect of shear deformations, which are of 
high importance when analyzing moderately-thick or thick structures. On the other 
hand, the models based on higher-order theories are mostly limited to either simply 
supported boundary conditions or coupled structures consisting of homogenous 
substrates (e.g., made of metals) and PZT layers. Therefore, there seemed to be an 
urgent need to develop reliable electromechanical models based on higher-order 
shear deformation theories, which can be used for analysis of thin, moderately-
thick, and thick piezoelectric coupled structures with different boundary conditions. 

In the second chapter is first presented analytical and numerical modeling of 
unimorph piezoelectric energy harvesters, which are subjected to harmonic base 
excitation. The analytical model is established based on the Euler-Bernoulli beam 
assumptions, and closed-form solutions are obtained as the harvester response to 
the harmonic base excitation. Next, the FE numerical model of the unimorph 
harvester is created in COMSOL Multiphysics® software. Verification studies are 
first conducted by comparing the results of both analytical and numerical models 
to each other, then by updating the present COMSOL model, and comparing the 
respective results with experimental and numerical works presented in the 
literature. More importantly, as an attempt to fill the existing gaps in the literature, 
is proposed in this chapter a novel multi-beam piezoelectric smart structure of disc-
like geometry for harvesting vibration from low frequency applications. Using the 
model developed for the former case, the 3D model of the novel system is created 
in COMSOL). Different case studies of the novel multi-beam structure are 
parametrically studied, where the simulations are given for the series and parallel 
connection cases, to investigate the performance of the harvester device in terms of 
voltage and power generation, as well as mechanical response. From the 
simulations, the existence of strain nodes is identified in the fundamental mode of 
the novel structure; therefore, preliminary optimization studies are first performed 
to efficiently equip the system with the PZT patches, and consequently, to avoid 
any voltage cancellation. The results demonstrated that this new multi-beam 
harvester offers high flexibility in matching its resonance frequency to that of a 
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target application, simply by either changing the number/shape of the smart beams 
or altering the proof masses used to design the structure. It is also found that 
increasing the number of the smart beams significantly improves the electric 
outputs and reduces the resonance frequency of the scavenger. Under the same base 
excitation, the novel harvester exhibits a power density of up to six times greater 
than that of the simple unimorph. Among the considered cases, the 8-beam structure 
provides the lowest resonance frequency, and can generate several milliwatts of 
power across its optimum load resistance, when a harmonic base acceleration of 
0.4g as applied. 

The third chapter is concerned with developing a reliable electromechanical 
energy harvesting model for 2D piezoelectric bimorph plate structures with 
substrate made of materials containing porosities. Three different porosity patterns 
are herein considered for the distribution of internal pores within the porous 
substrate. The energy harvesting model of the plate scavenger is established based 
on the conventional shear deformation plate theories, and through the use of 
Hamilton’s principle and Gauss’s law. Such theories allow for consideration of 
transverse shear deformations, therefore, deriving a highly accurate model that can 
be used for analysis of relatively-thick and thick plate-like piezoelectric harvesters. 
An analytical solution is then applied to the governing equations, and closed-form 
expressions are obtained for the voltage, current and power outputs as the scavenger 
response to harmonic excitation. Comparing the present results with some available 
in the literature, the proposed model is validated, and extensive electromechanical 
analysis is presented. It is shown that introducing porosities to the substrate of the 
bimorph harvester allows tailoring the resonance frequencies of the scavenger, 
which is highly beneficial for matching the harvester frequency with that of a target 
application. More interestingly, the presence of porosities helps enhancing the 
voltage/power generation of the plate harvester, compared to its counterpart with 
no porosity. Although the trends for variation of the harvester resonance frequency 
versus the porosity parameter is highly dependent on the type of porosity 
distribution, it is seen that higher power output is generated by the harvesters with 
higher porosity parameter, regardless of the type of porosity profile. 

In Chapters 4 to 7, the focus is placed on proposing comprehensive analytical 
solutions for the problems of free vibration, wave propagation and buckling 
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analysis of beam-, plate-, and shell-like smart sandwich structures consisting of 
functionally graded or porous substrates, and integrated piezoelectric layer(s). To 
study the above-mentioned problems analytically, the governing equations of each 
system are first derived based on higher-order shear deformation theories, and 
through the use of Hamilton’s principle and Maxwell’s equation. Depending on the 
type of boundary conditions, the respective governing equations, that are highly 
coupled, are solved using Navier’s approach, state space approach and Galerkin 

method. As the systems response, closed-form expressions have been extracted for 
the wave characteristics, free vibration, and buckling problems of the systems of 
interest, providing the chance to study the effects of the systems parameters 
explicitly, and understand the physics of the problem clearly. Moreover, the 
analytical models provided in Chapters 4 to 7 enable one to extract the exact 
numerical results for the systems response much faster, when comparing to 
numerical approaches. Such exact models not only furnish benchmark solutions of 
shear deformation theories for the piezoelectric coupled structures but also provide 
insight into the significance of shear deformations on the systems response.  

 
 

8.2 Research Impact 

Each PhD dissertation produced in the Department of Mechanical and Aerospace 
Engineering (DIMEAS) at Politecnico di Torino must address the social impact. 
While harvesting energy at the level discussed here does not have a significant 
impact on reducing the world’s energy demands (compared to the well-known 
forms of green energy, e.g., solar energy and wind energy) it does have the potential 
to considerably decreasing the world’s dependency on chemical batteries, so that 
reducing the amount of chemical waste created by conventional batteries. Future 
applications of vibration energy harvesting, that eliminate the need for battery 
replacement and related maintenance efforts, can lead to long-lasting wireless 
sensor networks and autonomous low-power electronic components. It is worth 
noting that the energy required to keep such low-power wireless systems running 
includes the maintenance costs as well, which can be significant in applications 
such as wireless damage monitoring systems in critical civil engineering structures 
at remote locations. Additionally, even if the power outputs are not comparable, 
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vibration energy is frequently available when/where wind energy and solar energy 
are not available.  

In particular, the linear multi-beam piezoelectric scavenger proposed in Chapter 2 
can be of high interest for applications where low frequency vibration is available 
for energy conversion. The proposed structure can be adjusted depending on the 
vibration characteristics and other design constraints of a desired application while 
offering a suitable power density as compared to the piezoelectric scavengers 
presented in the literature. Moreover, in Chapter 3, a comprehensive 2D analytical 
model was proposed for the first time for simulation of plate harvesters based on 
the shear deformation theories. Even though piezoelectric energy harvesters are 
usually designed and manufactured as thin structures for larger flexibility and 
higher power generation, there might be need to use configurations where the 
structure might have moderate thickness (e.g., due to the limitations in the active 
material dimensions) where the shear deformation and the rotary inertia effects are 
pronounced. The analytical models presented in Chapters 4 to 7 provide the chance 
to extract closed-form expressions for static and dynamic response of 
electromechanically coupled structures (1D and 2D elements), which allows 
calculating the results of the systems with much lower computational efforts in 
comparison with numerical methods. Such models can be considered as benchmark 
solutions for verification of numerical techniques developed by researchers of the 
field. Moreover, it was also aimed in this dissertation to compare the performances 
of different materials in order to provide the materials scientists a physical 
understanding of how different properties of materials affect the resulting response 
of electromechanically coupled systems (such as power generation of piezoelectric 
harvesters) so that the composition of the materials can be optimized using the 
models developed here. Therefore, the models given here are for designing and 
optimizing not only the mechanical structure of piezoelectric devices (e.g., energy 
harvesters) but also the materials aspects. 
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8.3 Publications 

The outcomes of the research activities presented in this PhD dissertation have been 
published in peer-reviewed journals and conferences of Mechanical Engineering. 
In the following, the Published articles extracted from this thesis are listed: 
 
1. Askari, M., Brusa, E. and Delprete, C., 2022. On wave propagation and free 
vibration of piezoelectric sandwich plates with perfect and porous functionally 
graded substrates. Journal of Intelligent Material Systems and Structures, 
p.1045389X211072195. 

Doi: https://doi.org/10.1177/1045389X211072195 
 
2. Askari, M., Brusa, E. and Delprete, C., 2021. Design and modeling of a novel 
multi-beam piezoelectric smart structure for vibration energy 
harvesting. Mechanics of Advanced Materials and Structures, pp.1-23. 

Doi: https://doi.org/10.1080/15376494.2021.2001122 

3. Askari, M., Brusa, E. and Delprete, C., 2021. On the vibration analysis of coupled 
transverse and shear piezoelectric functionally graded porous beams with higher-
order theories. The Journal of Strain Analysis for Engineering Design, 56(1), 
pp.29-49. 

Doi: https://doi.org/10.1177/0309324720922085 
 
4. Askari, M., Brusa, E. and Delprete, C., 2020. Electromechanical vibration 
characteristics of porous bimorph and unimorph doubly curved panels. 
In Actuators (Vol. 9, No. 1, p. 7). Multidisciplinary Digital Publishing Institute. 

Doi: https://doi.org/10.3390/act9010007 

 
5. Askari, M., Brusa, E. and Delprete, C., 2019. Vibration analysis of porous 
bimorph doubly-curved shells for energy harvesting applications. In International 
Conference on Mechanics and Materials in Design (M2D), 4-6 September 2019, 
Bologna, Italy. 
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From Fig. 2.1(a), it is remembered that the width of the beam is 𝑏, the thickness of 
the substrate layer is ℎ𝑠 and the thickness of the piezoelectric layer is ℎ𝑝. In Ref. 
[202], the procedure of finding the position of neutral axis is described in detail. In 
summary: 

ℎ1 =
ℎ𝑝
2 + 𝑛ℎ𝑠

2 + 2𝑛ℎ𝑝ℎ𝑠

2ℎ𝑝 + 2𝑛ℎ𝑠
 

(A.1) 
ℎ2 =

ℎ𝑝
2 + 𝑛ℎ𝑠

2 + 2ℎ𝑝ℎ𝑠

2ℎ𝑝 + 2𝑛ℎ𝑠
 

ℎ3 =
𝑛ℎ𝑠

2 + 𝑛ℎ𝑝ℎ𝑠

2ℎ𝑝 + 2𝑛ℎ𝑠
 

ℎ𝑎 = −ℎ2,      ℎ𝑏 = ℎ1 − ℎ𝑝 ,      ℎ𝑐 = ℎ1,      ℎ𝑧 = ℎ3,      𝑛 = 𝐸𝑠 𝐸𝑝⁄  

in which ℎ1, ℎ2 and ℎ3 are the distance from the top of the piezoelectric layer to the 
neutral axis, the distance from the bottom of the substrate layer to the neutral axis 
and the distance from the middle plane of the piezoelectric layer from the neutral 
axis. 
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The constant coefficients of Eq. (3.20) are given as: 

 

{

𝑎11
𝑁

𝑎12
𝑁

𝑎66
𝑁

} = ∫ {
𝐶1̅1
𝐶1̅2
𝐶66

}𝑑𝑧
−ℎ

−ℎ−ℎ𝑝

+∫ {
𝑄11
𝑄12
𝑄66

} 𝑑𝑧
+ℎ

−ℎ

+∫ {
𝐶1̅1
𝐶1̅2
𝐶66

}𝑑𝑧
+ℎ+ℎ𝑝

+ℎ

  

{

𝑏11
𝑁

𝑏12
𝑁

𝑏66
𝑁

} = ∫ (𝑧 − 𝛼𝑧3) {
𝐶1̅1
𝐶1̅2
𝐶66

}𝑑𝑧
−ℎ

−ℎ−ℎ𝑝

+∫ (𝑧 − 𝛼𝑧3) {
𝑄11
𝑄12
𝑄66

} 𝑑𝑧
+ℎ

−ℎ

+∫ (𝑧 − 𝛼𝑧3) {
𝐶1̅1
𝐶1̅2
𝐶66

}𝑑𝑧
+ℎ+ℎ𝑝

+ℎ

 

{

𝑓11
𝑁

𝑓12
𝑁

𝑓66
𝑁

} = −∫ 𝛼𝑧3 {
𝐶1̅1
𝐶1̅2
2𝐶66

}𝑑𝑧
−ℎ

−ℎ−ℎ𝑝

−∫ 𝛼𝑧3 {
𝑄11
𝑄12
2𝑄66

} 𝑑𝑧
+ℎ

−ℎ

−∫ 𝛼𝑧3 {

𝐶1̅1
𝐶1̅2
2𝐶66

}𝑑𝑧
+ℎ+ℎ𝑝

+ℎ

 

 

{

𝑎11
𝑀

𝑎12
𝑀

𝑎66
𝑀

} = ∫ 𝑧 {
𝐶1̅1
𝐶1̅2
𝐶66

}𝑑𝑧
−ℎ

−ℎ−ℎ𝑝

+∫ 𝑧 {
𝑄11
𝑄12
𝑄66

} 𝑑𝑧
+ℎ

−ℎ

+∫ 𝑧{
𝐶1̅1
𝐶1̅2
𝐶66

}𝑑𝑧
+ℎ+ℎ𝑝

+ℎ
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{

𝑏11
𝑀

𝑏12
𝑀

𝑏66
𝑀

} = ∫ (𝑧2 − 𝛼𝑧4) {
𝐶1̅1
𝐶1̅2
𝐶66

}𝑑𝑧
−ℎ

−ℎ−ℎ𝑝

+∫ (𝑧2 − 𝛼𝑧4) {
𝑄11
𝑄12
𝑄66

} 𝑑𝑧
+ℎ

−ℎ

+∫ (𝑧2 − 𝛼𝑧4) {
𝐶1̅1
𝐶1̅2
𝐶66

}𝑑𝑧
+ℎ+ℎ𝑝

+ℎ

 

{

𝑓11
𝑀

𝑓12
𝑀

𝑓66
𝑀

} = −∫ 𝛼𝑧4 {
𝐶1̅1
𝐶1̅2
2𝐶66

}𝑑𝑧
−ℎ

−ℎ−ℎ𝑝

−∫ 𝛼𝑧4 {
𝑄11
𝑄12
2𝑄66

} 𝑑𝑧
+ℎ

−ℎ

−∫ 𝛼𝑧4 {
𝐶1̅1
𝐶1̅2
2𝐶66

}𝑑𝑧
+ℎ+ℎ𝑝

+ℎ

 

 

{

𝑎11
𝑃

𝑎12
𝑃

𝑎66
𝑃

} = ∫ 𝑧3 {
𝐶1̅1
𝐶1̅2
𝐶66

}𝑑𝑧
−ℎ

−ℎ−ℎ𝑝

+∫ 𝑧3 {
𝑄11
𝑄12
𝑄66

} 𝑑𝑧
+ℎ

−ℎ

+∫ 𝑧3 {
𝐶1̅1
𝐶1̅2
𝐶66

}𝑑𝑧
+ℎ+ℎ𝑝

+ℎ

 

 

{

𝑏11
𝑃

𝑏12
𝑃

𝑏66
𝑃

} = ∫ (𝑧4 − 𝛼𝑧6) {
𝐶1̅1
𝐶1̅2
𝐶66

}𝑑𝑧
−ℎ

−ℎ−ℎ𝑝

+∫ (𝑧4 − 𝛼𝑧6) {
𝑄11
𝑄12
𝑄66

} 𝑑𝑧
+ℎ

−ℎ

+∫ (𝑧4 − 𝛼𝑧6) {
𝐶1̅1
𝐶1̅2
𝐶66

}𝑑𝑧
+ℎ+ℎ𝑝

+ℎ

 

{

𝑓11
𝑃

𝑓12
𝑃

𝑓66
𝑃

} = −∫ 𝛼𝑧6 {
𝐶1̅1
𝐶1̅2
2𝐶66

}𝑑𝑧
−ℎ

−ℎ−ℎ𝑝

−∫ 𝛼𝑧6 {
𝑄11
𝑄12
2𝑄66

} 𝑑𝑧
+ℎ

−ℎ

−∫ 𝛼𝑧6 {

𝐶1̅1
𝐶1̅2
2𝐶66

}𝑑𝑧
+ℎ+ℎ𝑝

+ℎ
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{
𝑎55
𝑄

𝑎55
𝑅
} = ∫ 𝐶55𝐾𝑠

2(1 − 3𝛼𝑧2) {
1
𝑧2
} 𝑑𝑧

−ℎ

−ℎ−ℎ𝑝

+∫ 𝑄55𝐾𝑠
2(1 − 3𝛼𝑧2) {

1
𝑧2
} 𝑑𝑧

+ℎ

−ℎ

+∫ 𝐶55𝐾𝑠
2(1 − 3𝛼𝑧2) {

1
𝑧2
} 𝑑𝑧

+ℎ+ℎ𝑝

+ℎ

 

(B.1) 

Also, the coefficients 𝛼𝑁, 𝛼𝑀 and 𝛼𝑃 are given below for both parallel and 
series connections: 

For parallel:  

{𝛼𝑁 , 𝛼𝑀, 𝛼𝑃} = −∫ (
�̅�31
ℎ𝑝
) {1, 𝑧, 𝑧3} 𝑑𝑧

−ℎ

−ℎ−ℎ𝑝

+∫ (
�̅�31
ℎ𝑝
) {1, 𝑧, 𝑧3}𝑑𝑧

+ℎ+ℎ𝑝

+ℎ

 

(B.2) 

For series: 

{𝛼𝑁 , 𝛼𝑀, 𝛼𝑃} = +∫ (
�̅�31
2ℎ𝑝

) {1, 𝑧, 𝑧3} 𝑑𝑧
−ℎ

−ℎ−ℎ𝑝

+∫ (
�̅�31
2ℎ𝑝

) {1, 𝑧, 𝑧3}𝑑𝑧
+ℎ+ℎ𝑝

+ℎ

 

(B.3) 

The coefficients 𝑋𝑚𝑛𝑖  and 𝑠𝑚𝑛𝑖  (𝑖 = 𝑢0, 𝑣0, 𝜓𝑥 , 𝜓𝑦, 𝑤0) in Eq. (27) are given 
in Eqs. (A.4) to (A.6) for both cases of FSDT and TSDT: 

{𝑋𝑚𝑛
𝑢0 , 𝑋𝑚𝑛

𝑣0 } = 𝛼𝑁𝐶𝑚𝑛 {
1

𝛽𝑛
,
1

𝛽𝑚
}  

{𝑠𝑚𝑛
𝑢0 , 𝑠𝑚𝑛

𝑣0 } = −�̅�31𝐶𝑚𝑛 {
1

𝛽𝑛
,
1

𝛽𝑚
} (B.4) 

For FSDT case: 
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{𝑋𝑚𝑛
𝜓𝑥 , 𝑋𝑚𝑛

𝜓𝑦} = 𝛼𝑀𝐶𝑚𝑛 {
1

𝛽𝑛
,
1

𝛽𝑚
}  

{𝑠𝑚𝑛
𝜓𝑥 , 𝑠𝑚𝑛

𝜓𝑦} = −�̅�31ℎ̂𝐶𝑚𝑛 {
1

𝛽𝑛
,
1

𝛽𝑚
}  

𝑋𝑚𝑛
𝑤0 = 𝑠𝑚𝑛

𝑤0 = 0 (B.5) 

For TSDT case: 

{𝑋𝑚𝑛
𝜓𝑥 , 𝑋𝑚𝑛

𝜓𝑦} = (𝛼𝑀 − 𝛼𝛼𝑃)𝐶𝑚𝑛 {
1

𝛽𝑛
,
1

𝛽𝑚
}  

{𝑠𝑚𝑛
𝜓𝑥 , 𝑠𝑚𝑛

𝜓𝑦} = −�̅�31(ℎ̂ − 𝛼ℎ̃)𝐶𝑚𝑛 {
1

𝛽𝑛
,
1

𝛽𝑚
}  

𝑋𝑚𝑛
𝑤0 =

𝛼𝛼𝑃(𝛽𝑚
2 + 𝛽𝑛

2)𝐶𝑚𝑛
𝛽𝑚𝛽𝑛

,       𝑠𝑚𝑛
𝑤0 = −

𝛼�̅�31ℎ̃(𝛽𝑚
2 + 𝛽𝑛

2)𝐶𝑚𝑛
𝛽𝑚𝛽𝑛

 (B.6) 

On the other hand, the components of the stiffness matrix [𝐾] and mass matrix 
[𝑀] in Eq. (27) are given as: 

𝐾11 = −𝑎11
𝑁 𝛽𝑚

2 − 𝑎66
𝑁 𝛽𝑛

2  

𝐾12 = −(𝑎12
𝑁 + 𝑎66

𝑁 )𝛽𝑚𝛽𝑛  

𝐾13 = −𝑏11
𝑁 𝛽𝑚

2 − 𝑏66
𝑁 𝛽𝑛

2  

𝐾14 = −(𝑏12
𝑁 + 𝑏66

𝑁 )𝛽𝑚𝛽𝑛  

𝐾15 = −𝑓11
𝑁𝛽𝑚

3 − (𝑓12
𝑁 + 𝑓66

𝑁)𝛽𝑚𝛽𝑛
2  

𝐾21 = −(𝑎12
𝑁 + 𝑎66

𝑁 )𝛽𝑚𝛽𝑛  

𝐾22 = −𝑎66
𝑁 𝛽𝑚

2 − 𝑎11
𝑁 𝛽𝑛

2  

𝐾23 = −(𝑏12
𝑁 + 𝑏66

𝑁 )𝛽𝑚𝛽𝑛  

𝐾24 = −𝑏66
𝑁 𝛽𝑚

2 − 𝑏11
𝑁 𝛽𝑛

2  

𝐾25 = −𝑓11
𝑁𝛽𝑛

3 − (𝑓12
𝑁 + 𝑓66

𝑁)𝛽𝑛𝛽𝑚
2   

𝐾31 = −(𝑎11
𝑀 − 𝛼𝑎11

𝑃 )𝛽𝑚
2 − (𝑎66

𝑀 − 𝛼𝑎66
𝑃 )𝛽𝑛

2  

𝐾32 = −(𝑎12
𝑀 + 𝑎66

𝑀 − 𝛼𝑎12
𝑃 − 𝛼𝑎66

𝑃 )𝛽𝑚𝛽𝑛  

𝐾33 = (−𝑎55
𝑄 + 3𝛼𝑎55

𝑅 ) − (𝑏11
𝑀 − 𝛼𝑏11

𝑃 )𝛽𝑚
2 − (𝑏66

𝑀 − 𝛼𝑏66
𝑃 )𝛽𝑛

2  

𝐾34 = −(𝑏12
𝑀 + 𝑏66

𝑀 − 𝛼𝑏12
𝑃 − 𝛼𝑏66

𝑃 )𝛽𝑚𝛽𝑛  
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𝐾35 = (−𝑎55
𝑄 + 3𝛼𝑎55

𝑅 )𝛽𝑚 − (𝑓11
𝑀 − 𝛼𝑓11

𝑃 )𝛽𝑚
3

− (𝑓12
𝑀 + 𝑓66

𝑀 − 𝛼𝑓12
𝑃 − 𝛼𝑓66

𝑃 )𝛽𝑚𝛽𝑛
2 

 

𝐾41 = −(𝑎12
𝑀 + 𝑎66

𝑀 − 𝛼𝑎12
𝑃 − 𝛼𝑎66

𝑃 )𝛽𝑚𝛽𝑛  

𝐾42 = −(𝑎66
𝑀 − 𝛼𝑎66

𝑃 )𝛽𝑚
2 − (𝑎11

𝑀 − 𝛼𝑎11
𝑃 )𝛽𝑛

2  

𝐾43 = −(𝑏12
𝑀 + 𝑏66

𝑀 − 𝛼𝑏12
𝑃 − 𝛼𝑏66

𝑃 )𝛽𝑚𝛽𝑛  

𝐾44 = (−𝑎55
𝑄 + 3𝛼𝑎55

𝑅 ) − (𝑏66
𝑀 − 𝛼𝑏66

𝑃 )𝛽𝑚
2 − (𝑏11

𝑀 − 𝛼𝑏11
𝑃 )𝛽𝑛

2  

𝐾45 = (−𝑎55
𝑄 + 3𝛼𝑎55

𝑅 )𝛽𝑛 − (𝑓11
𝑀 − 𝛼𝑓11

𝑃 )𝛽𝑛
3

− (𝑓12
𝑀 + 𝑓66

𝑀 − 𝛼𝑓12
𝑃 − 𝛼𝑓66

𝑃 )𝛽𝑛𝛽𝑚
2  

 

𝐾51 = 𝛼𝑎11
𝑃 𝛽𝑚

3 + (2𝛼𝑎66
𝑃 + 𝛼𝑎12

𝑃 )𝛽𝑚𝛽𝑛
2  

𝐾52 = 𝛼𝑎11
𝑃 𝛽𝑛

3 + (2𝛼𝑎66
𝑃 + 𝛼𝑎12

𝑃 )𝛽𝑛𝛽𝑚
2   

𝐾53 = −(𝑎66
𝑄 − 3𝛼𝑎55

𝑅 )𝛽𝑚 + 𝛼𝑏11
𝑃 𝛽𝑚

3 + (2𝛼𝑏66
𝑃 + 𝛼𝑏12

𝑃 )𝛽𝑚𝛽𝑛
2  

𝐾54 = −(𝑎66
𝑄 − 3𝛼𝑎55

𝑅 )𝛽𝑛 + 𝛼𝑏11
𝑃 𝛽𝑛

3 + (2𝛼𝑏66
𝑃 + 𝛼𝑏12

𝑃 )𝛽𝑛𝛽𝑚
2   

𝐾55 = −(𝑎55
𝑄 − 3𝛼𝑎55

𝑅 )𝛽𝑚
2 − (𝑎55

𝑄 − 3𝛼𝑎55
𝑅 )𝛽𝑛

2 + 𝛼𝑓11
𝑃𝛽𝑚

4

+ (𝛼𝑓12
𝑃 + 2𝛼𝑓66

𝑃 + 𝛼𝑓12
𝑃 )𝛽𝑚

2 𝛽𝑛
2 + 𝛼𝑓11

𝑃𝛽𝑛
4 

(B.7) 

And: 

𝑀11 = −𝐼0  

𝑀12 = 0  

𝑀13 = −𝐽1  

𝑀14 = 0  

𝑀15 = 𝛼𝐼3𝛽𝑚  

𝑀21 = 0  

𝑀22 = −𝐼0  

𝑀23 = 0  

𝑀24 = −𝐽1  

𝑀25 = 𝛼𝐼3𝛽𝑛  

𝑀31 = −𝐽1  

𝑀32 = 0  
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𝑀33 = −𝐾1  

𝑀34 = 0  

𝑀35 = 𝛼𝐽4𝛽𝑚  

𝑀41 = 0  

𝑀42 = −𝐽1  

𝑀43 = 0  

𝑀44 = −𝐾1  

𝑀45 = 𝛼𝐽4𝛽𝑛  

𝑀51 = 𝛼𝐼3𝛽𝑚  

𝑀52 = 𝛼𝐼3𝛽𝑛  

𝑀53 = 𝛼𝐽4𝛽𝑚  

𝑀54 = 𝛼𝐽4𝛽𝑛  

𝑀55 = −𝐼0 − 𝛼
2𝐼6(𝛽𝑚

2 + 𝛽𝑛
2) (B.8) 

The coefficients 𝑌𝑚𝑛𝑖  (𝑖 = 1,2,3,4,5) in Eq. (33) are given as: 

𝑌𝑚𝑛
1 = 𝐵11𝑋𝑚𝑛

𝑢0 + 𝐵12𝑋𝑚𝑛
𝑣0 + 𝐵13𝑋𝑚𝑛

𝜓𝑥 + 𝐵14𝑋𝑚𝑛
𝜓𝑦
+ 𝐵15𝑋𝑚𝑛

𝑤0   

𝑌𝑚𝑛
2 = 𝐵21𝑋𝑚𝑛

𝑢0 + 𝐵22𝑋𝑚𝑛
𝑣0 + 𝐵23𝑋𝑚𝑛

𝜓𝑥 + 𝐵24𝑋𝑚𝑛
𝜓𝑦 + 𝐵25𝑋𝑚𝑛

𝑤0   

𝑌𝑚𝑛
3 = 𝐵31𝑋𝑚𝑛

𝑢0 + 𝐵32𝑋𝑚𝑛
𝑣0 + 𝐵33𝑋𝑚𝑛

𝜓𝑥 + 𝐵34𝑋𝑚𝑛
𝜓𝑦 + 𝐵35𝑋𝑚𝑛

𝑤0   

𝑌𝑚𝑛
4 = 𝐵41𝑋𝑚𝑛

𝑢0 + 𝐵42𝑋𝑚𝑛
𝑣0 + 𝐵43𝑋𝑚𝑛

𝜓𝑥 + 𝐵44𝑋𝑚𝑛
𝜓𝑦 + 𝐵45𝑋𝑚𝑛

𝑤0   

𝑌𝑚𝑛
5 = 𝐵51𝑋𝑚𝑛

𝑢0 + 𝐵52𝑋𝑚𝑛
𝑣0 + 𝐵53𝑋𝑚𝑛

𝜓𝑥 + 𝐵54𝑋𝑚𝑛
𝜓𝑦 + 𝐵55𝑋𝑚𝑛

𝑤0  (B.9) 
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The coefficients 𝑎𝑖
𝑝𝑞 (𝑖 = 1, 2, … , 13), 𝛽𝑖

𝑝𝑞 (𝑖 = 1, 2, … , 4), and 𝜇𝑖
𝑝𝑞 (𝑖 = 1, 2, … , 4) 

in transverse (or d31) mode are defined as: 

In the SC electrical condition: 
 

(

𝑎1
31

𝑎4
31

𝑎7
31

) = ∫ (
1
𝑧

𝑓(𝑧)
)𝐶11

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 + ∫ (
1
𝑧

𝑓(𝑧)
)𝑄11

+𝑡𝑐

−𝑡𝑐

𝑑𝑧

+ ∫ (
1
𝑧

𝑓(𝑧)
)𝐶11

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

(

𝑎2
31

𝑎5
31

𝑎8
31

) = −∫ (
1
𝑧

𝑓(𝑧)
) 𝑧𝐶11

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 − ∫ (
1
𝑧

𝑓(𝑧)
)𝑧𝑄11

+𝑡𝑐

−𝑡𝑐

𝑑𝑧

− ∫ (
1
𝑧

𝑓(𝑧)
)𝑧𝐶11

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

(

𝑎3
31

𝑎6
31

𝑎9
31

) = ∫ (
1
𝑧

𝑓(𝑧)
)𝑓(𝑧)𝐶11

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 + ∫ (
1
𝑧

𝑓(𝑧)
)𝑓(𝑧)𝑄11

+𝑡𝑐

−𝑡𝑐

𝑑𝑧

+ ∫ (
1
𝑧

𝑓(𝑧)
)𝑓(𝑧)𝐶11

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 
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𝑎10
31 = ∫ [𝑓′(𝑧)]2𝐶55

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 + ∫ [𝑓′(𝑧)]2𝑄55

+𝑡𝑐

−𝑡𝑐

𝑑𝑧 + ∫ [𝑓′(𝑧)]2𝐶55

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

(

𝑎11
31

𝑎12
31

𝑎13
31

) = (
0
0
0
) 

(

𝜇1
31

𝜇2
31

𝜇3
31

) = ∫ (
1
𝑧

𝑓(𝑧)
)
4𝑒31
𝑡𝑝

[
−2𝑧 − 2𝑡𝑐 − 𝑡𝑝

𝑡𝑝
]

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧

− ∫ (
1
𝑧

𝑓(𝑧)
)
4𝑒31
𝑡𝑝

[
2𝑧 − 2𝑡𝑐 − 𝑡𝑝

𝑡𝑝
]

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

𝜇4
31 = 0 

𝜇5
31 = ∫

8Ξ33

(𝑡𝑝)
2

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 + ∫
8Ξ33

(𝑡𝑝)
2

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

(

𝛽1
31

𝛽2
31

𝛽3
31

) = (
0
0
0
) 

𝛽4
31 = ∫ 𝑓′(𝑧) 𝑒15 [1 − (

−2𝑧 − 2𝑡𝑐 − 𝑡𝑝

𝑡𝑝
)

2

]
−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧

+ ∫ 𝑓′(𝑧) 𝑒15 [1 − (
2𝑧 − 2𝑡𝑐 − 𝑡𝑝

𝑡𝑝
)

2

]
+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

𝛽5
31 = −∫ Ξ11 [1 − (

−2𝑧 − 2𝑡𝑐 − 𝑡𝑝

𝑡𝑝
)

2

]
−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧

− ∫ Ξ11 [1 − (
2𝑧 − 2𝑡𝑐 − 𝑡𝑝

𝑡𝑝
)

2

]
+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

(

 
 
 
 
 

𝑏1
31

𝑏3
31

𝑏4
31

𝑏5
31

𝑏6
31

𝑏8
31

𝑏9
31)

 
 
 
 
 

=

(

 
 
 
 

0
0
0
0
0
0
0)
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𝑏2
31 = ∫ 𝑓′(𝑧)(𝑒31 + 𝑒15)

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 + ∫ 𝑓′(𝑧)(𝑒31 + 𝑒15)
+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

𝑏7
31 = −∫ 𝑒31

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 − ∫ 𝑒31

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 (C.1) 

 
 

In the OC electrical condition: 
 

(

𝑎1
31

𝑎4
31

𝑎7
31

) = ∫ (
1
𝑧

𝑓(𝑧)
) [𝐶11 +

𝑒31
2

Ξ33
]

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 + ∫ (
1
𝑧

𝑓(𝑧)
)𝑄11

+𝑡𝑐

−𝑡𝑐

𝑑𝑧

+ ∫ (
1
𝑧

𝑓(𝑧)
) [𝐶11 +

𝑒31
2

Ξ33
]

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

(

𝑎2
31

𝑎5
31

𝑎8
31

) = ∫ (
1
𝑧

𝑓(𝑧)
) [−𝑧𝐶11 +

(𝑡𝑐 + 𝑡𝑝)𝑒31
2

Ξ33
]

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 −∫ (
1
𝑧

𝑓(𝑧)
) 𝑧𝑄11

+𝑡𝑐

−𝑡𝑐

𝑑𝑧

+ ∫ (
1
𝑧

𝑓(𝑧)
) [−𝑧𝐶11 +

(𝑡𝑐 + 𝑡𝑝)𝑒31
2

Ξ33
]

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

(

𝑎3
31

𝑎6
31

𝑎9
31

) = ∫ (
1
𝑧

𝑓(𝑧)
) [𝑓(𝑧)𝐶11 +

휂2𝑒31
2

Ξ33
]

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 + ∫ (
1
𝑧

𝑓(𝑧)
)𝑓(𝑧)𝑄11

+𝑡𝑐

−𝑡𝑐

𝑑𝑧

+ ∫ (
1
𝑧

𝑓(𝑧)
) [𝑓(𝑧)𝐶11 +

휂1𝑒31
2

Ξ33
]

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

𝑎10
31 = ∫ [𝑓′(𝑧)]2𝐶55

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 + ∫ [𝑓′(𝑧)]2𝑄55

+𝑡𝑐

−𝑡𝑐

𝑑𝑧 + ∫ [𝑓′(𝑧)]2𝐶55

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

(

𝑎11
31

𝑎12
31

𝑎13
31

) = ∫ (

휂2
1

𝑡𝑐 + 𝑡𝑝
)
𝑓′(𝑧)𝑒15𝑒31(𝑧 + 𝑡𝑐)

Ξ33

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧

+ ∫ (

휂1
1

𝑡𝑐 + 𝑡𝑝
)
𝑓′(𝑧)𝑒15𝑒31(𝑧 − 𝑡𝑐)

Ξ33

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 
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(

𝜇1
31

𝜇2
31

𝜇3
31

) = −∫ (
1
𝑧

𝑓(𝑧)
)
8𝑒31
𝑡𝑝

(𝑧 + 𝑡𝑐 + 𝑡𝑝)
−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧

− ∫ (
1
𝑧

𝑓(𝑧)
)
8𝑒31
𝑡𝑝

(𝑧 − 𝑡𝑐 − 𝑡𝑝)
+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

𝜇4
31 = 0 

𝜇5
31 = ∫

8Ξ33

(𝑡𝑝)
2

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 + ∫
8Ξ33

(𝑡𝑝)
2

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

(

𝛽1
31

𝛽2
31

𝛽3
31

) = (
0
0
0
) 

𝛽4
31 = ∫ 𝑓′(𝑧) 𝑒15 [1 − (

−2𝑧 − 2𝑡𝑐 − 𝑡𝑝

𝑡𝑝
)

2

−
4(𝑧 + 𝑡𝑐)

𝑡𝑝
]

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧

+ ∫ 𝑓′(𝑧) 𝑒15 [1 − (
2𝑧 − 2𝑡𝑐 − 𝑡𝑝

𝑡𝑝
)

2

+
4(𝑧 − 𝑡𝑐)

𝑡𝑝
]

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

𝛽5
31 = −∫ Ξ11 [1 − (

−2𝑧 − 2𝑡𝑐 − 𝑡𝑝

𝑡𝑝
)

2

−
4(𝑧 + 𝑡𝑐)

𝑡𝑝
]

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧

− ∫ Ξ11 [1 − (
2𝑧 − 2𝑡𝑐 − 𝑡𝑝

𝑡𝑝
)

2

+
4(𝑧 − 𝑡𝑐)

𝑡𝑝
]

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

(

 
 

𝑏1
31

𝑏3
31

𝑏5
31

𝑏8
31
)

 
 
= (

0
0
0
0

) 

𝑏2
31 = ∫ 𝑓′(𝑧)(𝑒31 + 𝑒15)

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 + ∫ 𝑓′(𝑧)(𝑒31 + 𝑒15)
+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

(

𝑏4
31

𝑏6
31

𝑏9
31

) = −∫ (

휂2
1

𝑡𝑐 + 𝑡𝑝
)
Ξ11𝑒31(𝑧 + 𝑡𝑐)

Ξ33

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧

− ∫ (

휂1
1

−𝑡𝑐 − 𝑡𝑝
)
Ξ11𝑒31(𝑧 − 𝑡𝑐)

Ξ33

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 
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𝑏7
31 = −∫ 𝑒31

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 − ∫ 𝑒31

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 (C.2) 

 
The coefficients 𝑎𝑖

𝑝𝑞 (𝑖 = 1, 2, … , 13), 𝛽𝑖
𝑝𝑞 (𝑖 = 1, 2, … , 4), and 𝜇𝑖

𝑝𝑞 (𝑖 =
1, 2, … , 4) in Shear (d15) Mode are defined as 
 

In the SC electrical condition: 
 

(

𝑎1
15

𝑎4
15

𝑎7
15

) = ∫ (
1
𝑧

𝑓(𝑧)
)𝐶33

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 + ∫ (
1
𝑧

𝑓(𝑧)
)𝑄11

+𝑡𝑐

−𝑡𝑐

𝑑𝑧

+ ∫ (
1
𝑧

𝑓(𝑧)
)𝐶33

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

(

𝑎2
15

𝑎5
15

𝑎8
15

) = −∫ (
1
𝑧

𝑓(𝑧)
) 𝑧𝐶33

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 − ∫ (
1
𝑧

𝑓(𝑧)
) 𝑧𝑄11

+𝑡𝑐

−𝑡𝑐

𝑑𝑧

− ∫ (
1
𝑧

𝑓(𝑧)
)𝑧𝐶33

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

(

𝑎3
15

𝑎6
15

𝑎9
15

) = ∫ (
1
𝑧

𝑓(𝑧)
)𝑓(𝑧)𝐶33

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 + ∫ (
1
𝑧

𝑓(𝑧)
)𝑓(𝑧)𝑄11

+𝑡𝑐

−𝑡𝑐

𝑑𝑧

+ ∫ (
1
𝑧

𝑓(𝑧)
)𝑓(𝑧)𝐶33

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

𝑎10
15 = ∫ [𝑓′(𝑧)]2𝐶55

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 + ∫ [𝑓′(𝑧)]2𝑄55

+𝑡𝑐

−𝑡𝑐

𝑑𝑧 + ∫ [𝑓′(𝑧)]2𝐶55

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

(

𝑎11
15

𝑎12
15

𝑎13
15

) = (
0
0
0
) 

(

𝜇1
15

𝜇2
15

𝜇3
15

) = (
0
0
0
) 
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𝜇4
15 = ∫

4𝑒15𝑓
′(𝑧)

𝑡𝑝
[
−2𝑧 − 2𝑡𝑐 − 𝑡𝑝

𝑡𝑝
]

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧

− ∫
4𝑒15𝑓

′(𝑧)

𝑡𝑝
[
2𝑧 − 2𝑡𝑐 − 𝑡𝑝

𝑡𝑝
]

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

𝜇5
15 = ∫

8Ξ11

(𝑡𝑝)
2

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 + ∫
8Ξ11

(𝑡𝑝)
2

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

(

𝛽1
15

𝛽2
15

𝛽3
15

) = ∫ (
1
𝑧

𝑓(𝑧)
)  𝑒33 [1 − (

−2𝑧 − 2𝑡𝑐 − 𝑡𝑝

𝑡𝑝
)

2

]
−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧

+ ∫ (
1
𝑧

𝑓(𝑧)
)  𝑒33 [1 − (

2𝑧 − 2𝑡𝑐 − 𝑡𝑝

𝑡𝑝
)

2

]
+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

𝛽4
15 = 0 

𝛽5
15 = −∫ Ξ33 [1 − (

−2𝑧 − 2𝑡𝑐 − 𝑡𝑝

𝑡𝑝
)

2

]
−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧

− ∫ Ξ33 [1 − (
2𝑧 − 2𝑡𝑐 − 𝑡𝑝

𝑡𝑝
)

2

]
+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

(

 
 
 

𝑏2
15

𝑏4
15

𝑏6
15

𝑏7
15

𝑏9
15)

 
 
 
=

(

 
 

0
0
0
0
0)

 
 

 

𝑏1
15 = ∫ 𝑒15𝑓

′′(𝑧)
−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 + ∫ 𝑒15𝑓
′′(𝑧)

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

𝑏3
15 = ∫ 𝑒33𝑓(𝑧)

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 + ∫ 𝑒33𝑓(𝑧)
+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

𝑏5
15 = ∫ 𝑒33

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 + ∫ 𝑒33

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

𝑏8
15 = −∫ 𝑧𝑒31

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 − ∫ 𝑧𝑒31

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 (C.3) 
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In the OC electrical condition: 
 

(

𝑎1
15

𝑎4
15

𝑎7
15

) = ∫ (
1
𝑧

𝑓(𝑧)
)𝐶33

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 + ∫ (
1
𝑧

𝑓(𝑧)
)𝑄11

+𝑡𝑐

−𝑡𝑐

𝑑𝑧

+ ∫ (
1
𝑧

𝑓(𝑧)
)𝐶33

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

(

𝑎2
15

𝑎5
15

𝑎8
15

) = −∫ (
1
𝑧

𝑓(𝑧)
) 𝑧𝐶33

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 − ∫ (
1
𝑧

𝑓(𝑧)
) 𝑧𝑄11

+𝑡𝑐

−𝑡𝑐

𝑑𝑧

− ∫ (
1
𝑧

𝑓(𝑧)
)𝑧𝐶33

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

(

𝑎3
15

𝑎6
15

𝑎9
15

) = ∫ (
1
𝑧

𝑓(𝑧)
) [𝐶33𝑓(𝑧) +

𝑒15𝑒33휁2(𝑧 + 𝑡𝑐)

Ξ11
]

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧

+ ∫ (
1
𝑧

𝑓(𝑧)
)𝑓(𝑧)𝑄11

+𝑡𝑐

−𝑡𝑐

𝑑𝑧

+ ∫ (
1
𝑧

𝑓(𝑧)
) [𝐶33𝑓(𝑧) +

𝑒15𝑒33휁1(𝑧 − 𝑡𝑐)

Ξ11
]

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

𝑎10
15 = ∫ (𝐶55[𝑓

′(𝑧)]2 +
휁2𝑓

′(𝑧)𝑒15
2

Ξ11
)

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 + ∫ 𝑄55[𝑓
′(𝑧)]2

+𝑡𝑐

−𝑡𝑐

𝑑𝑧

+ ∫ (𝐶55[𝑓
′(𝑧)]2 +

휁1𝑓
′(𝑧)𝑒15

2

Ξ11
)

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

(

𝑎11
15

𝑎12
15

𝑎13
15

) = (
0
0
0
)  

(

𝜇1
15

𝜇2
15

𝜇3
15

) = (
0
0
0
) 
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𝜇4
15 = −∫

8𝑒15𝑓
′(𝑧)

𝑡𝑝
[
𝑧 + 𝑡𝑐 + 𝑡𝑝

𝑡𝑝
]

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧

− ∫
8𝑒15𝑓

′(𝑧)

𝑡𝑝
[
𝑧 − 𝑡𝑐 − 𝑡𝑝

𝑡𝑝
]

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

𝜇5
15 = ∫

8Ξ11

(𝑡𝑝)
2

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 + ∫
8Ξ11

(𝑡𝑝)
2

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

(

𝛽1
15

𝛽2
15

𝛽3
15

) = ∫ (
1
𝑧

𝑓(𝑧)
)  𝑒33 [1 − (

−2𝑧 − 2𝑡𝑐 − 𝑡𝑝

𝑡𝑝
)

2

−
4(𝑧 + 𝑡𝑐)

𝑡𝑝
]

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧

+ ∫ (
1
𝑧

𝑓(𝑧)
)  𝑒33 [1 − (

2𝑧 − 2𝑡𝑐 − 𝑡𝑝

𝑡𝑝
)

2

+
4(𝑧 − 𝑡𝑐)

𝑡𝑝
]

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

𝛽4
15 = 0 

𝛽5
15 = −∫ Ξ33 [1 − (

−2𝑧 − 2𝑡𝑐 − 𝑡𝑝

𝑡𝑝
)

2

−
4(𝑧 + 𝑡𝑐)

𝑡𝑝
]

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧

− ∫ Ξ33 [1 − (
2𝑧 − 2𝑡𝑐 − 𝑡𝑝

𝑡𝑝
)

2

+
4(𝑧 − 𝑡𝑐)

𝑡𝑝
]

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

(

 
 
 

𝑏2
15

𝑏4
15

𝑏6
15

𝑏7
15

𝑏9
15)

 
 
 
=

(

 
 

0
0
0
0
0)

 
 

 

𝑏1
15 = ∫ 𝑒15𝑓

′′(𝑧)
−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 + ∫ 𝑒15𝑓
′′(𝑧)

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

𝑏3
15 = ∫ (𝑒33𝑓(𝑧) −

𝑒15휁2Ξ33(𝑧 + 𝑡𝑐)

Ξ11
)

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧

+ ∫ (𝑒33𝑓(𝑧) −
𝑒15휁1Ξ33(𝑧 − 𝑡𝑐)

Ξ11
)

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 

𝑏5
15 = ∫ 𝑒33

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 + ∫ 𝑒33

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 
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𝑏8
15 = −∫ 𝑧𝑒33

−𝑡𝑐

−𝑡𝑐−𝑡𝑝

𝑑𝑧 − ∫ 𝑧𝑒33

+𝑡𝑐+𝑡𝑝

+𝑡𝑐

𝑑𝑧 (C.4) 
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Appendix D 
 
 
 

The constant coefficients of Eq. (5.13) are as: 
 

{
 
 

 
 
𝑎𝑖
𝑏𝑖
𝑑𝑖
𝑓𝑖
𝑔𝑖
ℎ𝑖}
 
 

 
 

= ∫

{
 
 

 
 
1
𝑧
𝑓

𝑧2

𝑧𝑓

𝑓2}
 
 

 
 

 𝐶�̅� 𝑑𝑧
−ℎ

−ℎ−ℎ𝑝

+∫

{
 
 

 
 
1
𝑧
𝑓

𝑧2

𝑧𝑓

𝑓2}
 
 

 
 

 𝑄𝑖 𝑑𝑧
+ℎ

−ℎ

+∫

{
 
 

 
 
1
𝑧
𝑓

𝑧2

𝑧𝑓

𝑓2}
 
 

 
 

 𝐶�̅� 𝑑𝑧
+ℎ+ℎ𝑝

+ℎ

, (𝑖 = 11,22) 

(D.1) 

{
 
 

 
 
𝑎66
𝑏66
𝑑66
𝑓66
𝑔66
ℎ66}

 
 

 
 

= ∫

{
 
 

 
 
1
𝑧
𝑓

𝑧2

𝑧𝑓

𝑓2}
 
 

 
 

 𝐶66 𝑑𝑧
−ℎ

−ℎ−ℎ𝑝

+∫

{
 
 

 
 
1
𝑧
𝑓

𝑧2

𝑧𝑓

𝑓2}
 
 

 
 

 𝑄𝑖 𝑑𝑧
+ℎ

−ℎ

+∫

{
 
 

 
 
1
𝑧
𝑓

𝑧2

𝑧𝑓

𝑓2}
 
 

 
 

 𝐶�̅� 𝑑𝑧
+ℎ+ℎ𝑝

+ℎ
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𝑎55 = ∫ 𝐶55 𝑔
2 𝑑𝑧

−ℎ

−ℎ−ℎ𝑝

+∫ 𝑄55 𝑔
2 𝑑𝑧

+ℎ

−ℎ

+∫ 𝐶55 𝑔
2 𝑑𝑧

+ℎ+ℎ𝑝

+ℎ

 

 
 
For OC condition: 
 
 

𝜇1 = ∫ [
−𝜋�̅�31
ℎ𝑝

{1 + cos (
𝜋(−𝑧 − ℎ)

ℎ𝑝
)}]𝑑𝑧

−ℎ

−ℎ−ℎ𝑝

+∫ [
𝜋�̅�31
ℎ𝑝

{1 + cos (
𝜋(𝑧 − ℎ)

ℎ𝑝
)}] 𝑑𝑧

+ℎ+ℎ𝑝

+ℎ

 

(D.2) 

�̂�1 = ∫ [
−𝜋�̅�31
ℎ𝑝

{1 + cos (
𝜋(−𝑧 − ℎ)

ℎ𝑝
)}] 𝑧 𝑑𝑧

−ℎ

−ℎ−ℎ𝑝

+∫ [
𝜋�̅�31
ℎ𝑝

{1 + cos (
𝜋(𝑧 − ℎ)

ℎ𝑝
)}] 𝑧 𝑑𝑧

+ℎ+ℎ𝑝

+ℎ

 

𝜇1 = ∫ [
−𝜋�̅�31
ℎ𝑝

{1 + cos (
𝜋(−𝑧 − ℎ)

ℎ𝑝
)}] 𝑓 𝑑𝑧

−ℎ

−ℎ−ℎ𝑝

+∫ [
𝜋�̅�31
ℎ𝑝

{1 + cos (
𝜋(𝑧 − ℎ)

ℎ𝑝
)}] 𝑓 𝑑𝑧

+ℎ+ℎ𝑝

+ℎ

 

𝜇2 = ∫ 𝑒15 [sin (
𝜋(−𝑧 − ℎ)

ℎ𝑝
) −

𝜋(𝑧 + ℎ)

ℎ𝑝
] 𝑔 𝑑𝑧

−ℎ

−ℎ−ℎ𝑝

+∫ 𝑒15 [sin (
𝜋(𝑧 − ℎ)

ℎ𝑝
) +

𝜋(𝑧 − ℎ)

ℎ𝑝
]  𝑔 𝑑𝑧

+ℎ+ℎ𝑝

+ℎ

 

{

𝜆1
�̂�1
�̃�1

} = ∫ (
�̅�31�̅�31

Ξ̅33
) {
1
𝑧
𝑓
} 𝑑𝑧

−ℎ

−ℎ−ℎ𝑝

+∫ (
�̅�31�̅�31

Ξ̅33
) {
1
𝑧
𝑓
} 𝑑𝑧

+ℎ+ℎ𝑝

+ℎ

 

{

𝜆2
�̂�2
�̃�2

} = −∫ (ℎ + ℎ𝑝) (
�̅�31�̅�31

Ξ̅33
) {
1
𝑧
𝑓
} 𝑑𝑧

−ℎ

−ℎ−ℎ𝑝

+∫ (ℎ + ℎ𝑝) (
�̅�31�̅�31

Ξ̅33
) {
1
𝑧
𝑓
} 𝑑𝑧

+ℎ+ℎ𝑝

+ℎ
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{

𝜆3
�̂�3
�̃�3

} = ∫ 𝛼1 (
�̅�31�̅�31

Ξ̅33
) {
1
𝑧
𝑓
} 𝑑𝑧

−ℎ

−ℎ−ℎ𝑝

+∫ 𝛼0 (
�̅�31�̅�31

Ξ̅33
) {
1
𝑧
𝑓
} 𝑑𝑧

+ℎ+ℎ𝑝

+ℎ

 

𝜆4 = ∫ (
𝑒15�̅�31(𝑧 + ℎ)

Ξ̅33
)  𝑔 𝑑𝑧

−ℎ

−ℎ−ℎ𝑝

+∫ (
𝑒15�̅�31(𝑧 − ℎ)

Ξ̅33
)  𝑔 𝑑𝑧

+ℎ+ℎ𝑝

+ℎ

 

𝜆5 = ∫ (ℎ + ℎ𝑝) {
𝑒15�̅�31(𝑧 + ℎ)

Ξ̅33
}  𝑔 𝑑𝑧

−ℎ

−ℎ−ℎ𝑝

−∫ (ℎ + ℎ𝑝) {
𝑒15�̅�31(𝑧 − ℎ)

Ξ̅33
}  𝑔 𝑑𝑧

+ℎ+ℎ𝑝

+ℎ

 

𝜆6 = −∫ 𝛼1 {
𝑒15�̅�31(𝑧 + ℎ)

Ξ̅33
}  𝑔 𝑑𝑧

−ℎ

−ℎ−ℎ𝑝

−∫ 𝛼0 {
𝑒15�̅�31(𝑧 − ℎ)

Ξ̅33
}  𝑔 𝑑𝑧

+ℎ+ℎ𝑝

+ℎ

 

 
 
For SC condition: 
 

 

𝜇1 = ∫ [
−𝜋�̅�31
ℎ𝑝

cos (
𝜋(−𝑧 − ℎ)

ℎ𝑝
)] 𝑑𝑧

−ℎ

−ℎ−ℎ𝑝

+∫ [
𝜋�̅�31
ℎ𝑝

cos (
𝜋(𝑧 − ℎ)

ℎ𝑝
)] 𝑑𝑧

+ℎ+ℎ𝑝

+ℎ

 

(D.3) 
�̂�1 = ∫ [

−𝜋�̅�31
ℎ𝑝

cos (
𝜋(−𝑧 − ℎ)

ℎ𝑝
)] 𝑧 𝑑𝑧

−ℎ

−ℎ−ℎ𝑝

+∫ [
𝜋�̅�31
ℎ𝑝

cos (
𝜋(𝑧 − ℎ)

ℎ𝑝
)] 𝑧 𝑑𝑧

+ℎ+ℎ𝑝

+ℎ

 

𝜇1 = ∫ [
−𝜋�̅�31
ℎ𝑝

cos (
𝜋(−𝑧 − ℎ)

ℎ𝑝
)] 𝑓 𝑑𝑧

−ℎ

−ℎ−ℎ𝑝

+∫ [
𝜋�̅�31
ℎ𝑝

cos (
𝜋(𝑧 − ℎ)

ℎ𝑝
)] 𝑓 𝑑𝑧

+ℎ+ℎ𝑝

+ℎ
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𝜇2 = ∫ 𝑒15 [sin (
𝜋(−𝑧 − ℎ)

ℎ𝑝
)] 𝑔 𝑑𝑧

−ℎ

−ℎ−ℎ𝑝

+∫ 𝑒15 [sin (
𝜋(𝑧 − ℎ)

ℎ𝑝
)]  𝑔 𝑑𝑧

+ℎ+ℎ𝑝

+ℎ

 

{𝜆𝑖, �̂�𝑗 , �̃�𝑘} = 0, 𝑖 = (1,2,3,4,5,6), 𝑗 = (1,2,3), 𝑘 = (1,2,3) 

 
 

The constant coefficients 𝜆𝑖 (𝑖 = 7,8, . . ,13) in Eq. (5.16) are derived as: 
 
For OC condition: 
 

𝜆7 = ∫ (𝑒15 𝑔 − �̅�31𝑓
′) 𝑑𝑧

−ℎ

−ℎ−ℎ𝑝

+∫ (𝑒15 𝑔 − �̅�31𝑓
′) 𝑑𝑧

+ℎ+ℎ𝑝

+ℎ

 

(D.4) 

𝜆8 = −∫ �̅�31 𝑑𝑧
−ℎ

−ℎ−ℎ𝑝

−∫ �̅�31 𝑑𝑧
+ℎ+ℎ𝑝

+ℎ

 

𝜆9 = ∫ {
𝜋2Ξ̅33

ℎ𝑝
2 sin (

𝜋(−𝑧 − ℎ)

ℎ𝑝
)}𝑑𝑧

−ℎ

−ℎ−ℎ𝑝

+∫ {
𝜋2Ξ̅33

ℎ𝑝
2 sin (

𝜋(𝑧 − ℎ)

ℎ𝑝
)} 𝑑𝑧

+ℎ+ℎ𝑝

+ℎ

 

𝜆10 = −∫ Ξ11 {sin (
𝜋(−𝑧 − ℎ)

ℎ𝑝
) −

𝜋(𝑧 + ℎ)

ℎ𝑝
} 𝑑𝑧

−ℎ

−ℎ−ℎ𝑝

−∫ Ξ11 {sin (
𝜋(𝑧 − ℎ)

ℎ𝑝
) +

𝜋(𝑧 − ℎ)

ℎ𝑝
} 𝑑𝑧

+ℎ+ℎ𝑝

+ℎ

 

𝜆11 = −∫ (
�̅�31Ξ11(𝑧 + ℎ)

Ξ̅33
)𝑑𝑧

−ℎ

−ℎ−ℎ𝑝

−∫ (
�̅�31Ξ11(𝑧 − ℎ)

Ξ̅33
)𝑑𝑧

+ℎ+ℎ𝑝

+ℎ

 

𝜆12 = −∫ (
�̅�31Ξ11(𝑧 + ℎ)(ℎ + ℎ𝑝)

Ξ̅33
)𝑑𝑧

−ℎ

−ℎ−ℎ𝑝

+∫ (
�̅�31Ξ11(𝑧 − ℎ)(ℎ + ℎ𝑝)

Ξ̅33
)𝑑𝑧

+ℎ+ℎ𝑝

+ℎ
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𝜆13 = ∫ (
�̅�31𝛼1Ξ11(𝑧 + ℎ)

Ξ̅33
)𝑑𝑧

−ℎ

−ℎ−ℎ𝑝

+∫ (
�̅�31𝛼0Ξ11(𝑧 − ℎ)

Ξ̅33
)𝑑𝑧

+ℎ+ℎ𝑝

+ℎ

 

 
 
For SC condition: 
 
 

𝜆7 = ∫ (𝑒15 𝑔 − �̅�31𝑓
′) 𝑑𝑧

−ℎ

−ℎ−ℎ𝑝

+∫ (𝑒15 𝑔 − �̅�31𝑓
′) 𝑑𝑧

+ℎ+ℎ𝑝

+ℎ

 

(D.5) 

𝜆8 = −∫ �̅�31 𝑑𝑧
−ℎ

−ℎ−ℎ𝑝

−∫ �̅�31 𝑑𝑧
+ℎ+ℎ𝑝

+ℎ

 

𝜆9 = ∫ {
𝜋2Ξ̅33

ℎ𝑝
2 sin (

𝜋(−𝑧 − ℎ)

ℎ𝑝
)}𝑑𝑧

−ℎ

−ℎ−ℎ𝑝

+∫ {
𝜋2Ξ̅33

ℎ𝑝
2 sin (

𝜋(𝑧 − ℎ)

ℎ𝑝
)} 𝑑𝑧

+ℎ+ℎ𝑝

+ℎ

 

𝜆10 = −∫ Ξ11 {sin (
𝜋(−𝑧 − ℎ)

ℎ𝑝
)}𝑑𝑧

−ℎ

−ℎ−ℎ𝑝

−∫ Ξ11 {sin (
𝜋(𝑧 − ℎ)

ℎ𝑝
)} 𝑑𝑧

+ℎ+ℎ𝑝

+ℎ

 

𝜆𝑖 = 0, 𝑖 = (11,12,13) 

 
The coefficients 𝐾𝑖𝑗’s in Eq. (5.18) are derived as: 
 
𝑘11 = −(𝑎11 + 𝜆1)𝛽1

2 − 𝑎66𝛽2
2 + 𝜔2𝐼0 

(D.6) 

𝑘12 = −(𝑎12 + 𝑎66 + 𝜆1)𝛽1𝛽2 
𝑘13 = 𝑗(𝑏11 + 𝜆2)𝛽1

3 + 𝑗(𝑏12 + 2𝑏66 + 𝜆2)𝛽1𝛽2
2 + 𝑗𝜔2𝛽1𝐼1 

𝑘14 = 𝑗(𝑑11 + 𝜆3)𝛽1
3 + 𝑗(𝑑12 + 2𝑑66 + 𝜆3)𝛽1𝛽2

2 + 𝑗𝜔2𝛽1𝐽1 
𝑘15 = 𝑗𝜇1𝛽1 
𝑘21 = −(𝑎12 + 𝑎66 + 𝜆1)𝛽1𝛽2 
𝑘22 = −𝑎66𝛽1

2 − (𝑎11 + 𝜆1)𝛽2
2 + 𝜔2𝐼0 

𝑘23 = 𝑗(𝑏11 + 𝜆2)𝛽2
3 + 𝑗(𝑏12 + 2𝑏66 + 𝜆2)𝛽1

2𝛽2 − 𝑗𝜔
2𝛽2𝐼1 
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𝑘24 = 𝑗(𝑑11 + 𝜆3)𝛽2
3 + 𝑗(𝑑12 + 2𝑑66 + 𝜆3)𝛽1

2𝛽2 − 𝑗𝜔
2𝛽2𝐽1 

𝑘25 = 𝑗𝜇1𝛽2 
𝑘31 = −𝑗(𝑏11 + �̂�1)𝛽1

3 − 𝑗(𝑏12 + 2𝑏66 + �̂�1)𝛽1𝛽2
2 + 𝑗𝜔2𝛽1𝐼1 

𝑘32 = −𝑗(𝑏12 + 2𝑏66 + �̂�1)𝛽1
2𝛽2 − 𝑗(𝑏11 + �̂�1)𝛽2

3 + 𝑗𝜔2𝛽2𝐼1 

𝑘33 = −(𝑓11 + �̂�2)𝛽1
4 − 2(𝑓12 + 2𝑓66 + �̂�2)𝛽1

2𝛽2
2 − (𝑓11 + �̂�2)𝛽2

4

− 𝜔2𝐼0 + 𝐼2𝜔
2𝛽1

2 + 𝐼2𝜔
2𝛽2

2 

𝑘34 = −(𝑔11 + �̂�3)𝛽1
4 − 2(𝑔12 + 2𝑔66 + �̂�3)𝛽1

2𝛽2
2 − (𝑔11 + �̂�3)𝛽2

4

− 𝜔2𝐼0 + 𝐽2𝜔
2𝛽1

2 + 𝐽2𝜔
2𝛽2

2 

𝑘35 = −�̂�1𝛽1
2 − �̂�1𝛽2

2 
𝑘41 = −𝑗(𝑑11 + �̃�1 + 𝜆4)𝛽1

3 − 𝑗(𝑑12 + 2𝑑66 + �̃�1 + 𝜆4)𝛽1𝛽2
2

+ 𝑗𝜔2𝛽1𝐽1 
𝑘42 = −𝑗(𝑑12 + 2𝑑66 + �̃�1 + 𝜆4)𝛽1

2𝛽2 − 𝑗(𝑑11 + �̃�1 + 𝜆4)𝛽2
3

+ 𝑗𝜔2𝛽2𝐽1 
𝑘43 = −(𝑔11 + �̃�2 + 𝜆5)𝛽1

4 + 2(−𝑔12 − 2𝑔66 − �̃�2 + 𝜆5)𝛽1
2𝛽2

2

− (𝑔11 + �̃�2 − 𝜆5)𝛽2
4 + 𝜔2𝐼0 + 𝜔

2𝛽1
2𝐽2 + 𝜔

2𝛽2
2𝐽2 

𝑘44 = −(ℎ11 + �̃�3 − 𝜆6)𝛽1
4 + 2(−ℎ12 − 2ℎ66 − �̃�3 + 𝜆6)𝛽1

2𝛽2
2

− (ℎ11 + �̃�3 − 𝜆6)𝛽2
4 − 𝑎55𝛽1

2 − 𝑎55𝛽2
2 + 𝜔2𝐼0

+ 𝜔2𝐾2𝛽1
2 + 𝜔2𝐾2𝛽2

2 
𝑘45 = −(�̃�1 + 𝜇2)𝛽1

2 − (𝜇1 + 𝜇2)𝛽2
2 

𝑘51 = −𝑗𝜆11𝛽1
3 − 𝑗𝜆11𝛽1𝛽2

2 
𝑘52 = −𝑗𝜆11𝛽1

2𝛽2 − 𝑗𝜆11𝛽2
3 

𝑘53 = −𝜆8𝛽1
2 − 𝜆8𝛽2

2 + 𝜆12𝛽1
4 + 2𝜆12𝛽1

2𝛽2
2 + 𝜆12𝛽2

4 
𝑘54 = −𝜆7𝛽1

2 − 𝜆7𝛽2
2 + 𝜆13𝛽1

4 + 2𝜆13𝛽1
2𝛽2

2 + 𝜆13𝛽2
4 

𝑘55 = 𝜆9 − 𝜆10𝛽1
2 − 𝜆10𝛽2

2 
 
The coefficients 𝐾𝑖𝑗′ ’s in Eq. (5.30) are derived as: 

 
𝑘11 = (𝑎11 + 𝜆1)𝑋12 + 𝑎66𝑋8 + 𝜔

2𝐼0𝑋6 

(D.7) 
𝑘12 = (𝑎12 + 𝜆1 + 𝑎66)𝑋8 
𝑘13 = −(𝑏11 + 𝜆2)𝑋12 − (𝑏12 + 𝜆2 + 2𝑏66)𝑋8 − 𝜔

2𝐼1𝑋6 
𝑘14 = −(𝑑11 + 𝜆3)𝑋12 − (𝑑12 + 𝜆3 + 2𝑑66)𝑋8 − 𝜔

2𝐽1𝑋6 
𝑘15 = 𝜇1𝑋2 
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𝑘21 = (𝑎12 + 𝜆1 + 𝑎66)𝑋10 
𝑘22 = 𝑎66𝑋10 + (𝑎11 + 𝜆1)𝑋4 + 𝜔

2𝐼0𝑋2 
𝑘23 = −(𝑏12 + 𝜆2 + 2𝑏66)𝑋10 − (𝑏11 + 𝜆2)𝑋4 −𝜔

2𝐼1𝑋2 
𝑘24 = −(𝑑12 + 𝜆3 + 2𝑑66)𝑋10 − (𝑑11 + 𝜆3)𝑋4 − 𝜔

2𝐽1𝑋2 
𝑘25 = 𝜇1𝑋2 
𝑘31 = (𝑏11 + �̂�1)𝑋13 + (𝑏12 + �̂�1 + 2𝑏66)𝑋11 + 𝜔

2𝐼1𝑋9 
𝑘32 = (𝑏12 + �̂�1 + 2𝑏66)𝑋11 + (𝑏11 + �̂�1)𝑋5 + 𝜔

2𝐼1𝑋3 

𝑘33 = −(𝑓11 + �̂�2)𝑋13 − (2𝑓12 + 2�̂�2 + 4𝑓66)𝑋11 − (𝑓11 + �̂�2)𝑋5
+ 𝜔2𝐼0𝑋1 − 𝜔

2𝐼2𝑋9 − 𝜔
2𝐼2𝑋3 

𝑘34 = −(𝑔11 + �̂�3)𝑋13 − (2𝑔12 + 2�̂�3 + 4𝑔66)𝑋11 − (𝑔11 + �̂�3)𝑋5

+ 𝜔2𝐼0𝑋1 − 𝜔
2𝐽2𝑋9 − 𝜔

2𝐽2𝑋3 

𝑘35 = �̂�1(𝑋9 + 𝑋3) 
𝑘41 = (𝑑11 + �̃�1 + 𝜆4)𝑋13 + (𝑑12 + �̃�1 + 2𝑑66 + 𝜆4)𝑋11 +𝜔

2𝐽1𝑋9 
𝑘42 = (𝑑12 + �̃�1 + 2𝑑66 + 𝜆4)𝑋11 + (𝑑11 + �̃�1 + 𝜆4)𝑋5 + 𝜔

2𝐽1𝑋3 

𝑘43 = −(𝑔11 + �̃�2 − 𝜆5)𝑋13 − (2𝑔12 + 2�̃�2 + 4𝑔66 − 2𝜆5)𝑋11

− (𝑔11 + �̃�2 − 𝜆5)𝑋5 + 𝜔
2𝐼0𝑋1 − 𝜔

2𝐽2𝑋9 − 𝜔
2𝐽2𝑋3 

𝑘44 = −(ℎ11 + �̃�3 − 𝜆6)𝑋13 − (2ℎ12 + 2�̃�3 + 4ℎ66 − 2𝜆6)𝑋11

− (ℎ11 + �̃�3 − 𝜆6)𝑋5 + 𝑎55𝑋9 + 𝑎55𝑋3 + 𝜔
2𝐼0𝑋1

− 𝜔2𝐾2𝑋9 − 𝜔
2𝐾2𝑋3 

𝑘45 = 𝜇1𝑋9 + 𝜇2𝑋9 + 𝜇1𝑋3 + 𝜇2𝑋3 
𝑘51 = 𝜆11𝑋11 + 𝜆11𝑋13 
𝑘52 = 𝜆11𝑋11 + 𝜆11𝑋5 
𝑘53 = 𝜆8𝑋9 + 𝜆8𝑋3 + 𝜆12𝑋13 + 2𝜆12𝑋11 + 𝜆12𝑋5 
𝑘54 = 𝜆7𝑋9 + 𝜆7𝑋3 + 𝜆13𝑋13 + 2𝜆13𝑋11 + 𝜆13𝑋5 
𝑘55 = 𝜆9𝑋1 + 𝜆10𝑋9 + 𝜆10𝑋3 

 
 

where: 
 

{𝑋1, 𝑋3, 𝑋5} = ∫ ∫ {𝐹𝑚𝐹𝑛, 𝐹𝑚𝐹𝑛
′′, 𝐹𝑚𝐹𝑛

′′′′}
𝑏

0

𝑎

0

𝐹𝑚𝐹𝑛𝑑𝑥𝑑𝑦 (D.8) 
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{𝑋9, 𝑋11, 𝑋13} = ∫ ∫ {𝐹𝑚
′′𝐹𝑛, 𝐹𝑚

′′𝐹𝑛
′′, 𝐹𝑚

′′′′𝐹𝑛}
𝑏

0

𝑎

0

𝐹𝑚𝐹𝑛𝑑𝑥𝑑𝑦 

{𝑋6, 𝑋8, 𝑋12} = ∫ ∫ {𝐹𝑚
′ 𝐹𝑛, 𝐹𝑚

′ 𝐹𝑛
′′, 𝐹𝑚

′′′𝐹𝑛}
𝑏

0

𝑎

0

𝐹𝑚
′ 𝐹𝑛𝑑𝑥𝑑𝑦 

{𝑋2, 𝑋4, 𝑋10} = ∫ ∫ {𝐹𝑚𝐹𝑛
′, 𝐹𝑚𝐹𝑛

′′′, 𝐹𝑚
′′𝐹𝑛

′}
𝑏

0

𝑎

0

𝐹𝑚𝐹𝑛
′𝑑𝑥𝑑𝑦 
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Appendix E 
 
 
 

The coefficients 𝑍𝑖 and �̃�𝑖 (𝑖 = 1,2, … ,6), 𝛽𝑖 (𝑖 = 1,2, … ,5), as well as 휁𝑖 and 휁̃𝑖 (𝑖 =
1,2, … ,12) in Eq. (6.26) are given as: 

𝑍1 =
휂𝑚
2 𝑎66
(𝑎11)

 
 

𝑍2 =
휂𝑚(𝑎12 + 𝑎66)

(𝑎11)
 

 

𝑍3 =
휂𝑚
2 (𝑏12 + 2𝑏66)

−(𝑎11)
 

 

𝑍4 =
𝑏11
𝑎11

 
 

𝑍5 =
휂𝑚
2 (𝑑12 + 2𝑑66)

−(𝑎11)
 

 

𝑍6 =
𝑑11
𝑎11

 
 

�̃�1 =
휂𝑚(𝑎12 + 𝑎66)

−𝑎66
 

 

�̃�2 =
휂𝑚
2 (𝑎11)

𝑎66
 

 

�̃�3 =
휂𝑚
3 (𝑏11)

−𝑎66
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�̃�4 =
휂𝑚(𝑏12 + 2𝑏66)

𝑎66
 

 

�̃�5 =
휂𝑚
3 (𝑑11)

−𝑎66
 

 

�̃�6 =
휂𝑚(𝑑12 + 2𝑑66)

𝑎66
 

 

𝛽1 =
𝜆9
−𝜆10

+ 휂𝑚
2  

 

𝛽2 =
𝜆8
−𝜆10

 
 

𝛽3 =
휂𝑚
2 𝜆8
𝜆10

 
 

𝛽4 =
𝜆7
−𝜆10

 
 

𝛽5 =
휂𝑚
2 𝜆7
𝜆10

 
 

𝜉1 = 𝑏11  

𝜉2 = −휂𝑚
2 (𝑏12 + 2𝑏66)  

𝜉3 = −휂𝑚(𝑏12 + 2𝑏66)  

𝜉4 = +휂𝑚
3 (𝑏11)  

𝜉5 = −(𝑓11)  

𝜉6 = {휂𝑚
2 (2𝑓12 + 4𝑓66) + 𝑟𝑥𝑁𝑐𝑟}  

𝜉7 = {−휂𝑚
4 (𝑓11) − 휂𝑚

2 𝑟𝑦𝑁𝑐𝑟}  

𝜉8 = −(𝑔11)  

𝜉9 = {휂𝑚
2 (2𝑔12 + 4𝑔66) + 𝑟𝑥𝑁𝑐𝑟}  

𝜉10 = {−휂𝑚
4 (𝑔11) − 휂𝑚

2 𝑟𝑦𝑁𝑐𝑟}  

𝜉11 = �̂�1  

𝜉12 = −휂𝑚
2 �̂�1  

𝜉1 = 𝑑11  

𝜉2 = −휂𝑚
2 (2𝑑66 + 𝑑12)  

𝜉3 = −휂𝑚(𝑑12 + 2𝑑66)  

𝜉4 = 휂𝑚
3 (𝑑11)  
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𝜉5 = −(𝑔11)  

𝜉6 = {휂𝑚
2 (2𝑔12 + 4𝑔66) + 𝑟𝑥𝑁𝑐𝑟}  

𝜉7 = {−휂𝑚
4 (𝑔11) − 휂𝑚

2 𝑟𝑦𝑁𝑐𝑟}  

𝜉8 = −(ℎ11)  

𝜉9 = {휂𝑚
2 (2ℎ12 + 4ℎ66) + (𝑎55 + 𝑟𝑥𝑁𝑐𝑟)}  

𝜉10 = {−휂𝑚
4 (ℎ11) − 휂𝑚

2 (𝑎55 + 𝑟𝑦𝑁𝑐𝑟)}  

𝜉11 = (𝜇1 + 𝜇2)  

𝜉12 = −휂𝑚
2 (�̃�1 + 𝜇2) (E.1) 

The coefficients 𝛼𝑖 and �̃�𝑖 (𝑖 = 1,2, … ,9), as well as 𝑍𝑖 and �̃�𝑖 (𝑖 =
8,9… ,14) in Eqs. (6.27) to (6.30) are given as: 

𝛼1 = (𝜉1𝑍4 + 𝜉5)  

𝛼2 = (𝜉1𝑍6 + 𝜉8)  

𝛼3 = (𝜉1𝑍1 + 𝜉1𝑍2�̃�1 + 𝜉2 + 𝜉3�̃�1)  

𝛼4 = (𝜉1𝑍2�̃�2 + 𝜉3�̃�2 + 𝜉4)  

𝛼5 = (𝜉1𝑍2�̃�3 + 𝜉3�̃�3 + 𝜉7 + 𝜉11𝛽3)  

𝛼6 = (𝜉1𝑍2�̃�4 + 𝜉1𝑍3 + 𝜉3�̃�4 + 𝜉6 + 𝜉11𝛽2)  

𝛼7 = (𝜉1𝑍2�̃�5 + 𝜉3�̃�5 + 𝜉10 + 𝜉11𝛽5)  

𝛼8 = (𝜉1𝑍2�̃�6 + 𝜉1𝑍5 + 𝜉3�̃�6 + 𝜉9 + 𝜉11𝛽4)  

𝛼9 = (𝜉11𝛽1 + 𝜉12)  

�̃�1 = (𝜉1𝑍4 + 𝜉5)  

�̃�2 = (𝜉1𝑍6 + 𝜉8)  

�̃�3 = (𝜉1𝑍1 + 𝜉1𝑍2�̃�1 + 𝜉2 + 𝜉3�̃�1)  

�̃�4 = (𝜉1𝑍2�̃�2 + 𝜉3�̃�2 + 𝜉4)  

�̃�5 = (𝜉1𝑍2�̃�3 + 𝜉3�̃�3 + 𝜉7 + 𝜉11𝛽3)  

�̃�6 = (𝜉1𝑍2�̃�4 + 𝜉1𝑍3 + 𝜉3�̃�4 + 𝜉6 + 𝜉11𝛽2)  

�̃�7 = (𝜉1𝑍2�̃�5 + 𝜉3�̃�5 + 𝜉10 + 𝜉11𝛽5)  

�̃�8 = (𝜉1𝑍2�̃�6 + 𝜉1𝑍5 + 𝜉3�̃�6 + 𝜉9 + 𝜉11𝛽4)  

�̃�9 = (𝜉11𝛽1 + 𝜉12)  
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𝑍8 =
(
𝛼3
𝛼2
−
�̃�3
�̃�2
)

−(
𝛼1
𝛼2
−
�̃�1
�̃�2
)
 

 

𝑍9 =
(
𝛼4
𝛼2
−
�̃�4
�̃�2
)

−(
𝛼1
𝛼2
−
�̃�1
�̃�2
)
 

 

𝑍10 =
(
𝛼5
𝛼2
−
�̃�5
�̃�2
)

− (
𝛼1
𝛼2
−
�̃�1
�̃�2
)
 

 

𝑍11 =
(
𝛼6
𝛼2
−
�̃�6
�̃�2
)

− (
𝛼1
𝛼2
−
�̃�1
�̃�2
)
 

 

𝑍12 =
(
𝛼7
𝛼2
−
�̃�7
�̃�2
)

− (
𝛼1
𝛼2
−
�̃�1
�̃�2
)
 

 

𝑍13 =
(
𝛼8
𝛼2
−
�̃�8
�̃�2
)

− (
𝛼1
𝛼2
−
�̃�1
�̃�2
)
 

 

𝑍14 =
(
𝛼9
𝛼2
−
�̃�9
�̃�2
)

− (
𝛼1
𝛼2
−
�̃�1
�̃�2
)
 

 

�̃�8 =
(
𝛼3
𝛼1
−
�̃�3
�̃�1
)

−(
𝛼2
𝛼1
−
�̃�2
�̃�1
)
 

 

�̃�9 =
(
𝛼4
𝛼1
−
�̃�4
�̃�1
)

−(
𝛼2
𝛼1
−
�̃�2
�̃�1
)
 

 

�̃�10 =
(
𝛼5
𝛼1
−
�̃�5
�̃�1
)

− (
𝛼2
𝛼1
−
�̃�2
�̃�1
)
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�̃�11 =
(
𝛼6
𝛼1
−
�̃�6
�̃�1
)

− (
𝛼2
𝛼1
−
�̃�2
�̃�1
)
 

 

�̃�12 =
(
𝛼7
𝛼1
−
�̃�7
�̃�1
)

− (
𝛼2
𝛼1
−
�̃�2
�̃�1
)
 

 

�̃�13 =
(
𝛼8
𝛼1
−
�̃�8
�̃�1
)

− (
𝛼2
𝛼1
−
�̃�2
�̃�1
)
 

 

�̃�14 =
(
𝛼9
𝛼1
−
�̃�9
�̃�1
)

− (
𝛼2
𝛼1
−
�̃�2
�̃�1
)
 (E.2) 
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The coefficients 𝛽𝑖 (𝑖 = 1, 2, 3, 4) and 휂𝑗 (𝑗 = 1, 2) are obtained as follows: 

𝛽1 = ∫ 𝑒15𝑑𝑧 +
−ℎ

−ℎ−ℎ𝑝𝑏

∫ 𝑒15𝑑𝑧
+ℎ+ℎ𝑝𝑡

+ℎ

 
 

𝛽2 = ∫ 𝑒31𝑑𝑧 +
−ℎ

−ℎ−ℎ𝑝𝑏

∫ 𝑒31𝑑𝑧
+ℎ+ℎ𝑝𝑡

+ℎ

 
 

𝛽3 = ∫
8Ξ33

ℎ𝑝𝑏
2 𝑑𝑧 +

−ℎ

−ℎ−ℎ𝑝𝑏

∫
8𝛯33

ℎ𝑝𝑡
2 𝑑𝑧

+ℎ+ℎ𝑝𝑡

+ℎ

 
(F.1) 

SC condition: 

𝛽4 = −∫ Ξ11 [1 − (
−2𝑧 − 2ℎ − ℎ𝑝𝑏

ℎ𝑝𝑏
)

2

] 𝑑𝑧
−ℎ

−ℎ−ℎ𝑝𝑏

−∫ Ξ11 [1 − (
2𝑧 − 2ℎ − ℎ𝑝𝑡

ℎ𝑝𝑡
)

2

] 𝑑𝑧
+ℎ+ℎ𝑝𝑡

+ℎ

 

 

휂1 = 휂2 = 0 (F.2) 

OC condition: 



288   Appendix F 
 

𝛽4 = −∫ Ξ11 [1 − (
−2𝑧 − 2ℎ − ℎ𝑝𝑏

ℎ𝑝𝑏
)

2

−
4(𝑧 + ℎ)

ℎ𝑝𝑏
] 𝑑𝑧 −

−ℎ

−ℎ−ℎ𝑝𝑏

∫ Ξ11 [1 − (
2𝑧 − 2ℎ − ℎ𝑝𝑡

ℎ𝑝𝑡
)

2

+
4(𝑧 − ℎ)

ℎ𝑝𝑡
] 𝑑𝑧

+ℎ+ℎ𝑝𝑡

+ℎ

 

 

 

휂1 = ∫
−Ξ11𝑒31(𝑧 + ℎ)

Ξ̄33
𝑑𝑧 +

−ℎ

−ℎ−ℎ𝑝𝑏

∫
−Ξ11𝑒31(𝑧 − ℎ)

Ξ̄33
𝑑𝑧

+ℎ+ℎ𝑝𝑡

+ℎ

 
 

휂2 = ∫
Ξ11𝑒31(𝑧 + ℎ)(ℎ + ℎ𝑝𝑏)

Ξ33
𝑑𝑧

−ℎ

−ℎ−ℎ𝑝𝑏

+∫
−Ξ11𝑒31(𝑧 − ℎ)(ℎ + ℎ𝑝𝑡)

Ξ33
𝑑𝑧

+ℎ+ℎ𝑝𝑡

+ℎ

 
(F.3) 

The constant coefficients 𝑎𝑖𝑗, 𝑏𝑖𝑗, 𝑑𝑖𝑗, 𝑝𝑖𝑗 and 𝑞𝑖𝑗 are expressed as follows: 

{𝑎11, 𝑏11, 𝑑11} = ∫ 𝐶11
𝑝 {1, 𝑧, 𝑧2}𝑑𝑧

−ℎ

−ℎ−ℎ𝑝𝑏

+∫ 𝐶11
𝑠 {1, 𝑧, 𝑧2}𝑑𝑧

+ℎ

−ℎ

+∫ 𝐶11
𝑝 {1, 𝑧, 𝑧2}𝑑𝑧

+ℎ+ℎ𝑝𝑡

+ℎ

+ {휁1, 휁2, 휁3} 

 

{𝑎12, 𝑏12, 𝑑12} = ∫ 𝐶12
𝑝 {1, 𝑧, 𝑧2}𝑑𝑧

−ℎ

−ℎ−ℎ𝑝𝑏

+∫ 𝐶12
𝑠 {1, 𝑧, 𝑧2}𝑑𝑧

+ℎ

−ℎ

+∫ 𝐶12
𝑝 {1, 𝑧, 𝑧2}𝑑𝑧

+ℎ+ℎ𝑝𝑡

+ℎ

+ {휁1, 휁2, 휁3} 

 

{𝑝11, 𝑞11} = ∫ {1, 𝑧} (
𝐶11
𝑝

𝑅𝑥
+
𝐶12
𝑝

𝑅𝑦
)𝑑𝑧

−ℎ

−ℎ−ℎ𝑝𝑏

+∫ {1, 𝑧} (
𝐶11
𝑠

𝑅𝑥
+
𝐶12
𝑠

𝑅𝑦
)𝑑𝑧

+ℎ

−ℎ

+∫ {1, 𝑧} (
𝐶11
𝑝

𝑅𝑥
+
𝐶12
𝑝

𝑅𝑦
)𝑑𝑧

+ℎ+ℎ𝑝𝑡

+ℎ

+ {휁4, 휁5} 
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{𝑝11
′ , 𝑞11

′ } = ∫ {1, 𝑧} (
𝐶12
𝑝

𝑅𝑥
+
𝐶11
𝑝

𝑅𝑦
)𝑑𝑧

−ℎ

−ℎ−ℎ𝑝𝑏

+∫ {1, 𝑧} (
𝐶11
𝑠

𝑅𝑥
+
𝐶12
𝑠

𝑅𝑦
)𝑑𝑧

+ℎ

−ℎ

+∫ {1, 𝑧} (
𝐶11
𝑝

𝑅𝑥
+
𝐶12
𝑝

𝑅𝑦
)𝑑𝑧

+ℎ+ℎ𝑝𝑡

+ℎ

+ {휁4, 휁5} 

 

{𝑎66, 𝑏66, 𝑑66} = ∫ 𝐶66
𝑝 {1, 𝑧, 𝑧2}𝑑𝑧

−ℎ

−ℎ−ℎ𝑝𝑏

+∫ 𝐶66
𝑠 {1, 𝑧, 𝑧2}𝑑𝑧

+ℎ

−ℎ

+∫ 𝐶66
𝑝 {1, 𝑧, 𝑧2}𝑑𝑧

+ℎ+ℎ𝑝𝑡

+ℎ

 

 

𝑎55 = ∫ 𝐾𝑠𝐶55
𝑝 𝑑𝑧

−ℎ

−ℎ−ℎ𝑝𝑏

+∫ 𝐾𝑠𝐶55
𝑠 𝑑𝑧

+ℎ

−ℎ

+∫ 𝐾𝑠𝐶55
𝑝 𝑑𝑧

+ℎ+ℎ𝑝𝑡

+ℎ

 (F.4) 

SC condition: 

휁1 = 휁2 = 휁3 = 휁4 = 휁5 = 0 (F.5) 

OC condition: 

{휁1, 휁2, 휁3} = ∫
𝑒31

2

𝛯33
{1, (−ℎ − ℎ𝑝𝑏), (−ℎ − ℎ𝑝𝑏)𝑧}𝑑𝑧

−ℎ

−ℎ−ℎ𝑝𝑏

+∫
𝑒31

2

𝛯33
{1, (ℎ + ℎ𝑝𝑡), (ℎ + ℎ𝑝𝑡)𝑧}𝑑𝑧

+ℎ+ℎ𝑝𝑡

+ℎ

 

 

{휁4, 휁5} = ∫ (
1

𝑅𝑥
+
1

𝑅𝑦
) {
𝑒31

2

𝛯33
,
𝑒31

2

𝛯33
𝑧} 𝑑𝑧

−ℎ

−ℎ−ℎ𝑝𝑏

+∫ (
1

𝑅𝑥
+
1

𝑅𝑦
) {
𝑒31

2

𝛯33
,
𝑒31

2

𝛯33
𝑧} 𝑑𝑧

+ℎ+ℎ𝑝𝑡

+ℎ

 
(F.6) 

Furthermore, the coefficients 𝛽𝑖 (𝑖 = 5, 6, 7, 8, 9) for both SC and OC conditions 
are defined as follows: 

SC condition: 

{𝛽5, 𝛽6} = ∫ {1, 𝑧}
4𝑒31
ℎ𝑝𝑏

(
−2𝑧 − 2ℎ − ℎ𝑝𝑏

ℎ𝑝𝑏
)𝑑𝑧

−ℎ

−ℎ−ℎ𝑝𝑏

−∫ {1, 𝑧}
4𝑒31
ℎ𝑝𝑡

(
2𝑧 − 2ℎ − ℎ𝑝𝑡

ℎ𝑝𝑡
)𝑑𝑧

+ℎ+ℎ𝑝𝑡

+ℎ
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𝛽7 = ∫ 𝑒15 [1 − (
−2𝑧 − 2ℎ − ℎ𝑝𝑏

ℎ𝑝𝑏
)

2

] 𝑑𝑧
−ℎ

−ℎ−ℎ𝑝𝑏

+∫ 𝑒15 [1 − (
2𝑧 − 2ℎ − ℎ𝑝𝑡

ℎ𝑝𝑡
)

2

] 𝑑𝑧
+ℎ+ℎ𝑝𝑡

+ℎ

 

 

𝛽8 = 𝛽9 = 0 (F.7) 

OC condition: 

{𝛽5, 𝛽6} = ∫ {1, 𝑧}
−8𝑒31(𝑧 + ℎ + ℎ𝑝𝑏)

ℎ𝑝𝑏
2 𝑑𝑧

−ℎ

−ℎ−ℎ𝑝𝑏

−∫ {1, 𝑧}
−8𝑒31(𝑧 − ℎ − ℎ𝑝𝑡)

ℎ𝑝𝑡
2 𝑑𝑧

+ℎ+ℎ𝑝𝑡

+ℎ

 

 

𝛽7 = ∫ 𝑒15 [1 − (
−2𝑧 − 2ℎ − ℎ𝑝𝑏

ℎ𝑝𝑏
)

2

−
4(𝑧 + ℎ)

ℎ𝑝𝑏
] 𝑑𝑧

−ℎ

−ℎ−ℎ𝑝𝑏

+∫ 𝑒15 [1 − (
2𝑧 − 2ℎ − ℎ𝑝𝑡

ℎ𝑝𝑡
)

2+ℎ+ℎ𝑝𝑡

+ℎ

+
4(𝑧 − ℎ)

ℎ𝑝𝑡
] 𝑑𝑧 

 

{𝛽8, 𝛽9} = ∫ {1, (−ℎ − ℎ𝑝𝑏)}
𝑒31𝑒15(𝑧 + ℎ)

𝛯33
𝑑𝑧

−ℎ

−ℎ−ℎ𝑝𝑏

+∫ {1, (ℎ + ℎ𝑝𝑡)}
𝑒31𝑒15(𝑧 − ℎ)

𝛯33
𝑑𝑧

+ℎ+ℎ𝑝𝑡

+ℎ

 
(F.8) 

 


