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Abstract: The necessity to improve in vitro cell screening assays is becoming ever more important.
Pharmaceutical companies, research laboratories and hospitals require technologies that help to
speed up conventional screening and therapeutic procedures to produce more data in a short time
in a realistic and reliable manner. The design of new solutions for test biomaterials and active
molecules is one of the urgent problems of preclinical screening and the limited correlation between
in vitro and in vivo data remains one of the major issues. The establishment of the most suitable
in vitro model provides reduction in times, costs and, last but not least, in the number of animal
experiments as recommended by the 3Rs (replace, reduce, refine) ethical guiding principles for testing
involving animals. Although two-dimensional (2D) traditional cell screening assays are generally
cheap and practical to manage, they have strong limitations, as cells, within the transition from
the three-dimensional (3D) in vivo to the 2D in vitro growth conditions, do not properly mimic
the real morphologies and physiology of their native tissues. In the study of human pathologies,
especially, animal experiments provide data closer to what happens in the target organ or apparatus,
but they imply slow and costly procedures and they generally do not fully accomplish the 3Rs
recommendations, i.e., the amount of laboratory animals and the stress that they undergo must be
minimized. Microfluidic devices seem to offer different advantages in relation to the mentioned
issues. This review aims to describe the critical issues connected with the conventional cells culture
and screening procedures, showing what happens in the in vivo physiological micro and nano
environment also from a physical point of view. During the discussion, some microfluidic tools and
their components are described to explain how these devices can circumvent the actual limitations
described in the introduction.

Keywords: 3D cell cultures; microfluidics; lab on chip; in vitro cell cultures; 3Rs principles

1. Introduction

Traditional cell cultures are performed in two-dimensional (2D) systems such as Petri
dishes, multiwell plates or flasks. However, they cannot realistically mimic the morpho-
physiological complexity of the original three-dimensional (3D) in vivo environment from

Cells 2022, 11, 1699. https://doi.org/10.3390/cells11101699 https://www.mdpi.com/journal/cells

https://doi.org/10.3390/cells11101699
https://doi.org/10.3390/cells11101699
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0001-5510-5561
https://orcid.org/0000-0003-3004-7806
https://orcid.org/0000-0001-8145-3623
https://orcid.org/0000-0001-6156-887X
https://orcid.org/0000-0001-6979-1486
https://orcid.org/0000-0002-7350-3835
https://orcid.org/0000-0001-9826-2129
https://orcid.org/0000-0002-6056-3759
https://orcid.org/0000-0001-6313-1866
https://doi.org/10.3390/cells11101699
https://www.mdpi.com/journal/cells
https://www.mdpi.com/article/10.3390/cells11101699?type=check_update&version=1


Cells 2022, 11, 1699 2 of 16

which the cells of specific lines originate [1]. Without opposing animal experimentation but
promoting its responsible application, the development of alternative cell culture systems
tries to ensure compliance with the 3R principles. Reduction (reduction in the animals
used for in vivo tests), Refinement (experimental design optimization to limit stress and
affliction to laboratory animals) and Replacement (total or partial replacement of animal
testing with alternative valid methods) are increasingly desired and strongly recommended
as fundamental ethical aspects in the use of animals in scientific experiments [2].

Three-dimensional cell cultures can better mimic in vivo conditions than two-
dimensional monolayer cell cultures, since, after isolation, cells generally lose their original
morphology, changing the way they perform most of their physiological functions. Growth
on an adhesion substrate results in cellular loss of polarity and it understandably influences
intracellular trafficking, the functionality of subcellular compartments and some functions
such as cell signaling and secretion, limiting the access to the culture media’s nutrients,
the gaseous exchanges and the removal of waste substances [3]. In 2D cell cultures the
complex network of regulatory interactions in the extracellular matrix (ECM), cells and
tissue are altered, therefore the use of properly designed 3D culture systems assists re-
searchers in obtaining more reliable results, deepening our understanding of what really
happens in vivo [4,5]. Many studies report data concerning the significant differences in
the morphology, protein expression, differentiation, viability, and functionality of cells
grown in 2D or 3D systems [1,3,6–11].

Three-dimensional cell cultures can be successfully used for many different appli-
cations, including cell or drug screenings [12–15] and tissue generation (engineering)
purposes [16–18]; however, the reproduction of a biomimetic environment is challeng-
ing [19–21]. It is very important to replicate as close as possible the original in vivo physio-
logical cell microenvironment. When dealing with 3D cell cultures, one of the big issues is
to provide a physiological exchange of substances (gas and molecules) between cells and
their related microenvironment, inward for the cell nutrients and outward for the waste
products. It is known that unfortunately 2D cell culture usually results in low nutrients
and/or hypoxic regions related to cellular aggregation phenomena, biological media and
gas consumption rates [22].

The use of optimized ECM-analog biomaterials with physico-chemical and structural
properties, able to guarantee optimized degradation or residence rate and micro/nanoporosity,
improves in vitro cell proliferation, differentiation, and interactions [23,24].

Decellularized engineered ECM and bioreactor-based solutions constitute valid alter-
natives to 2D cell cultures. The application of decellularization protocols in tissue engineer-
ing and regenerative medicine limits the possible immune response in the transplanted host
by removing all the potential immunogenic biomaterials. The non-immunogenic ECM can
be re-cellularized with autologous or stem cells, carrying out a fully personalized medicine
approach [25,26]. In addition, micro-bioreactors can be regarded as a major step toward
more complex organ-on-a-chip (OoC) systems [27], providing manageable 3D cell culture
settings usually including suitable fluid flow supply and low amounts of chemicals and
cells [28–31].

In the next sections, we critically treat the major issues related to the exchange of
substances between blood and cells, detailing the passive mechanisms of transport on
which these phenomena rely. In this context, we report how these mechanisms are physio-
logically reproduced in vitro, comparing biomolecules exchanges in 2D cell culture and
3D microfluidic devices. Some microfluidic tools and their components are described to
explain how these devices can support the research, optimizing in vitro tests in a more
reproducible, effective, and ethical way.

2. Discussion

During the last few decades, the use of in vitro systems has presented as solid alterna-
tive to animal experimentation and allowed the implementation of cellular and subcellular
experimental models, moving the interest of the scientific community towards the “ever
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smaller”. Starting from a theoretical background that takes into consideration the in vivo
substances’ physiological exchange and the theory behind the movement of particles across
a capillary’s membrane, in the next subsections we will describe how 3D cell scaffolds
and, in particular 3D microfluidics cell culture solutions, could replace traditional 2D cell
cultures, reducing the sacrifice of laboratory animals in scientific research, in agreement
with the 3Rs principles of the European Union.

2.1. Physiological Exchange of Substances

In physiological conditions, the exchange of substances and gases between cells and
the environment takes place thanks to blood microcirculation at the level of the capillaries.
Blood circulates from the arterioles to capillaries, then to venules and the topology of
these vessels changes according to the different tissues that are sprinkled. Some beds
are structured as trees, others as arcades or sinuses or portal systems [32]. The capillary
density (CD) depends on the varying oxygen and nutrients requirements to keep a stable
metabolism. The average CD in human tissue is around 600 per mm3 and it changes
according to the different organism’s tissues. The CD is higher in the brain, kidneys, liver
and myocardium (around 2500–3000 per mm3), reduced in the phasic units of the skeletal
musculature (around 300–400 per mm3) and even lower in the bones, fat, connective tissues
and in the tonic units of the skeletal musculature (less than 100 per mm3) [33].

Considering an average capillary diameter of 8 µm and length of 5 mm [34], we can
calculate the average distance between adjacent capillaries which is around 30–40 µm
(around 1–3 cell width). To reach a particular cell, molecules exit the capillary and cross
one or two cells to reach the target one. A capillary vessel can be considered as a tube
consisting of a single endothelial cells’ layer less than 1 µm thick [35]. There are three types
of capillaries: (i) the continuous type with cells tightly joined together, which are present
in muscles, nerves, and connective tissues; (ii) the fenestrated type, with cells so thin that
internal vesicles form small pores 100 nm thick and 6 nm in diameter (typically around
1000 pores/µm2); (iii) the discontinuous type with distinct intercellular gaps (around 5 µm
in diameter) and a broken basement membrane, commonly found in organs such as the
liver, spleen, and bone marrow, the functions of which include the injection or extraction of
whole cells, large molecules and extraneous particles in/from the blood stream [36].

The nutritive and waste substances pass the capillary pores by means of a dynamic
equilibrium established between the hydraulic pressure and the osmotic pressure gradients
between the blood inside the capillaries and the interstitial fluid in the ECM. In particular,
the blood’s osmotic pressure (oncotic pressure) is around 25–30 mmHg and it is higher
than the one of interstitial fluid which is around 0 mmHg. The osmotic pressure gradient
is constant between the blood circuit and the surrounding tissues including the arterial
capillaries and the venous capillaries. While the hydraulic pressure in blood decreases,
going from the arterial capillaries (where it is around 40 mmHg) to the venous capillaries
(which is around 15 mmHg), in the interstitial fluid it is around 2 mmHg. Since, in the
arterial capillaries, the hydraulic pressure in the blood is higher than the oncotic pressure,
filtration, a flow that goes from capillaries to tissues, occurs. On the contrary, in the venous
capillaries, the oncotic pressure is higher than the hydraulic one and liquids are reabsorbed
in capillaries due to a flow from tissues to capillaries (Figure 1).

The exchange of molecules between blood microcirculation and cells forming tissues
and organs is due to filtration, reabsorption and at the same time diffusion through the
capillary membrane of substances at a different concentration on the two sides of the
capillary membrane. The presence of capillaries drastically reduces the diffusion length,
since they are very close to each other.
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Figure 1. The scheme represents an arterial capillary (in red) connected to a venous capillary (in 
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side). 
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Figure 1. The scheme represents an arterial capillary (in red) connected to a venous capillary (in blue)
and surrounded by a generic tissue constituted by cells. The arrows show the movement of fluids
around the capillary, due to filtration (in the arterial side) and reabsorption (in the venous side).

2.2. Theory behind the Molecule Transport Mechanisms

Referring to the theory behind the movement of particles across a capillary’s mem-
brane, it can be considered a unidimensional motion, assuming the concentration gradient
across the membrane as constant. This approximation is certainly valid in the dynamic envi-
ronment of the biological systems where, while cells consume nutrients and produce wastes,
capillaries provide nutrients and remove wastes, keeping the concentration gradients across
capillary’s membrane constant.

The flux of molecules due to diffusion can be calculated as:

JdM = −P∆C, (1)

where

• ∆C = (C2 − C1) is the concentration gradient of a generic molecule between the
external and internal part of the capillary membrane;

• P is the permeability coefficient and can be calculated as:

P =
DMα

∆x
=

DMnπR2

∆x
, (2)

where

• ∆x is the capillary membrane thickness;
• α is the partition coefficient and can be calculated as:

α =
NπR2

A
= nπR2, (3)

where

• N is the number of pores;
• A is the capillary surface;
• R is the pore radius;
• n is the pore density;
• DM is the membrane diffusion coefficient and can be calculated as:

DM = εD, (4)

where

• ε is the hindrance coefficient and it depends on the particle and membrane pore
dimension and the trajectory of the particle within the pore and can be calculated as:
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ε = ε1ε2 =
(

1 − r
R

)2
ε2, (5)

where

• ε2 is a coefficient that depends on the trajectory of the particle inside the pore;
• r is the particle radius (it is an approximation which considers the molecules passing

the pore to have a spherical shape);
• D is the diffusion coefficient which can be calculated as:

D =
kT

6πηr
, (6)

where

• k is the Boltzman constant;
• T is the temperature;
• η is the blood viscosity;

This last equation is valid if the particle which diffuses has a spherical shape. In this
work, the particles will be considered, as first approximation, to have a spherical shape.

While the flux of molecules through the capillaries can be calculated as a function of
the pressure and the osmotic gradient across the capillary.

J f M = −α
C1 + C2

2
εLp(∆p − ∆π), (7)

where

• ∆p = (p2 − p1) is the hydraulic pressure gradient across the capillary membrane;
• ∆π = (π2 − π1) is the osmotic pressure gradient across the capillary membrane;
• Lp is the filtration coefficient and can be calculated as:

Lp =
nπR4

8η∆x
, (8)

For instance, considering a pore density of 100 pore/µm2 [37], a pore diameter of
6 nm, a capillary thickness of 1000 nm, at a body temperature of 37 ◦C, a glucose molecule,
with a relative radius of 4.5 Å and present at a concentration of 80 mg/dl in blood, will
diffuse through the capillary at 28.5·10−2 mg/m2s (roughly 7.6·1017 molecules/(m2s)).
In a capillary with 8 µm of diameter and 1 mm of length, there will be a flux of glucose
due to the diffusion of 5.7·10−28 mg/s (roughly 1.5·10−9 molecules/s). In the same con-
ditions, considering a pressure gradient of 40 mmHg and an osmotic pressure gradient
of 25 mmHg, the flux of glucose due to filtration will be of 3.6·10−6 mg/m2s (roughly
9.6·1012 molecules/m2s). In a single capillary, the filtrated glucose will be 7.2·10−33 mg/s,
corresponding to roughly 1.9·10−14 molecules/s. Thus, in the case of glucose, the dominant
phenomenon is diffusion. Considering a total number of capillaries in the human body
equal to 4·109, it can be calculated a movement of glucose equal to different kilograms
per day. In general, the exchange of substances between blood and tissues is dominated
by diffusion, referring to a very small space (as mentioned before: 2–3 cell width, around
40 µm).

2.3. Cell Microenvironment: Static and 3D Cell Screening

Mimicking the best possible cellular microenvironment does not only mean having
control overflows, since many parameters such as shear stress, cell interactions, pH, CO2,
temperature, and O2 variations affect its regulation and balance. Although it is well-known
that in any kind of cell screening applications, it is very important to control the cell
microenvironment, the current in vitro systems are still far from having an appreciable
level of control on it [38]. Generally, supports such as Petri dishes, flasks and vials are used
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to culture cells in a static condition, leading to temperature and chemical gradients that
could make it difficult to maintain homeostasis [39]. In addition, the use of standard static
cell culture supports requires a lot of manual procedures, such as the addition of fresh
culture medium and the removal of the old one, resulting in time-demanding procedures
for the operator and stressful conditions for cells.

One of the alternatives to static cell culture procedures is the use of in vivo experiments
that are undoubtedly able to reduce the gap between in vitro and in vivo screening proce-
dures. Unfortunately, in vivo experimentation in basic and pre-clinical practice involves
a considerable waste of resources, both in monetary and ethical terms, considering the
number of animals to be sacrificed. Over the years and with the progress in biomedical and
technological fields, there has been a tendency to drastically reduce in vivo experiments
using the advanced alternatives to animal testing towards the 3Rs (Replacement, Reduction,
Refinement) approach. [40–42]. Although replacing should be the main purpose of the 3Rs,
its implementation in the short-term is ambitious, while minimizing the number of animals
and refining their welfare should be feasible in the short/middle-term [43].

A solid alternative to animal tests is cell scaffolds, as 3D cell culture can effectively
mimic the cellular and tissue microarchitecture [44,45]. Both for pharmacological screening
and pathologies modelling, 3D scaffolds represent one of the most successful platforms for
biomedical applications [46–49].

Dattola et al. developed a poly(vinyl) alcohol (PVA) 3D scaffold where stem cells
grew and differentiated into cardiac cells (Figure 2) [50]. These scaffolds mimicked the
mechanical properties of ECM in which cardiomyocytes proliferated in vivo, demonstrated
by the contractile property detected in the cardiomyocytes grown on the proposed scaffold.
However, it was found that cells colonized only the outermost part of the scaffold, since
they could not survive deep into the bulk volume, because the nutrients were not properly
provided in the innermost layers of the 3D scaffolds.
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Figure 2. 3D PVA scaffolds in which stem cells are grown [50]. (a) macroscopic view of the 3D wet
scaffold at room temperature; (b) scanning electron microscope cross sectional details of the 3D
structure; (c) fluorescence microscopy image of DAPI stained cell homogeneously distributed on a
Matrigel coated PVA scaffold.

They provided a continuous supply of nutrients and oxygen while removing metabolic
wastes by creating an artificial network. This enabled the production of large, engineered
tissues and the assembly of multiples organoids or spheroids to generate a whole system
in vitro. Microfluidic systems also allowed precise culture conditions and better monitoring
of cells. Once cells were cultured three-dimensionally in vitro, these considerations should
be taken in account to reproduce in vivo conditions. In this contest microfluidic scaffolds
effectively tried to solve the main issues related to the establishment of 3D cell cultures.
Microfluidic systems, as an amelioration of the 3D scaffold methods, aimed to reduce
in vitro cultured cells’ discomfort and death related to inadequate nutrients distribution
and catabolites clearance. Microfluidic cell culture solutions allowed non-invasively time-
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saving sampling and screening, reducing post-seeding inhomogeneity, since their tunable
design and networks enable multiple and automated procedures [51].

Microfluidics assisted 3D cell culture by mechanically and chemically controlling
cellular microenvironment, gas and temperature gradients, shear-stress and most of the
relevant physical-chemical properties. Nowadays, these solutions are customized for the
main biomedical applications, including cell therapy, drug, and toxicity assays (Table 1).

Table 1. Summary of a selection of the most representative and recent 3D microfluidic cell
culture applications.

Microfluidic Platform Type Application Cell Lines References

Resin 3D-printed system
(VeroClear, MED610 resins)

Cell Culture, LC-MS/MS
single cell analysis

BPAECs (Bovine Pulmonary Artery
Endothelial Cells), MDCK

(Madin-Darby Canine Kidney)
[52]

Microwell-based PDMS-membrane-PDMS
sandwich multilayer chips Spheroid formation, OoC C3A (liver) [53]

Two-stage temperature-controlling system
used to generate decellularized

extracellular matrix (dECM)
hydrogel microspheres

dECM hydrogels microsphere
formation, cell culture

Schwann cells (nervous tissue),
PC12 (adrenal gland) [54]

Injection-molded
Polystyrene array OoC, angiogenesis HUVEC (Human Umbilical Vein

Endothelial Cells), fibroblasts [55]

PDMS-gut-on-a-chip device either with a
straight channel or a non-linear convoluted
channel, transwell-embedded hybrid chip

OoC Caco-2 (colon) [56]

Cyclo-olefin-polymer (COP)
transparent bioreactor On-chip platelet production

imMKCLs (immortalized
MegaKaryocyte progenitor

Cell Lines)
[57]

PDMS soft lithography replicas of
superficial channels 3D-printed in different
resins (Clear, Model, Tough, Amber, Dental

resins)

OoC HUVEC (Human Umbilical Vein
Endothelial Cells), fibroblasts [58]

PDMS bone-mimicking extracellular matrix
composite device Angiogenesis, OoC SW620 (colon), MKN74 (stomach) [59]

Single-chamber commercial
microfluidic device

OoC, disease model,
drug screening

Primary human hepatocytes,
EA.hy926 (human endothelial),
U937 (pleural effusion), LX-2

(hepatic stellate cell)

[60]

Collagen scaffold OoC Caco-2 (colon) [61]

Cellulose-based device Chemotaxis, invasion assay A549 (lung) [62]

Polymerized High Internal Phase Emulsion
(polyHIPE) system OoC

hES-MPs (human Embrionic Stem
cell-derived Mesenchymal

Progenitor cells)
[17]

OrganoPlate LiverTox™ Drug screening, OoC

Induced pluripotent stem cell
(iPSC)-derived hepatocytes (iHep),
endothelial cells, THP-1 monoblast

(peripheral blood)

[63]

Injection-molded
Polystyrene array Drug screening HeLa (uterus, cervix), NK-92

(peripheral blood) [64]

Resin 3D-printed system
(VeroClear) Spheroid formation OSCC (Oral Squamous Cell

Carcinoma), HepG2 (liver) [65]



Cells 2022, 11, 1699 8 of 16

Table 1. Cont.

Microfluidic Platform Type Application Cell Lines References

3D-printed device Circulating Tumour Cells
(CTCs) isolation

MCF-7 (breast), SW480 (colon), PC3
(prostate), 293T (kidney) [66]

PDMS-based device Spheroid formation, disease
model, drug screening, OoC

Rat primary hepatocytes, HSCs
(Hepatic Stellate Cells) [67]

PDMS-glass chip and
Polycarbonate cover-plates Four OoC

EpiIntestinal™, HepaRG (liver),
HHStec (Human primary Hepatic

Stellate cells), RPTEC/TERT-1
(human proximal tubule)

[68]

PDMS-based device OoC Hepatocytes from primary and
iPS-derived cells [69]

Three-layered glass device OoC, disease model,
drug screening

Primary human hepatocytes, LSECs
(Liver Sinusoidal Endothelial Cells),

Kupffer cells (liver)
[70]

Three-layered glass device OoC, disease model,
drug screening

Primary human hepatocytes, iPSC
(induced-Pluripotent Stem Cells),

endothelial cells, Kupffer cells
(liver)

[71]

Silicon scaffold fabricated by deep reactive
ion etching

OoC, disease model,
drug screening

PHH (Primary Human Hepatocyte),
non-parenchymal cells [72]

PDMS “open-top” device Angiogenesis,
spheroid formation

HDMEC (Human Dermal
Micro-vascular Endothelial Cells),
Primary human lung fibroblasts,

U87MG (nervous tissue)

[73]

PDMS based device Angiogenesis, OoC
hLFs (human Lung Fibroblasts),

HUVECs (Human Umbilical Vein
Endothelial Cells)

[74]

Two-layered glass-PDMS hybrid system Spheroid formation, invasion
assay, drug screening U87 (nervous tissue) [75]

3D-printed system
(Vero White Plus FullCure 835 resin)

Angiogenesis, cell culture,
drug screening

bEnd.3 (mouse brain endothelial
cell line) [76]

Double-casting of PDMS, with master
mold made of PMMA.

Spheroid formation,
drug screening

Caco-2 (Colon), NHDF (Normal
Human Dermal Fibroblast), HepG2

(liver), A549 (lung)
[77]

3D-hydrogel device Drug screening, OoC

hCMEC/D3 (endothelial cell),
HUVECs (Human Umbilical Vein

Endothelial Cells), primary neurons,
astrocytes

[78]

PDMS based device OoC, drug screening C3A (liver), EA.hy926 (endothelial) [79]

PMMA-PDMS hybrid system and
bioprinted hydrogel scaffold OoC, angiogenesis

HUVECs (Human Umbilical Vein
Endothelial Cells), neonatal

rate cardiomyocytes
[80]

PDMS based device OoC, disease model,
drug screening

hiPSCs (human induced Pluripotent
Stem Cells), CMs (Cardiomyocytes)

differentiated from hiPSCs
[81]

In Table 1, we summarized some of the most representative and recent 3D microfluidic
cell culture applications found in the literature from 2015. Most of these studies concern
drug screening and OoC applications, witnessing the increasing interest in regenerative and
personalized medicine. Consulting the papers cited in the table, it is possible to extrapolate
how, in general, microfluidics can reduce time and costs, allowing the implementation of
high-throughput screening in drug discovery and disease models.
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In the work of Shin et al. [56], a reproducible protocol to induce intestinal morphogen-
esis in microfluidic platforms using Caco-2 cell line was reported. Authors established a
disease model, developing in vitro intestinal epithelial layers suitable to study intestinal
physiology and host-microbiome interactions. Regional differentiation markers such as
KRT20, villin, CEACAM1 and CYP3A4 were considerably expressed in the villus region,
suggesting cytodifferentiation of the 3D epithelial layers.

Bircsak et al. [64] used an OrganoPlate LiverTox™ platform to co-culture three different
cell lines: (i) iPSC-derived hepatocytes (ii) THP-1 monoblast and (iii) endothelial cells,
respectively, in the ratio of 5:5:1, reproducing a hepatic model for hepatotoxicity. The
liver model was evaluated for albumin, urea, alpha-fetoprotein synthesis, cell viability
and CYP3A4 activity over 15 days. A total of 159 hepatotoxic compounds were screened,
evaluating liver response to drugs using viability, nuclear size, urea and albumin assays.

In recent years, devices such as “body-on-a-chip” or “human-on-a-chip” have become
ever more common and some of the recently proposed systems are already have the ability
to reproduce multi-organ interactions. In Maschmeyer et al. [68], the authors introduced
a four-organ-chip system modeling human intestine, liver, skin and kidney. The device,
composed by two polycarbonate cover-plates and by a PDMS-glass chip, can accommodate
both a blood and an excretory system, each controlled by a dedicated peristaltic micro-
pump. This device has been designed to support absorption, distribution, metabolism
and excretion (ADME) and profiling of substances, along with repeated toxicity testing of
drugs. Authors successfully co-cultured the different cell types for 28 days, reporting a high
cell viability and discrete physiological tissue architecture over the entire period. Finally,
metabolic and gene analysis confirmed the establishment of a reproducible homeostasis
between all four tissues.

2.4. Microfluidic Cell Screening Devices

Microfluidics allows an accurate local control and is thus able to provide a biologi-
cally relevant and well-defined cellular microenvironment. It also allows us to manage
bioanalysis at high resolution and with greater precision than conventional technologies,
enhancing and improving in vitro cellular imaging and tests [82,83]. In Figure 3, some of
the components that a microfluidic device can integrate are summarized in a logic scheme,
since the functional integration and interconnections of all its components can be quite
complex [20,84–87]. The relative lack of integration of microfluidics, more generally of
micro and nanotechnology in biological laboratories, may be due, in part, to the bridging of
the gap between the engineers who design and manufacture the devices and the biomedical
users who would ultimately use them. This decoupling has often led to device prototyping
immaturity from an application point of view, and is not easy to use and not totally reliable
in regard to the reproducibility of the data collected with their use.

Among many authors designing and testing microfluidic platforms to simplify and
optimize protocols for biological experiments [88–91], in the following we reported in detail
some of the most recently microfabricated solutions developed by our research group. In
Guzzi et al. [92], we developed a microfluidic platform able to culture cells in a semi-static
environment. Cells were maintained inside a 3 mm deep well where culture medium
(~60 µL) can circulate below and above cells trying to reproduce the microcirculation. The
device is composed of three different cylindrical reservoirs (each one filled with ~2 mL of
liquids) arranged at 120◦ around the smaller central culture chamber, with a lower height
compared to the reservoirs. A waste well collected waste liquids coming from the culture
chamber (Figure 4a). The major advantage of this device is its passivity, since it did not
include any actuation to move liquids, but they are simply driven by gravity in a special
interconnected system of communicating wells. Height differences generated a pressure
gradient moving fluids from the reservoirs to the central chamber and, finally, to the waste
well manufactured onto a deeper layer (Figure 4b). Fresh culture media mixed each other
in the central chamber feeding the cells with new nutrients. Mixing in the central chamber
mainly occurred by diffusion for the low flow rate of the system (~6.2 µL/h for each inlet
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channel) and to the laminar flow of microfluidics (Figure 4c,d). This device, designed both
for adherent and non-adherent cells, can be maintained in a miniaturized or in a traditional
incubator to constantly monitor the cell growth, using an inverted optical microscope and
physiological parameters such as the pH and the dissolved oxygen variation. Furthermore,
it was an open device, so users can access each area, loading of withdrawing samples and
reagents using a conventional pipette.
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Coluccio et al. [93] reported the development of a passive device composed of two
parallel microfluidic networks connected via a transversal channel (Figure 5a–c). Different
fluids’ volume in the reservoirs a and e, and the reservoirs b and f generated a flow rate
in the parallel channels. In detail, reservoirs were filled to reach the same hydrostatic
pressure in reservoirs A and B, C and D, E and F, so pressure gradients ∆P1, ∆P 2, ∆P3
and ∆P4 were equal. The hydraulic resistances (R1, R2, R3 and R4) in the channels of
the device were regulated to have the flow rates Q1 = Q2 and Q3 = Q4. In addition, the
same volumes of liquid in the central reservoirs C and D (∆P5 = 0), meaning the same
hydrostatic pressure, assured a flow rate Q5 = 0. Therefore, there was no flow in the
transverse channel. Maintaining the different concentration of substances in the parallel
channels, it was possible to create a concentration gradient in the transverse channel, in
which chemotaxis experiments were performed. Authors used suspension cells (Jurkat cells)
to demonstrate a chemotactic process based on the attraction of cells towards a medium
containing Fetal Bovine Serum with an average speed of about 0.36 µm/min, comparable
with other conventional devices used to perform similar experiments (Figure 5d) [55].
Potentially, the surfaces of the microchambers and microchannels of these devices can
be further functionalized with different synthetic or biological moieties to increase their
biocompatibility or to target a specific application [94–96].
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3. Conclusions

The constant need of living cells to acquire nutrients and oxygen and to eliminate
waste substances for the maintenance of their physiological processes requires increasing
efforts to solve the lack of cell culture protocols. One of the possible solutions lies in the
design of new systems based on the optimization of convective flow to ameliorate cell
growth and tissue vasculogenesis [97]. In contrast to methods undertaken in the early
years when physicists and engineers started to develop the first prototypes of lab-on-chip
as mere platforms for diagnostic applications [98–100], nowadays we can observe how
microfluidics can be actively integrated in both research and clinical biomedical fields.

Microfluidic devices for cell culture and tests provide new dynamic in vitro microen-
vironments and methods to observe and modulate cellular responses to biological or
pharmacological stimuli. Only by increasing the number of microfluidic devices for cell
biology developed to address current obstacles, such as biomimetic potential and repro-
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ducibility, can the unique strengths of these devices become ever more accessible to the
whole biomedical community as common daily laboratory tools.

Modern microfluidics solutions and lab-on-chip systems enable the construction of 3D
cellular culture and co-cultures and realistic mimicking of the in vivo tissue-level microen-
vironments, including pathological inflammatory/cancer states [101–103]. Innovative and
effective 3D cell culture microfluidic models have started to be proposed more frequently
as solid alternatives for tissue regeneration and drug screening applications [104]. The
possibility to cultivate, screen and analyze cells directly isolated from patients paves the
way to clinical treatments that perfectly suit the patient, switching from the traditional
“one size fits all” approach to a personalized one [105]. Moreover, automated methods
will increase the reliability of procedures that will become more precise and faster without
the need for large quantities of samples [106]. Microfabricated microfluidic 3D cell culture
technologies highly impact preclinical-to-clinical translation, both in the pharmaceutical
and regenerative medicine contexts, mimicking, in some cases, human physiology better
than the more traditional in vitro models. The recognition of the value of the microfluidic
models by collecting and interpreting data from different sources, reinforced by the support
of regulatory agencies, will be able to ensure an effective in vitro-to-in vivo translation
through quantitative model systems and pharmacology application. The integration of
these increasingly precise and reproducible devices, together with the possibility of ana-
lyzing a large number of experimental variables derived, at the same time, from the same
sample or from different ones, will allow us to mimic increasingly complex systems from
both an anatomical and functional point of view, considerably reducing the number of
animals sacrificed for in vivo experiments. An active communication between bioengineers,
physics, clinics and regulators could successfully assist the transition towards the more
ethical limited and optimized use of the animal experiment. The prompt development
of effective microfluidic 3D models may successfully reduce the sacrifice of laboratory
animals in scientific research, in accordance with the 3Rs regulation of the European Union,
since a valid compromise must be established between preserving animal welfare whilst
conducting high-quality and ethical science.
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