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CONORMAL DISTRIBUTIONS IN THE SHUBIN

CALCULUS OF PSEUDODIFFERENTIAL OPERATORS

MARCO CAPPIELLO, RENÉ SCHULZ, AND PATRIK WAHLBERG

Abstract. We characterize the Schwartz kernels of pseudodiffer-
ential operators of Shubin type by means of an FBI transform.
Based on this we introduce as a generalization a new class of
tempered distributions called Shubin conormal distributions. We
study their transformation behavior, normal forms and microlocal
properties.

0. Introduction

The theory of pseudodifferential operators has proven to be a pow-
erful tool in many disciplines of mathematics. The space of conormal
distributions was designed to contain the Schwartz kernels of pseudo-
differential operators with Hörmander symbols, see [6, Chapter 18.2].
Conormal distributions are the starting point for the theory of La-
grangian distributions and Fourier integral operators [6, Chapter 25],
but it has also been studied in itself to a great extent, and it is essential
in several theories, see e.g. [1,10]. A distribution u defined on a smooth
manifold is conormal with respect to a closed smooth submanifold if
Lu belongs to a certain Besov space locally for certain differential op-
erators L that depend on the submanifold.

For the well-studied pseudodifferential operators on Rd with Shubin
symbols [17], we are not aware of a concept corresponding to conormal
distributions. In this paper we fill this gap by introducing a theory of
conormal distributions with repect to linear subspaces of Rd, adapted
to Shubin operators. Recall that a Shubin symbol a ∈ Γmρ of order
m ∈ R satisfies the estimates

|∂αx∂βξ a(x, ξ)| . (1 + |x|+ |ξ|)m−ρ|α+β|, (x, ξ) ∈ R
d × R

d, α, β ∈ N
d,

where 0 6 ρ 6 1.
The key feature of the Shubin symbols that is difficult to describe

by the standard techniques is the inherent isotropy, in particular that
taking derivatives with respect to x increases the decay in ξ. The tool
that we employ to circumvent this issue is a version of the short-time
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Fourier transform, which is more suitable to isotropic symbols than the
standard Fourier transform on which the classical theory is based.

Our work may be seen as phase space analysis of Shubin conormality.
We extend Tataru’s characterization [18] of the Schwartz kernels of
pseudodifferential operators with m = ρ = 0 to 0 6 ρ 6 1 and order
m ∈ R. The behavior of the symbols with respect to derivatives and
the order is reflected in phase space.

Based on the characterization of the Schwartz kernels of Shubin
operators, we define conormal tempered distributions on R

d with re-
spect to a linear subspace and an order m ∈ R. To distinguish them
from Hörmander’s notion of conormal distribution, we use the prefix
Γ-conormal. The Schwartz kernels of Shubin operators are thus identi-
cal to the Γ-conormal distributions on R2d with respect to the diagonal
in R2d.

We prove functional properties of Γ-conormal distributions and check
that they transform well under the Fourier transform and linear coordi-
nate transformations. We equip them with a topology such that these
operators become continuous. The present paper can be seen as a first
step in the direction of a phase space analysis for Lagrangian distri-
butions in the Shubin calculus which, as far as we know, does not yet
exist. This will be the subject of a forthcoming paper.

The paper is organized as follows: In Section 1 we introduce the
FBI-type integral transform on which our analysis is based and state
its basic properties. Section 2 contains a phase space characterization
of Shubin symbols in terms of the integral transform. In Section 3 we
transfer the characterization to the Schwartz kernels of the associated
class of global pseudodifferential operators. Along the way we give a
simple proof of the continuity of these operators on the associated scale
of Shubin–Sobolev modulation spaces. Finally in Section 4 we define
Γ-conormal distributions and discuss their functional and microlocal
properties.

1. An integral transform of FBI type

In this section we introduce the tool for the definition of Shubin
conormal distributions, namely a variant of the FBI transform, and
discuss its main properties. First we fix some notation.

Basic notation. We use S (Rd) and S ′(Rd) for the Schwartz space of
rapidly decaying smooth functions and its dual the tempered distribu-
tions. We write 〈u, v〉 for the bilinear pairing between a test function
v and a distribution u and (u, v) = 〈u, v〉 for the sesquilinear pairing
as well as the L2 scalar product if u, v ∈ L2(Rd).

We use Tyu(x) = u(x − y) and Mξu(x) = ei〈x,ξ〉u(x), where 〈·, ·〉
denotes the inner product on Rd, for the operation of translation by
y ∈ Rd and modulation by ξ ∈ Rd, respectively, applied to functions or
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distributions. For x ∈ Rd we write 〈x〉 =
√
1 + |x|2. Peetre’s inequality

is

(1.1) 〈x+ y〉s 6 Cs〈x〉s〈y〉|s| x, y ∈ R
d, s ∈ R, Cs > 0.

We write d̄x for the dual Lebesgue measure (2π)−ddx. The notation
f(x) . g(x) means that f(x) 6 Cg(x) for some C > 0, for all x in the
domain of f and g. If f(x) . g(x) . f(x) then we write f(x) ≍ g(x).

The Fourier transform is normalized for f ∈ S (Rd) as

Ff(ξ) = f̂(ξ) = (2π)−d/2
∫

Rd

f(x)e−i〈x,ξ〉 dx

which makes it unitary on L2(Rd). The partial Fourier transform with
respect to a vector variable indexed by j is denoted Fj . For 1 6 j 6 d
we use Dj = −i∂j and extend to multi-indices.

The orthogonal projection on a linear subspace Y ⊆ Rd is πY . We
denote by Md1×d2(R) the space of d1 × d2 matrices with real entries,
by GL(d,R) the group of invertible elements of Md×d(R), and by O(d)
the subgroup of orthogonal matrices in GL(d,R). The real symplectic
group [4] is denoted Sp(d,R) and is defined as the matrices in GL(2d,R)
that leaves invariant the canonical symplectic form on T ∗Rd

σ((x, ξ), (x′, ξ′)) = 〈x′, ξ〉 − 〈x, ξ′〉, (x, ξ), (x′, ξ′) ∈ T ∗
R
d.

For a function f on Rd and A ∈ GL(d,R) we denote the pullback by
A∗f = f ◦A. The determinant of A ∈ Md×d(R) is |A|, the transpose is
At, and the inverse of the transpose is A−t.

An integral transform of FBI type.

Definition 1.1. Let u ∈ S ′(Rd) and let g ∈ S (Rd)\{0} be a window
function. Then the transform Tgu : R2d → C is

(1.2) Tgu(x, ξ) = (2π)−d/2(u, TxMξg), x, ξ ∈ R
d.

If u ∈ S (Rd) then Tgu ∈ S (R2d) [5, Theorem 11.2.5]. The adjoint
T ∗
g is (T ∗

g U, f) = (U, Tgf) for U ∈ S ′(R2d) and f ∈ S (Rd). When U
is a polynomially bounded measurable function we write

T ∗
g U(y) = (2π)−d/2

∫

R2d

U(x, ξ) TxMξg(y) dx dξ

where the integral is defined weakly so that (T ∗
g U, f) = (U, Tgf)L2 for

f ∈ S (Rd).

Remark 1.2. For u ∈ S (Rd) we have

Tgu(x, ξ) = (2π)−d/2
∫

Rd

u(y) e−i〈y−x,ξ〉 g(y − x) dy = ei〈x,ξ〉F (u Txg)(ξ).

The standard, L2-normalized Gaussian window function on Rd is
denoted ψ0(x) = π−d/4e−|x|2/2.
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Proposition 1.3. [5, Theorem 11.2.3] Let u ∈ S ′(Rd) and g ∈
S (Rd)\0. Then Tgu ∈ C∞(R2d) and there exists N ∈ N that does not
depend on g such that

(1.3) |Tgu(x, ξ)| . 〈(x, ξ)〉N , (x, ξ) ∈ R
2d.

We have u ∈ S (Rd) if and only if for any N ∈ N

(1.4) |Tgu(x, ξ)| . 〈(x, ξ)〉−N , (x, ξ) ∈ R
2d.

Remark 1.4. (Relation to other integral transforms.) The transform Tg
is related to the short-time Fourier transform (cf. [5])

Vgu(x, ξ) = (2π)−d/2(u,MξTxg), x, ξ ∈ R
d,

(for the Gaussian window g = ψ0 also known as the Gabor transform)
via

Tgu(x, ξ) = ei〈x,ξ〉Vgu(x, ξ).
For the standard Gaussian window (1.2) may be expressed as

(1.5)

Tψ0
u(x, ξ) = (2π)−d/2e−

|ξ|2

2 (u ∗ ψ0)(x− iξ) = Bu(x− iξ) e−(|x|2+|ξ|2)/2,

where B stands for the Bargmann transform [5].

We have for two different windows g, h ∈ S (Rd)

(1.6) T ∗
h Tgu = (h, g)u, u ∈ S

′(Rd),

and consequently, ‖g‖−2
L2T ∗

g Tgu = u for g ∈ S (Rd) \ 0 [5]. If (h, g) 6= 0
the inversion formula (1.6) can be written as

(u, f) = (h, g)−1(Tgu, Thf), u ∈ S
′(Rd), f ∈ S (Rd).

Two important features of Tg which distinguishes it from the short-
time Fourier transform are the following differential identities.

∂αx Tgu(x, ξ) = Tg(∂αu)(x, ξ), α ∈ N
d,(1.7)

Dβ
ξ Tgu(x, ξ) = Tgβu(x, ξ), β ∈ N

d, gβ(x) = (−x)βg(x).(1.8)

As described in [5] for the short time Fourier transform, (1.6) may
be used to estimate the behavior of Tg under a change of window. The
following version of this result takes derivatives into account:

Lemma 1.5. Let u ∈ S ′(Rd) and let f, g, h ∈ S (Rd)\0 satisfy (h, g) 6=
0. Then for all α, β ∈ Nd and (x, ξ) ∈ R2d

(1.9) |∂αx∂βξ Tfu(x, ξ)| 6 (2π)−d/2|(h, g)|−1|∂αxTgu| ∗ |Tfβh|(x, ξ).

Proof. We obtain from (1.6)

(1.10) Tfu = (h, g)−1TfT ∗
h Tgu.
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We may express TfT ∗
h Tgu as

TfT ∗
h Tgu(x, ξ) = (2π)−d/2(Tgu, Th(TxMξf))

= (2π)−d
∫

R2d

Tgu(y, η) (TyMηh, TxMξf) dy dη

= (2π)−d/2
∫

R2d

ei〈x−y,η〉Tgu(y, η) Tfh(x− y, ξ − η) dy dη

= (2π)−d/2
∫

R2d

ei〈y,η〉Tgu(x− y, η) Tfh(y, ξ − η) dy dη.

Combining (1.7), (1.8) and (1.10) yields

∂αxD
β
ξ Tfu(x, ξ)

= (2π)−d/2(h, g)−1

∫

R2d

ei〈x−y,η〉∂αy Tgu(y, η) Tfβh(x− y, ξ − η) dy dη.

Taking absolute value gives (1.9). �

1.1. Transformation under shifts and symplectic matrices. A
pseudodifferential operator in the Weyl quantization is for f ∈ S (Rd)
defined as

(1.11) aw(x,D)f(x) =

∫

R2d

ei〈x−y,ξ〉a ((x+ y)/2, ξ) f(y) d̄ξ dy

where a is the Weyl symbol. We will later use Shubin symbols, but
for now it suffices to note that the Weyl quantization extends by the
Schwartz kernel theorem to a ∈ S ′(R2d), and then gives rise to a
continuous linear operator from S (Rd) to S ′(Rd).

The Schwartz kernel of the operator aw(x,D) is

(1.12) Ka(x, y) =

∫

Rd

ei〈x−y,ξ〉a ((x+ y)/2, ξ) d̄ξ

interpreted as a partial inverse Fourier transform in S ′(R2d) when
a ∈ S ′(R2d).

The metaplectic representation [4,19] works as follows. To each sym-
plectic matrix χ ∈ Sp(d,R) is associated an operator µ(χ) that is uni-
tary on L2(Rd), and determined up to a complex factor of modulus
one, such that

(1.13) µ(χ)−1aw(x,D)µ(χ) = (a ◦ χ)w(x,D), a ∈ S
′(R2d)

(cf. [4, 6]). The operator µ(χ) is a homeomorphism on S and on S ′.
The metaplectic representation is the mapping Sp(d,R) ∋ χ→ µ(χ).

It is in fact a representation of the so called 2-fold covering group of
Sp(d,R), which is called the metaplectic group.

In Table 1 we list the generators χ of the symplectic group, the
corresponding unitary operators µ(χ) on u ∈ L2, and the corresponding
transformation on Tgu, cf. [3]. We also list the correspondence for phase
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shift operators. Here x0, ξ0 ∈ Rd, A ∈ GL(d,R), B ∈ Md×d(R) with
B = Bt.

Table 1. The metaplectic representation

Transformation Action on:

(x, ξ) ∈ T ∗Rd

u ∈ L2(Rd)

Tgu(x, ξ) ∈ L2(R2d)

(A−1x,Atξ)

Coordinate change |A|1/2A∗u

|A|−1/2TA−∗gu(Ax,A
−tξ)

(ξ,−x)
Rotation π/2 Fu

ei〈x,ξ〉TF−1gu(−ξ, x)
(x, ξ +Bx)

Shearing e
i
2
〈x,Bx〉u(x)

e
i
2
〈x,Bx〉TgBu(x, ξ − Bx)

(x+ x0, ξ + ξ0)

Shift Tx0Mξ0u

ei〈ξ0,x−x0〉Tgu(x− x0, ξ − ξ0)

The proofs of the claims in Table 1 are collected in the following
lemmas.

Lemma 1.6. Let u ∈ S ′(Rd) and g ∈ S (Rd) \ 0. If (x0, ξ0) ∈ T ∗Rd,

A ∈ GL(d,R), B ∈ Md×d(R) is symmetric, v(x) = e
i
2
〈x,Bx〉u(x) and

gB(y) = e−
i
2
〈y,By〉g(y), then for (x, ξ) ∈ T ∗Rd

Tg(Tx0Mξou)(x, ξ) = ei〈ξ0,x−x0〉Tgu(x− x0, ξ − ξ0),

Tg(|A|1/2A∗u)(x, ξ) = |A|−1/2TA−∗gu(Ax,A
−tξ),

Tgv(x, ξ) = e
i
2
〈x,Bx〉TgBu(x, ξ − Bx).

Proof. The first and the fourth entry of Table 1 are immediate con-
sequences of Definition 1.1. For the third identity, assume first u ∈
S (Rd). Then

Tgv(x, ξ) = (2π)−d/2
∫

Rd

g(y − x) e
i
2
〈y,By〉u(y)ei〈x−y,ξ〉 dy

= (2π)−d/2e
i
2
〈x,Bx〉

∫

Rd

g(y − x) e−
i
2
〈y−x,B(y−x)〉u(y)ei〈x−y,ξ−Bx〉 dy

= e
i
2
〈x,Bx〉TgBu(x, ξ −Bx).

The formula extends to u ∈ S ′(Rd). �
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Finally we prove the claim for “Rotation π/2” in Table 1. For later
use, we prefer to show a more general result for a possibly partial
Fourier transform.

Lemma 1.7. If u ∈ S ′(Rd), 0 6 n 6 d and x = (x1, x2) ∈ Rd,
x1 ∈ R

n, x2 ∈ R
d−n, then

Tgu(x1, x2, ξ1, ξ2) = ei〈x2,ξ2〉TF2gF2u(x1, ξ2, ξ1,−x2).
Proof.

ei〈x2,ξ2〉TF2gF2u(x1, ξ2, ξ1,−x2)
= ei〈x2,ξ2〉(2π)−d/2(F2u, Tx1,ξ2Mξ1,−x2F2g)

= ei〈x2,ξ2〉(2π)−d/2(u,F−1
2 Tx1,ξ2Mξ1,−x2F2g)

= (2π)−d/2(u, Tx1,x2Mξ1,ξ2g).

�

Remark 1.8. The extreme cases n = 0 and n = d represent F2 = F

(the full Fourier transform) and the trivial case F2 = I (the identity),
respectively.

We observe that up to certain phase factors, changes of windows
and sign conventions, the “Action on Tgu(x, ξ)” reflects the inversion
of “Action on T ∗Rd” in Table 1.

2. Characterization of Shubin symbols

We first recall the definition of Shubin’s class of global symbols for
pseudodifferential operators [17].

Definition 2.1. We say that a ∈ C∞(Rd) is a Shubin symbol of order
m ∈ R and parameter 0 6 ρ 6 1, denoted a ∈ Γmρ (R

d), if there exist
Cα > 0 such that

(2.1) |∂αa(z)| 6 Cα〈z〉m−ρ|α|, α ∈ N
d, z ∈ R

d.

Γmρ (R
d) is a Fréchet space equipped with the seminorms ρmM (a) of best

possible constants Cα in (2.1) maximized over |α| 6 M , M ∈ N. We
denote Γm(Rd) = Γm1 (R

d).

Obviously Γmρ (R
d) ⊆ S ′(Rd) so Proposition 1.3 already gives some

information on Tga when a ∈ Γmρ (R
d). The following result, which is a

chief tool in the paper, gives characterizations of Tga for a ∈ Γmρ (R
d).

Proposition 2.2. Suppose a ∈ S ′(Rd). Then a ∈ Γmρ (R
d) if and only

if for one (and equivalently all) g ∈ S (Rd) \ 0
(2.2)

|∂αx∂βξ Tga(x, ξ)| . 〈x〉m−ρ|α|〈ξ〉−N , N > 0, α, β ∈ N
d, x, ξ ∈ R

d,
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or equivalently
(2.3)

|∂αxTga(x, ξ)| . 〈x〉m−ρ|α|〈ξ〉−N , N > 0, α ∈ N
d, x, ξ ∈ R

d.

Proof. Let a ∈ Γmρ (R
d), let g ∈ S (Rd) \ 0 and let α, β, γ ∈ N

d be
arbitrary. We seek to show

|ξγ∂αx∂βξ Tga(x, ξ)| . 〈x〉m−ρ|α|.

To that end we use (1.7) and (1.8), integrate by parts and estimate
using (1.1) and the fact that g ∈ S

|ξγ∂αx∂βξ Tga(x, ξ)| =
∣∣ξγTgβ(∂αa)(x, ξ)

∣∣

= (2π)−d/2
∣∣∣∣
∫

Rd

(
(i∂y)

γe−i〈ξ,y〉
)
gβ(y) ∂

αa(x+ y) dy

∣∣∣∣

.

∫

Rd

∣∣∣∂γy
[
gβ(y)∂

αa(x+ y)
]∣∣∣ dy

=

∫

Rd

∣∣∣∣∣
∑

κ6γ

(
γ

κ

)
∂γ−κgβ(y) ∂

α+κa(x+ y)

∣∣∣∣∣ dy

.
∑

κ6γ

(
γ

κ

)∫

Rd

∣∣∂γ−κgβ(y)
∣∣ 〈x+ y〉m−ρ|α+κ|dy

. 〈x〉m−ρ|α|
∑

κ6γ

(
γ

κ

)∫

Rd

∣∣∂γ−κgβ(y)
∣∣ 〈y〉|m|+ρ|α+κ|dy

. 〈x〉m−ρ|α|.

This implies (2.2) and as a special case (2.3).
Conversely, suppose that (2.3) holds for a ∈ S ′(Rd) for some g ∈

S (Rd) \ 0, which is a weaker assumption than (2.2). We obtain from
(1.6) that a is given by

a(y) = ‖g‖−2
L2 T ∗

g Tga(y)

= ‖g‖−2
L2 (2π)

−d/2

∫

R2d

Tga(x, ξ) ei〈ξ,y−x〉 g(y − x) dx dξ

which is an absolutely convergent integral due to (2.3) and the fact that
g ∈ S (Rd). We may differentiate under the integral, so integration by
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parts, (2.3) and (1.1) give for any α ∈ Nd and any y ∈ Rd

|∂αa(y)| = ‖g‖−2
L2 (2π)

−d/2

∣∣∣∣
∫

R2d

Tga(x, ξ) ∂αy
(
ei〈ξ,y−x〉 g(y − x)

)
dx dξ

∣∣∣∣

= ‖g‖−2
L2 (2π)

−d/2

∣∣∣∣
∫

R2d

Tga(x, ξ) (−∂x)α
(
ei〈ξ,y−x〉 g(y − x)

)
dx dξ

∣∣∣∣

= ‖g‖−2
L2 (2π)

−d/2

∣∣∣∣
∫

R2d

∂αxTga(x, ξ) ei〈ξ,y−x〉 g(y − x) dx dξ

∣∣∣∣

= ‖g‖−2
L2 (2π)

−d/2

∣∣∣∣
∫

R2d

∂αxTga(y − x, ξ) ei〈ξ,x〉 g(x) dx dξ

∣∣∣∣

.

∫

R2d

〈y − x〉m−ρ|α| 〈ξ〉−d−1 |g(x)| dx dξ

. 〈y〉m−ρ|α|

∫

R2d

〈ξ〉−d−1 〈x〉|m|+ρ|α| |g(x)| dx dξ

. 〈y〉m−ρ|α|.

Thus a ∈ Γmρ (R
d). �

Remark 2.3. It follows from the proof that the best possible constants
in (2.3) maximized over |α| 6 M yield seminorms ρmg,M,N , M,N ∈ N,

on Γmρ (R
d) equivalent to ρmM , M ∈ N.

We will next reformulate the characterization of Γm(Rd) in a more
geometric form.

Proposition 2.4. Let a ∈ S ′(Rd). Then a ∈ Γm(Rd) if and only if
for one (and equivalently all) g ∈ S (Rd) \ 0 and all N, k ∈ N

(2.4) |L1 · · ·LkTga(x, ξ)| . 〈x〉m〈ξ〉−N , (x, ξ) ∈ T ∗
R
d,

for any vector fields of the form Li = xj∂xn where 1 6 j, n 6 d,
i = 1, . . . , k.

Proof. We may write

L1 · · ·Lk =
∑

|α|=|β|6k

cαβx
α∂β , cαβ ∈ R,

and all differential operators of this form are linear combinations of
products of the vector fields Li.

If a ∈ Γm(Rd) then the estimates (2.3) hold for any g ∈ S (Rd) \ 0.
For N, k ∈ N we have

|L1 · · ·LkTga(x, ξ)| .
∑

|α|=|β|6k

〈x〉|α||∂βxTga(x, ξ)|

. 〈x〉m〈ξ〉−N

which confirms (2.4).
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Suppose on the other hand that the estimates (2.4) hold for some
g ∈ S (Rd)\0 and N, k ∈ N. Then for any α, β ∈ Nd such that |α| = |β|
and N ∈ N

|xα∂βxTga(x, ξ)| . 〈x〉m〈ξ〉−N .
This gives using |x||β| 6 d|β|/2max|α|=|β| |xα|

|∂βxTga(x, ξ)| . 〈x〉m−|β|〈ξ〉−N , |x| > 1, ξ ∈ R
d.

In order to prove (2.3), which is equivalent to a ∈ Γm(Rd), it thus
remains to show that 〈ξ〉N |∂βxTga(x, ξ)| remains uniformly bounded for
|x| 6 1 and ξ ∈ Rd, for any N ∈ N. For that we estimate

〈ξ〉N |∂βxTga(x, ξ)| = 〈ξ〉N
∣∣∣∣∣
∑

α6β

cαβ(iξ)
αT∂β−αga(x, ξ)

∣∣∣∣∣

. 〈ξ〉|β|+N
∑

α6β

|T∂αga(x, ξ)| .

By Lemma 1.5 we have

|T∂αga(x, ξ)| .
(

|Tga|︸︷︷︸
.〈x〉m〈ξ〉−M

∗ | T∂αgg︸ ︷︷ ︸
∈S

|
)
(x, ξ) . 〈x〉m〈ξ〉−M

where the last inequality follows by Peetre’s inequality (1.1) applied to
the convolution. Choosing M > |β|+N , we obtain

〈ξ〉N
∣∣∂βxTga(x, ξ)

∣∣ . 1 for |x| 6 1, ξ ∈ R
d,

which proves the claim. �

Remark 2.5. The vector fields xj∂xn play a role in spanning all vector
fields tangential to {0} × Rd ⊆ T ∗Rd, see [6, Lemma 18.2.5].

2.1. Classical symbols. An important subclass of the Shubin sym-
bols are those that admit a polyhomogeneous expansion, so called
classical symbols. A symbol a ∈ Γm(Rd) is called classical, denoted
a ∈ Γmcl (R

d), if there are functions am−j , homogeneous of degree m− j
and smooth outside z = 0, j = 0, 1, . . . , such that for any zero-excision
function1 χ we have for any N ∈ N

a− χ

N−1∑

j=0

am−j ∈ Γm−N(Rd).

By Euler’s relation for homogeneous functions, u is homogeneous of
degree m if and only if Ru = mu, where R is the radial vector field
Ra(x) = 〈x,∇a(x)〉. Adapting the method of Joshi [9] gives the fol-
lowing characterization of classical Shubin symbols.

1This means a function of the form 1− φ where φ ∈ C∞

c (Rd) and φ ≡ 1 near zero.
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Proposition 2.6. A symbol a ∈ Γm(Rd) is classical if and only if for
all N ∈ N0

(R−m+N − 1)(R−m+N − 2) · · · (R−m) a ∈ Γm−N(Rd).

The transformation a→ Tga does not preserve homogeneity. Never-
theless (1.7) and (1.8) give the relation

Tg (Ra) (x, ξ) = 〈x+ i∇ξ,∇x〉Tga(x, ξ) =: R̃Tga(x, ξ).
Corollary 2.7. Let a ∈ S ′(Rd) and g ∈ S (Rd) \ 0. Then a ∈ Γmcl (R

d)
if and only if

(2.5)
∣∣∣∂αx

(
(R̃−m+N − 1)(R̃−m+N − 2) · · · (R̃−m)Tga(x, ξ)

)∣∣∣

. 〈x〉m−N−|α|〈ξ〉−M

for any M > 0, N ∈ N0, α ∈ Nd and (x, ξ) ∈ T ∗Rd.

Proof. By Proposition 2.6, a ∈ Γmcl (R
d) if and only if

(R−m+N − 1)(R−m+N − 2) · · · (R−m) a ∈ Γm−N(Rd).

By Proposition 2.2 this holds if and only if for all α ∈ Nd, (x, ξ) ∈ R2d,
and M > 0

|∂αxTg ((R−m+N − 1)(R−m+N − 2) · · · (R−m) a) (x, ξ)|
. 〈x〉m−N−|α|〈ξ〉−M .

This is equivalent to (2.5). �

3. Characterization of pseudodifferential operators

When a ∈ Γmρ (R
2d) the pseudodifferential operator aw(x,D) is con-

tinuous on S (Rd), and extends to a continuous operator on S ′(Rd)
[17]. The formulas (1.11) and (1.12) can be interpreted as oscillatory
integrals if 0 < ρ 6 1.

Lemma 3.1. Let a ∈ Γmρ (R
2d) and g ∈ S (R2d) \ 0. Then, for (z, ζ) =

(z1, z2; ζ1, ζ2) ∈ T ∗R2d,

(3.1) TgKa(z, ζ)

= (2π)−d/2Tha
(
z1 + z2

2
,
ζ1 − ζ2

2
, ζ1 + ζ2, z2 − z1

)
e
i
2
〈ζ1−ζ2,z1−z2〉

where h = F2(g ◦ κ), κ(x, y) = (x+ y/2, x− y/2) and x, y ∈ Rd.

Proof. The statement (3.1) can be rephrased as

TgKa

(
z1 −

z2
2
, z1 +

z2
2
; ζ1 +

ζ2
2
,−ζ1 +

ζ2
2

)

= (2π)−d/2Tha (z1, ζ1; ζ2, z2) e−i〈ζ1,z2〉,
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for all (z1, z2; ζ1, ζ2) ∈ T ∗R2d. We have Ka = (2π)−d/2(F−1
2 a) ◦ κ−1

which gives

(3.2)

TgKa

(
z1 −

z2
2
, z1 +

z2
2
; ζ1 +

ζ2
2
,−ζ1 +

ζ2
2

)

= (2π)−3d/2((F−1
2 a) ◦ κ−1, Tz1− z2

2
,z1+

z2
2

M
ζ1+

ζ2
2
,−ζ1+

ζ2
2

g)

= (2π)−3d/2(a,F2(Tz1− z2
2
,z1+

z2
2

M
ζ1+

ζ2
2
,−ζ1+

ζ2
2

g ◦ κ)).

We calculate

(2π)d/2F2(Tz1− z2
2
,z1+

z2
2

M
ζ1+

ζ2
2
,−ζ1+

ζ2
2

g ◦ κ)(y, η)

=

∫

Rd

Tz1− z2
2
,z1+

z2
2

M
ζ1+

ζ2
2
,−ζ1+

ζ2
2

g ◦ κ(y, u)e−i〈u,η〉 du

=

∫

Rd

ei(〈ζ1+
ζ2
2
,y+u

2
−z1+

z2
2
〉+〈−ζ1+

ζ2
2
,y−u

2
−z1−

z2
2
〉−〈u,η〉)

× g
(
y +

u

2
− z1 +

z2
2
, y − u

2
− z1 −

z2
2

)
du

= ei(〈ζ1,z2〉+〈ζ2,y−z1〉)

∫

Rd

e−i〈u,η−ζ1〉g
(
y +

u

2
− z1 +

z2
2
, y − u

2
− z1 −

z2
2

)
du

= ei〈ζ1,z2〉ei〈ζ2,y−z1〉
∫

Rd

e−i〈u−z2,η−ζ1〉g
(
y − z1 +

u

2
, y − z1 −

u

2

)
du

= (2π)d/2ei〈ζ1,z2〉ei(〈ζ2,y−z1〉+〈z2,η−ζ1〉)F2(g ◦ κ)(y − z1, η − ζ1)

= (2π)d/2ei〈ζ1,z2〉Tz1,ζ1Mζ2,z2F2(g ◦ κ)(y, η).
Insertion into (3.2) gives the claimed conclusion. �

Definition 3.2. For u ∈ S ′(R2d) and g ∈ S (R2d) \ 0 we denote

T ∆
g u(z1, z2, ζ1, ζ2) = e−

i
2
〈ζ1−ζ2,z1−z2〉Tgu(z1, z2, ζ1, ζ2)

for (z1, z2; ζ1, ζ2) ∈ T ∗R2d.

As a consequence of Proposition 2.2 we obtain the following charac-
terization of the Schwartz kernels of Weyl quantized Shubin operators.

Proposition 3.3. Let K ∈ S ′(R2d). Then K is the Schwartz kernel
of an operator of the form (1.11) with a ∈ Γmρ (R

2d) if and only if for

all α, β ∈ Nd and N ∈ N and any g ∈ S (R2d) \ 0 we have

(3.3)

|(∂z1 + ∂z2)
α(∂ζ1 − ∂ζ2)

βT ∆
g K(z1, z2, ζ1, ζ2)|

. 〈(z1 + z2, ζ1 − ζ2)〉m−ρ|α+β|〈(z1 − z2, ζ1 + ζ2)〉−N ,
(z1, z2; ζ1, ζ2) ∈ T ∗

R
2d.

Remark 3.4. Corresponding to Proposition 2.4, we may rephrase the
estimates (3.3) for Γm(R2d) as

|L1 · · ·LkT ∆
g K(z1, z2, ζ1, ζ2)| . 〈(z1+z2, ζ1−ζ2)〉m〈(z1−z2, ζ1+ζ2)〉−N ,
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where Li are differential operators of the form

Li = (z1,j + z2,j)(∂z1,n + ∂z2,n), Li = (z1,j + z2,j)(∂ζ1,n − ∂ζ2,n),

Li = (ζ1,j − ζ2,j)(∂z1,n + ∂z2,n), or Li = (ζ1,j − ζ2,j)(∂ζ1,n − ∂ζ2,n)

for 1 6 j, n 6 d and 1 6 i 6 k.

Proposition 3.3 may be phrased in terms of the Schwartz kernel
KTgaw(x,D)T ∗

h
of the operator Tgaw(x,D)T ∗

h for a ∈ Γmρ (R
2d). Let u, v ∈

S (Rd) and g, h ∈ S (Rd) \ 0. On the one hand

(aw(x,D)u, v) = ‖g‖−2
L2 ‖h‖−2

L2 (Tgaw(x,D)T ∗
h (Thu), Tgv)

= ‖g‖−2
L2 ‖h‖−2

L2 (KTgaw(x,D)T ∗
h
, Tgv ⊗ Thu)

and on the other hand

(aw(x,D)u, v) = (Ka, v ⊗ u) = ‖g‖−2
L2‖h‖−2

L2 (Tg⊗hKa, Tg⊗h(v ⊗ u)).

Since

(Tgv ⊗ Thu)(z1, ζ1, z2, ζ2) = Tg⊗h(v ⊗ u)(z1, z2, ζ1,−ζ2)
this proves the formula

(3.4) KTgaw(x,D)T ∗
h
(z1, ζ1, z2,−ζ2) = Tg⊗hKa(z1, z2, ζ1, ζ2).

In view of the last identity and Proposition 3.3 we have the following
result. Tataru [18, Theorem 1] obtained a version of this characteriza-
tion in the special case Γ0

0, and α = β = 0.

Corollary 3.5. We have a ∈ Γmρ (R
2d) if and only if for all α, β ∈ Nd

and N ∈ N and any g, h ∈ S (R2d) \ 0
(3.5)∣∣∣(∂z1 + ∂z2)

α(∂ζ1 − ∂ζ2)
β
(
e−

i
2
〈z1−z2,ζ1−ζ2〉KTgaw(x,D)T ∗

h
(z1, ζ1, z2,−ζ2)

)∣∣∣

. 〈(z1+z2, ζ1−ζ2)〉m−ρ|α+β|〈(z1−z2, ζ1+ζ2)〉−N , (z1, z2; ζ1, ζ2) ∈ T ∗
R

2d.

3.1. Continuity in Shubin–Sobolev spaces. As an application of
the previous characterization we give a simple proof of continuity of
Shubin pseudodifferential operators in isotropic Sobolev spaces. The
Shubin–Sobolev spaces Qs(Rd), s ∈ R, introduced by Shubin [17] (cf.
[5, 12]) can be defined as the modulation space M2

s (R
d), that is

Qs(Rd) = {u ∈ S
′(Rd) : 〈·〉sTgu ∈ L2(R2d)}

where g ∈ S (Rd) \ 0 is fixed and arbitrary, with norm

‖u‖Qs = ‖〈·〉sTgu‖L2(R2d) .

The characterization of Shubin pseudodifferential operators given in
Proposition 3.3 yields a simple proof of their Qs-continuity, cf. [18].

Proposition 3.6. If a ∈ Γm0 (R
2d) then aw(x,D) : Qs+m(Rd) → Qs(Rd)

is continuous for all s ∈ R.
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Proof. Set A = aw(x,D). We have for u ∈ Qs+m(Rd)

‖Au‖Qs = sup
v∈Q−s

|(Au, v)| = sup
v∈Q−s

|(KTψ0AT
∗
ψ0
, Tψ0

v ⊗ Tψ0
u)|

= sup
v∈Q−s

|(〈·〉s ⊗ 〈·〉−s−mKTψ0AT
∗
ψ0
, 〈·〉−s Tψ0

v︸ ︷︷ ︸
∈L2(R2d)

⊗〈·〉s+m Tψ0
u︸ ︷︷ ︸

∈L2(R2d)

)|.

It remains to show that

(3.6) 〈(z1, ζ1)〉s〈(z2, ζ2)〉−s−mKTψ0AT
∗
ψ0
(z1, ζ1, z2, ζ2)

is the Schwartz kernel of a continuous operator on L2(R2d).
First we deduce from (3.4), Proposition 3.3 and (1.1) the estimate

for any N ∈ N

〈(z1, ζ1)〉s〈(z2, ζ2)〉−s−m|KTψ0AT
∗
ψ0
(z1, ζ1, z2, ζ2)|

= 〈(z1, ζ1)〉s〈(z2, ζ2)〉−s−m|Tψ0
Ka(z1, z2, ζ1,−ζ2)|

. 〈(z1, ζ1)〉s〈(z2, ζ2)〉−s−m〈(z1 + z2, ζ1 + ζ2)〉m〈(z1 − z2, ζ1 − ζ2)〉−N

. 〈(z2, ζ2)〉−m〈(z1, ζ1) + (z2, ζ2)〉m〈(z1, ζ1)− (z2, ζ2)〉|s|−N

. 〈(z1, ζ1)− (z2, ζ2)〉|s|+|m|−N .

Then we apply Schur’s test which gives, for N > 0 sufficiently large,
∫

R2d

∣∣∣〈(z1, ζ1)〉s〈(z2, ζ2)〉−s−mKTψ0AT
∗
ψ0
(z1, ζ1, z2, ζ2)

∣∣∣ dz1 dζ1 . 1,

∫

R2d

∣∣∣〈(z1, ζ1)〉s〈(z2, ζ2)〉−s−mKTψ0AT
∗
ψ0
(z1, ζ1, z2, ζ2)

∣∣∣ dz2 dζ2 . 1.

This implies that (3.6) is the Schwartz kernel of an operator that is
continuous on L2(R2d). �

4. Γ-conormal distributions

The kernels of pseudodifferential operators with Hörmander symbols
are prototypes of conormal distributions, see [6, Chapter 18.2]. We
introduce an analogous notion in the Shubin calculus. Before giving a
precise definition we make some observations to clarify our idea.

Proposition 3.3 may be rephrased using the diagonal and the antidi-
agonal

∆ = {(x, x) ∈ R
2d : x ∈ R

d}, ∆⊥ = {(x,−x) ∈ R
2d : x ∈ R

d}
considered as linear subspaces of R2d. Denoting Euclidean distance to
a subset V by dist(·, V ) we have

dist((x, y),∆) = inf
z∈Rd

|(x, y)− (z, z)| = |x− y|√
2

, (x, y) ∈ R
2d,

and dist((x, y),∆⊥)) = |x+ y|/
√
2 for (x, y) ∈ R2d.
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The inequalities (3.3) can thus be expressed, for (x, ξ) ∈ T ∗R2d, as

(4.1)

∣∣L1 · · ·LkT ∆
g Ka(x, ξ)

∣∣ .
(
1 + dist((x, ξ), N(∆⊥))

)m−ρk

× (1 + dist((x, ξ), N(∆)))−N ,

where N(∆) = ∆ × ∆⊥ ⊆ T ∗R2d and N(∆⊥) = ∆⊥ × ∆ ⊆ T ∗R2d

denote the conormal spaces of ∆ and ∆⊥ respectively, and

(4.2) Lj = 〈bj,∇x,ξ〉
is a first order differential operator with constant coefficients such that
bj ∈ N(∆), j = 1, 2, . . . , k and k,N ∈ N.

Observe that in (4.1) we may substitute N(∆⊥) by any linear sub-
space transversal to N(∆), that is any vector subspace V ⊆ T ∗R2d such
that T ∗R2d = N(∆)⊕ V . Note also that

1

2
〈x1 − x2, ξ1 − ξ2〉 = 〈π∆⊥x, ξ〉.

In the following we generalize (4.1) by replacing the diagonal ∆ by
a general linear subspace, and the dimension 2d is replaced by d. For
simplicity of notation we work with ρ = 1 but this can be generalized
to 0 6 ρ 6 1.

Definition 4.1. Suppose Y ⊆ Rd is an n-dimensional linear subspace,
0 6 n 6 d, let N(Y ) = Y × Y ⊥, and let V ⊆ T ∗Rd be a d-dimensional
linear subspace such that N(Y ) ⊕ V = T ∗Rd. Then u ∈ S ′(Rd) is
Γ-conormal to Y of degree m ∈ R, denoted u ∈ ImΓ (Rd, Y ), if for some
g ∈ S (Rd) \ 0 and for any k,N ∈ N we have
(4.3)∣∣L1 · · ·LkT Y

g u(x, ξ)
∣∣ . (1 + dist((x, ξ), V ))m−k (1 + dist((x, ξ), N(Y )))−N ,

(x, ξ) ∈ T ∗
R
d,

where
T Y
g u(x, ξ) = e−i〈πY⊥x,ξ〉Tgu(x, ξ), (x, ξ) ∈ T ∗

R
d,

and Lj, j = 1, . . . , k, are first order differential operators defined by
(4.2) with bj ∈ N(Y ).

For a fixed g ∈ S \ 0 we equip ImΓ (Rd, Y ) with a topology using
seminorms defined as the best possible constants in (4.3) for N,M ∈ N

fixed, maximized over k 6 M and all combinations of bj ∈ N(Y )
belonging to a fixed and arbitary basis.

As observed, the definition is independent of the linear subspace
V as long as N(Y ) ⊕ V = T ∗Rd, and often it is convenient to use
V = N(Y )⊥ = N(Y ⊥). We will also see that the definition and the
topology does not depend on g ∈ S (Rd) \ 0 (see Corollary 4.8).

If we pick coordinates such that Y = Rn × {0} ⊆ Rd then

N(Y ) = {(x1, 0, 0, ξ2) : x1 ∈ R
n, ξ2 ∈ R

d−n} ⊆ T ∗
R
d,

N(Y ⊥) = {(0, x2, ξ1, 0) : x2 ∈ R
d−n, ξ1 ∈ R

n} ⊆ T ∗
R
d.
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We split variables as x = (x1, x2) ∈ Rd, x1 ∈ Rn, x2 ∈ Rd−n. The
inequalities (4.3) reduce to

(4.4) |∂αx1∂
β
ξ2

(
e−i〈x2,ξ2〉Tgu(x, ξ)

)
| . 〈(x1, ξ2)〉m−|α+β|〈(x2, ξ1)〉−N

for α ∈ Nn, β ∈ Nd−n and N ∈ N.

Example 4.2. By Proposition 3.3 and (4.1) we have

ImΓ (R2d,∆) = {Ka ∈ S
′(R2d) : a ∈ Γm(R2d)}.

Example 4.3. Write x = (x1, x2), x1 ∈ R
n, x2 ∈ R

d−n, and consider
u = 1⊗ δ0 ∈ S ′(Rd) with 1 ∈ S ′(Rn) and δ0 ∈ S ′(Rd−n). The distri-
bution u is a prototypical example of a distribution Γ-conormal (and
also conormal in the standard sense of [6, Chapter 18.2]) to the subspace
Rn × {0}. It is a Gaussian distribution in the sense of Hörmander [8]
(cf. [13]). A computation yields

Tψ0
u(x, ξ) = (2π)−

d−n
2 π− d

4 ei〈x2,ξ2〉e−
1

2
(|x2|2+|ξ1|2)

so the inequalities (4.4) are satisfied for m = 0. In particular δ0(R
d) ∈

I0Γ(R
d, {0}).

Next we characterize the conormal distributions of which the latter
example is a particular case. Again we denote x = (x1, x2) ∈ Rd,
x1 ∈ Rn, x2 ∈ Rd−n.

Lemma 4.4. If u ∈ S ′(Rd) and 0 6 n 6 d then u ∈ ImΓ (Rd,Rn×{0})
if and only if

u(x) = (2π)−(d−n)/2

∫

Rd−n

ei〈x2,θ〉a(x1, θ) dθ

for some a ∈ Γm(Rd), that is u = F
−1
2 a.

Proof. Let g ∈ S (Rd) \ 0. By Lemma 1.7 we have

Tgu(x1, x2, ξ1, ξ2) = ei〈x2,ξ2〉TF2gF2u(x1, ξ2, ξ1,−x2).
Set a = F2u ∈ S ′(Rd). Proposition 2.2 implies that a ∈ Γm(Rd) if and
only if the estimate (4.4) hold for all for α ∈ Nn, β ∈ Nd−n and N ∈ N.
By Definition 4.1 this happens exactly when u ∈ ImΓ (Rd,Rn×{0}). �

The extreme cases n = 0 and n = d yield

Corollary 4.5. ImΓ (Rd, {0}) = FΓm(Rd) and ImΓ (Rd,Rd) = Γm(Rd).

The proof of Lemma 4.4 gives the following byproduct.

Corollary 4.6. The topology on ImΓ (Rd,Rn×{0}) does not depend on
g.

The next result treats how Γ-conormal distributions behave under
orthogonal coordinate transformations.
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Lemma 4.7. If Y ⊆ Rd is an n-dimensional linear subspace, 0 6 n 6
d, and B ∈ O(d) then B∗ : ImΓ (Rd, Y ) → ImΓ (Rd, BtY ) is a homeomor-
phism.

Proof. Let g ∈ S (Rd) \ 0. We have

Tg(B∗u)(x, ξ) = Thu(Bx,Bξ)
where h = (Bt)∗g ∈ S (Rd). From this and π(BtY )⊥ = BtπY ⊥B we
obtain

T BtY
g (B∗u)(x, ξ) = T Y

h u(Bx,Bξ)

so B∗u ∈ ImΓ (Rd, BtY ) follows from Definition 4.1, N(BtY ) = BtY ×
BtY ⊥ and

dist((Bx,Bξ), N(Y )) = dist((x, ξ), N(BtY )), (x, ξ) ∈ T ∗
R
d.

It also follows that the map u → B∗u is continuous from ImΓ (Rd, Y ) to
ImΓ (Rd, BtY ) when the topologies for ImΓ (Rd, Y ) and ImΓ (Rd, BtY ) are
defined by means of h ∈ S and g ∈ S , respectively. �

If we combine Lemma 4.7 with Corollary 4.6 then we obtain the
following generalization of the latter result.

Corollary 4.8. If Y ⊆ Rd is an n-dimensional linear subspace, 0 6
n 6 d, then the topology on ImΓ (Rd, Y ) does not depend on g.

We can also extract the following generalization of Lemma 4.4 from
Lemma 4.7.

Proposition 4.9. Let 0 6 n 6 d and let Y ⊆ Rd be an n-dimensional
linear subspace. Then u ∈ S ′(Rd) satisfies u ∈ ImΓ (Rd, Y ) if and only
if

(4.5) u(x) =

∫

Rd−n

ei〈M
t
2
x,θ〉a(M t

1x, θ) dθ

for some a ∈ Γm(Rd), where M2 ∈ Md×(d−n)(R) and M1 ∈ Md×n(R)
are matrices such that Y = KerM t

2 and U = [M1 M2] ∈ GL(d,R).

Proof. If u ∈ ImΓ (Rd, Y ) then we can pick U = [M1 M2] ∈ O(d)
where M1 ∈ Md×n(R) and M2 ∈ Md×(d−n)(R) such that Y = KerM t

2,
which implies that U tY = Rn × {0}. By Lemma 4.7 we have U∗u ∈
ImΓ (Rd,Rn × {0}), and (4.5) with a ∈ Γm(Rd) is then a consequence of
Lemma 4.4.

Suppose on the other hand that (4.5) holds for a ∈ Γm(Rd) and
U = [M1 M2] ∈ GL(d,R). Set Y = KerM t

2. We may assume that
U = [M1 M2] ∈ O(d), after modifying a ∈ Γm(Rd) by means of a
linear invertible coordinate transformation, which is permitted since
Γm is invariant under such transformations. By Lemma 4.4 we have
U∗u ∈ ImΓ (Rd,Rn×{0}), and Lemma 4.7 then gives u ∈ ImΓ (Rd, Y ). �
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Since ⋂

m∈R

Γm(Rd) = S (Rd)

we have the following consequence.

Corollary 4.10. If 0 6 n 6 d and Y ⊆ Rd is an n-dimensional linear
subspace then

S (Rd) ⊆ ImΓ (Rd, Y ).

We also obtain a generalization of Lemma 4.7.

Corollary 4.11. If Y ⊆ Rd is an n-dimensional linear subspace, 0 6
n 6 d, and B ∈ GL(d,R) then B∗ : ImΓ (Rd, Y ) → ImΓ (Rd, B−1Y ) is a
homeomorphism.

Proof. By Proposition 4.9 we have u ∈ ImΓ (Rd, Y ) if and only if B∗u ∈
ImΓ (Rd, B−1Y ). It remains to show that B∗ is continuous. By Lemma
4.7 we may replace Y with any n-dimensional linear subspace. Using
the singular value decomposition B = UΣV t, where U, V ∈ O(d) and
Σ is diagonal with positive entries, the proof of the continuity of B∗

reduces, again using Lemma 4.7, to a proof of the continuity of

Σ∗ : ImΓ (Rd,Rn × {0}) → ImΓ (Rd,Rn × {0}).
The latter continuity follows straightforwardly using the estimates (4.4).

�

By Lemma 1.7

Tĝû(x, ξ) = ei〈x,ξ〉Tgu(−ξ, x)
which gives

T Y ⊥

ĝ û(x, ξ) = ei(〈x,ξ〉−〈πY x,ξ〉)Tgu(−ξ, x) = T Y
g u(−ξ, x).

Thus it follows from Definition 4.1 that F : ImΓ (Rd, Y ) → ImΓ (Rd, Y ⊥)
continuously.

Proposition 4.12. If Y ⊆ Rd is an n-dimensional linear subspace,
0 6 n 6 d, then the Fourier transform is a homeomorphism from
ImΓ (Rd, Y ) to ImΓ (Rd, Y ⊥).

Example 4.13. If u ∈ ImΓ (Rd,Rn × {0}) then by Lemma 4.4 there
exists a ∈ Γm(Rd) such that

u(x) = (2π)−(d−n)/2

∫

Rd−n

ei〈x2,θ〉a(x1, θ) dθ.

If B ∈ GL(d,R) and

B =

(
B1 0
0 B2

)

then the action of B can understood as an action on the symbol of u,

B∗u(x) = (2π)−(d−n)/2

∫

Rd−n

ei〈x2,θ〉a(B1x1, B
−t
2 θ)|B2|−1 dθ.
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Remark 4.14. The estimates (4.3) in Definition 4.1 can be translated
to a geometric form, as in Remark 3.4 for Schwartz kernels of Shubin
operators. The result is∣∣(ΠN(Y )(x, ξ))

α(ΠN(Y )∂x,ξ)
βT Y

g u(x, ξ)
∣∣

. (1 + dist((x, ξ), V ))m (1 + dist((x, ξ), N(Y )))−N ,

for α, β ∈ N
2d such that |α| = |β|, and N ∈ N arbitrary.

Remark 4.15. Let X be a smooth manifold of dimension d and let
Y ⊆ X be a closed submanifold. Hörmander’s conormal distributions
Im(X, Y ) with respect to Y of order m ∈ R is by [6, Definition 18.2.6]
all u ∈ D′(X) such that

L1 . . . Lku ∈ B
−m−d/4
2,∞, loc (X), k ∈ N,

where Lj are first order differential operators with coefficients tangen-

tial to Y , and where B
−m−d/4
2,∞, loc (X) is a Besov space.

Comparing this definition with the estimates defining ImΓ (Rd, Y ) in
Remark 4.14 we see that the fact that we are working with isotropic
symbol classes made it necessary to replace the local, Fourier-based
Besov spaces with a global, isotropic version based on the transform
Tψ0

, resembling a modulation space.
We note that he submanifold Y is allowed to be nonlinear in Im(X, Y ),

as opposed to the linear submanifold Y ⊆ Rd we use in Γ-conormal dis-
tributions ImΓ (Rd, Y ).

4.1. Microlocal properties of Γ-conormal distributions. The wave
front set of a conormal distribution in Im(X, Y ) is contained in the
conormal bundle of the submanifold Y [6, Lemma 25.1.2].

The wave front set adapted to the Shubin calculus is the Gabor
wave front set studied e.g. in [7, 11, 14–16], see also [2]. It can be
introduced using either pseudodifferential operators or the short-time
Fourier transform. In the latter definition one may replace Vgu by Tgu
since they are identical up to a factor of modulus one.

Definition 4.16. If u ∈ S ′(Rd) and g ∈ S (Rd) \ 0 then (x0, ξ0) ∈
T ∗Rd \ 0 satisfies (x0, ξ0) /∈ WFG(u) if there exists an open cone V ⊆
T ∗Rd \ 0 containing (x0, ξ0), such that for any N ∈ N there exists
CV,g,N > 0 such that |Tgu(x, ξ)| 6 CV,g,N〈(x, ξ)〉−N when (x, ξ) ∈ V .

The definition does not depend on g ∈ S (Rd) \ 0. The Gabor wave
front set transforms well under the metaplectic operators discussed in
Section 1, cf. [7], that is

WFG(µ(χ)u) = χ (WFG(u)) , u ∈ S
′(Rd), χ ∈ Sp(d,R).

Proposition 4.17. Let Y ⊆ R
d be an n-dimensional linear subspace,

0 6 n 6 d. If u ∈ ImΓ (Rd, Y ) then

WFG(u) ⊆ N(Y ).
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Proof. Suppose (x, ξ) /∈ N(Y ). This means (πY ⊥x, πY ξ) 6= 0, so (x, ξ) ∈
V where the open conic set V ⊆ T ∗Rd is defined by

V = {(x, ξ) ∈ T ∗
R
d : |(πY x, πY ⊥ξ)| < C|(πY ⊥x, πY ξ)|}

for some C > 0. Using

|(x, ξ)|2 = |(πY x, πY ⊥ξ)|2 + |(πY ⊥x, πY ξ)|2,
dist(x, Y ) = |πY ⊥x|, dist(x, Y ⊥) = |πY x| and

dist2((x, ξ), N(Y )) = dist2(x, Y ) + dist2(ξ, Y ⊥),

the result follows from Definition 4.1 (with trivial operators Lj). �

Corollary 4.18. If a ∈ Γm(R2d) and aw(x,D) has Schwartz kernel Ka

then

WFG(Ka) ⊆ N(∆) ⊆ T ∗
R

2d.

It is well known that Shubin pseudodifferential operators are mi-
crolocal with respect to WFG, that is if a ∈ Γm(R2d) and u ∈ S ′(Rd)
then

WFG(a
w(x,D)u) ⊆ WFG(u),

see e.g. [7, 16]. We show that they also preserve Γ-conormality.

Proposition 4.19. Let Y ⊆ R
d be an n-dimensional linear subspace,

0 6 n 6 d. If a ∈ Γm
′
(R2d) then aw(x,D) is continuous from ImΓ (Rd, Y )

to Im+m′

Γ (Rd, Y ).

Proof. If a ∈ Γm
′
(R2d) and U ∈ O(d) then we have by symplectic

invariance of the Weyl calculus (1.13)

(U t)∗aw(x,D)U∗ = bw(x,D)

where b(x, ξ) = a(U tx, U tξ) ∈ Γm
′
(R2d). By Lemma 4.7 we may there-

fore assume that Y = Rn × {0}. The symplectic invariance also guar-
antees that

F
−1
2 bw(x,D)F2 = cw(x,D)

with c(x, ξ) = b(x1, ξ2, ξ1,−x2) ∈ Γm
′
(R2d) where x = (x1, x2) ∈ Rd,

x1 ∈ Rn, x2 ∈ Rd−n. To prove aw(x,D)u ∈ Im+m′

Γ (Rd,Rn × {0}) for
a ∈ Γm

′
(R2d) and u ∈ ImΓ (Rd,Rn × {0}) is therefore by Lemma 4.4

equivalent to proving that aw(x,D)u ∈ Γm+m′
(Rd) for a ∈ Γm

′
(R2d)

and u ∈ Γm(Rd).
Let a ∈ Γm

′
(R2d), u ∈ Γm(Rd) and set A = aw(x,D). By Proposition

2.2 it suffices to verify

|∂αxTψ0
Au(x, ξ)| . 〈x〉m+m′−|α|〈ξ〉−N , (x, ξ) ∈ T ∗

R
d,

for any N > 0 and α ∈ Nd.
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Let N > 0 and α ∈ Nd. Writing Tψ0
Au = (Tψ0

AT ∗
ψ0
)Tψ0

u and using
(3.4) we are thus tasked with estimating ∂αx acting on
(4.6)

Tψ0
Au(x, ξ) =

∫

R2d

Tψ0
Ka(x, y, ξ,−η)Tψ0

u(y, η) dy dη

=

∫

R2d

e
i
2
〈x−y,ξ+η〉 T ∆

ψ0
Ka(x, y, ξ,−η) Tψ0

u(y, η) dy dη.

The integral (4.6) converges due to the estimates

|∂αy Tψ0
u(y, η)| . 〈y〉m−|α|〈η〉−N , y, η ∈ R

d, α ∈ N
d, N > 0,

which follows from Proposition 2.2, and the estimates

|(∂x + ∂y)
αT ∆

ψ0
Ka(x, y, ξ,−η)| . 〈(x+ y, ξ + η)〉m′−|α|〈(x− y, ξ − η)〉−N ,

x, y, ξ, η ∈ R
d, α ∈ N

d, N > 0,

that are guaranteed by Proposition 3.3.
Writing ∂xj = ∂xj + ∂yj − ∂yj for 1 6 j 6 d and differentiating

under the integral in (4.6) we obtain by integration by parts for any
N1, N2 > 0

|∂αxTψ0
Au(x, ξ)|

=
∑

β6α

Cβ

∣∣∣∣
∫

R2d

(∂x + ∂y)
β
(
e
i
2
〈x−y,ξ+η〉 T ∆

ψ0
Ka(x, y, ξ,−η)

)
∂α−βy Tψ0

u(y, η) dy dη

∣∣∣∣

=
∑

β6α

Cβ

∣∣∣∣
∫

R2d

e
i
2
〈x−y,ξ+η〉 (∂x + ∂y)

β T ∆
ψ0
Ka(x, y, ξ,−η) ∂α−βy Tψ0

u(y, η) dy dη

∣∣∣∣

.
∑

β6α

∫

R2d

∣∣(∂x + ∂y)
βT ∆

ψ0
Ka(x, y, ξ,−η) ∂α−βy Tψ0

u(y, η)
∣∣ dy dη,

.
∑

β6α

∫

R2d

〈(x+ y, ξ + η)〉m′−|β|〈(x− y, ξ − η)〉−N1 〈y〉m−|α−β|〈η〉−N2 dy dη.

Finally we estimate
∫

R2d

〈(x+ y, ξ + η)〉m′−|β|〈(x− y, ξ − η)〉−N1〈y〉m−|α−β|〈η〉−N2dy dη

=

∫

R2d

〈(2x+ y, 2ξ + η)〉m′−|β|〈(y, η)〉−N1〈y + x〉m−|α−β|〈η + ξ〉−N2dy dη

.

∫

R2d

〈x〉m′−|β|〈y〉|m′|+|β|〈ξ〉|m′|+|β|〈η〉|m′|+|β|〈(y, η)〉−N1〈x〉m−|α−β|

× 〈y〉|m|+|α|〈ξ〉−N2〈η〉N2dy dη

. 〈x〉m′+m−|α|〈ξ〉|m′|+|α|−N2

∫

R2d

〈y〉|m′|+|m|+2|α|〈η〉|m′|+|α|+N2〈(y, η)〉−N1dy dη

. 〈x〉m′+m−|α|〈ξ〉−N ,
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provided N1 > N2 + 2|m′| + |m| + 3|α|+ 2d and N2 > N + |m′| + |α|
This proves

|∂αxTψ0
Au(x, ξ)| . 〈x〉m′+m−|α|〈ξ〉−N , (x, ξ) ∈ T ∗

R
d

and as a by-product of these estimates we obtain the claimed continuity.
�

Remark 4.20. The proof shows that the result can be generalized. If
a ∈ Γm

′

ρ (R2d) and u ∈ ImΓ,ρ(R
d, Y ) then aw(x,D)u ∈ Im+m′

Γ,ρ (Rd, Y ), for

0 6 ρ 6 1. Here ImΓ,ρ(R
d, Y ) is defined as in Definition 4.1 with the

modified estimate

(1 + dist((x, ξ), V ))m−ρk (1 + dist((x, ξ), N(Y )))−N

in (4.3).

Since Proposition 4.19 shows how Γ-conormality is preserved under
the action of a pseudodifferential operator, we obtain the following
result on conormal elliptic regularity:

Corollary 4.21 (Conormal elliptic regularity). Suppose u ∈ S ′(Rd)
solves the pseudodifferential equation aw(x,D)u = f with f ∈ ImΓ (Rd, Y )
where a ∈ Γm

′
(R2d) is globally elliptic, that is satisfying

(4.7) |a(x, ξ)| > C〈(x, ξ)〉m′

, |(x, ξ)| ≥ R

for C,R > 0. Then u ∈ Im−m′

Γ (Rd, Y ).

Proof. Under condition (4.7), aw(x,D) admits a parametrix pw(x,D)
with p ∈ Γ−m′

and pw(x,D)aw(x,D) = I + R, where R is continuous

S ′ → S [17]. Then u = pw(x,D)f −Ru and hence u ∈ Im−m′

Γ (Rd, Y ).
�
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