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3D hygro-elastic shell model for the analysis of composite

and sandwich structures

S. Brischetto∗ and R. Torre

Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy

Abstract The present work proposes the study of the hygrometric loading effects in the static analysis of
multilayered composite and sandwich plates and shells. The employed model is based on a general exact
3D shell theory valid for one-layered and multilayered sandwich and composite plates, cylinders and
cylindrical/spherical shell panels. The employed 3D equilibrium equations are developed in an orthogonal
mixed curvilinear coordinate system for spherical shells in order to obtain the other simpler geometries as
particular cases. A layer-wise approach is employed and equilibrium equations are solved in the thickness
direction via the exponential matrix method. The partial derivatives in the in-plane directions are exactly
calculated by assuming simply-supported edges and harmonic forms for the variables. The presented 3D
shell model is extended to hygro-elastic cases by considering moisture content amplitudes imposed at the
external surfaces of the structures in steady-state conditions. The moisture content profile through the
thickness of the structures can be included in the 3D shell model using three different methodologies:
it can be calculated by solving the steady-state 3D or 1D version of the Fick diffusion law, or it can
be ”a priori” assumed as linear through the thickness. Therefore, the developed system includes three
non-homogeneous second order differential equilibrium equations that are solved after the introduction
of opportune mathematical layers to consider the curvature effects through the thickness. The reduction
to a first order differential equation system is obtained by redoubling the number of variables. The
exponential matrix method is employed to accurately define both general and particular solutions. The
implemented 3D hygro-elastic shell model is firstly validated and then it is employed with confidence for
new benchmarks where the effects of thickness ratio, geometry, lamination scheme, material, thickness
layer and imposed moisture content values at the external surfaces are investigated for composite and
sandwich plates and shells. Showed results demonstrate the importance of an accurate developing of
the elastic part of the 3D shell model combined with an appropriate evaluation of the moisture content
profile through the thickness. Assumed linear moisture content profiles are correct only for thin one-
layered isotropic structures, the use of the 1D Fick diffusion law allows only the correct definition of
the material layer effect, the use of its 3D version allows the correct definition of both material and
thickness layer effects.
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Fick diffusion law; sandwich and composite plates and shells; hygro-elastic stresses.
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1 Introduction

Modern composite aircraft are often subjected to adverse environmental conditions with high tempera-
tures and significant humidity levels. Aviation materials, and in particular composites, tend to absorb
moisture and therefore they degrade the structural performance [1]. Composite materials degrade their
mechanical properties when aircraft fly in typical operating environments because the moisture is ab-
sorbed from humid air. This effect is more remarked for the matrix material than the fibres [2]. The
hygrothermal effects can be analyzed as degradation of mechanical properties of the embedded materi-
als and/or as hygroscopic and thermal load applications on structures to evaluate their typical bending
behavior [3], [4].

The proposed 3D shell model considers the hygro-elastic bending behavior of multilayered composite
structures and it discards the property degradations. Strains linked with the moisture expansion of
a multilayered structure have a magnitude similar to strains linked with the thermal expansion. The
Fickian diffusion problem in composite structures allows the calculation of temperature and moisture
content in composite structures when the following conditions are followed [5]: the heat transfer through
the material is a conduction problem governed by the Fourier heat conduction law; the moisture diffusion
through the material is governed by the Fick diffusion law; the temperature in the material arrives to
the equilibrium much faster than the moisture concentration, this feature allows to decouple energy
(Fourier) and mass transfer (Fick) equations; the thermal conductivity and mass diffusivity depend
only on the temperature and not on the moisture concentration for typical stress levels in the material.
Fickian diffusion is valid for low temperatures when materials are exposed to humid air. Deviations
from Fickian diffusion are possible at high temperatures and/or for materials included in liquids. This
described Fickian diffusion is a good approximation for many materials, also including graphite-epoxy
composites [5], [6]. The proposed 3D shell model is an analytical solution where the 3D equilibrium
equations are written in orthogonal mixed curvilinear coordinates valid for spherical shells, cylindrical
shells and plates. The derivatives with respect to the in-plane coordinates α and β are exactly solved by
means of the harmonic forms while the system of differential equations in z is solved via the exponential
matrix method. The first author applied this methodology the first time in 2013 and 2014 for the free
vibration analysis of functionally graded [7], composite and sandwich [8] plates and shells. Then, the
model was extended to the static analysis of multilayered composite structures in [9]. The exponential
matrix method was successfully applied in the past to the free vibration analysis of multilayered plates
in [10] and to the free vibration analysis of cylinders in [11]. A similar methodology was also used by
Fan and Zhang [12] where the 3D equilibrium equations were written in orthogonal mixed curvilinear
coordinates for spherical shells by assuming as primary variables the three displacement components
and the three transverse stress components; in the present model, the main six primary variables are the
three displacement components and their three derivatives in z. Fan and Zhang [12] used the Cayley-
Hamilton theorem, while the present procedure employs the exponential matrix method combined
with a large number of mathematical layers in order to correctly analyze also very thick shells giving a
correct 3D description of displacements and stresses through the thickness. The static version of the 3D
shell model developed in [9] for the bending analysis of structures was extended to the thermo-elastic
analysis of spherical and cylindrical multilayered composite and sandwich shells and plates in [13]
and for functionally graded material configurations in [14]. In 2018, the first author, in collaboration
with Tornabene, developed the solution of the 3D equilibrium equations written in orthogonal mixed
curvilinear coordinates using the Generalized Differential Quadrature Method (GDQM) to numerically
solve the partial derivatives in z in order to perform the static analysis of multilayered composite
and sandwich plates and completely double-curved shells when subjected to several combinations of
transverse shear and transverse normal loads applied at the external surfaces [15], [16]. Recently, in
2020, this methodology was taken up by Monge and his co-authors [17]- [19] to perform numerical 3D
elastic and thermo-elastic analyses of plates and spherical shells. The exact 3D shell model developed in
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[7]- [9] by means of the exponential matrix method is here extended for the first time to the hygroelastic
analysis of plates and shells using the analogy with the 3D methodologies already described in [13]
and [14] for the thermo-elastic analysis of multilayered composite and functionally graded material
structures. This analogy was already suggested by the first author in his past works about the developing
of refined 2D thermo-hygro-elastic shell models [20], [21].

Several 2D analytical and numerical models are present in the literature for the hygroscopic stress
analysis of multi-layered plates and shells. To the best of authors’ knowledges, no exact 3D general shell
models for plates and shells with constant radii of curvature have been yet developed for the hygroscopic
stress analysis of multi-layered structures with the possibility of including several mathematical models
for the evaluation of moisture content profiles through the thickness direction.

An analytical 2D solution for multi-layered plates was developed by Chiba and Sugano [22] for
the hygrothermal stress analysis when structures were subjected to hygrothermal loads at the external
surfaces; both steady-state and transient-state conditions were investigated and opportunely compared.
In [23] and [24], analytical Classical Lamination Plate Theory (CLPT) was compared with analytical
3D plate models in the case of hygrothermoelastic analysis of multi-layered structures. The Fick
diffusion equation was solved for transient and cyclical environmental conditions in order to find the
moisture content profile. Mechanical and hygrothermal loadings were applied to plates with a central
hole in [25], stresses were analysed via analytical and Finite Elements (FE) models. An analytical
study for the hygrothermal stress analysis in laminated composite plates was proposed in [26] where
Classical Lamination Theory (CLT) and Tsai-Wu failure criterion were applied. A composite cylindrical
panel was analytically investigated in [27] via a 3D analysis when hygrothermal and mechanical loads
were applied. Hygrothermal buckling and post-buckling analytical studies of multi-layered composite
cylindrical shells were performed by Shen [28] using the Reddy higher order theory. In the analytical
model by Sih [29] for stress analysis of composites, the moisture diffusion coefficient was a function
of the temperature while the thermal diffusion coefficient was constant. Wüthrich [30] proposed the
hygrothermal stress analysis for long multi-layered composite tubes when internal and external pressures
were applied. Zenkour [31] extended these types of problems to functionally graded material (FGM)
plates where elastic coefficients, thermal coefficients and moisture expansion coefficients continuously
change through the thickness direction: an analytical Higher order Shear Deformation Theory was
developed. Lee et al. [32] demonstrated how the classical laminated plate theory could be not adequate
for the hygrothermal analysis of multilayered composite plates even if small deflections were considered.
Upadhyay et al. [33] developed an Higher order Shear Deformation Theory (HSDT) combined with Von
Karman non linear model for the non-linear flexural response of thick composite plates when hygro-
thermo-mechanical loads were applied, HSDT showed some problems in such analyses. Limitations of
classical lamination plate theory were deeply discussed in [34] for the application of mechanical, thermal
and hygroscopic loads to composite structures. Boukert et al. [35] proposed an analytical method to
investigate the behaviour of thick composite laminates using a high order plate theory via hygrothermal
stress calculation; the moisture distribution was calculated along the thickness of the laminate using
the Fick equation.

The above analytical methods can be applied only for particular geometries, load and boundary
conditions and lamination schemes. For engineering applications, the use of numerical models (e.g., the
Finite Element method (FEM)) is mandatory in order to overcome the main limitations of the analytical
methods. A Finite Element plate model was developed in [36] to investigate the moisture content
effects and the delamination problems in viscoelastic sandwich composite structures when subjected
to mechanical loads. The finite element model by Khoshbakht et al. [37] analysed the hygrometric
stresses in multilayered structures; the stresses at the interfaces increased when the moisture content
diffusion increased in time, these stresses reached the steady state hygroscopic stress level. Kundu
and Han [38] developed a Finite Element model to investigate the hygro-thermo-elastic vibration and
buckling behaviour of multilayered composite doubly curved shell panels. The same authors investigated
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hygrothermal stress effects on the buckling and dynamic instability of composite shell structures in [39]
where a geometrically nonlinear finite element method was developed using the orthogonal curvilinear
coordinate for general doubly curved deep or shallow shell structures. Marques and Creus [40] developed
a FE shell model that used the Fick diffusion law for the hygrothermoelastic analysis of isotropic and
multi-layered composite structures. The FE higher order shear deformation model by Naidu and
Sinha [41] allowed the investigation of bending large deflections of composite cylindrical shell panels in
hygrothermal environment. Parhi et al. [42] developed a quadratic isoparametric FE model employing
the first order shear deformation theory for the free vibration and transient response analysis of multi-
layered composite plates and shells subjected to hygrothermal effects. Hygrothermal static and dynamic
analyses of laminated structures were proposed in [43] by using an higher-order Finite Element model.
Sai Ram and Sinha [44], [45] evaluated the moisture content and temperature effects in the bending
analysis of multi-layered composite plates in both cases of inclusion and discarding of a cutout; a
Finite Element Mindlin plate model was used for these stress investigations. Sereir et al. [46]- [48]
proposed the transient hygroscopic stress analysis in multi-layered composite plates when the elastic
properties change with the temperature and moisture content variations. The solution in time of the
diffusion Fick equations was possible via a Finite Element model that also included the edge effects. The
Finite Element model in [49] allowed the study of initiation and progress of damage in multi-layered
composite shells subjected to high moisture concentration and temperature fields when low velocity
impacts were applied. A coupled piezoelectric finite element formulation including hygrothermal strains
was developed in [50] to evaluate the active stiffness effects on the dynamic behaviour of piezo-hygro-
thermo-elastic laminates. The work [51] proposed an approximate model to evaluate hygrothermoelastic
stresses in composite laminated plates when the moisture desorption modified mechanical characteristics
induced by the variation of temperature and moisture.

Further papers only considered the degradation of material properties in severe hygroscopic condi-
tions. Chateauminois et al. [52] proposed three-point bending tests to study the fatigue phenomenology
in composites linked with the effects of water ageing. Kellas et al. [53] proposed experimental results
to show hygrothermal effects in uniaxial strengths of centre-notched laminates. These effects depended
on the notch geometry and stacking sequence. Analytical stress and strain models were compared with
experimental results in [54] to show how the elastic properties of glass/epoxy woven-fabric composites
changed with the hygrothermal load variations. Springer [55] evaluated the moisture content distri-
bution in composite materials exposed to air with variable temperature and relative humidity. The
hygroscopic analysis of woven fabric carbon-epoxy composites was proposed in [56] where effects on the
viscoelastic properties and glass transition temperature were also analyzed.

The present paper is organized in the following way. Section 2 proposes the solution of the 3D
exact hygro-elastic shell model using the exponential matrix method. Section 3 discusses the moisture
diffusion problem and its solution in analogy with the heat conduction problem. The analogy between
heat conduction and moisture diffusion problems was also demonstrated in [57] where very useful
hygrothermal bending problems of multi-layered composite structures were proposed. Such an analogy
was also discussed in Tay and Goh [58], [59] where a complete numerical study was proposed. The Fick
second law of diffusion was experimentally analyzed in Di Domizio et al. [60] by employing two vessels
containing water and salt in order to establish a steady-state concentration gradient. In section 3, for
both plate and shell geometries, the 3D version of Fick diffusion law is solved with the same methodology
proposed in Tungikar and Rao [61] in the case of the solution of the Fourier heat conduction equations.
In this section, the 1D version of the Fick diffusion law and the a priori linear assumption for the
moisture content profile are also discussed in depth. Section 4 is about results, the first part proposes
a validation of the model using the well-known 3D elastic solutions by Pagano [62] and Ren [63] and
opportune 3D hygro-elastic FE models developed in the framework of the Patran & Nastran software.
The second part shows new benchmarks to discuss the effects of geometry, material, lamination scheme,
thickness ratio and moisture content profiles. Finally, section 5 is devoted to the main conclusions and
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further developments.

2 3D exact hygro-elastic shell model

In order to develop the 3D exact hygro-elastic shell model, the main ingredients are the appropriate
constitutive and geometrical equations, that must be opportunely substituted in the 3D equilibrium
equations for shells written using the orthogonal mixed curvilinear coordinates (α, β, z) indicated in
Figure 1. The final system contains three differential equations of second order in z with non-constant
coefficients. The introduction of opportune mathematical layers and the redoubling of the number of
variables give a system of three differential equations of first order in z with constant coefficients. The
partial derivatives in in-plane directions α and β were exactly solved using simply-supported boundary
conditions and harmonic forms for variables. The final system contains three differential equations with
constant coefficients and first order partial derivatives in z. This system is non-homogeneous because
of the known terms given by the presence of the moisture content profile. Both general and particular
solutions are obtained by employing the exponential matrix method.

The multilayered shell is subjected to a moisture content M(α, β, z). For each k physical layer, the
geometrical relations written in an orthogonal mixed curvilinear reference system (α,β,z) are:

ϵkαα = ϵkααm − ϵkααM =
1

Hα

∂uk

∂α
+

wk

HαRα
− ηkαMk , (1)

ϵkββ = ϵkββm − ϵkββM =
1

Hβ

∂vk

∂β
+

wk

HβRβ
− ηkβMk , (2)

ϵkzz = ϵkzzm − ϵkzzM =
∂wk

∂z
− ηkzMk , (3)

γkβz = γkβzm =
1

Hβ

∂wk

∂β
+

∂vk

∂z
− vk

HβRβ
, (4)

γkαz = γkαzm =
1

Hα

∂wk

∂α
+

∂uk

∂z
− uk

HαRα
, (5)

γkαβ = γkαβm =
1

Hα

∂vk

∂α
+

1

Hβ

∂uk

∂β
, (6)

(ϵkαα, ϵ
k
ββ , ϵ

k
zz, γ

k
βz, γ

k
αz, γ

k
αβ) are the six strain components in each k physical layer. Each component

is the algebraic summation of mechanical elastic strain components (subscript m) and hygroscopic
strain components (subscript M). The hygro-elastic strains are linked with the three displacement
components uk, vk and wk defined in α, β, z directions, respectively, and with the scalar moisture
content Mk. Moisture expansion coefficients ηkα, η

k
β and ηkz are given in the structural reference system

(α, β, z) after the appropriate rotations of the moisture expansion coefficients ηk1 , η
k
2 and ηk3 defined in

the material reference system (1, 2, 3). The symbol ∂ indicates the partial derivatives.
The parametric coefficients Hα and Hβ are functions of z (referred in the Ω0 middle surface of the

whole multilayer and variable from -h/2 to +h/2 where h is the global thickness) or z̃ (variable from 0
to h and referred to the bottom surface). Coefficients Hα and Hβ are linear functions of the thickness
coordinate z for shells with constant radii of curvature Rα and Rβ in α and β directions, respectively.
Hz = 1 because the z or z̃ coordinate is rectilinear:

Hα =

(
1 +

z

Rα

)
=

(
1 +

z̃ − h/2

Rα

)
, (7)

Hβ =

(
1 +

z

Rβ

)
=

(
1 +

z̃ − h/2

Rβ

)
. (8)
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The scalar moisture content M can be defined in non-dimensional form or in percentage % (by
multiplying it for 100):

M(%) =
W −Wd

Wd
× (100) =

Wd +Wc −Wd

Wd
× (100) =

Wc

Wd
× (100) , (9)

the global mass of the moist material is defined as W = Wd+Wc where Wc is the mass of the included
moisture and Wd is the mass of the dry material. The mass of the moisture included in the material
can be defined by means of the integration in the volume V of the moisture concentration c [kg/m3]:

Wc =

∫
V
c dV , (10)

the mass of the dry material is obtained by means of the integration in the volume V of the mass
density of the dry material ρd [kg/m

3]:

Wd =

∫
V
ρd dV . (11)

Opportunely combining Eqs.(9)-(11), the moisture content can be also written as:

M(%) =
c V

ρd V
× (100) =

c

ρd
× (100) , (12)

the moisture concentration c is defined as [kg/m3], the moisture content M has a no-dimensional form
because it is obtained from c divided for the mass density of the dry material ρd. When the moisture
content M is given in non-dimensional form [−], the related moisture expansion coefficients ηi must be
given in non-dimensional form [−] too. If the moisture content M is expressed in percentage %, the
related moisture expansion coefficients ηi are proposed as [ 1% ].

The compact matrix form of the constitutive equations is:

σk = Ckϵk = Ck(ϵkm − ϵkM) , (13)

where σk is the 6× 1 stress vector, Ck is the 6× 6 elastic coefficient matrix and the strains have been
already defined in details in Eqs.(1)-(6). In order to obtain closed form solutions, orthotropic angles
must be 0◦ or 90◦ to consider Ck

16 = Ck
26 = Ck

36 = Ck
45 = 0. Therefore, the elastic coefficient matrix in

the structural reference system (α, β, z) is:

Ck =



Ck
11 Ck

12 Ck
13 0 0 0

Ck
12 Ck

22 Ck
23 0 0 0

Ck
13 Ck

23 Ck
33 0 0 0

0 0 0 Ck
44 0 0

0 0 0 0 Ck
55 0

0 0 0 0 0 Ck
66

 . (14)

The substitution of geometrical equations (1)-(6) in the constitutive equation (13) gives the following

6



relations:

σk
αα =

Ck
11

Hα
uk,α +

Ck
11

HαRα
wk +

Ck
12

Hβ
vk,β +

Ck
12

HβRβ
wk + Ck

13w
k
,z − ξkαMk , (15)

σk
ββ =

Ck
12

Hα
uk,α +

Ck
12

HαRα
wk +

Ck
22

Hβ
vk,β +

Ck
22

HβRβ
wk + Ck

23w
k
,z − ξkβMk , (16)

σk
zz =

Ck
13

Hα
uk,α +

Ck
13

HαRα
wk +

Ck
23

Hβ
vk,β +

Ck
23

HβRβ
wk + Ck

33w
k
,z − ξkzMk , (17)

σk
βz =

Ck
44

Hβ
wk
,β + Ck

44v
k
,z −

Ck
44

HβRβ
vk , (18)

σk
αz =

Ck
55

Hα
wk
,α + Ck

55u
k
,z −

Ck
55

HαRα
uk , (19)

σk
αβ =

Ck
66

Hα
vk,α +

Ck
66

Hβ
uk,β , (20)

subscripts (, α), (, β) and (, z) means partial derivatives ( ∂
∂α), (

∂
∂β ) and ( ∂

∂z ), respectively. The hygro-

mechanical coupling coefficients ξkα, ξ
k
β and ξkz in Eqs.(15)-(20) defined in the structural reference system

(α, β, z) have the following form:

ξkα = Ck
11η

k
α + Ck

12η
k
β + Ck

13η
k
z , (21)

ξkβ = Ck
12η

k
α + Cn

22η
k
β + Ck

23η
k
z , (22)

ξkz = Ck
13η

k
α + Cn

23η
k
β + Ck

33η
k
z . (23)

For a spherical shell (constant radii of curvature Rα = Rβ) with a total number NL of physical k
layers, the 3D equations of equilibrium are:

Hβ
∂σk

αα

∂α
+Hα

∂σk
αβ

∂β
+HαHβ

∂σk
αz

∂z
+ (

2Hβ

Rα
+

Hα

Rβ
)σk

αz = 0, (24)

Hβ

∂σk
αβ

∂α
+Hα

∂σk
ββ

∂β
+HαHβ

∂σk
βz

∂z
+ (

2Hα

Rβ
+

Hβ

Rα
)σk

βz = 0, (25)

Hβ
∂σk

αz

∂α
+Hα

∂σk
βz

∂β
+HαHβ

∂σk
zz

∂z
−

Hβ

Rα
σk
αα − Hα

Rβ
σk
ββ + (

Hβ

Rα
+

Hα

Rβ
)σk

zz = 0 . (26)

Eqs.(24)-(26) degenerate in those for cylinders and cylindrical panels when one of the two radii of
curvature is infinite and in those for plates when both the radii of curvature are infinite.

The main hypothesis to obtain a closed-form solution for Eqs.(24)-(26) is simply supported sides for
structures and consequent harmonic forms for displacement components and scalar moisture content:

uk(α, β, z) = Uk(z)cos(ᾱα)sin(β̄β) , (27)

vk(α, β, z) = V k(z)sin(ᾱα)cos(β̄β) , (28)

wk(α, β, z) = W k(z)sin(ᾱα)sin(β̄β) , (29)

Mk(α, β, z) = Mk(z)sin(ᾱα)sin(β̄β) , (30)

the two terms ᾱ and β̄ are calculated as ᾱ = mπ
a and β̄ = nπ

b where a and b are the in-plane structure
dimensions referred to the mid-plane Ω0. m and n are the half-wave numbers in in-plane directions.
Uk(z), V k(z) andW k(z) are the displacement amplitude components andMk(z) is the moisture content
amplitude.

7



Harmonic forms for displacements and moisture content (see Eqs.(27)-(30)) and constitutive equa-
tions opportunely rearranged (see Eqs.(15)-(20)) are substituted in 3D equilibrium equations for spher-
ical shells (see Eqs.(24)-(26)):

Aj
1U

j +Aj
2V

j +Aj
3W

j +Aj
4U

j
,z +Aj

5W
j
,z +Aj

6U
j
,zz + Lj

1M
j = 0 , (31)

Aj
7U

j +Aj
8V

j +Aj
9W

j +Aj
10V

j
,z +Aj

11W
j
,z +Aj

12V
j
,zz + Lj

2M
j = 0 , (32)

Aj
13U

j +Aj
14V

j +Aj
15W

j +Aj
16U

j
,z +Aj

17V
j
,z +Aj

18W
j
,z +Aj

19W
j
,zz + Lj

3M
j
,z + Lj

4M
j = 0 . (33)

The Eqs.(31)-(33) are a system of three differential equations of second order in z. The involved
terms are the displacement and moisture content amplitudes and the related derivatives performed
with respect to z. The derivatives performed with respect to α and β coordinates have been exactly
calculated thanks the use of harmonic forms. The proposed equations had not constant coefficients
because the parametric coefficients Hα and Hβ depend on z. Each k physical layer was divided in an
appropriate number of mathematical layers defined by a new index j. This index j goes from 1 to the
global number of mathematical layers G. In each j mathematical layer, the coefficients Hα and Hβ

can be exactly calculated via the use of the z coordinate in the middle of each j layer. In this way,
coefficients Aj

s (with s from 1 to 19) and coefficients Lj
r (with r from 1 to 4) become constant terms in

the compact form of the system of differential equations in z proposed in Eqs.(31)-(33); in them, the
variables can be decoupled. Therefore, the moisture content profile through the thickness direction z
will be separately calculated in the next section and it becomes a known term. As a consequence, the
system will be a system of second order differential equations in the displacement amplitudes U j , V j ,
W j and their derivatives in z. By using the methodology proposed in [64] and [65] and based on the
redoubling of variables, the system is reduced to a first order differential equation system in z. In each

j layer, the variables pass from 3 (U j , V j , W j) to 6 (U j , V j , W j , U j
′
, V j

′
, W j

′
) where superscript ′

means derivatives performed with respect to z (also indicated as ∂
∂z ). Terms M j and M j′ are known

terms because they can be calculated using one of the three different methods proposed in the next
section 3:

Aj
6 0 0 0 0 0

0 Aj
12 0 0 0 0

0 0 Aj
19 0 0 0

0 0 0 Aj
6 0 0

0 0 0 0 Aj
12 0

0 0 0 0 0 Aj
19





U j

V j

W j

U j
′

V j
′

W j
′



′

=



0 0 0 Aj
6 0 0

0 0 0 0 Aj
12 0

0 0 0 0 0 Aj
19

−Aj
1 −Aj

2 −Aj
3 −Aj

4 0 −Aj
5

−Aj
7 −Aj

8 −Aj
9 0 −Aj

10 −Aj
11

−Aj
13 −Aj

14 −Aj
15 −Aj

16 −Aj
17 −Aj

18





U j

V j

W j

U j
′

V j
′

W j
′


+



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−Lj
1 0 0 0 0 0

−Lj
2 0 0 0 0 0

−Lj
4 −Lj

3 0 0 0 0





M j

M j
′

0
0
0
0


, (34)

A compact form of the above equation is:

DjU j
′
= AjU j +LjM j , (35)

where the explicit forms of the various vectors are U j = [U j V j W j U j
′
V j

′
W j

′
]T , U j

′
= ∂Uj

∂z and

M j = [M j M j
′
0 0 0 0]T . T means the transpose of a vector. The Eq.(35) can be rearranged as:

U j
′
= Dj−1

AjU j +Dj−1
LjM j , (36)
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U j
′
= A∗jU j +L∗jM j , (37)

where A∗j = Dj−1
Aj and L∗j = Dj−1

Lj . After the calculation of the moisture content profile (using
one of the three methodologies given in the next section 3), the actual profile can be reconstructed by
means of linear approximations of the moisture content in each j mathematical layer. This approxima-
tion can be written as:

M j(z̃j) = ajM z̃j + bjM , (38)

where ajM and bjM are two constant terms in the j layer. The local thickness coordinate z̃j is opportunely
defined and calculated for each j mathematical layer. z̃j goes from 0 at the bottom of the generic j
layer to the thickness hj of the same mathematical layer. The coefficients ajM and bjM will be calculated
in each j layer as shown in the next section. Eq.(37) is a system of first order differential equations in

z̃ or z; these equations are not homogeneous because of the hygroscopic term L∗jM j that depends on
z̃j or zj .

The exponential matrix method applied to a generic system of non-homogeneous first order differ-
ential equations considers the following steps:

dx

dt
= Ax+ f(t) , (39)

where x is a G× 1 vector, A is a G×G matrix with constant coefficients and f(t) = [f1(t) ... fG(t)]
T

is a known function vector. A solution of the Eq. (39) can be:

x(t) = eA(t−t0)x0 +

∫ t

t0

eA(t−s)f(s)ds . (40)

An explicit matrix form of the known term in Eq.(37) is:

M∗j = L∗jM j =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−L∗j
1 0 0 0 0 0

−L∗j
2 0 0 0 0 0

−L∗j
4 −L∗j

3 0 0 0 0





ajM z̃j + bjM
ajM
0
0
0
0

 =



0
0
0

−L∗j
1 (ajM z̃j + bjM )

−L∗j
2 (ajM z̃j + bjM )

−L∗j
4 (ajM z̃j + bjM )− L∗j

3 ajM


. (41)

Using the known term M∗j , Eq. (37) can be written as:

U j
′
= A∗jU j +M∗j , (42)

where M∗j contains only linear known functions in z̃j . Therefore, the Eq. (42) can be solved as:

U j(z̃j) = e(A
∗j z̃j)U j(0) +

∫ z̃j

0
e(A

∗j (z̃j−s))M∗j (s)ds . (43)

Terms A∗∗j = e(A
∗jhj) and L∗∗j =

∫ hj

0 e(A
∗j (hj−s))M∗j (s)ds must be calculated in each j layer with

thickness hj in order to define the displacement vector at the top of each j mathematical layer. There-
fore, the exponential matrix must be opportunely expanded and evaluated in each j layer having
thickness hj :

A∗∗j = e(A
∗jhj) = I +A∗jhj +

A∗j 2

2!
hj

2
+

A∗j 3

3!
hj

3
+ · · ·+ A∗jN

N !
hj

N
, (44)
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where I is the 6 × 6 identity matrix. The integral shown in Eq.(43) can be evaluated in each j layer
with thickness hj by expanding the exponential matrix with the same methodology and the same order
N already seen in Eq.(44):

L∗∗j =

∫ hj

0
e(A

∗j (hj−s))M∗j (s)ds =

∫ hj

0

(
I +A∗j (hj − s) +

A∗j 2

2!
(hj − s)2 +

A∗j 3

3!
(hj − s)3+

· · ·+ A∗jN

N !
(hj − s)N

)
M∗j (s)ds . (45)

The definitions of Eqs.(44) and (45) modify Eq.(43) as:

U j(hj) = A∗∗jU j(0) +L∗∗j , (46)

if U j
t indicates U j(hj) and U j

b indicates U j(0) (t and b denote the top and bottom of each j layer,
respectively), Eq.(46) is rewritten as:

U j
t = A∗∗jU j

b +L∗∗j . (47)

Eq.(47) allows to link displacements and related derivatives in z defined at the top of the j mathematical
layer with those defined at the bottom of the same j layer.

The proposed 3D shell model is based on a layer-wise approach, therefore inter-laminar continuity
conditions in terms of displacements and transverse stresses must be enforced at each interface between
the j − 1 and the j layer. The interlaminar continuity conditions for displacements are:

ujb = uj−1
t , vjb = vj−1

t , wj
b = wj−1

t . (48)

The inter-laminar continuity conditions for transverse shear and transverse normal stresses are:

σj
zzb

= σj−1
zzt , σj

αzb
= σj−1

αzt , σj
βzb

= σj−1
βzt

. (49)

Eqs.(48) and (49) can be opportunely rewritten in displacement form by using the constitutive equations
(15)-(20) and the harmonic form for the displacements and moisture content in eqs.(27)-(30). The
methodology is the same already applied in [7]- [9] for the pure elastic analysis. For the hygro-elastic
analysis, the continuity equation for the normal stress σzz has an additional hygroscopic term as shown
by the coefficient T11 in the displacement form of Eqs.(48) and (49) that have been rewritten in matrix
compact notation using two transfer matrices:

U
V
W

U
′

V
′

W
′



j

b

=


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
T1 0 T2 T3 0 0
0 T4 T5 0 T6 0
T7 T8 T9 0 0 T10



j−1,j


U
V
W

U
′

V
′

W
′



j−1

t

+


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
T11 0 0 0 0 0



j−1,j 

M

M
′

0
0
0
0



j−1

t

. (50)

The portion including a diagonal of 1 represents displacement continuity of Eq.(48). Terms from T1

to T11 represents the stress continuity of Eq.(49) given in terms of displacements and moisture content
with the related derivatives in z. Eq.(50) can be compacted as:

U j
b = T j−1,j

U U j−1
t + T j−1,j

M M j−1
t . (51)

Displacements and related derivatives in z defined at the bottom of the j layer are linked with displace-
ments and moisture content (and their derivatives in z) calculated at the top of the (j-1) layer via the
use of Eq.(51).
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The investigated multilayered shells are simply supported, that means:

w = v = 0, σαα = 0 for α = 0, a , (52)

w = u = 0, σββ = 0 for β = 0, b (53)

the above conditions are automatically satisfied by the use of harmonic forms for all the variables of
the problem.

If the external surfaces of the multilayered shells are free stressed, this feature means that no
mechanical loads are applied and σαz = σβz = σzz = 0 at both external top and bottom surfaces.
As already seen in [7]- [9], these conditions can be expressed in terms of displacements as:

BG
t U

G
t = PG

t = 0 , (54)

B1
bU

1
b = P 1

b = 0 , (55)

t and b indicates the top and bottom, respectively. Superscript G indicates the last mathematical layer
and superscript 1 indicates the first layer. Vector P = (Pα Pβ Pz)

T contains the mechanical loads in the
three directions α, β and z. It is imposed equals zero in the hygro-elastic analysis when the mechanical
loads are absent and only the moisture content profile generates an equivalent load; otherwise, they
contain several values different from zero in the case of application of mechanical load in the hygro-
elastic evaluation. Matrices B allow the imposition of loads at the external surfaces of the shell, the
explicit form of vectors P and B were shown in [7]- [9].

UG
t = UG(hG) can be written in relation with U1

b = U1(0) to obtain a matrix form for the algebraic
system shown in Eqs.(54) and (55). This feature means that displacements and related derivatives in
z̃ calculated at the top of the last layer are linked with those defined in z̃ at the bottom of the first
layer, this condition is obtained by means of the recursively substitution of Eq.(51) into Eq.(47):

UG
t =

(
A∗∗GTG−1,G

U A∗∗G−1TG−2,G−1
U ......A∗∗2T 1,2

U A∗∗1
)
U1

b+

(
A∗∗GTG−1,G

U A∗∗G−1......A∗∗2T 1,2
U L∗∗1+

A∗∗GTG−1,G
U A∗∗G−1......A∗∗3T 2,3

U L∗∗2+

...

A∗∗GTG−1,G
U L∗∗G−1+

L∗∗G+

A∗∗GTG−1,G
U A∗∗G......A∗∗2T 1,2

M M1
t+

A∗∗GTG−1,G
U A∗∗G......A∗∗3T 2,3

M M2
t+

...

A∗∗GTG−1,G
U A∗∗G−1TG−2,G−1

M MG−2
t +

A∗∗GTG−1,G
M MG−1

t

)
. (56)

The first block in Eq.(56) defined in parentheses is the 6× 6 matrix Hm already seen for multilayered
structures in [7]- [9] for the classical elastic analysis. In the case of hygro-elastic analysis, G terms
including L∗∗j and G − 1 terms including M j

t are showed by Eq.(56): the first ones consider the
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hygroscopic profile for each j mathematical layer, the second ones define the moisture content at each
interface, the summation of all these terms are collected in parentheses of the second block and it
defines the 6× 1 vector HM :

UG
t = HmU1

b +HM . (57)

Eq.(54) can be defined in terms of U1
b via the substitution of Eq.(57):

BG
t HmU1

b = −BG
t HM . (58)

Therefore, Eqs.(58) and (55) are grouped in:

EU1
b = PM , (59)

where

E =

[
BG

t Hm

B1
b

]
(60)

and

PM =

[
−BG

t HM

0

]
. (61)

The showed method uses a layer wise approach: even if a high number of G mathematical layers are
employed, the dimension of the E matrix always remains 6 × 6. The E matrix is the same already
obtained for the pure elastic analysis in [7]- [9]. The difference is the addition of the load vector PM

that includes the equivalent hygroscopic loads. The final system in Eq.(59) formally does not change
with respect to the pure elastic analysis, the only difference is in the hygroscopic field through the
thickness that has been converted in an equivalent load PM with dimension 6 × 1. Vector P can be
added in the case of mechanical load application. The bottom displacement components and their
derivatives in z are obtained from Eq.(59), displacement components and their derivatives in z are
calculated at each thickness coordinate along the z direction of the multilayered structure thanks the
use of Eqs.(51) and (47).

3 Moisture diffusion problem

As discussed in the previous section, the decoupling between the elastic and the hygrometric field
requests to separately calculate the moisture content profile through the thickness direction of the
entire multilayered shell. The considered structure is subjected to a moisture content field in harmonic
form in the in-plane directions by assuming steady state conditions (∂M∂t = 0); this field is imposed at
the external surfaces in terms of given amplitudes Mt at the top and Mb at the bottom. Using these
conditions, the moisture content profile trough the thickness direction can be defined via three different
methodologies in analogy with the methods already explained in [13] and [14] for the temperature field:
the 3D version of the Fick diffusion law can be solved in analogy with the 3D Fourier heat conduction
equation and the model is called as 3D(Mc,3D), the 1D version of the Fick diffusion law can be solved
in the same way already seen for the 1D Fourier heat conduction equation and the obtained hygro-
elastic shell model is called as 3D(Mc,1D); moreover, ”a priori” linear assumed moisture content profile
through the global thickness of the entire multilayered shell gives a hygro-elastic shell model named as
3D(Ma).

In the employed acronyms for the 3D shell hygro-elastic models, the term 3D outside the parentheses
indicates that the elastic part of the model is based on the 3D shell model above detailed, the terms
inside the parentheses indicate the methodology employed to define the moisture content profile through
the thickness direction: the subscript c means that the moisture content M has been calculated via
the 3D version or the 1D version of the Fick diffusion law, the subscript a means that the moisture
content M has been ”a priori” linearly assumed.
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3.1 3D version of the Fick moisture diffusion equation

If we define a sort of moisture ”flux” vector g in analogy with the heat flux vector q defined for the
3D version of the Fourier heat conduction equation, it is possible to write the differential equation of
moisture diffusion, for a stationary case and a homogeneous solid without internal energy generation,
in a general orthogonal curvilinear coordinate system (u1, u2, u3) as:

∇· g(u1, u2, u3) = 0 . (62)

If the coordinate system is orthogonal and curvilinear, the divergence of the moisture ”flux” can be
given as:

∇· g =
1

a

[
∂

∂u1

(
a

a1
g1

)
+

∂

∂u2

(
a

a2
g2

)
+

∂

∂u3

(
a

a3
g3

)]
, (63)

where g1, g2, g3 are the moisture ”flux” components in 1, 2 and 3 directions, respectively:

gi = −Di
1

ai

∂M
∂ui

, (64)

where Di are the diffusion coefficients in ui directions. a1, a2 and a3 are defined as scale factors and a
is calculated as:

a = a1 a2 a3 . (65)

Povstenko [66] demonstrated how Eq.(63) can be defined in a mixed curvilinear orthogonal coordinate
system (α, β, z) in the case of orthotropic material as:

1

HαHβ

[
∂

∂α

(
HαHβ

Hα
D1

1

Hα

∂M
∂α

)
+

∂

∂β

(
HαHβ

Hβ
D2

1

Hβ

∂M
∂β

)]
+D3

∂2M
∂z2

= 0 , (66)

the Eq.(66) has been written by considering z as rectilinear andHz = 1; the demonstration by Leissa [67]
has been employed where the scale factors ai can be replaced by the parametric coefficients as following:

a1 = Hα, a2 = Hβ, a3 = Hz = 1 . (67)

The moisture ”fluxes” have been already defined in Eqs.(63) and (64) using the analogy with the heat
fluxes. Starting from Eq.(66), in the case of physical orthotropic layers k, the differential operators can
be applied only on the moisture content in order to obtain:

D∗
1
k(z)

∂2M
∂α2

+D∗
2
k(z)

∂2M
∂β2

+D∗
3
k(z)

∂2M
∂z2

= 0 . (68)

where

D∗
1
k(z) =

Dk
1

H2
α

, D∗
2
k(z) =

Dk
2

H2
β

, D∗
3
k(z) = Dk

3 . (69)

In the physical orthotropic k layer, the diffusion coefficients Dk
1 , Dk

2 and Dk
3 are defined in the material

reference system. In Eq.(68), the coefficients are not constant in each k physical layer because in D∗
1
k

and D∗
2
k, Hα and Hβ are functions of z. Therefore, the multilayered shell is divided into j mathematical

layers in order to have G equations, one for each j mathematical layer, where the new coefficients D∗
1
j ,

D∗
2
j and D∗

3
j are now constant because terms Hα and Hβ can be calculated in the middle of each j

mathematical layer. Using this mathematical approximation, Eq.(68), that has not constant coefficients,
can be rewritten as an equation with constant coefficients for each j layer:

D∗
1
j ∂

2M
∂α2

+D∗
2
j ∂

2M
∂β2

+D∗
3
j ∂

2M
∂z2

= 0 . (70)
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The harmonic form for the moisture content M(α, β, z) proposed in Eq.(30) automatically satisfies
Eq.(70), the moisture content amplitude M(z) has the following dependence on z:

M j(z) = M j
0 exp(s

jz) , (71)

M j
0 and sj must be defined in each j mathematical layer. sj is determined via the substitution of

Eq.(30) in Eq.(70) using the assumption shown in Eq.(71):

sj1,2 = ±

√
D∗

1
jᾱ2 +D∗

2
j β̄2

D∗
3
j

, (72)

the chosen solution is sj1 by using the algebraic sign +. Therefore, Eq.(71) is modified in:

M j(z) = M j
01 exp(s

j
1z) +M j

02 exp(s
j
1z) , (73)

M j(z) = Sj
1cosh(s

j
1z) + Sj

2sinh(s
j
1z) . (74)

Eqs.(73) and (74) have constants that must be calculated in each j mathematical layer. sj1 is determined
via Eq.(72). Therefore, 2 × G coefficients must be calculated. In order to obtain this result, two
continuity conditions at each mathematical layer interface must be defined:

M
(j+1)
b = M j

t , (75)

D∗
3
j+1M (j+1)

,zb
= D∗

3
jM j

,zt . (76)

The moisture content at the top of the generic mathematical j layer is imposed equal to that at the
bottom of the generic mathematical j + 1 layer in Eq.(75). The moisture ”flux” g3 at the bottom of
the generic mathematical j +1 layer is imposed equal to that at the top of the generic mathematical j
layer in Eq.(76). S1 and S2 at the j layer and S1 and S2 at the (j + 1) layer are linked by means of a
compact matrix form obtained from Eqs.(75) and (76) and using M j(z) as given in Eq.(74):[

S1

S2

]j+1

=

[
VM

j+1,j
1 VM

j+1,j
2

VM
j+1,j
3 VM

j+1,j
4

][
S1

S2

]j
. (77)

2× (G− 1) conditions must be imposed where (G− 1) indicates the layer interfaces. V
(j+1,j)
M is the

transfer matrix defined in Eq.(77). Therefore, coefficients at the top layer (j = G) and those at the
bottom layer (j = 1) can be determined recursively by applying Eq.(77):[

S1

S2

]G
= V

(G,G−1)
M V

(G−1,G−2)
M ...........V

(3,2)
M V

(2,1)
M

[
S1

S2

]1
= V

(G,1)
M

[
S1

S2

]1
. (78)

If the moisture contents at the bottom and at the top of the whole multilayered shell are correctly
imposed, the 2 conditions missed in the 2× (G−1) conditions already imposed in Eq.(77) are correctly
added and the problem proposed in Eq.(78) is now solvable. This feature means that all the 2 × G
coefficients can be determined: it means to calculate all the Sj

1 and Sj
2 for all the G mathematical

layers. After the determination of the coefficients for the external layers, the other coefficients can be
consequently and easily calculated.

As discussed in previous section, the implementation of this solution is not complicated if the mois-
ture content is assumed as linear in each j mathematical layer. After the definition of the coefficients
in Eq.(74) for each j mathematical layer, the moisture content profile through the entire thickness is
totally determined. In this way, both the coefficients used in Eq.(38) can be calculated: bjM is the

moisture content value at the bottom of the j layer, and ajM is the slope of the moisture content profile
in the j layer. The 3D exact shell model developed in the previous section including this moisture
content profile is called as 3D(Mc,3D).
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3.2 1D version of the Fick moisture diffusion equation

The proposed problem is three-dimensional. However, when the plates or shells are thin (high thickness
ratios a/h or Rα/h), the moisture content profile can be determined in a simpler way that considers
only the material layer effect and not the thickness layer effect. The moisture content is completely
defined in the αβ-plane via the harmonic form given in Eq.(30). The form of the three moisture ”fluxes”
in the k physical layer is:

gk1 = D∗
1
kᾱMk(z)cos(ᾱα)sin(β̄β) , (79)

gk2 = D∗
2
kβ̄Mk(z)sin(ᾱα)cos(β̄β) , (80)

gk3 = D∗
3
kMk

,z(z)sin(ᾱα)sin(β̄β) . (81)

For thin structures and high thickness ratios, Eqs.(66) and (68) are simplified in:

∂

∂z

(
D∗

3

∂M

∂z

)
= 0 , (82)

where D∗
3 = D3 because z is a rectilinear coordinate. The moisture ”fluxes” g1 and g2 can be discarded

for high thickness ratios because ᾱ = mπ
a and β̄ = mπ

b are small. The term in parentheses in Eq. (82) is
the moisture ”flux” in the thickness 3 ≡ z direction for the whole multilayered structure. The meaning
of Eq.(82) is that g3(z) can be assumed as constant in the thickness direction of the entire multilayered
plate and shell:

g3(z) =

(
D∗

3

∂M

∂z

)
= const. (83)

Eq.(83) clearly indicates a constant moisture ”flux” g3 in the considered multilayered structure, and it
is here employed to impose the continuity of moisture flux g3 at each interface between two adjacent
physical layers k or mathematical layers j. By considering a generic j mathematical layer, the differential
operator in Eq.(83) can be written in an algebraic and simplified form where the slope of the moisture
content profile is clearly indicate:

gj3 = −D∗
3
j ∂M

j

∂z
= −D∗

3
j

hj
(M j

t −M j
b ) . (84)

The term D∗
3
j/hj can be defined in the j layer in analogy with the thermal conductance defined in [13]

and [14]. The constant moisture ”flux” through the thickness direction can be calculated using an
equivalent resistance coefficient of the entire structure defined in analogy with the equivalent thermal
resistance in [13] and [14] (that is based on the concept of electric resistance):

Rzeq =
G∑

j=1

hj

D∗
3
j
. (85)

After the definition of the equivalent resistance of the entire structure, the moisture flux g3 for the
entire plate or shell can be calculated by means of the definition of a single equivalent layer:

g3 = − 1

Rzeq

(Mt −Mb) = const. (86)

where Mt and Mb are the applied moisture content amplitudes at the external surfaces of the entire
structure. The moisture content at each z coordinate can be calculated by means of the continuity of
gj3 as defined in Eq.(84):

gj3 = −D∗
3
j (M

j
t −M j

b )

hj
= gj+1

3 = −D∗
3
j+1 (M

j+1
t −M j+1

b )

hj+1
= g3 = const. , (87)
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when the coefficient D∗
3
j is different from a layer to another adjacent layer, the continuity of gj3 is

possible only if the slope of the moisture content profile
(Mj

t −Mj
b )

hj also appropriately changes. This
feature means that when the material of the layer changes, the slope of the moisture content profile
also changes but remaining linear in the layer. For this reason, this 1D method allows to evaluate the
material layer effect but not the thickness layer effect. Therefore, this methodology permits to consider
only the stacking sequence and the material effects; this feature happens because 3D characteristics
of the problem have been neglected and, as consequence, the related thickness layer effect. Therefore,
this method is able to evaluate the change of diffusivity D∗

3 in each layer and the related slope of the
moisture content. The disadvantage is that the moisture content remains linear in each layer even if
the layer is thick. The thickness layer effect (moisture content profile not linear in the thick layer)
can only be evaluated by means of the use of the 3D version of Fick diffusion equation given in the
previous subsection. As already discussed, the two coefficients of Eq.(38) (bjM and ajM ) are the moisture
content values at the bottom of the j layer and the related slope of the moisture content profile in it.
The methodology described is the same for both the k physical and j mathematical layers. When
the 3D exact shell model described in Section 2 uses the moisture content profile here calculated, the
3D(Mc,1D) shell model is employed.

3.3 Assumed linear moisture content profile

A further hypothesis to simplify the calculation of the moisture content profile is to also discard the
material layer effect as well as the thickness layer effect. In this way, the moisture content profile is
a priori assumed as linear through the entire thickness of the whole multilayered structure from the
bottom to the top without including the change of the material for each layer. This simplification is
very common in the literature but it is correct only if the shell is thin and embedding a single layer or
several hygroscopically homogeneous layers. The coefficients necessary for Eq.(38) are calculated in the
same way already seen in previous subsections. Moreover, the term ajM is even easier to be determined
because it is the global slope of the moisture content profile for the whole multilayer structure. The 3D
exact shell model developed in Section 2 combined with this assumed linear moisture content profile is
called as 3D(Ma).

4 Results

This section proposes several results for the hygro-elastic analysis of single-layered and multilayered
composite and sandwich plates and shells. It is organized in two main parts: the first part is devoted
to the validation of the proposed and developed 3D shell hygro-elastic models, the second part shows
new benchmarks in order to give several physical comments and to see the main differences between
the three proposed moisture content profiles through the thickness direction.

In the preliminary validations, the proposed 3D shell hygro-elastic models are compared with well-
known 3D elastic solutions from the literature in order to validate the elastic part of the developed 3D
shell models; in these comparisons, some 3D FE models (built by means of Patran & Nastran) are also
added. The validation of these 3D FE models is mandatory in order to develop some new assessments
including the hygroscopic loads to also validate the hygroscopic part of the proposed 3D exact shell
models. This step is necessary because in the literature there are not any 3D exact hygro-elastic
models that can be used for comparison purposes. In the new proposed benchmarks, the developed
and validated 3D shell models are employed without the hygroscopic part or including one of the
three possible moisture content profiles in order to analyze composite and sandwich plates, cylinders,
cylindrical shell panels and spherical shell panels. The effects of the presence of the hygroscopic load
calculated in the three different ways are investigated for several geometries, thickness ratios, materials
and lamination schemes.
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4.1 Preliminary validations

The first assessment considers a simply-supported rectangular three-layered composite plate where
a transverse normal mechanical load is applied at the top in harmonic form. The applied load has
amplitude Pzt = 1 kPa and half-wave numbers m = n = 1. The in-plane dimensions of the plate are
a = 1m and b = 3m with thickness ratios a/h equals 2, 4, 10, 20, 50 and 100. Each layer has thickness
h1 = h2 = h3 = h/3 and the lamination scheme is 0◦/90◦/0◦. The elastic properties of each carbon fibre
composite layer are: Young moduli E1 = 172.37GPa and E2 = E3 = 6.89476GPa, Poisson ratios ν12 =
ν13 = ν23 = 0.25 and shear moduli G12 = G13 = 3.4474GPa and G23 = 1.3789GPa. The reference
solution is the 3D one proposed by Pagano in exact form for several plate configurations [62]. No-
dimensional displacements w̄ = w 100E2

Pzth(a/h)4
, no-dimensional in-plane normal stresses σ̄αα = σαα

1
Pzt(a/h)2

and no-dimensional transverse shear stresses σ̄αz = σαz
1

Pzt(a/h)
at different thickness coordinates are

proposed in Table 1 where the present 3D shell model is compared with the 3D solution by Pagano [62]
and with a 3D FE solution obtained via Patran & Nastran using 3D HEX8 elements (typical 3D solid
elements by Patran & Nastran with 8 nodes). The present 3D shell model is coincident with the 3D
plate solution by Pagano for each thickness ratio and for each investigated variable when the order of
expansion N for the exponential matrix is 3 and with a number of mathematical layers G equals 51.
The 3D FE model always gives satisfactory results when 12 solid HEX8 elements are employed through
the thickness direction and an appropriate number of elements is used in the in-plane directions. This
assessment verifies that the proposed 3D exact shell model and the 3D FE model by Patran & Nastran
correctly work for the mechanical analysis of multilayered anisotropic plates. Therefore, they result
validated for such cases.

The second assessment aims to validate the proposed 3D exact shell solutions and the 3D FE model
by Patran & Nastran when the previous assessment is extended to an hygroscopic stress analysis.
Therefore, the plate is the same already described in the first assessment but the mechanical load is
now replaced by an opportune imposition of a moisture content at the external surfaces in steady-state
conditions. At the top of the plate the applied moisture content is Mt = 1.0% and at the bottom
it is Mb = 0.5%, the harmonic form uses half-wave numbers m = n = 1. The lamination scheme
and the elastic properties do not change with respect to the first assessment. Moreover, the moisture
expansion coefficients are η1 = 0 1

% and η2 = η3 = 0.4 × 10−2 1
% , and the diffusion coefficients are

D1 = 7.04 kg
ms and D2 = D3 = 4.96 kg

ms . The main results are proposed in Table 2 where displacements
w and stresses σαα and σββ are given for different thickness ratios a/h. The 3D FE solution is obtained
via the thermal stress analysis by Patran & Nastran using the analogy between thermal properties
(temperature, thermal expansion coefficients and conductivity coefficients) and hygroscopic properties
(moisture content, moisture expansion coefficients and diffusion coefficients). The 3D FE solutions are
very close to results obtained via the 3D exact model when the moisture content profile is calculated via
the solution of the 3D Fick diffusion law (3D(Mc,3D)). This feature is due to the fact that the thermal
stress analysis via Patran & Nastran is performed by solving the 3D heat conduction problem and, in
analogy, the hygroscopic stress analysis is evaluated by solving the 3D moisture diffusion problem. The
3D exact solution always gives satisfactory results (for each investigated variable and thickness ratio)
when the order N is equal 3 and the number of mathematical layers G is at least equal to 51. The three
3D exact solutions are coincident for thin plates. For thick plates, the only correct results are those
based on the 3D Fick diffusion law because they are able to consider the thickness layer effects. After
this assessment, the 3D exact shell solution is validated for the hygroscopic stress analysis of plates.

The third assessment considers a simply supported cylindrical shell panel made of one single layer
(having the same elastic properties seen in the assessment one) with fibre orientation equals 0◦. The load
is applied in harmonic form at the top surface in the transverse normal direction as Pzt = 6894.8GPa
with half-wave numbers m = 1 and n = 0 (typical cylindrical bending problem). The radius of
curvature in α direction is Rα = 10m and in β direction is infinite (Rβ = ∞ means rectilinear side).
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The in-plane dimensions are a = π
3Rα and b = 100m and the investigated thickness ratios Rα/h

are 2, 4, 10, 50, 100 and 500. Results in Table 3 are proposed as no-dimensional transverse normal
displacement w̄ = w 10E2

Pzth(a/h)4
and no-dimensional in-plane stress σ̄αα = σαα

1
Pzt(a/h)2

. The reference

solution is the 3D exact solution by Ren [63] opportunely developed for the cylindrical bending of
cylindrical shell panels. The present 3D exact shell solution is always coincident with the reference one
for each investigated variable and thickness ratio when the employed order of expansion is N = 3 and
the number of mathematical layers G is at least equal to 50. The 3D FE model obtained with the use
of the solid HEX8 elements of Patran & Nastran exhibits some difficulties for very thick structures but
it is quite close to the two proposed 3D analytical solutions for moderately thick and thin shells. The
comparisons proposed in Table 3 allow to validate the 3D exact shell model and the 3D FE solution in
the case of pure elastic analysis of shells.

The fourth and last assessment considers the same shell geometry, lamination scheme and material
properties already described in the third assessment. The elastic properties are those shown in the
assessment one and the hygroscopic properties are those summarized in the assessment two. In this
last case, the mechanical load is replaced by the application of a moisture content in steady-state
conditions at the external surfaces: Mt = 1.0% and Mb = 0.5% in harmonic form with half-wave
numbers m = n = 1. Table 4 proposes transverse normal displacement and in-plane normal stress for
different thickness ratios. The 3D exact shell model employing a 3D calculated moisture content profile
(3D(Mc,3D)) is mandatory in the case of thick shells. For moderately thin and thin shells, the 3D
exact shell models employing a 3D calculated moisture content profile, a 1D calculated moisture content
profile and a linear assumed moisture content profile are coincident because the material layer effect is
not present in a one-layered structure but only the thickness layer effect is showed. All the 3D exact
shell models give satisfactory results for order of expansion N = 3 and number of mathematical layers
G = 50 (for each possible thickness ratio and for each investigated variable). The 3D FE model via
Patran & Nastran gives satisfactory results when it uses 12 solid HEX8 elements through the thickness
direction. The 3D FE model shows some difficulties for very thick shells even if it uses a 3D calculated
moisture content profile through the thickness direction. This last assessment validates the 3D exact
shell models in the case of curved structures when a moisture content profile is applied in steady state
conditions.

The four proposed assessments allowed the validation of the proposed 3D shell models (3D calculated
moisture content profile (3D(Mc,3D)), 1D calculated moisture content profile (3D(Mc,1D)) and linear
assumed moisture content profile (3D(Ma))) for elastic and hygroscopic stress analysis of single- and
multi-layered plates and shells. The comparisons were performed with well-known 3D elastic solutions
already proposed in the literature for specific cases of plates or shells and/or with a 3D FE hygro-elastic
model developed in Patran & Nastran. This choice has been performed because 3D exact solutions for
hygro-elastic analyses were not found in the literature. After the proposed validation, the developed
3D shell models can be used with confidence to propose new benchmarks in order to analyze several
effects in the hygro-elastic analysis of single- and multi-layered plates and shells.

4.2 Proposed benchmarks

All the proposed benchmarks always consider simply-supported structures and harmonic forms for
moisture content profiles and mechanical loads in order to obtain exact solutions. Moreover, the
moisture content analysis is developed in steady state conditions. In the previous assessments, it
was demonstrated that the proposed 3D shell models always give satisfactory results for each possible
case when N = 3 is employed as order of expansion for the exponential matrix and at least G = 50
mathematical layers are employed for the curvature approximation. In all the proposed benchmarks,
the 3D shell models always use N = 3 and G = 300 in order to have the best possible solutions for
each investigated case.
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The first benchmark considers a five-layered sandwich square plate with imposed moisture contents
at the external surfaces equal to Mt = 1.0% and Mb = 0.0% and transverse normal mechanical load
applied at the top with amplitude Pzt = 10 kPa (all the harmonic forms have half-wave numbers
m = n = 1). The in-plane plate dimensions are a = b = 1m and the thickness ratios a/h goes
from 2 (very thick plate) to 100 (thin plate). From the bottom to the top, the lamination scheme
is 0◦/90◦/CORE/90◦/0◦. The first two layers for the bottom sandwich skin and the last two layers
for the top sandwich skin have thickness values h1 = h2 = h4 = h5 = h/10 where h is the total
thickness of the plate. The thickness core is h3 = 3

5h. The core is a foam with the following elastic
and hygroscopic properties: Young modulus E = 3GPa, Poisson ratio ν = 0.4, moisture expansion
coefficient η = 0.28 × 10−2 1

% and diffusion coefficient D = 9.324 × 10−8 kg
ms . The skins are made of

long fibre reinforced composite material with the following elastic and hygroscopic properties: Young
moduli E1 = 138GPa and E2 = E3 = 8.5GPa, Poisson ratios ν12 = ν13 = 0.29 and ν23 = 0.36,
shear moduli G12 = G13 = 4.5GPa and G23 = 3.2GPa, moisture expansion coefficients η1 = 0 1

%

and η2 = η3 = 0.4 × 10−2 1
% , and diffusion coefficients D1 = 7.04 kg

ms and D2 = D3 = 4.96 kg
ms . The

main results are collected in Table 5 and in Figures 2 and 3. In Table 5, the 3D shell model is able
to consider only the elastic part and the application of the mechanical load. The other three 3D shell
models include the hygroscopic effects by means of three different moisture content profiles through the
thickness: the 3D(Ma) considers a moisture content profile that is assumed a priori as linear through
the thickness directions, the 3D(Mc, 1D) uses a calculated moisture content profile by solving the 1D
moisture diffusion problem and the 3D(Mc, 3D) is based on a 3D moisture diffusion problem. When
the hygroscopic effect is discarded (3D shell model), no moisture content is calculated and the results
for displacements and stresses are completely different from those obtained via a hygroscopic-elastic
3D shell model. The 3D(Mc, 3D) shell model always gives the correct results for each thickness ratio
and for each investigated variable because it is able to evaluate both thickness layer and material
layer effects. The 3D(Mc, 1D) shell model is very close to the 3D(Mc, 3D) shell model only for thin
structures because it is able to evaluate the material layer effect but it discards the thickness layer effect.
The 3D(Ma) shell model always gives uncorrect results because the assumed linear temperature profile
for the entire multilayered structure is not correct in the case of sandwich plates with high transverse
anisotropy. These results are clearer thanks the observation of moisture content profiles through the
thickness direction shown in Figure 2. In the case of thick sandwich plate, the only correct moisture
content profile is the 3D calculated one because it considers the thickness layer effect (profile which is
not linear inside each single thick layer) and the material layer effect (the slope of the moisture content
profile changes passing from a layer to another layer because the material is different and the moisture
diffusion coefficient also changes). The linear assumed moisture content profile is always rectilinear for
the entire multilayered plate for both thick and thin cases. In the case of thin sandwich plate, the
linear assumed moisture content profile remains uncorrect while the 1D and 3D calculated moisture
content profiles are coincident because the thickness layer effect disappears: therefore, the profile is
linear inside each single layer but its slope changes because of the use of different materials having
different hygroscopic properties. The displacements shown in Figure 3 have the typical zigzag form
of transversely anisotropic sandwich plates. The transverse normal stress σzz is continuous at each
interface and it satisfies the external boundary loading conditions (0 at the bottom and 10 kPa at
the top). The in-plane stress σαα and the transverse shear strain γβz are discontinuous at each layer
interface with the typical zigzag form due to the transverse anisotropy. Such figures demonstrate the
correct implementation of the 3D shell model that uses a layer-wise approach for displacements and
it obtains the derivatives of displacements in z directly from the model. These two features allow to
correctly capture the zizag form of the variables and the interlaminar continuity of displacements and
transverse shear/normal stresses.

The second benchmark proposes a three-layered composite cylindrical shell panel with lamination
scheme 0◦/90◦/0◦. Each layer has thickness value equals h1 = h2 = h3 = h

3 . The shell dimensions are
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a = π
3Rα and b = 30m with radii of curvature Rα = 10m and Rβ = ∞. The thickness ratios Rα/h

vary from 4 to 500. A moisture content is imposed at the external surfaces with values Mt = 1.0%
and Mb = 0.5% and half-wave numbers m = n = 1. The elastic and hygroscopic material properties
are the same already seen for the composite skins employed in the benchmark one. Results in terms
of displacements, strains and stresses are provided in Table 6, in this case the 3D elastic shell model
is not employed because there is not any mechanical load. The differences between the three different
shell models are due to the moisture content profiles through the thickness directions and they are
clearer in the images proposed in Figure 4 where assumed linear, 1D calculated and 3D calculated
moisture content profiles are compared for thin and thick shells. In these cases, the only effect is that
linked with the thickness layer; the material layer effect is not visible with respect to the sandwich case
because the diffusivity coefficients Dj

1 and Dj
2 are exchanged when the orthotropic angle passes from

0◦ to 90◦ while the Dj
3 coefficient remains the same for all the layers. Therefore, for thin shells the

three moisture content profiles are coincident because also the thickness layer effect disappears. Figure 5
shows displacements, stresses and strains trough the thickness of a thick shell obtained via a 3D(Mc, 3D)
model. The typical affects of multilayered composite shells are shown: zigzag form of displacements,
stresses and strains, interlaminar continuity of displacements and transverse normal/shear stresses and
interlaminar discontinuity for in-plane stresses and for strains. These effects are correctly recovered
because the 3D shell model uses a layer-wise approach and it correctly calculates the derivatives in z
of all the displacement components.

The third benchmark is based on the analysis of a four-layered composite closed cylinder with
lamination scheme 0◦/90◦/0◦/90◦ and elastic and hygroscopic material properties already employed
in benchmark two and also in the skins of benchmark one. The layers have all the same thickness
h1 = h2 = h3 = h4 =

h
4 , and the thickness ratios Rα/h vary from 4 to 500. The cylinder geometry has

dimensions a = 2πRα and b = 30m with radii of curvature Rα = 10m and Rβ = ∞. No mechanical
loads are applied, in fact the 3D pure elastic shell model is not proposed in Table 7, and the moisture
content is imposed at the external surfaces as Mt = 1.0% and Mb = 0.5% with half-wave numbers
m = 2 and n = 1. The meaning of the results proposed in Table 7 and in Figures 6 and 7 are very
similar to those already discussed for benchmark two. Also the explanations for these results have been
already discussed in the previous benchmark. The thickness layer effect in the moisture content profile
trough the thickness shown in Figure 6 is now less pronounced than the benchmark two because of the
circular simmetry of the closed cylinder. All the other considerations remain the same alrady given for
the open cylindrical shell panel.

The fourth and last benchmark proposes a composite three-layered spherical shell panel with lam-
ination scheme 0◦/90◦/0◦. The composite material is the same already proposed in benchmarks two
and three. Each layer has always the same thickness (h1 = h2 = h3 =

h
3 ). The in-plane dimensions are

a = b = π
3Rα and the radii of curvature are Rα = Rβ = 10m. The thickness ratios Rα/h change in a

range between 4 and 500. Only a moisture content profile is applied with amplitudes at the external
surfaces equal to Mt = 1.0% and Mb = 0.5% and half-wave numbers m = n = 1. The results in terms
of moisture content, displacements, stresses and strains are given for several thickness ratios in Table
8. The material of each layer remains the same, the change of the orthotropic angle from 0◦ to 90◦

exchanges the diffusivity coefficients Dj
1 with the Dj

2, while Dj
3 remains always the same. This feature

means that no material layer effects are visible but the only effect is that due to the thickness layer.
For these reasons, the three 3D shell models are coincident for thin shells (the thickness layer effect
disappears) and the 3D(Mc, 3D) model gives different results for thick shells where the thickness layer
effect is clear. These considerations are valid for all the results proposed in Table 8 and for the moisture
content profiles shown in Figure 8. The evaluations of displacements, stresses and strains through the
thickness are given in Figure 9 where the typical zizag form and interlaminar continuity characteristics
of stresses and displacements can be again remarked thanks the use of a layer wise shell model that
includes the correct calculation of the displacement derivatives in z.
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5 Conclusions

The present paper proposes an exact 3D hygro-elastic shell model for the static analysis of simply-
supported single-layered and multilayered composite and sandwich plates, cylinders, cylindrical shell
panels and spherical shell panels. The proposed shell model is based on the 3D equilibrium equations
written in orthogonal mixed curvilinear coordinates. The partial derivatives in the in-plane directions
are exactly calculated by means of simply-supported side hypotheses and harmonic forms for the vari-
ables. The obtained system of partial differential equations in z is solved by means of the exponential
matrix method for both the elastic and hygroscopic parts. The hygroscopic part is considered by in-
cluding an opportune equivalent hygroscopic load (that can be added to the classical mechanical load)
calculated via the appropriate definition of the moisture content profile trough the thickness direction.
This profile can be calculated by solving the 3D version or the 1D version of the Fick moisture diffusion
law or it can be a priori imposed as linear through the entire thickness of the multilayered structure.
From the results, it is clear how the importance of the moisture content inclusion is bigger for thicker
structures even if it cannot be discarded for thinner plates and shells. Moreover, the proposed results
are correct when the elastic part of the 3D shell model is correctly developed and implemented. How-
ever, the model must be combined with an appropriate moisture content profile through the thickness
direction in order to obtain a correct equivalent hygroscopic load. The use of a priori assumed linear
moisture content profile through the thickness is correct only if the structure is thin and homogeneous.
The calculation of the moisture content profile through the thickness direction via the 1D Fick mois-
ture diffusion law is correct for multilayered structures with transverse anisotropy and small thickness
values for the embedded layers. This feature is due to the fact that the 1D version of the Fick moisture
diffusion law is able to consider the material layer effect (the slope of the moisture content profile varies
from a layer to another layer when the related diffusion coefficient of the considered material changes)
but it is not able to include the thickness layer effect (that means to have the moisture content profile
different from the linear one when the considered layer is thick). In order to consider both thickness
layer and material layer effects in the definition of the moisture content profile in a multilayered struc-
ture, the use of the 3D version of the Fick moisture diffusion law is mandatory. In this case, the slope
of the profile changes going from a layer to another one including a different material and this profile
does not have a linear evaluation when the thickness of the layer is large.
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G 3D 3D FE Ref. [62] 3D 3D FE Ref. [62] 3D 3D FE Ref. [62]

a/h = 2

w̄ at z̃ = h/2 σ̄αα at z̃ = 0 σ̄αz at z̃ = h/2

21 8.17 -1.62 0.258
51 8.17 -1.62 0.257
102 8.17 -1.62 0.257
150 8.17 -1.62 0.257
201 8.17 -1.62 0.257
300 8.17 8.16 8.17 -1.62 -1.60 -1.62 0.257 0.257 0.257

a/h = 4

w̄ at z̃ = h/2 σ̄αα at z̃ = 0 σ̄αz at z̃ = h/2

21 2.82 -1.10 0.352
51 2.82 -1.10 0.351
102 2.82 -1.10 0.351
150 2.82 -1.10 0.351
201 2.82 -1.10 0.351
300 2.82 2.81 2.82 -1.10 -1.08 -1.10 0.351 0.350 0.351

a/h = 10

w̄ at z̃ = h/2 σ̄αα at z̃ = 0 σ̄αz at z̃ = h/2

21 0.919 -0.725 0.420
51 0.919 -0.725 0.420
102 0.919 -0.725 0.420
150 0.919 -0.725 0.420
201 0.919 -0.725 0.420
300 0.919 0.913 0.919 -0.725 -0.716 -0.725 0.420 0.418 0.420

a/h = 20

w̄ at z̃ = h/2 σ̄αα at z̃ = 0 σ̄αz at z̃ = h/2

21 0.610 -0.650 0.434
51 0.610 -0.650 0.434
102 0.610 -0.650 0.434
150 0.610 -0.650 0.434
201 0.610 -0.650 0.434
300 0.610 0.606 0.610 -0.650 -0.643 -0.650 0.434 0.431 0.434

a/h = 50

w̄ at z̃ = h/2 σ̄αα at z̃ = 0 σ̄αz at z̃ = h/2

21 0.520 -0.628 0.439
51 0.520 -0.628 0.439
102 0.520 -0.628 0.439
150 0.520 -0.628 0.439
201 0.520 -0.628 0.439
300 0.520 0.519 0.520 -0.628 -0.622 -0.628 0.439 0.435 0.439

a/h = 100

w̄ at z̃ = h/2 σ̄αα at z̃ = 0 σ̄αz at z̃ = h/2

21 0.508 -0.624 0.439
51 0.508 -0.624 0.439
102 0.508 -0.624 0.439
150 0.508 -0.624 0.439
201 0.508 -0.624 0.439
300 0.508 0.506 0.508 -0.624 -0.619 -0.624 0.439 0.436 0.439

Table 1: First assessment. 0◦/90◦/0◦ composite rectangular plate with an harmonic mechanical load
applied at the top. Reference solution (Ref.) is the exact 3D solution by Pagano [62]. The proposed
3D model uses order N = 3 for the exponential matrix and different G mathematical layers.
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G 3D(Ma) 3D(Mc,1D) 3D(Mc,3D) 3D FE 3D(Ma) 3D(Mc,1D) 3D(Mc,3D) 3D FE 3D(Ma) 3D(Mc,1D) 3D(Mc,3D) 3D FE

a/h = 2

w [10−3mm] at z̃ = h/2 σαα [106Pa] at z̃ = 0 σββ [106Pa] at z̃ = h

21 -0.0840 -0.0840 -0.0711 16.8 16.8 12.0 -12.2 -12.2 -12.5
51 -0.0838 -0.0838 -0.0709 16.8 16.8 11.9 -12.2 -12.2 -12.5
102 -0.0839 -0.0839 -0.0710 16.8 16.8 11.9 -12.2 -12.2 -12.5
150 -0.0839 -0.0839 -0.0710 16.8 16.8 11.9 -12.2 -12.2 -12.5
201 -0.0839 -0.0839 -0.0710 16.8 16.8 11.9 -12.2 -12.2 -12.5
300 -0.0839 -0.0839 -0.0710 -0.0718 16.8 16.8 11.9 11.4 -12.2 -12.2 -12.5 -12.5

a/h = 4

w [10−3mm] at z̃ = h/2 σαα [106Pa] at z̃ = 0 σββ [106Pa] at z̃ = h

21 0.0125 0.0125 0.0135 7.88 7.88 7.06 -12.9 -12.9 -13.0
51 0.0124 0.0124 0.0134 7.87 7.87 7.05 -12.9 -12.9 -13.0
102 0.0124 0.0124 0.0133 7.87 7.87 7.05 -12.9 -12.9 -13.0
150 0.0124 0.0124 0.0133 7.87 7.87 7.05 -12.9 -12.9 -13.0
201 0.0124 0.0124 0.0133 7.87 7.87 7.05 -12.9 -12.9 -13.0
300 0.0124 0.0124 0.0133 0.0114 7.87 7.87 7.05 6.89 -12.9 -12.9 -13.0 -13.0

a/h = 10

w [10−3mm] at z̃ = h/2 σαα [106Pa] at z̃ = 0 σββ [106Pa] at z̃ = h

21 0.0981 0.0981 0.0979 3.76 3.76 3.67 -13.2 -13.2 -13.2
51 0.0980 0.0980 0.0978 3.76 3.76 3.67 -13.2 -13.2 -13.2
102 0.0979 0.0979 0.0977 3.76 3.76 3.67 -13.2 -13.2 -13.2
150 0.0979 0.0979 0.0977 3.76 3.76 3.67 -13.2 -13.2 -13.2
201 0.0979 0.0979 0.0977 3.76 3.76 3.67 -13.2 -13.2 -13.2
300 0.0979 0.0979 0.0977 0.0955 3.76 3.76 3.67 3.72 -13.2 -13.2 -13.2 -13.3

a/h = 20

w [10−3mm] at z̃ = h/2 σαα [106Pa] at z̃ = 0 σββ [106Pa] at z̃ = h

21 0.204 0.204 0.204 3.06 3.06 3.04 -13.3 -13.3 -13.3
51 0.204 0.204 0.204 3.06 3.06 3.04 -13.3 -13.3 -13.3
102 0.204 0.204 0.204 3.06 3.06 3.04 -13.3 -13.3 -13.3
150 0.204 0.204 0.204 3.06 3.06 3.04 -13.3 -13.3 -13.3
201 0.204 0.204 0.204 3.06 3.06 3.04 -13.3 -13.3 -13.3
300 0.204 0.204 0.204 0.200 3.06 3.06 3.04 3.12 -13.3 -13.3 -13.3 -13.3

a/h = 50

w [10−3mm] at z̃ = h/2 σαα [106Pa] at z̃ = 0 σββ [106Pa] at z̃ = h

21 0.513 0.513 0.513 2.86 2.86 2.86 -13.3 -13.3 -13.3
51 0.513 0.513 0.513 2.86 2.86 2.86 -13.3 -13.3 -13.3
102 0.513 0.513 0.513 2.86 2.86 2.86 -13.3 -13.3 -13.3
150 0.513 0.513 0.513 2.86 2.86 2.86 -13.3 -13.3 -13.3
201 0.513 0.513 0.513 2.86 2.86 2.86 -13.3 -13.3 -13.3
300 0.513 0.513 0.513 0.508 2.86 2.86 2.86 2.96 -13.3 -13.3 -13.3 -13.3

a/h = 100

w [10−3mm] at z̃ = h/2 σαα [106Pa] at z̃ = 0 σββ [106Pa] at z̃ = h

21 1.03 1.03 1.03 2.83 2.83 2.83 -13.3 -13.3 -13.3
51 1.03 1.03 1.03 2.83 2.83 2.83 -13.3 -13.3 -13.3
102 1.03 1.03 1.03 2.83 2.83 2.83 -13.3 -13.3 -13.3
150 1.03 1.03 1.03 2.83 2.83 2.83 -13.3 -13.3 -13.3
201 1.03 1.03 1.03 2.83 2.83 2.83 -13.3 -13.3 -13.3
300 1.03 1.03 1.03 1.02 2.83 2.83 2.83 2.94 -13.3 -13.3 -13.3 -13.3

Table 2: Second assessment. 0◦/90◦/0◦ composite rectangular plate with applied moisture content at
the external surfaces. The proposed 3D model uses order N = 3 for the exponential matrix and different
G mathematical layers.
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G 3D 3D FE Ref. [63] 3D 3D FE Ref. [63] 3D 3D FE Ref. [63]

Rα/h = 2

w̄ at z̃ = h/2 σ̄αα at z̃ = 0 σ̄αα at z̃ = h

20 0.9976 -2.464 1.905
50 0.9986 -2.456 1.907
100 0.9986 -2.455 1.907
150 0.9986 -2.455 1.907
200 0.9986 -2.455 1.907
300 0.9986 1.003 0.9986 -2.455 -2.368 -2.455 1.907 1.874 1.907

Rα/h = 4

w̄ at z̃ = h/2 σ̄αα at z̃ = 0 σ̄αα at z̃ = h

20 0.312 -1.332 1.078
50 0.312 -1.331 1.078
100 0.312 -1.331 1.079
150 0.312 -1.331 1.079
200 0.312 -1.331 1.079
300 0.312 0.311 0.312 -1.331 -1.286 -1.331 1.079 1.050 1.079

Rα/h = 10

w̄ at z̃ = h/2 σ̄αα at z̃ = 0 σ̄αα at z̃ = h

20 0.115 -0.890 0.806
50 0.115 -0.890 0.807
100 0.115 -0.890 0.807
150 0.115 -0.890 0.807
200 0.115 -0.890 0.807
300 0.115 0.113 0.115 -0.890 -0.867 -0.890 0.807 0.788 0.807

Rα/h = 50

w̄ at z̃ = h/2 σ̄αα at z̃ = 0 σ̄αα at z̃ = h

20 0.0770 -0.767 0.752
50 0.0770 -0.767 0.752
100 0.0770 -0.767 0.752
150 0.0770 -0.767 0.752
200 0.0770 -0.767 0.752
300 0.0770 0.0764 0.0770 -0.767 -0.760 -0.767 0.752 0.746 0.752

Rα/h = 100

w̄ at z̃ = h/2 σ̄αα at z̃ = 0 σ̄αα at z̃ = h

20 0.0755 -0.758 0.751
50 0.0755 -0.758 0.751
100 0.0755 -0.758 0.751
150 0.0755 -0.758 0.751
200 0.0755 -0.758 0.751
300 0.0755 0.0752 0.0755 -0.758 -0.753 -0.758 0.751 0.746 0.751

Rα/h = 500

w̄ at z̃ = h/2 σ̄αα at z̃ = 0 σ̄αα at z̃ = h

20 0.0749 -0.752 0.750
50 0.0749 -0.752 0.750
100 0.0749 -0.752 0.750
150 0.0749 -0.752 0.750
200 0.0749 -0.752 0.750
300 0.0749 0.0745 0.0749 -0.752 -0.749 -0.752 0.750 0.747 0.750

Table 3: Third assessment. One-layered 0◦ cylindrical shell with an harmonic mechanical load applied
at the top. Reference solution (Ref.) is the exact 3D solution by Ren [63]. The proposed 3D model
uses order N = 3 for the exponential matrix and different G mathematical layers.
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G 3D(Ma) 3D(Mc,1D) 3D(Mc,3D) 3D FE 3D(Ma) 3D(Mc,1D) 3D(Mc,3D) 3D FE 3D(Ma) 3D(Mc,1D) 3D(Mc,3D) 3D FE

Ra/h = 2

w [m] at z̃ = 0 σαα [MPa] at z̃ = 0 σαα [MPa] at z̃ = h

20 -0.00365 -0.00365 -0.00271 23.7 23.7 16.8 26.9 26.9 23.7
50 -0.00365 -0.00365 -0.00271 23.6 23.6 16.8 26.9 26.9 23.8
100 -0.00365 -0.00365 -0.00271 23.6 23.6 16.7 27.0 27.0 23.8
150 -0.00365 -0.00365 -0.00271 23.6 23.6 16.7 27.0 27.0 23.8
200 -0.00365 -0.00365 -0.00271 23.6 23.6 16.7 27.0 27.0 23.8
300 -0.00365 -0.00365 -0.00271 -0.00266 23.6 23.6 16.7 16.2 27.0 27.0 23.8 22.0

Ra/h = 4

w [m] at z̃ = 0 σαα [MPa] at z̃ = 0 σαα [MPa] at z̃ = h

20 -0.00266 -0.00266 -0.00245 10.3 10.3 9.34 14.8 14.8 14.3
50 -0.00266 -0.00266 -0.00245 10.3 10.3 9.32 14.8 14.8 14.3
100 -0.00266 -0.00266 -0.00245 10.3 10.3 9.32 14.8 14.8 14.3
150 -0.00266 -0.00266 -0.00245 10.3 10.3 9.32 14.8 14.8 14.3
200 -0.00266 -0.00266 -0.00245 10.3 10.3 9.32 14.8 14.8 14.3
300 -0.00266 -0.00266 -0.00245 -0.00239 10.3 10.3 9.32 8.98 14.8 14.8 14.3 13.8

Ra/h = 10

w [m] at z̃ = 0 σαα [MPa] at z̃ = 0 σαα [MPa] at z̃ = h

20 -0.00154 -0.00154 -0.00152 0.693 0.693 0.655 7.07 7.07 7.02
50 -0.00154 -0.00154 -0.00152 0.693 0.693 0.654 7.08 7.08 7.03
100 -0.00154 -0.00154 -0.00152 0.693 0.693 0.654 7.08 7.08 7.03
150 -0.00154 -0.00154 -0.00152 0.693 0.693 0.654 7.08 7.08 7.03
200 -0.00154 -0.00154 -0.00152 0.693 0.693 0.654 7.08 7.08 7.03
300 -0.00154 -0.00154 -0.00152 -0.00144 0.693 0.693 0.654 0.447 7.08 7.08 7.03 6.28

Ra/h = 50

w [m] at z̃ = 0 σαα [MPa] at z̃ = 0 σαα [MPa] at z̃ = h

20 0.00823 0.00823 0.00823 -12.3 -12.3 -12.3 12.6 12.6 12.6
50 0.00823 0.00823 0.00823 -12.3 -12.3 -12.3 12.6 12.6 12.6
100 0.00823 0.00823 0.00823 -12.3 -12.3 -12.3 12.6 12.6 12.6
150 0.00823 0.00823 0.00823 -12.3 -12.3 -12.3 12.6 12.6 12.6
200 0.00823 0.00823 0.00823 -12.3 -12.3 -12.3 12.6 12.6 12.6
300 0.00823 0.00823 0.00823 0.00810 -12.3 -12.3 -12.3 -10.5 12.6 12.6 12.6 10.4

Ra/h = 100

w [m] at z̃ = 0 σαα [MPa] at z̃ = 0 σαα [MPa] at z̃ = h

20 0.0326 0.0326 0.0326 -22.4 -22.4 -22.4 22.2 22.2 22.2
50 0.0326 0.0326 0.0326 -22.4 -22.4 -22.4 22.2 22.2 22.2
100 0.0326 0.0326 0.0326 -22.4 -22.4 -22.4 22.2 22.2 22.2
150 0.0326 0.0326 0.0326 -22.4 -22.4 -22.4 22.2 22.2 22.2
200 0.0326 0.0326 0.0326 -22.4 -22.4 -22.4 22.2 22.2 22.2
300 0.0326 0.0326 0.0326 0.0329 -22.4 -22.4 -22.4 -18.5 22.2 22.2 22.2 16.8

Ra/h = 500

w [m] at z̃ = 0 σαα [MPa] at z̃ = 0 σαα [MPa] at z̃ = h

20 0.212 0.212 0.212 -28.2 -28.2 -28.2 28.1 28.1 28.1
50 0.212 0.212 0.212 -28.2 -28.2 -28.2 28.1 28.1 28.1
100 0.212 0.212 0.212 -28.2 -28.2 -28.2 28.1 28.1 28.1
150 0.212 0.212 0.212 -28.2 -28.2 -28.2 28.1 28.1 28.1
200 0.212 0.212 0.212 -28.2 -28.2 -28.2 28.1 28.1 28.1
300 0.212 0.212 0.212 0.222 -28.2 -28.2 -28.2 -20.7 28.1 28.1 28.1 20.7

Table 4: Fourth assessment. One-layered 0◦ cylindrical shell with applied moisture content at the
external surfaces. The proposed 3D model uses order N = 3 for the exponential matrix and different
G mathematical layers.
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a/h 2 4 10 50 100

M at (α = a/2, β = b/2; z̃ = 4h/5)[−]

3D - - - - -
3D(Ma) 0.8000 0.8000 0.8000 0.8000 0.8000
3D(Mc, 1D) 1.0000 1.0000 1.0000 1.0000 1.0000
3D(Mc, 3D) 0.8914 0.9709 0.9952 0.9998 1.0000

v at (α = a/2, β = 0; z̃ = 4h/5) [10−2 mm]

3D 0.006405 -0.004148 0.07625 -2.118 -8.495
3D(Ma) -7.165 -9.489 -10.12 -12.11 -18.49
3D(Mc, 1D) -7.759 -10.18 -10.90 -12.94 -19.31
3D(Mc, 3D) -7.017 -9.879 -10.84 -12.93 -19.31

w at (α = a/2, β = b/2; z̃ = h/2) [10−1 mm]

3D 0.008901 0.02385 0.1367 11.51 90.69
3D(Ma) -0.3691 0.7748 2.976 26.55 120.8
3D(Mc, 1D) -1.043 0.6929 3.678 30.89 129.5
3D(Mc, 3D) -0.8156 0.6990 3.667 30.88 129.5

σzz at (α = a/2, β = b/2; z̃ = h/5) [101 kPa]

3D 0.1670 0.1460 0.1325 0.1298 0.1297
3D(Ma) -95.33 -19.54 -2.631 0.02410 0.1033
3D(Mc, 1D) -76.76 -15.07 -1.941 0.05121 0.1101
3D(Mc, 3D) -55.91 -13.73 -1.908 0.05127 0.1101

σαα at (α = a/2, β = b/2; z̃ = h) [MPa]

3D 0.05621 0.1220 0.6449 15.73 62.88
3D(Ma) 61.71 47.41 43.69 58.53 105.7
3D(Mc, 1D) 69.10 54.11 49.97 64.64 111.8
3D(Mc, 3D) 58.79 51.83 49.64 64.62 111.8

γβz at (α = a/2, β = 0; z̃ = h/3) [10−4]

3D 0.03317 0.06913 0.1688 0.8335 1.666
3D(Ma) -15.18 -7.892 -3.402 0.06178 1.279
3D(Mc, 1D) -16.93 -8.657 -3.628 0.02663 1.262
3D(Mc, 3D) -12.67 -8.024 -3.586 0.02696 1.262

Table 5: First benchmark, sandwich square plate with imposed external moisture content and applied
mechanical load. All the 3D solutions uses N=3 and G=300.

Rα/h 4 10 50 100 500

M at (α = a/2, β = b/2; z̃ = h/2)[−]

3D(Ma) 0.7500 0.7500 0.7500 0.7500 0.7500
3D(Mc, 1D) 0.7500 0.7500 0.7500 0.7500 0.7500
3D(Mc, 3D) 0.6850 0.7389 0.7495 0.7499 0.7500

u at (α = 0, β = b/2; z̃ = h/3) [mm]

3D(Ma) -1.643 -1.243 2.555 5.167 6.794
3D(Mc, 1D) -1.643 -1.243 2.555 5.167 6.794
3D(Mc, 3D) -1.514 -1.224 2.554 5.167 6.794

w at (α = a/2, β = b/2; z̃ = h/2) [mm]

3D(Ma) -3.061 -2.621 8.252 16.11 21.17
3D(Mc, 1D) -3.061 -2.621 8.252 16.11 21.17
3D(Mc, 3D) -2.838 -2.582 8.249 16.11 21.17

σzz at (α = a/2, β = b/2; z̃ = 2h/3) [MPa]

3D(Ma) -1.314 -0.5024 -0.1344 -0.06058 -0.007403
3D(Mc, 1D) -1.314 -0.5024 -0.1344 -0.06058 -0.007403
3D(Mc, 3D) -1.207 -0.4957 -0.1343 -0.06057 -0.007403

σββ at (α = a/2, β = b/2; z̃ = h) [MPa]

3D(Ma) -25.79 -26.27 -25.90 -25.73 -25.75
3D(Mc, 1D) -25.79 -26.27 -25.90 -25.73 -25.75
3D(Mc, 3D) -25.86 -26.28 -25.90 -25.73 -25.75

γαβ at (α = 0, β = 0; z̃ = 0) [10−3]

3D(Ma) -1.026 -0.7063 -0.2706 -0.07889 0.01048
3D(Mc, 1D) -1.026 -0.7063 -0.2706 -0.07889 0.01048
3D(Mc, 3D) -0.9645 -0.6992 -0.2705 -0.07888 0.01048

Table 6: Second benchmark, three-layered composite cylindrical panel with imposed external moisture
content. All the 3D solutions uses N=3 and G=300.
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Rα/h 4 10 50 100 500

M at (α = a/2, β = b/2; z̃ = h/2)[−]

3D(Ma) 0.7500 0.7500 0.7500 0.7500 0.7500
3D(Mc, 1D) 0.7500 0.7500 0.7500 0.7500 0.7500
3D(Mc, 3D) 0.7354 0.7476 0.7499 0.7500 0.7500

v at (α = a/2, β = 0; z̃ = 3h/4) [mm]

3D(Ma) -1.133 -1.252 -1.281 -1.283 -1.284
3D(Mc, 1D) -1.133 -1.252 -1.281 -1.283 -1.284
3D(Mc, 3D) -1.117 -1.249 -1.281 -1.283 -1.284

w at (α = a/2, β = b/2; z̃ = h/2) [mm]

3D(Ma) 2.109 2.479 2.672 2.696 2.715
3D(Mc, 1D) 2.109 2.479 2.672 2.696 2.715
3D(Mc, 3D) 2.080 2.473 2.672 2.696 2.715

σzz at (α = a/2, β = b/2; z̃ = h/4) [kPa]

3D(Ma) -680.9 172.3 95.63 51.54 10.90
3D(Mc, 1D) -680.9 172.3 95.63 51.54 10.90
3D(Mc, 3D) -664.4 172.2 95.62 51.54 10.90

σαβ at (α = 0, β = 0; z̃ = 0) [kPa]

3D(Ma) -703.8 -164.1 -24.90 -12.15 -2.389
3D(Mc, 1D) -703.8 -164.1 -24.90 -12.15 -2.389
3D(Mc, 3D) -692.9 -163.7 -24.90 -12.15 -2.389

γβz at (α = a/2, β = 0; z̃ = h/3) [10−5]

3D(Ma) 15.59 6.534 1.258 0.6243 0.1241
3D(Mc, 1D) 15.59 6.534 1.258 0.6243 0.1241
3D(Mc, 3D) 15.46 6.525 1.257 0.6243 0.1241

Table 7: Third benchmark, four-layered composite cylinder with imposed external moisture content.
All the 3D solutions uses N=3 and G=300.

Rα/h 4 10 50 100 500

M at (α = a/2, β = b/2; z̃ = h/2)[−]

3D(Ma) 0.7500 0.7500 0.7500 0.7500 0.7500
3D(Mc, 1D) 0.7500 0.7500 0.7500 0.7500 0.7500
3D(Mc, 3D) 0.6390 0.7301 0.7492 0.7498 0.7500

v at (α = a/2, β = 0; z̃ = h/3) [mm]

3D(Ma) -0.8904 -0.6471 -0.2607 -0.2528 -0.2663
3D(Mc, 1D) -0.8904 -0.6471 -0.2607 -0.2528 -0.2663
3D(Mc, 3D) -0.7641 -0.6328 -0.2606 -0.2528 -0.2663

w at (α = a/2, β = b/2; z̃ = h/2) [mm]

3D(Ma) -0.1617 0.3608 1.651 1.703 1.681
3D(Mc, 1D) -0.1617 0.3608 1.651 1.703 1.681
3D(Mc, 3D) 0.05400 0.3680 1.650 1.703 1.681

σzz at (α = a/2, β = b/2; z̃ = h/3) [kPa]

3D(Ma) -1080 -553.0 -59.78 -20.61 -2.559
3D(Mc, 1D) -1080 -553.0 -59.78 -20.61 -2.559
3D(Mc, 3D) -958.4 -544.2 -59.76 -20.60 -2.559

σβz at (α = a/2, β = 0; z̃ = 2h/3) [kPa]

3D(Ma) -4584 -2144 -463.4 -233.6 -46.95
3D(Mc, 1D) -4584 -2144 -463.4 -233.6 -46.95
3D(Mc, 3D) -4312 -2121 -463.1 -233.6 -46.95

ϵαα at (α = a/2, β = b/2; z̃ = h) [10−4]

3D(Ma) 2.998 2.315 1.370 1.118 0.9025
3D(Mc, 1D) 2.998 2.315 1.370 1.118 0.9025
3D(Mc, 3D) 2.801 2.280 1.369 1.117 0.9025

Table 8: Fourth benchmark, three-layered composite spherical shell panel with imposed external mois-
ture content. All the 3D solutions uses N=3 and G=300.
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Figure 1: Shell geometry and related orthogonal mixed curvilinear coordinate system.
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Figure 2: First benchmark, sandwich square plate with imposed external moisture content and applied
mechanical load: moisture content profiles for thick (on the left) and thin (on the right) structure. The
maximum moisture content is evaluated at (a/2, b/2).
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Figure 3: First benchmark, sandwich square plate with imposed external moisture content and applied
mechanical load. Displacements, stresses and strains for moderately thick (a/h = 10) structure via the
3D(Mc, 3D) model. Maximum amplitudes w[m], σαα[Pa] and σzz[Pa] at (a/2, b/2), u[m] at (0, b/2),
v[m] and γβz[−] at (a/2, 0).
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Figure 4: Second benchmark, three-layered composite cylindrical panel with imposed external moisture
content: moisture content profiles for thick (on the left) and thin (on the right) structure. The maximum
moisture content is evaluated at (a/2, b/2).
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Figure 5: Second benchmark, three-layered composite cylindrical panel with imposed external moisture
content. Displacements, stresses and strains for thick structure via the 3D(Mc, 3D) model. Maximum
amplitudes w[m], σββ [Pa] and σzz[Pa] at (a/2, b/2), u[m] at (0, b/2), v[m] at (a/2, 0) and γαβ [−] at
(0, 0).
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Figure 6: Third benchmark, four-layered composite cylinder with imposed external moisture content:
moisture content profiles for thick (on the left) and thin (on the right) structure. The maximum
moisture content is evaluated at (a/2, b/2).
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Figure 7: Third benchmark, four-layered composite cylinder with imposed external moisture content.
Displacements, stresses and strains for moderately thick structure via the 3D(Mc, 3D) model. Maxi-
mum amplitudes w[m] and σzz[Pa] at (a/2, b/2), u[m] at (0, b/2), v[m] at (a/2, 0), σαβ [Pa] at (0, 0)
and γβz[−] at (a/2, 0).
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Figure 8: Fourth benchmark, three-layered composite spherical shell panel with imposed external
moisture content: moisture content profiles for thick (on the left) and thin (on the right) structure.
The maximum moisture content is evaluated at (a/2, b/2).
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Figure 9: Fourth benchmark, three-layered composite spherical shell panel with imposed external
moisture content. Displacements, stresses and strains for thick structure via the 3D(Mc, 3D) model.
Maximum amplitudes w[m], ϵαα[−] and σzz[Pa] at (a/2, b/2), u[m] at (0, b/2), v[m] and σβz[Pa] at
(a/2, 0).
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