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Identification of nonlinear damping using nonlinear 
subspace method 
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Abstract. In this paper, the identification problem is discussed for damping 
nonlinearity. In practical applications, nonlinear damping is widespread, which 
is inevitable in the vibration response. Within the wide range of nonlinear 
damping mechanisms, friction is surely one of the most common, and with a 
high impact on the dynamical behavior of structures. Two common kinds of 
friction are investigated: quadratic friction and Coulomb friction. Nonlinear 
damping parameters are identified by nonlinear subspace identification, where 
the damping nonlinearity of the system is considered as a feedback force ap-
plied to the underlying linear system and is identified utilizing the time domain 
data. Two simulation examples are conducted to verify the effectiveness of the 
method. Results confirm the effectiveness of the methodology in identifying 
damping nonlinearities. 

Keywords: Nonlinear damping, Quadratic friction, Coulomb friction, Nonline-
ar subspace identification. 

1 Introduction 

In engineering, structures often exhibit nonlinear behaviour. Nonlinear damping [1] is 
a common nonlinear type, which may lead to difficulties in predicting the system 
response [2] . Therefore, it is essential to identify the nonlinear damping parameters 
from the measured vibration data [3]. 

The reader can refer to the extensive review of Noël et al. [4] about the develop-
ments in nonlinear system identification during the past ten years, emphasizing the 
progress realized over that period. As for nonlinear damping, an identification method 
based on the harmonic balance analysis was implemented in [5], considering soften-
ing and hardening behaviors. Amabili et al. [6] identified the nonlinear damping at 
each excitation level in the nonlinear regime from the experimental data of a rubber 
plate. Moreover, it should be highlighted that damping identification can be a tricky 
task also in the linear case, as studied by Naylor et al. [7], characterizing the nonpro-
portional damping distribution of a multi-degrees-of freedom system using the reso-
nant decay method. 

Among the several publications about the nonlinear system identification of struc-
tures, Marchesiello et al. [8] adopted the perspective of nonlinearities as internal 
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feedback forces and proposed the nonlinear subspace identification technique (NSI). 
Given the robustness and efficacy of the subspace method, these nonlinear subspace 
algorithms open up new horizons for the identification of nonlinear mechanical sys-
tems. 

In this paper, NSI is extended to identify the nonlinear damping. Two numerical 
examples are used to verify the proposed method. 

2 Nonlinear subspace method considering friction 

The nonlinear damping is considering. The equation of the system can be written as: 

       dMx t Cx t Kx t f f t                                (1) 

where M is the mass matrix, C is the damping matrix and K is the linear stiffness ma-
trix. 

The system can be viewed as subjected to the external forces f(t) and the internal 
feedback forces due to nonlinearities fd as shown in. 

 

Linear system

fd : Nonlinear
dissipative force

f (t) x (t)

-
+

Nonlinear feedback  

Fig. 1. Closed-loop representation with nonlinear damping 

A one-degree-of-freedom mass-spring system with the Coulomb friction is used to 
elaborate the nonlinear subspace method. 

          sgnmx t cx t kx t x t f t                                 (2) 

By moving the nonlinear term of Eq.(2) to the right-hand side 

            sgn = dmx t cx t kx t f t x t f t f                            (3) 

A state vector is used by  Tz x x  ，the state-space formulation of the equation 

of motion can be expressed as 
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where Ac, Bc, C and D are the continuous state-space matrix. 

The “extended” frequency response function can be derived based on authors’ pre-
vious work about the nonlinear subspace identification. 

    1

E c cH D C i I A B
                              (6) 

where ω is the angular frequency and i= -1 . 
Substituting Eq.(4) and Eq.(5) into Eq.(6), one can obtain 

   EH H H                                       (7) 

where H is the underlying linear system receptance matrix. The nonlinear damping 
coefficients can be identified based on Eq.(7) 

3 Simulation 

3.1 Singe degree of freedom with cubic stiffness and quadratic friction 

Consider the SDOF system with cubic stiffness and coulomb friction depicted in 
Fig.1, whose motion is described by the following equation: 

           mx t cx t kx t x t x t f t                                  (8) 

Quadratic friction 

x

F

m

k

c

 

Fig. 2. A mass-spring system with quadratic friction 

with system parameters summarized in. Assume that the type and the location of 
the nonlinearity are unknown. 

Table 1. System parameters of Singe degree. 

m (kg) k (N/m) c (Ns/m) α(N) 

2 1000 1 0.5 

 
The SDOF system is excited by a zero-mean Gaussian random input, whose root-

mean-square (r.m.s) value is 5. The response is calculated by Runge-Kutta. The effect 
of the measurement noise on the parameter estimation results is investigated by cor-
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rupting the previously generated output adding 5% Gaussian zero-mean noise. The 
displacement is shown in Fig.3. 
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Fig. 3. The displacement of the system 

The model order n=2 is determined by inspecting the singular value plot in Fig.4 
(with i=20 block rows), where a jump of seven orders of magnitude between model 
order two and three is observed. 
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Fig. 4. Singular value plot with 5% measurement error and i=20 



5 

0 5 10
0.4

0.5

0.6

 Frequency (Hz)

R
e[

α]
(N

s2 /m
2 )

0 5 10
-6

-3

0

3

6

 Frequency (Hz)

Im
[α

](
N

s2 /m
2 )

×10-5

 

Fig. 5. Real and imaginary parts of the identified coefficients 

The determined coefficients are shown in Fig.5. The error of the nonlinear damp-
ing coefficient α is only 1.2%. As shown in Fig.6, the underlying estimated FRF h can 
be obtained by the NSI. Results show that the underlying estimated FRF h is in quite 
good agreement with the true value. 
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Fig. 6. Underlying linear FRF h11 
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3.2 Three degrees of freedom with Coulomb and quadratic friction 

The three-degree-of-freedom nonlinear system shown in Fig. 5 is excited by a zero-
mean Gaussian random force at DOF 3 only. The system parameters are summarized 
in Table 2. 

 Quadratic friction  

m1 m2 m3

k 1 k 2 k 3

c 1 c 2 c 3

x 1 x 2 x 3 f 2,

 Coulomb friction 

 

Fig. 7. Three-degree-of-freedom nonlinear system with a quadratic friction to ground at DOF 1 
and the Coulomb friction to ground at DOF 3 

Table 2. System parameters 

Mass (kg) Linear stiffness (N/m) Damping (Ns/m) Nonlinear damping 
m1=m2=1 
m3=1.5 

k1= k3=800 
k2=1000 

c1= c2=2 
c3=1 

α1=5 
α2=0.2 

 
The system is excited by a zero-mean Gaussian random input, whose root-mean-

square (r.m.s) value is 5 at node 3. The response is calculated by 4th Runge-Kutta. The 
effect of the measurement noise on the parameter estimation results is investigated by 
corrupting the previously generated output adding 2% Gaussian zero-mean noise. The 
displacement is shown in Fig.8. 
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The model order n=6 is determined by inspecting the singular value plot in Fig.4 
(with i=40 block rows), where a jump of four orders of magnitude between model 
order six and seven is observed. 
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Fig. 9. Singular value plot with 2% measurement error and i=40 

The determined coefficients are shown in Fig.5. It is worth highlighting that the 
imaginary part is always much lower than the absolute value of the real part in the 
selected frequency range, which assesses the goodness of the identification. The iden-
tified damping coefficients are reported in Table 3. The max error is only 0.18%. 

Table 3. Identified results 

Nonlinear damping coefficients Exact value Identified value Error/% 
α1 5 5.010 0.18 

α2 0.2 0.199 0.11 
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Fig. 10. Real and imaginary parts of the identified coefficients 

As shown in Fig.10, the underlying estimated FRF h13 can be obtained by the NSI. 
Results show that the underlying estimated FRF h13 is in quite good agreement with 
the true value. 
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Fig. 11. Underlying linear FRF h13 



9 

4 Conclusion 

Two common kinds of nonlinear damping are successfully identified by nonlinear 
subspace method. The effect of the measurement noise on the parameter estimation 
results is investigated by corrupting the previously generated output adding different 
Gaussian zero-mean noise. Results show that the proposed method can fully charac-
terize the nonlinearities in the structure and effectively identify the nonlinear damping 
parameters. 
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