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Abstract. Due to the exponential growth of data communications, mil-
limeter -wave (mm-Wave) new radio specification becomes key enablers
for fifth generation (5G) communication systems. However in the mm-
Wave band frequency, the propagation loss is intensively large and can-
not cover all the determined specifications. To tackle this drawback, the
transceiver parts must sense the high radiated output power from power
amplifiers. Hence by using high performance wideband antennas, the
amplifiers can facilitate massive multiple-input multiple-output (MIMO)
5G systems. The figure of merit (FoM) of an amplifier is determined by
the output power that must be challenged by other design specifications
as: power gain, drain efficiency, and linearity. Therefore, powerful multi-
objective optimization methods are required for welcoming appointed
passive (antennas) and active (power amplifiers) characteristics in the
determined frequency band. On the other side, high performance anten-
nas in the 5G networks are also needed that can be designed using potent
optimization methods. In this chapter, we provide collection of various
optimization methods which have been recently applied for designing and
optimizing high performance high power amplifiers and antennas. Hence,
any designer can access to the nominated algorithms and can select the
ones that are suitable for their problems.

Keywords: Algorithm · Antenna · Fifth generation (5G) · Multi-objective
optimization · Printed antennas · Power amplifier (PA).

1 Introduction

Fifth generation (5G) communication systems are growing rapidly in modern
devices due to the necessity for multi-gigabit per second (Gb/s) cellular connec-
tivity [1]. For 5G applications, the international telecommunication union (ITU)
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has determined at least 500 MHz bandwidth and wideband spectrum-efficient
modulations (like 64- and 256-quadrature amplitude modulation (QAM)) [2].
Generally, the millimeter-wave (mm-Wave) bands for developing 5G are around
28, 39, and 45 GHz that are leading to increase requirements for higher data
rates.

The mm-Wave technology requires high performance 5G antennas and wide-
band multiple-input and multiple-output (MIMO) technology for constructing
ultradense networks. In these networks, the amount of output power (PL) can
have significant influences on achieving suitable isotropic radiated power. Hence
for supporting future 5G networks, power amplifiers (PAs) play an important role
in arranging the PL response. This specification influences other PA characteris-
tics as efficiency, bandwidth, power gain, and linearity (i.e., amplitude modulated
(AM) and phase modulated (PM) signals). Designing high performance PAs with
the nominated specifications is not straightforward and requires powerful effort
and experiences. Conventional electronic design automation (EDA) tools such as
ADS, AWR, and HSS [3] are useful software including some optimization meth-
ods. These methods are appropriate for optimizing linear and nonlinear circuits;
however, when the dimensional of data is becoming huge and the complexity of
circuit is increasing additional optimization methods are required [3].

The PAs have nonlinear behavior in the operation frequency band because of
included transistors such as gallium nitride (GaN) high-electron-mobility tran-
sistor (HEMT), gallium arsenide (GaAs) HEMT, and LDMOS (laterally-diffused
metal-oxide semiconductor) transistors. These nonlinearities occurr due to the
design architecture and also due to the harmonic effects of used transistors.
Concurrently, optimizing nonlinear functions such as PL, power gain (Gp), drain
efficiency (ηD), and also adjacent channel power ratio (ACPR) specifications
are not straightforward and requires multi-objective optimization methods. If a
satisfied PL is achieved from PAs, in the general configuration of communica-
tion systems flexible joint communication can be appeared resulting in enabling
MIMO 5G systems.

Beside of optimizing PAs, designing high performance antennas is an essen-
tial necessity. Therefore, multi-objective optimization methods are required to
challenge and deal with the large amount of data generated during the design of
microwave circuits to satisfy the input constrains and design goals [4]. By paying
attention to the limitations in the multiple features and the existed configura-
tions, multi-objective optimization methods are growing exponential to improve
especial characteristics in communication systems. Generally, the optimization
attempts to find an optimal solution that makes the problem as effective as pos-
sible. Hence, multi-objective optimization determines the best solution among
various objectives and constraints.

This chapter provides an overview over the recently employed optimization
methods for designing and optimizing high performance PAs and antennas that
can generate high output power and high flat gain, respectively. Additionally,
various optimization methods for simultaneously optimizing PA’s design spec-
ifications have also been described in detail by defining the theory and real
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implementation of each method. Any researcher, by considering his/her system
configurations, can decide the best and suitable optimization method(s) to reach
the desired goals.

This chapter is organized as follows: Section 2 is devoted to explain the
background of optimization methods and their importance in the communication
systems. Section 3 provides the purpose and motivation of optimization methods
in microwave designs. Various employed optimization algorithms in the design of
power amplifiers and antennas are summarized in Sec. 4. Finally, Sec. 5 concludes
this chapter.

2 Background

In the recent years, modern wireless communication systems include 5G anten-
nas face with drawbacks related to transferring data among various components.
As described in Section 1, employing high performance high power amplifiers in
communication systems is critical since the output power of any PA directly
influences the radiation through 5G antennas. Therefore, designing and optimiz-
ing PAs that result in satisfied design specifications in terms of PL, Gp, ηD, and
linearity are essential and important. The PAs include active components such
as GaN and GaAs HEMTs with passive components in the input matching net-
work (MN), output MN, and also in the biasing networks as shown in Fig. 1. The
performance of PA depends on the quality factor (Q) of included components,
circuit topology, and harmonic effects of used transistors.

Commercial electronic design automation (EDA) software tools such as ADS
and AWR, are beneficial in microwave circuit optimizations. However, in RF and
microwave field the space of design parameters is huge and these tools cannot
fulfill all the requirements. On the other hand, optimizing concurrently the design
specifications of PAs and antennas, is not straightforward and EDA tools can not
support all stipulations. Generally, these optimizations are performed manually
by designers and the circuit designs depend mostly on the engineer’s experience.

In summary, the need of advanced multi-objective optimization methods
becomes essential today and designers present modern algorithms for design-
ing high performance PAs and antennas that various design specifications are
trading-off among each other.

3 Target and motivation of optimization methods in the
microwave field

As explained above, the optimization methods play significant roles in the en-
gineering and assist engineers to design and optimize high performance circuits.
This section provides transparent explanations about the definition, general
structures of various optimization methods, and the motivation of using these
methods in power amplifier and antenna designs.
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Fig. 1. The general structure of communication systems includes a power amplifier and
an antenna.

3.1 Definition of optimization

The difference between the technological design process and the engineering de-
sign process is the optimization process. Mathematically, the optimization term
refers to procedures for finding the optimal solutions of functions in various
conditions, here described as systems and circuits. The optimal values of sin-
gle/multiple functions with various variables are determined by considering the
set of constrains. Herein, mathematical models are employed to help engineers
predicting design parameters and are used for minimizing design cost with max-
imizing system performance. In configuring systems and networks, the initial
guess of design parameters are determined then parameter values are optimized
with respect to the interrelationships between various specifications.
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Any optimization process can be either applied to a single-objective or a
multi-objective function. Generally, the mathematical formulation for optimiza-
tion problems can be defined as (1), minimize f(x); f(x) ∈ Rm

subject to g(x) ≤ 0; g(x) ∈ Rk

x ∈ Ω

 (1)

where the general description for the defined parameters in (1) are as follows:

fx: Vector with m objective functions;
gx: Vector with k constraints;
x : Vector with n design variables on the search space Ω.

The quantity m represents that the function is either single-objective or
multi-objective optimization: m=1 and m>1 define single-objective and multi-
objective optimizations, respectively.

3.2 Configuration of optimization

Providing accurate flowchart and structure for designing and optimizing any
circuit and system is one of the critical steps. Based on this, designers attempt
to find the best optimization solvers that can find the response to their problems
easily. Engineers firstly find various design solutions and then select which of the
methods will provide the best results for their circuits. After picking the best
solution, optimization methods and algorithms are performed for achieving the
optimal solution.

In the engineering domain, the optimization process is mainly applied for
three targets namely: size optimization, shape optimization, and topology op-
timization. Firstly, any designer must determine that for what purpose the op-
timization is performed (i.e., size, shape, and/or topology). Then, the design
parameters are selected and the optimization algorithms are determined based
on the complexity of the problems at system level design. Finally, the identi-
fied algorithms are employed for achieving satisfied design specifications with
the best parameter values. Figure 2 shows the general optimization flow in the
engineering field. Simply, the optimization process is a systematic process where
design constraints and criteria are applied to achieve the optimal solutions in
terms of various specifications such as productivity, strength, and utilization.

3.3 Need of optimization process

Optimization methods are useful from various perspectives as: developing effec-
tiveness, improving quality, and reducing design cost. Typically, algorithms esti-
mate the direction of improvement and can decide the optimum conditions for the
performed process. The most accurate responses and solutions can be achieved
by employing mathematical knowledge to properly select the right model and the
most appropriate optimization tool to reduce as much as possible the required
number of iterations.
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Fig. 2. General structure of optimization process.

3.4 Use of power amplifiers and antennas in the communication
systems

As Fig. 1 shows, the communication systems involve two important structures
namely as: power amplifier (active device) and antenna (passive device). This
section provides the general explanations regarding the design and optimization
of amplifiers and antennas.

High performance power amplifier design and optimization

Tuning harmonic impedances can improve the efficiency performance of var-
ious classes of PAs. To generate 100% efficiency, voltage and current waveforms
must not be overlapped as Fig. 3 depicts. The maximum efficiency is generated
when there is no knee voltage (Vk) at different harmonics; hence, the power is
not wasted as heat. Ideally and theoretically, the efficiency in class-F, F−1, J,
and E is 100% and in other types as in class-A, AB, B, and C efficiency can be
achieved as 50%, 50-78%, 78.5%, >78.5%, respectively [5].

P
d
is
s

t

voltage current

Vk=0

(a)

π π 

I p
e
ak

V
p
e
ak

(b)

Fig. 3. a) Ideal waveforms for PAs; b) Peak magnitudes of current and voltage with
rectangular current and half-sinusoidal voltage.

The general equation for drain efficiency (ηD (%)) is shown in (2). As Fig.
3.b shows, the ηD can be 100% when the fundamental voltage and current have
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peak magnitudes. Herein, the maximum efficiency occurs for
Ipeak
IDC

= 4
π
and

Vpeak
VDC

= π
2
drain (or collector) in (2).

η =
1

2

Vpeak
VDC

(2)

As shown in Fig. 1, the parameters that influence ηD are drain
voltage (vds) and drain current (ids). In terms of power, equation (2)
can be formulated as (3)

ηD =
PL,1f
PDC

(3)

where

PDC = Pdiss+PL,1f+
∞∑
n=2

PL,nf =
1

T

T∫
0

vds(t)·ids(t)dt+PL,1f+
∞∑
n=2

PL,nf

(4)
For (4) the general descriptions are as: PL,1f is the output power

at the fundamental frequency while PL,nf represents output powers
at different harmonics n. Hence as much as dissipated heat power
(pdiss) is reduced, PL,nf is increased and the drain efficiency can be
enhanced.

Afterwards, the Gp can be explained as (5) where the PL is the
power delivered to a load and Pin is the available power of the gener-
ator. Therefore, by increasing PL the gain performance is increased
as well.

GP =
PL
Pin

(5)

In PA designs, it is also desired to minimize phase distortion
(AM/PM). Therefore, various studies are presented around enhanc-
ing linearity without worsening other design specifications such as
efficiency and power gain [6,7]. As reported in [8], the phase distor-
tion depends on the variation of device’s input impedance. Figure 4
shows the simplified PA after applying Miller approximation [9].

In the equivalent circuit of PA, the input MN is presented with
the impedance of ZS=RS +jXS, the output MN is explained by
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Fig. 4. Simplified power amplifier. Vs: Signal source, Rg: Input resistance, Cin: Input
capacitor, Cout: Output capacitor.

admittance of YL=GL +jBL, and the active device is simplified by
gm · VGSi. The expressions of Cin and Cout are presented in (6)-(7).

Cin = Cgs + Cgd · (1 + gm/GL) (6)

Cout = Cds + Cgd · (1 +GL/gm) (7)

Hence, the voltage amplification can be expressed as (8), and the
phase of the output voltage is described in (9).

Av = VL/VGSi = −gm/GL (8)

6 VL = tan−1(
Rs +Rg

Xs − 1
ωCin

) (9)

By considering eq. (9), it can be realized that the linearity, or in
other words the phase distortion, of PAs depends on the nonlinear
parameters gm, Cgd, Cgs, Cds, and also on the output conductance
(GL).

High performance antenna design and optimization

In the field of communication the printed antenna is known as
a microstrip antenna where during the fabrication usually photo-
lithographic techniques is employed on a printed circuit board (PCB).
Recently, researchers attempt to design and optimize printed anten-
nas in the application of 5G and future sixth generation (6G) tech-
nologies since they are:

– Inexpensive in fabrication;
– Suitable to be used in the ultra high frequency (UHF);



Title Suppressed Due to Excessive Length 9

– Powerful in a directive gain;
– Appropriate to result in high flat gain in single antenna and also
array configurations;

– Flexible in an array form and able to be a phased array of antenna
that includes beam-forming ability.

When designing antennas, optimization methods generally tar-
get size optimization, shape optimization, and/or topology optimiza-
tion. These optimizations are performed to optimize the dimensions,
shapes or geometry of the antenna structures, respectively. There-
fore, it is necessary to determine suitable optimization approaches
for one or all of the intentions that lead to improve output responses.
Over the past decade, various optimization methods have been ap-
plied to optimize and design printed and patched antennas.

In [10], time-to-market solution for reducing the production time
in patch antenna designs is presented which is based on the inkjet
printing to fabricate emitters. Respectively, in another work ([11]) an
optimization method is presented for employing it in the inkjet print-
ing of RF structures. This procedure is applied by using one typical
cardboard paper material as a substrate and a silver nanoparticle ink
as the conductor which results in implementing microwave circuits
on ultra-low-cost highly fibrous substrates. The antenna’s geometries
with layer thickness are optimized in [12] where in detail, the control
of the conductor thickness with the concentrating ink only by using
coplanar waveguide (CPW) and two antennas, are discussed. It is
proved that by applying the presented method with one layer, the
antenna can be printed and satisfactory output performance can be
achieved.

4 Practical application of optimization algorithms in
the design of high performance power amplifiers and
antennas

The following description provides in detailed presentation of the
various applied optimization methods for designing high performance
power amplifiers and antennas that are suitable for 5G networks.

4.1 Bottom-Up Optimization (BUO)

The bottom-up optimization (BUO) method is the process of piec-
ing the system into sub-blocks, similarly to domain decomposition.
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In this method, the system and circuit are decomposed into several
hierarchical levels. The optimization process starts with the lowest
level and the decomposed levels are increased sequentially and hi-
erarchically. This method continues increasing until achieving either
the system-level or circuit-level with suitable output performance.

System-level: This methodology has been recently applied in
various RF circuits. Typically, multi-objective optimization algo-
rithms are used and the information is passed to the upper level.
With this methodology, the designers can be sure that all the circuits
have been considered at all levels and there would be no necessity for
redesigning cycles. In [13], the BUO algorithm has been applied for
two-level hierarchical design and in [14] this method is employed for
splitting hierarchy to circuit design levels (i.e., system-circuit-device)
as Fig. 5.a shows. Also, this method has been applied for optimizing
an antenna array by starting with the single antenna [15]. As Fig.
5.b shows, the number of single antennas is increasing sequentially
and the distance between single antennas is optimizing concurrently
up to obtaining desired output performance.

Circuit-level: The BUO method has also been applied for opti-
mizing circuit-level designs. The MNs are the essential parts of PAs
that can be constituted using passive reactive components such as
inductance (L), capacitor (C), and also lossless transmission lines
(TLs) in both input and output MNs. The conventional method of
designing PAs is tuning the harmonic impedances that can create
difficulties for designers to handle high-dimensional data. To tackle
this problem, the BUO methodology has been successfully applied
recently for designing and optimizing a class-AB amplifier [16] where
this algorithm is employed by getting benefit of two LC networks
that are normalized to 50Ω on the Smith chart (see Fig. 6.a.). Fig-
ure 6.b presents the general structure of the optimized PA and the
included MNs in the input and output MN sides. Designing the PA
starts with two LC networks: one in the input MN and one LC in
the output MN. Then on both sides, concurrently the number of LC
units are increasing up to achieving desired output performance.

This BUO algorithm has been also recently employed for design-
ing and optimizing a single microstrip antenna as Fig. 7 presents.
This methodology is applied by sequentially increasing the number
of TLs and altering the configuration of TLs [17]. The algorithm
for designing a single microstrip antenna starts with one TL and
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Fig. 5. System-level optimization using the BUO method; a) RF front-end system
[LNA (low noise amplifier), VCO (voltage-controlled oscillator)] [14], b) antenna array
design [15].

then the number of TLs are improved incrementally. It considers the
generated output performances and it stops automatically when the
required specifications as gain and bandwidth are obtained.

4.2 Top-Down Optimization (TDO)

Opposite to the BUO algorithm, the top-down optimization (TDO)
method is the process of decomposing the system/circuit into sub-
blocks. Figure 8 presents the general structure of two optimization
methods (i.e., BUO and TDO methods) that are operating in con-
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trast. In the TDO method, the whole system is analyzed and formu-
lated, then each sub-blocks is considered and optimized regarding
the required specifications. This method starts with the complete
whole design and breaks it downs to small pieces.

In [18], this method has been applied for designing PAs with dis-
tributed elements. In this method, firstly a PA with lumped elements
(LEs) using BUO is designed then the LE amplifier, is converted
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to the PA with TLs by employing the TDO algorithm. The detail
descriptions for employing this optimization has been presented in
Algorithm 1. The TDO method leads to generate the post-layout
structure by applying the fabrication rules and constraints.

Algorithm 1 Top-down optimization for designing and optimiz-
ing a PA

1: Design a PA with lumped elements using BUO method;

2: Decompose the MNs into unit cells that include one inductance
and one capacitor;

3: For each unit cell, examine and replace with with TLs;

4: Evaluate the performance of added TLs through the Gaussian
process (GP);

5: From the various TL cell configurations, select the one that has
maximum a posteriori (MAP).
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4.3 Bayesian optimization (BO)

The Bayesian optimization (BO) is the method of optimizing single-
objective or multi-objective functions that include continuous do-
mains. The BO method is the common optimization method used in
machine learning (ML). It is a black box optimization where for the
defined input parameter (x) the output response (f(x)) is predicted
with the BO method as Fig. 9 shows. This optimization constructs a
surrogate for the objectives using Gaussian process (GP) regression.
The BO method aims to solve the problem of (max/min f(x)) where
the GP provides a Bayesian posterior probability distribution. When
any f is created in a new point, the posterior distribution is updated
as well. The acquisition function provides the new value with re-
spect to the current posterior distribution. The general flowchart is
shown in Fig. 10. This optimization method provides better conver-
gence rates in comparison with the conventional methods used in the
electronics design automation (EDA) tool [19].
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Fig. 9. Black box BO optimization.

In the BO method, firstly suitable training, validation, and testing
data are created. Then GP model is built using the maximum a
posteriori (MAP) metric as (10),

ωMAP = argmax
n∏
i=1

ρ(yi | f(xi;ω))ρ(ω) (10)

where ρ(ω) is the prior probability with the weighting vector: ω =
(ω1, ω2, ..., ωm). x is the input data and y is the predicted output
response.

After achieving the required MAP, the xt = argmax[EI(x)PI(x)]
is selected where acquisition functions are as following: EI is the
expected improvement and PI is the probability of improvement.
Please refer to [20] to the expanded formulations of these terms. Then
the new output response is predicted using the Gaussian distribution
as defined in (11-12) with a kernel function ofK(x, x

′
), a meanm(x),

and a standard deviation σ(x). The general GP model with training
data (i.e., D0=

{
xi, yi

}
) is shown in Fig. 11. Finally, if the required

specifications are not obtained then the GP model is updated.

m(xn+1) = KT [K + σ2
nI]
−1Y (11)

σ2(xn+1) = K(xn+1, xn+1)−KT [K + σ2
nI]
−1K (12)

This method has been used in designing and optimizing various
antennas [21,22,23,24]. In [21] based on the BO method, the un-
certainty quantification (UQ) drawback in the antenna designs is
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solved that results in an accurate characterization of nonsmooth be-
haviours. As another application of this method in [25], by employing
the BO method the design of simulation-driven antenna is acceler-
ated. In the presented method, an updated version of EI acquisition
function is described where the updated responses are considered
using parallel computation. Like the previous BO based strategy
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in [23], computational efficiency planar antenna deign is described
where an accurate antenna model is achieved using a reduced train-
ing sets.

Recently, sparse arrays in the near-field region have got the at-
tention of researchers as they can be used in various industrial and
biomedical applications. Hence for achieving high performance out-
comes, larger apertures are required. This specification can be achieved
when the number of elements are increasing; however this conven-
tional method is costly. The study in [22] presents an optimization-
oriented method with the aid of Bayesian compressive sensing and
convex optimizations for solving the problem of near-field sparse ar-
ray synthesis (see Fig. 12). As presented in Fig. 12, the reference
pattern is sampled by the equations presented in (13) where the ref-
erence patterns are radiated by N candidate elements. The detailed
parameter descriptions for (13) are as following: T is a truncation
angle, K is the divided angle of solution space, and z provides the
distance between the array aperture and the focal plane. Hence, the
presented method in [22] provides the suitable truncation of the syn-
thesis plane which lacks in the traditional methods.


xk = z × tan(2T (k mod Kx)

Kx−1 − T )
yk = z × tan(

2T [ k
Kx

]

Ky−1 − T )
zk = z

 (13)

Fig. 12. Near-field focus problem [22].
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Moreover, the number of antenna elements for designing the flat
gain antenna array can be determined successfully by using the BO
method [24] where the process is done automatically.

This useful optimization method can be used in designing high
performance PAs as well and recently this method has shown its sus-
ceptibility and capability in various designs like one-stage PA and
Doherty PA. Preparing post-layout scheme for any system design is
not straightforward and requires additional efforts. Hence, an power-
ful optimization is required for providing the ready-to-fabricate lay-
out which results in high performance PA characteristics. In [26], BO
method is employed as an optimization tool for converting the PA
with lumped elements to the PA with distributed elements which au-
tomatically optimizes the PA and generates the layout. The related
optimization flowchart is shown in Fig. 13. The presented method in
[26] is described in Algorithm 2, where all steps of the optimization
is processing automatically.
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Fig. 13. Automated PA optimization with the BO method [26].

Algorithm 2 Converting lumped element PA to the PA with
distributed elements based on the BO method
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1: Extract gate and drain impedances of used transistor;
2: Import the achieved impedances to the simplified real frequency
technique (SRFT) [27];
3: Combine the obtained input MN and output MN from the SRFT
and construct the PA;
4: Convert each LE unit includes one capacitor and one inductance,
to its TL model and provide sequential input and output MNs in-
cluding TLs;
5: Run BO method for predicting suitable design parameters of TLs
(i.e., width and length of TLs). The objective functions are the real
and imaginary responses of lumped element MNs;
6: Apply presented method in [28] that automatically increases and
decreases the component values (i.e., random optimization) as a final
polishing stage.

In the following, other common optimizations that have recently
been employed for designing printed antennas are reported that are
divided into three sections namely as: i) optimizations based on an-
imals, plants or insect behaviors, ii) optimizations based on human
treatments, and iii) optimizations based on the evolution process.

4.4 Optimizations based on animals, plants or insect behaviours

This section provides an overview over the various intelligent meth-
ods that are used for optimizing antennas by using the behavior of
animals, plants, or insects. Short descriptions of some of the most
widespread methods and the considered applications are as follow:

Particle swarm optimization (PSO)

The PSO is based on the stochastic optimization technique and
finds the optimal solution using the random iteration [29]. This op-
timization includes simple and quick algorithms and outperforms
the design geometry and configuration with a slow convergence.
This method has recently been employed for designing and opti-
mizing in-homogeneous lens antenna, slot antenna, hemispherical
antenna, band-gap resonator antenna, antenna array, and also for
beam-forming network [30,31,32,33,34,35,36].

Ant colony optimization (ACO)
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The ACO method is an effective method for determining the best
path on a weighted graph by moving on the graph. In this method,
among the various points, the ants are selecting the shortest path for
moving to the determined destination as Fig. 14 shows. This method
is based on the swarm intelligence techniques and it is effective in
solving combinational optimization problems. It uses the behaviour
of ants while searching for the food and storing the food in the nests.

A B

Fig. 14. Basic idea of ACO method in the graph; choosing the shortest path by ants.

In [37,38], the ACO method is employed for designing 3-D fre-
quency selective structures (FSSs) and patch antenna arrays, re-
spectively. In [37], the multi-objective lazy ant colony optimization
(MOLACO) algorithm is applied for providing rapid and more ac-
curate retrieval of S-parameters.

Artificial bee colony algorithm (ABC)

The ABC method is based on the swarm intelligence and is in-
fluenced by the behavior of honey bees [39]. The bees in the colony
continuously fly until achieving the best solution in the multidimen-
sional solution space. Recently, this method has been employed for
solving electromagnetic problems, optimizing antenna size, gain, and
also conjugate matching [40]. For illustrating an application of the
ABC method, Fig. 15 presents the outcome of a practical implemen-
tation of this algorithm in designing spiral shaped antenna before
and after the optimization.

Artificial plant optimization algorithm (APOA)

Plants have a nervous system that becomes suitable for solv-
ing large combinatorial problems. This method is inspired from the
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(a) (b)

Fig. 15. Optimizing spiral antenna using ABC method [41]; a) before optimization, b)
after optimization.

growth behaviour of plants and includes the photosynthesis and pho-
totropism mechanism [42].

For designing a printed Yagi antenna, in [43] invasive weed opti-
mization (IWO) is employed that is a population-based evolutionary
optimization algorithm inspired by the behaviour of weed colonies.
This method is a close-loop optimization and it is suitable for shape
and structure optimization. In another study ([44]), IWO method is
employed for optimizing the spacing between the elements leading
to provide suitable radiation patterns.

Chicken swarm optimization (CSO)

The CSO method is a bioinspired algorithm that patterns the
hierarchical order in the chicken swarm by considering the chicken’s
swarm behaviour [45].

This method has an easy implementation and it has a satisfied
performance in reducing the sidelobe of antennas [46,47,48,49]. As
a practical application, Fig. 16 presents the implementation of this
algorithm for three types of antennas in order to provide the better
beam pattern optimized outcomes [47]. In this method, suppressing
the maximum sidelobe level for linear antenna array, circular antenna
array, and random antenna array is investigated.

Bacterial foraging optimization (BFO)

The BFO algorithm is inspired from the social foraging behaviour
of escherichia coli bacteria, and mimics the bacteria forage over a
landscape of nutrients [50,51]. This method has been successfully
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Fig. 16. Employed CSO method in [47] for optimizing different antenna arrays.

applied in various problems and it shows effectiveness in many mi-
crowave designs. In [52], this algorithm is applied for MIMO system
designs and it tackles the problem of a combinatorial non-convex
optimization.

Other optimization methods

There are some other optimization methods as: firefly algorithm
(FA) [53,54], fruit fly optimization algorithm (FOA) [55,56], grey
wolf optimizer (GWO) [57], shuffled frog leaping algorithm (SFLA)
[58], cuckoo search algorithm (CSA) [59,60], biogeography based op-
timization (BBO) [61], and bat algorithm (BA) [62]. These algo-
rithms are recently applied for designing and optimizing antennas
and demonstrate their validity by providing satisfactory output per-
formances [63].

4.5 Optimizations based on human treatments

In this section, we will provide various optimization methods that are
inspired from the behaviour and treatment of humans. Some subsets
of this kind of optimizations are namely as: harmony search (HS)
algorithm, teaching learning based optimization (TLBO), and also
social emotional optimization algorithm (SEOA).

Harmony search (HS) algorithm

This optimization is based on the musical harmony and creates
music with the combination of sounds generated from various music
instruments.
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This optimization is employed in various applications like: reduc-
ing side-lobe and side-band in timed antenna array [64], determining
the optimal element positions in the annular sectors [65], and also op-
timizing the linear aperiodic arrays with a minimum peak side-lobe
level [66].

Teaching learning based optimization (TLBO) and Social
emotional optimization algorithm (SEOA)

The basic definition of teaching learning based optimization (TLBO)
method is the influence of a teacher on learners [67]. In [68] and [69],
this method is employed for reducing power consumption in MIMO
systems and for determining the slot shape with diode location in
the ground plane of antennas, respectively.

The social emotional optimization algorithm (SEOA) is an in-
telligent algorithm that simulates the human social behaviours. In
this method, each point presents one person and the total points
build the social status of society. In [70], this method is employed
for considering the antenna selection and power allocation design in
the massive MIMO networks. This method becomes effective in pro-
moting energy conservation and in provision of satisfied quality of
service (QoS) in the whole 5G networks.

4.6 Optimizations based on the evolution algorithm (EA)

The evolutionary algorithm (EA) is one of the branch of evolutionary
computation and uses the mechanisms inspired by biological evolu-
tion. This method is generally applied for optimizing antennas and
are divided into four subsections as genetic algorithm (GA), dif-
ferential evolution (DE) algorithm, memetic algorithm (MA), and
artificial intelligence (AI).

Genetic algorithm (GA)

The genetic algorithm (GA) is the random-based evolutionary al-
gorithm that randomly changes the current points up to achieving
the suitable output performance. Figure 17 presents the overview
process of the GA method that is based on the chromosome of the
population. This method consists of phases as: initialization of pop-
ulation, fitness function, selection, reproduction, and convergence.
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The initialization of population is the coding part that is the collec-
tion of parameters and variables. By determining the fitness values,
fitness function calculates how good the solution is. Selection is re-
sponsible for determining the region where optimal solution can be
found. Reproduction provides the evolution process up to finding op-
timal response. Finally, convergence includes some rules that inform
when the optimization process can stop.

The GA method is popular among the RF designers and they
have employed this method in various antenna designs. In [71], this
method is employed in the design of antenna array for minimizing
the peak side lobe level. Also, this method is applied for optimizing
sparse array in [72,73].

Initialization of 

population

Fitness 

function
Selection Reproduction  Convergence

Fig. 17. The general process of GA method.

Differential evolution (DE)

The differential evolution (DE) method can solve the optimiza-
tion problem by iteratively improving a candidate solution; it be-
longs to the stochastic population-based evolutionary method. This
algorithm is able to explore the large design spaces in a short time
with few assumptions and would solve a wide range of optimization
problems in an approximate way. For the continuous optimization
problems, this algorithm is beneficial and recently it is used in both
scientists and engineering professionals.

This method like GA method has been applied for various modifi-
cations that are aim to improve the performance of various antennas
and systems [74,75].

Memetic algorithm (MA)
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The Memetic algorithm (MA) is the extension of the GA method
and it gets benefit of the local search technique for reducing the
likelihood. This method is a hybrid optimization that is combining
a global search evolutionary algorithm with a local search method.
The global search can provide good initial solutions, and the local
search algorithm helps the optimization to find the specific region
with fewer evaluations [76]. As a practical utilization, in [77] this
method is employed for designing and optimizing microstrip array
antenna that is constructed by a planar layout of elements, coaxial
feeders, and circular feed points.

Intelligent techniques include artificial intelligent (AI),
machine learning (ML), neural network (NN), and deep
learning (DL)

As Fig. 18 shows, the artificial intelligence (AI) includes machine
learning (ML), neural network (NN), and also deep learning (DL).
The AI is a program that can sense, reason, act, and adapt. In other
words, AI is the technique of enabling machines to mimic human
intelligence.

The ML includes typical algorithms such as BO method (detailed
description of BO method is described in Sec. (4.3). This type of
method learns from the data and incorporates math and statistics
for predicting the output responses of entered input data. The imple-
mented algorithms require data to be trained in order to model any
circuit/design and make prediction for any future data with min-
imum difference from the actual values. The more data, the best
estimation and modeling can be achieved. What makes the ML in-
teresting in the electronic designs, is providing an automated en-
vironment. Shortly, ML models are optimization algorithms and in
case, the design is modelled correctly with this learning type, the
error-function (i.e., loss-function) is reduced. As shown in Fig. 19,
ML is divided into various subsections namely as: supervised learn-
ing, unsupervised learning, and reinforcement learning. In supervised
learning, ML optimizes the weights of the cost function and maps
the relationships between input and output data. In reverse, unsu-
pervised learning is not supporting and is not giving the labels of
the dataset at the output. Thus, this type of learning is underlying
the hidden patterns in the input, and it is clustering the included
elements of the input dataset. Additionally, reinforcement learning,
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Fig. 18. Various techniques to mimic the human intelligence.

like supervised learning, can create the relation between input and
output data but it includes reward function while this mechanism
does not exist in supervised and unsupervised leanings.

Shallow neural network (SNN) and deep neural network (DNN)
are networks where neurons are connected to each other and each
neuron includes a weighted sum of the inputs and one activation
function.

Generally, the activation function can be sigmoid function, recti-
fied linear unit (RELU), threshold, or softmax. Also, depending on
the type of applied NN, the loss function can be varied. The main
employed algorithms for NNs can be feed-forward propagation or
backward-propagation where the first algorithm determines the out-
put as a function of inputs and the second algorithm calculates the
weights to minimize the error between the predicted output response
and the actual value.
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Fig. 19. Subsections of the ML.

As another subset of AI, DL is recently developed in engineering
fields where it is based of the artificial NNs. It can predict the un-
known output responses for the determined input data by using the
feed-forward and back-propagation algorithms.

DNNs include a multi-layered structure in opposite of SNNs where
one hidden layer exists. As Fig. 20 depicts, the clear advantages of
DL over the ML is needlessness of the so-called ’Feature Extraction’.
In DNNs, the feature extraction is employed in the hidden layers
and training process is performed and completed without manual ef-
fort. The feature extraction is somehow complex process that needs
the information of the problem domain. This step requires several
iterations in order to achieve optimal output response. Therefore, in
DNNs, the hidden layers by themselves can learn an implicit repre-
sentation from the data set. For training any DNN, large amount of
data is required; hence, by increasing the number of data, the NNs
are trained and constructed more accurately. Therefore, the perfor-
mance of DNN is more accurate that the SNNs.

In summary, there are two main differences between ML and DL,
that are: i) In ML all the data requirements are labeled and the
features are known; however, in DL the data is unlabeled and DL is
trained intelligent in predicting the imported data, ii) the domain
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Fig. 20. a) Machine learning includes SNN, and b) Deep learning involves DNN.

used of DL is large and it can be suitable for other applications such
as image, video, and audio.

Application of AI, ML, NN, and DL in PA designs and
optimizations

For creating AI, there are various approaches as: artificial neu-
ral network (ANN), recurrent neural network (RNN), convolutional
neural network (CNN), DNN, and deep belief network (DBN) [78].
As described in Sec. 4.6, AI learns from the perceived environment
and gets benefit of large amount of datasets generated from commu-
nication and wireless systems. This filed of knowledge is beneficial in
solving complex problems of wireless communication systems and RF
designs like network management, decision making, and resource op-
timization. The use of this science in power amplifiers are described
as follow:
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The PAs are the circuits which include high dimensional variables
and due to the nonlinear behavior of used transistors, providing the
optimization goals is not straightforwards. Hence, recently ANNs
have got the attention of researchers for finding satisfactory solutions
in the microwave circuit optimizations. In this section, some of the
recently optimized PAs using SNN and DNN are described in detail.

In [79], a two-step automated methodology for designing and op-
timizing a PA using the SNN is presented. In the first step of opti-
mization, the SNN is modeled for the designed PA with lumped ele-
ments. Then in the second phase, the PA includes TLs is optimized
using the trained SNN model of the first step. Figure 21 presents the
overall flowchart which leads to generate a PA’s layout.
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Fig. 21. Automatically converting the PA with LEs to the PA with TLs using the SNN
[79].

In [4] based on the supervised learning, one classification DNN
and one regression DNN are used sequentially for optimizing high
performance PA designs. Algorithm 3 explains in detail the employed
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steps for the black-box optimization where the transistor model is
selected; a suitable PA layout for fabrication can be achieved (see
Fig. 22). Please refer to [4] for getting detailed information about
the employed optimization method.

GaN 
HEMT

 Black-box 

Multi-objective optimization 
includes classification & 

regression DNNs

Fig. 22. Automated design of PA using advanced black-box optimization [4].

Algorithm 3 Automated high performance PA optimization us-
ing DNNs

1: Extract transistor’s characteristics in terms of PL, Gp, and ηD
that have been presented in the data sheet of transistor as well;
2: Employ classification DNN for predicting the best PA structure
with LEs among various obtained PAs from the SRFT method;
3: Apply S-parameter simulation for converting LE power amplifier
to the PA with TLs;
4: Implement multi-objective optimization for optimizing PL, Gp,
and ηD specifications;
5: Employ regression DNN for optimizing TLs’ parameters and pre-
dicting the best values of included components and finally generating
the layout with the design parameters.

Application of AI, ML, NN, and DL in antenna designs
and optimizations

Recently, researchers get benefit of AI techniques and EA in de-
signing various circuits. These methods have got the attention of
designers due to the large advances in communication technologies
that in turn requires the ability to deal with large amount of data.
AI-enabled methodologies as ML and DL have been used variously
in 5G wireless communications, massive MIMO, beam-forming, and
various antennas designs.
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Generally, MIMOs are used for improving the communication per-
formance in both sender and receiver sides by installing multiple
antennas (see Fig. 23.a). Therefore, the complexity in the MIMO
systems is huge and multi-objective optimizations based on AI are
needed to provide an accurate channel estimation with optimized
weights of antenna elements. Figure 23.b presents the structure of
MIMO systems include pilots where the system has a base station
(BS) with many antennas that serve user terminals [80].

Transmitter Receiver

..
.

..
.

(a)

Effective signal

Inter-cell interference

Pilot

(b)

Fig. 23. a) The general structure of MIMO system includes transmitter and receiver;
b) massive MIMO system model includes pilots [80].
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As the communication technology is improving, transmission and
reception of signal power may face with high problems. One of the
feature of 5G wireless networks is the massive MIMO that paves
the way of future 6G networks. Transferring from MIMO to massive
MIMO requires many service antennas that are fully connected to
each other. These antennas are placed over the active terminals, and
in both sides of receiver and transmitter. Massive MIMOs are typi-
cally based on time division duplex (TDD); however, the frequency
division duplex (FDD) provides more interest of researchers due to
its improved coverage and minimized interference. In the FDD mode,
the downlink and uplink channels are divided in frequency. Figure
24 shows the downlink training process with the pilot transmission
[81].

Downlink pilot transmission

 Channel state information feedback

Downlink channel state 

information estiation

User 

equipment

Base 

state

Fig. 24. Downlink training process in the massive MIMO systems [81].

Recently, designers employ AI methods for solving the symbol
detection problems for mapping channels in the space [82] and also
providing satisfactory power allocation in massive MIMO systems
[83]. For improving the performance of massive MIMOs, DL methods
can be employed for the pilot contamination drawbacks. Figure 25
presents the use of DNN for reducing the pilot contamination by
learning the relationship between the input feature and output labels
[84].
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The DNNs would be used to model the correlation between pilot
assignment and the users’ location pattern. For the depicted DNN
in Fig. 25, the input feature can be location, channel quality, and
inter-cell interference of users. The employed algorithms in DNN can
be deep multilayer perceptron (MLP), convolutional neural network
(CNN), recurrent neural network (RNN), and long short-term mem-
ory (LSTM). The corresponding output features would be the labels
determine pilot assignment and users with pilot selections.

 

 
 

 
 

 
 

 
 

 

 

 

 

Fig. 25. The application of DNN for the pilot assignment [84].

In summary, the application of AI methods for the massive MI-
MOs are as following:

– Pre-processing in wireless communication;
– Modulation recognition;
– Beam selection;
– Channel estimation;
– Antenna selection.

5 Conclusion

The next-generation networks (5G, 6G) will provide strong break-
through advancement with respect to the previous technologies and
it is expected they will support various new services based on ad-
vanced communication technologies such high data rate can offer.
In the design of high performance circuits and systems, finding co-
herent solutions for the determined problems is critical and opti-
mal solutions are mainly sought by modifiable and perceptive al-
gorithms. Global optimizations are required to optimize expensive
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objective functions and to accommodate the requirements of com-
munication systems. Accordingly, highly accurate transfer functions
between input and output ports must be modeled to optimize com-
munication parameters. Advanced optimization methods can con-
struct the transfer functions adaptively and accommodate diverse
requirements, such as power consumption, latency, energy, secure
two-way communications, speed, and connectivity.

The power amplifiers are the very significant devices in the com-
munications systems where output power of the PAs can influence
on the quality of transmitted signal. Therefore, advanced optimiza-
tion methods are required for achieving optimal performances that
are challenging between various specifications such as efficiency, lin-
earity, gain, and output power. Additionally, installing high perfor-
mance antennas in the communication systems plays an important
role. For this case we overview recently reported flexible optimiza-
tion methods that are employed in optimizing power amplifiers and
antennas, lead to achieve high performance output results.

Herein, relevant questions over various optimization methods are
stipulated such as: what are the conceptual and structural viewpoints
of reported optimization methods? Can the methods offer industri-
ally acceptable solutions? What are the potential applications of each
method? These queries are addressed by conducting a detailed and
precise literature survey on diverse optimization methods employed
in power amplifiers and also antenna designs. A detailed theoretical
description for many methods is prepared to elucidate future research
directions for optimizing specific characteristics with multi-objective
optimizations. This leads to monolithic connection and processes a
reliable connection through the mobility of UEs within the cells.
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