
18 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Correction to: Propagation of exponential phase space singularities for Schrödinger equations with quadratic
Hamiltonians / Carypis, Evanthia; Wahlberg, Patrik. - In: JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS. -
ISSN 1069-5869. - 27:2(2021). [10.1007/s00041-021-09824-3]

Original

Correction to: Propagation of exponential phase space singularities for Schrödinger equations with
quadratic Hamiltonians

Springer postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1007/s00041-021-09824-3

Terms of use:

Publisher copyright

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to
Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements,
or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s00041-021-09824-3

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2961108 since: 2022-04-12T12:04:33Z

Springer



ERRATA TO: PROPAGATION OF EXPONENTIAL PHASE SPACE

SINGULARITIES FOR SCHRÖDINGER EQUATIONS WITH

QUADRATIC HAMILTONIANS

EVANTHIA CARYPIS AND PATRIK WAHLBERG

Our paper [1] contains an error in the proof of Proposition 8.1. More precisely the
estimate claimed in Eq. (8.3) is erroneously motivated. In the following we state and
prove Proposition 8.1 correctly.

We need the Hermite functions

hα(x) = π−
d
4 (−1)|α|(2|α|α!)−

1
2 e
|x|2
2 ∂αe−|x|

2
, x ∈ Rd, α ∈ Nd,

and formal series expansions

f =
∑
α∈Nd

cαhα

where {cα} is a sequence of coefficients defined by cα = cα(f) = (f, hα). The Hermite
functions {hα}α∈Nd ⊆ L2(Rd) is an orthonormal basis.

Langenbruch [4, Theorem 3.4] has shown that the family of Hilbert sequence spaces

`2s,r = `2s,r(N
d) =

{cα} : ‖cα‖`2s,r =

∑
α∈Nd

|cα|2e2r|α|
1
2s

 1
2

<∞


for r > 0 yields a family of seminorms for Σs(R

d) that is equivalent to the family (2.3)
for all h > 0, when t = s > 1

2 . Thus Σs(R
d) can be identified topologically as the

projective limit

(1) Σs(R
d) =

⋂
r>0

∑
α∈Nd

cαhα : {cα} ∈ `2s,r

 .

Lemma. If s > 1
2 and h > 0 then

sup
x∈R

∣∣∣∂k (e− 1
2
x2
)∣∣∣ 6 Ch,shkk!s, k ∈ N,

where Ch,s > 0.

Proof. It is clear that

(2) ∂k
(
e−

1
2
x2
)

= pk(x) e−
1
2
x2

where pk is a polynomial of order k ∈ N. By induction one can prove the formula

pk(x) = k!

bk/2c∑
m=0

xk−2m(−1)k−m

m!(k − 2m)!2m
.
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2 E. CARYPIS AND P. WAHLBERG

Since k! 6 2k(k − 2m)!(2m)! we can estimate

|pk(x)| 6
bk/2c∑
m=0

|x|k−2m(2m)!

m!2m−k
6
bk/2c∑
m=0

|x|k−2mm!2m+k.

Combining with m! = m!2s−ε where ε = 2s− 1 > 0, this gives for any h > 0 and b > 0

|pk(x)|h−kk!−s 6
bk/2c∑
m=0

|x|k−2mm!2s−ε2m+kh−kk!−s

=

bk/2c∑
m=0


(
b
s |x|

1
s

)k−2m
(k − 2m)!


s(

b

s

)s(2m−k)((k − 2m)!m!2

k!

)s
2m+kh−k

m!ε

6 eb|x|
1
s
(

2
(s
b

)s
h−1

)k bk/2c∑
m=0


(

2
(
b
s

)2s)mε
m!


ε

6 e
ε
(
2( bs)

2s
) 1
ε

eb|x|
1
s
(

4
(s
b

)s
h−1

)k
= Ch,s e

s 4
1
s h−

1
s |x|

1
s ,

where we pick b = s 4
1
sh−

1
s in the last equality, and Ch,s > 0. Thus since 1

s < 2

sup
x∈R

∣∣∣∂k (e− 1
2
x2
)∣∣∣ . hkk!s sup

x∈R
es 4

1
s h−

1
s |x|

1
s− 1

2
x2 6 Ch,sh

kk!s, k ∈ N,

for a new constant Ch,s > 0. �

The corrected result concerns operators with Schwartz kernel of the oscillatory integral
form

(8.1) KT (x, y) = (2π)−(d+N)/2

√
det

(
p′′θθ/i p′′θy
p′′xθ ip′′xy

)∫
RN

eip(x,y,θ)dθ ∈ S ′(R2d)

where x, y ∈ Rd. Here p is a quadratic form on R2d+N associated with the positive
Lagrangian that is defined by the twisted graph of the matrix T ∈ Sp(d,C) which
is assumed to be positive in the sense of [3, Eq. 5.10]. The kernel is, modulo sign,
independent of the form p and the dimension N , thanks to the the factor in front of the
integral [3, p. 444].

Proposition 8.1. Suppose T ∈ Sp(d,C) is positive and let KT : S (Rd)→ S ′(Rd) be
the continuous linear operator having Schwartz kernel KT ∈ S ′(R2d) defined by (8.1).
For s > 1/2 the operator KT is continuous on Σs(R

d) and KT extends uniquely to a
continuous operator on Σ′s(R

d).

Proof. By [3, Proposition 5.10] (cf. [2]) the matrix T can be factorized as

T = χ1T0χ2
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where χ1, χ2 ∈ Sp(d,R), T0 ∈ Sp(d,C) is positive and (y, η) = T0(x, ξ), x, ξ, y, η ∈ Rd,
where for each 1 6 j 6 d we have either

(3)

(
yj
ηj

)
=

(
cosh τj −i sinh τj
i sinh τj cosh τj

)(
xj
ξj

)
with τj > 0, or

(4)

(
yj
ηj

)
=

(
1 0
i 1

)(
xj
ξj

)
.

By [3, Proposition 5.9] we have

KT = ±µ(χ1)KT0µ(χ2).

According to Proposition 4.4, µ(χj) is continuous on Σs(R
d), so it remains to show that

KT0 is continuous on Σs(R
d).

The matrix T0 can be factorized as

T0 = T1T2 · · ·Td
where the matrices Tj , 1 6 j 6 d, commute pairwise, and have the following structure.
It holds (y, η) = Tj(x, ξ) where (yk, ηk) = (xk, ξk), k ∈ {1, 2, · · · , d} \ {j} and either (3)
for some τj > 0, or (4) hold.

Again by [3, Proposition 5.9]

KT0 = ±KT1KT2 · · ·KTd

and thus it suffices to show that KTj of each of the stated two types is continuous on

Σs(R
d). In order to do that we first identify the operators KTj , cf. [2, p. 297].

Suppose (y, η) = Tj(x, ξ) where (yk, ηk) = (xk, ξk), k ∈ {1, 2, · · · , d} \ {j}.

Case (i). Suppose (3) for some τj > 0. Define the symmetric block matrix

Qj =
1

2

(
eje

t
j 0

0 eje
t
j

)
∈ R2d×2d

where ej ∈ Rd denotes the standard basis vector with zero entries except for position j
which is one. With Fj = JQj a short calculation shows that

e−2iτjFj = Tj

which reveals that KTj is the solution operator to the initial value Cauchy problem (5.1)
when the Hamiltonian Weyl symbol is defined by

qj(x, ξ) = 〈(x, ξ), Qj(x, ξ)〉 =
1

2

(
x2j + ξ2j

)
, (x, ξ) ∈ T ∗Rd,

at time τj , that is KTj = e−τjq
w
j (x,D). Here qwj (x,D) = 1

2(x2j + D2
j ) is the Hermite

operator (harmonic oscillator) acting on variable j, divided by two.
For this operator the Hermite functions are eigenfunctions, and

1

2
(x2j +D2

j )hα =

(
αj +

1

2

)
hα, α ∈ Nd
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(cf. e.g. [5]). By the uniqueness of the solution to the Cauchy problem (5.1) we have

KTjhα = e−
τj
2
(x2j+D

2
j )hα = e−τj(αj+

1
2)hα, α ∈ Nd.

Using the seminorms on Σs(R
d) defined by Hilbert sequence spaces `2s,r(N

d), cf. (1),

and the orthonormality of {hβ}β∈Nd ⊆ L2(Rd) we obtain for f ∈ Σs(R
d) and α ∈ Nd

(KTjf, hα) =
∑
β∈Nd

(f, hβ)(KTjhβ, hα) = (f, hα)e−τj(αj+
1
2),

and hence for any r > 0

‖(KTjf, hα)α∈Nd‖2`2s,r =
∑
α∈Nd

|(KTjf, hα)|2e2r|α|
1
2s

=
∑
α∈Nd

|(f, hα)|2e−τj(2αj+1)e2r|α|
1
2s

6
∑
α∈Nd

|(f, hα)|2e2r|α|
1
2s

= ‖(f, hα)α∈Nd‖2`2s,r .

This shows the continuity KTj : Σs(R
d)→ Σs(R

d).

Case (ii). Suppose (4). Define the symmetric block matrix

Qj =
1

2

(
eje

t
j 0

0 0

)
∈ R2d×2d

and Fj = JQj . Then

e−2iFj = Tj

which implies that KTj is the solution operator to the initial value Cauchy problem (5.1)
when the Hamiltonian Weyl symbol is defined by

qj(x, ξ) = 〈(x, ξ), Qj(x, ξ)〉 =
1

2
x2j ,

at time t = 1, that is KTj = e−q
w
j (x,D). Since qwj (x,D)f(x) =

x2j
2 f(x) we have KTjf(x) =

e−
1
2
x2jf(x) which is a Gaussian multiplicator operator with respect to variable j.

From the Lemma we obtain for any α, β ∈ Nd and any h > 0 using the seminorms
(2.3) ∣∣∣xβDα

(
e−

1
2
x2jf(x)

)∣∣∣ 6 ∑
γj6αj

(
αj
γj

) ∣∣∣Dγj
(
e−

1
2
x2j
)∣∣∣ ∣∣∣xβDα−γjejf(x)

∣∣∣
. ‖f‖Ss,h

∑
γj6αj

(
αj
γj

)
hγjγj !

s(β!(α− γjej)!)sh|β|+|α|−γj

6 ‖f‖Ss,hh
|α+β|(β!α!)s2αj

6 ‖f‖Ss,h(2h)|α+β|(β!α!)s, x ∈ Rd,
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and thus ∥∥∥e− 1
2
x2jf
∥∥∥
Ss,h
. ‖f‖Ss,h/2 .

We have shown the continuity of KTj : Σs(R
d)→ Σs(R

d). �
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