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1. Introduction

In this paper, we study the Weyl product acting on weighted modulation spaces
with Lebesgue parameters in (0, 00]. We work out conditions on the weights and
the Lebesgue parameters that are sufficient for continuity of the Weyl product, and
we also prove necessary conditions.

The Weyl product or twisted product is the product of symbols in the Weyl
calculus of pseudodifferential operators corresponding to operator composition. This
means that the Weyl product

(a1, a2) — ai#as,
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of two distributions a; and as defined on the phase space T*R? ~ R2? is defined by
Op“(a1#az) = Op"(a1) o Op”(asz),

provided the composition is well-defined.
Our result on sufficient conditions is as follows. Suppose wj, 7 = 0,1,2, are
moderate weights on R*® that satisfy

wo(Z+X,Z-X) S (Y +X,Y - X)wa(Z+Y,Z-Y), X,Y,ZecR*,

Suppose p;,q; € (0,00], j =0,1,2, satisfy

1 1 1
— < — 4+ —,
Po P1 b2
and either
q1,q2 < qo < min(1,po),
or
. 1 1 1 1
min(l,po) <q1,¢2 < g and —F—+ — < —+ —.

min(1,p0) g ~ @1 @

Denote the Gelfand—Shilov space of order % by & /2, and the weighted modulation
space with Lebesgue parameters p,q > 0 and with weight w by MI(ZJ(J). Then the
map (a1, az) — ar#az from 8y 2(R*) x Sy /5(R*) to Sy /2(R?*?) extends uniquely
to a continuous map from M’(’;’lq)l (R%) x Ml(jj’zq)z (R?%) to M?fj;q)o (R?%), and

||a1#a2HMpo,<I0 5 Ha1||Mp1yq1 ||0,2HMP2M12. (1.1)
(wp) (w1) (w2)

As a consequence for unweighted modulation spaces, we obtain new conditions
on Lebesgue parameters that are sufficient for M?9(R2?) to be an algebra: p,q €
(0, 00] and ¢ < min(1,p).

The necessary conditions we deduce are as follows. Suppose (1)) holds for all
a1, as € . (R??), for a triple of polynomial type weights w;, j = 0, 1,2 interrelated
in a certain way, see (B1). Then

1 1 1 1 1 1
—<—+—, —<—+— and q,q <qo,
bPo P1 P2 bPo ¢ Q2
which are strictly weaker than the sufficient conditions.
Our results for the Weyl product are special cases of results formulated and
proved for a family of pseudodifferential calculi parametrized by real matrices A €
R In fact, we work with a symbol product indexed by A € R?*?, denoted and

defined by

Opy(a#4b) = Opy(a) o Op4(b),

where Op4(a) is the A-indexed pseudodifferential operator with symbol a. This
family of calculi contains the Weyl quantization as the special case A = %I .

The sufficient conditions and the necessary conditions that we find extend results
[7, 23] where the same problem was studied for the narrower range of Lebesgue
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parameters [1, co]. In the latter case, modulation spaces are Banach spaces, whereas
they are merely quasi-Banach spaces if a Lebesgue parameter is smaller than one.

The Weyl product on Banach modulation spaces has been studied in e.g. [7}, [I8]
201 23], 26 291 [30]. In [7] conditions on the Lebesgue parameters were found that are
both necessary and sufficient for continuity of the Weyl product, thus characterizing
the Weyl product acting on Banach modulation spaces.

One possible reason that we do not obtain characterizations in the full range
of Lebesgue parameters (0, co] is that new difficulties arise as soon as a Lebesgue
parameter is smaller than one. The available techniques are quite different, and
many tools that are useful in the Banach space case, e.g. duality and complex
interpolation, are not applicable or fraught with subtle difficulties.

Our technique to prove the sufficient conditions consists of a discretization of
the Weyl product by means of a Gabor frame. This reduces the continuity of the
Weyl product to the continuity of certain infinite-dimensional matrix operators.
A similar idea has been developed in [3§].

The paper is organized as follows. Section [Z fixes notation and gives the back-
ground on Gelfand—Shilov function and distribution spaces, pseudo-differential cal-
culi, modulation spaces, Gabor frames, and symbol product results for Banach
modulation spaces.

Section B] contains the result on sufficient conditions for continuity on quasi-
Banach modulation spaces (Theorem[3.1). Section H] contains the result on necessary
conditions for continuity on quasi-Banach modulation spaces (Theorem[4.3). Finally
in Appendix, we show a Fubini type result for Gelfand—Shilov distributions that is
needed in the definition of the short-time Fourier transform (STFT) of a Gelfand—
Shilov distribution.

2. Preliminaries
2.1. Weight functions
A weight on R? is a positive function w € L (RY) such that 1/w € LS (R?). We

loc loc
usually assume that w is (v-)moderate, for some positive function v € L (R).

This means
wx+y) Swl)v(y), =zy€ RY. (2.1)

Here, f(0) < g(0) means that f(0) < cg(0) holds uniformly for all § in the intersec-
tion of the domains of f and g for some constant ¢ > 0, and we write f < g when
f < g < f. Note that (ZT)) implies the estimates

v(—2)t Swx) Sv(z), =R (2.2)

If v in ([Z) can be chosen as a polynomial, then w is called polynomially moderate
or a weight of polynomial type. We let Z2(R?) and Zg(R?) be the sets of all
weights of polynomial type and moderate weights on R?, respectively.
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Ifw € Zp(RY), then there exists r > 0 such that w is v-moderate for v(x) = "l
[19]. Hence by (Z2), for any w € Z5(R%), there is 7 > 0 such that

el S w(z) el z e R (2.3)

A weight v is called submultiplicative if v is even and (Z1I) holds with w = v. In
the paper, v and v; for j > 0 will denote submultiplicative weights if not otherwise
stated.

2.2. Gelfand-Shilov spaces
Let h,s € Ry be fixed. Then S ,(R?) is the set of all f € C>°(R%) such that

|70 f ()|

1flls RletBl(al B1)*

o = SUp
is finite, where the supremum is taken over all o, 3 € N and z € R

Obviously Ss 1, is a Banach space which increases with h and s, and it is con-
tained in the Schwartz space .. (Inclusions of function and distribution spaces
understand embeddings.) The topological dual S, , (R%) of S, »(R?) is a Banach
space which contains .7’ (R?) (the tempered dlbtrlbutlonb). If s > 1, then S, , and
Uh>0S1/2,n contain all finite linear combinations of Hermite functions.

The (Fourier invariant) Gelfand-Shilov spaces Ss(R?) and ¥4 (R%) are the induc-
tive and projective limits respectively of S, 5 (R?) with respect to h. This implies

= [JSn(R?) and (R = (] Sen(RY. (2.4)

h>0 h>0

The topology for S;(R?) is the strongest topology such that each inclusion
Sen(R) C Ss(RY) is continuous. The projective limit X4(R?) is a Fréchet space
with seminorms | - ||s, ,, h > 0. It holds S;(R%) # {0} if and only if s > %, and
Y(RY) # {0} if and only if s > 1.

For every ¢ > 0 and s > 0,

ES(Rd) cSs (Rd) < Es+s(Rd)~

The Gelfand-Shilov distribution spaces S’(R?) and X' (Rd) are the projective
and inductive limits respectively of S’ h(Rd) Hence if s > 1 and ¢ > £ then

SIRY) = (1 S.,RY) and THRY = [ ] ], RY. (k)
h>0 h>0
The space S,(R?) is the topological dual of S(R?%), and if s > £ then X, (R?) is
the topological dual of ¥, (R%) [12].
The action of a distribution f on a test function ¢ is written (f,¢), and the
conjugate linear action is written (u,¢) = (u, @), consistent with the L? inner
product (-, -) = (-, -)r2 which is conjugate linear in the second argument.
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The Gelfand-Shilov (distribution) spaces enjoy many invariance properties, for
instance under translation, dilation, tensorization, coordinate transformations and
(partial) Fourier transformation.

We use the normalization

-~

FIO =1 =@n) " | f)e“9dr, R
Rd
of the Fourier transform of f € L'(R%), where (-, -) denotes the scalar product on
R?. The Fourier transform .% extends uniquely to homeomorphisms on .7’ (R%),
S'(RY) and ¥/ (RY), and restricts to homeomorphisms on .7 (R%), Si(R%) and
¥,(R%), and to a unitary operator on L?(R%).
The symplectic Fourier transform of a € S;(R??) where s > 1 is defined by

Fya(X) = Tl'id/ a(Y)e2 XY gy,
R2d

where o is the symplectic form
o(X,Y) = (y.€) = (x,m), X =(z,§) €R™, Y =(yn)eR™

Since Z,a(r, &) = 29.Fa(—2¢, 2x), the definition of .%, extends in the same way
as .#.

Let ¢ € Ss(RY\{0}. The short-time Fourier transform (STFT) V,f of f €
S/(R) is the distribution on R?? defined by

Vaf(x,&) = Z(fo(- —2))(€) = (2m) "2 (f,¢(- —x)e't ). (2.5)

Note that fo(- —xz) € SL(R?) for fixed x € R%, and therefore its Fourier trans-
form is an element in Sé(Rd). The fact that the Fourier transform is actually a
smooth function given by the formula (21) is proved in Appendix.

I T(f,¢) = Vyf for f, ¢ € S1)o (R%), then T extends uniquely to sequentially
continuous mappings

d
2

T:S/(RY) x S;(R?Y) — S,(R*) nC>(R*),
T:S,(RY) x S{(R?) — SL(R*),

and similarly when Ss and S! are replaced by 3¢ and 3, respectively, or by . and

&, respectively [6, B3].
Similar properties hold true if instead T'(f, ¢) = Wy, where Wy 4 is the cross-
Wigner distribution of f € S/(RY) and ¢ € Ss(R%), given by

Wro(2,6) = Z(f(z + - /2)¢(z — - /2))(€)-

If g€ [l,00,w € Zr(RY), f € L((Jw)(Rd) and ¢ € ¥1(R?) then V,f and Wy, take
the forms

Vyf(2,€) = (2m) 4 / F@)dly — e @ ay, )

1950018-5
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and
Wiole.&) = @n) ¢ [ flao+ /200 = oD 09y,

Here, L{,,(R") for p € (0,00 and w € Pp(R?) denotes the space of all f €
LP (R?) such that fw € LP(R?), and HfHL(P = [ fwllLe.

loc

For a € Si/z(RQd) and ® € Sy /2(R??)\0 the symplectic STFT Vya of a with
respect to @ is defined similarly as the STFT by

Voa(X,Y) = F,(a®(- —X))(Y), X,Y € R*™.

There are several ways to characterize Gelfand—Shilov function and distribution
spaces, for example in terms of expansions with respect to Hermite functions [13,
[24], or in terms of the Fourier transform and the STFT [5] 211 B3] [37].

2.3. An extended family of pseudodifferential calculi

We consider a family of pseudodifferential calculi parameterized by the real d x d
matrices, denoted M(d, R) [3,B6]. Let s > 1, let a € S;(R*?) and let A € M(d, R)
be fixed. The pseudodifferential operator Op,(a) is the linear and continuous
operator

Opa@)f(@) = () [[ | ale— =9, f) Oy, (26)
when f € S;(R?). For a € S’(R??) the operator Op4(a) is defined as the linear
and continuous operator from Ss(R?) to S’(R%) with distribution kernel

Ko ae,y) = (2m) 2 F5 bale = Az —y),z —y). (2.7)
Here ., F is the partial Fourier transform of F(z,y) € S.(R?%) with respect to the
y variable. This definition makes sense since
Fy and F(z,y) — F(z - Az —y),z —y), (2.8)
are homeomorphisms on S’ (R??).
An important special case is A = tI, with t € R and I € M(d, R) denoting the
identity matrix. In this case, we write Op,(a) = Op,;(a). The normal or Kohn-

Nirenberg representation a(x, D) corresponds to ¢t = 0, and the Weyl quantization
Op*(a) corresponds to t = 3. Thus

a(z, D) = Opy(a) = Op(a) and Op“(a) = Opy y(a).
The Weyl calculus is connected to the Wigner distribution with the formula
(0" (a)f,9) 2(ray = (2m) % (@, Wy ) (e,
a € 81/2(R2d)7 f.9 € S12RY).

For every a; € S'(R??) and Ay, Ay € M(d, R), there is a unique az € S.(R24)
such that Op 4, (a1) = Opy, (az2). The following restatement of [36l Proposition 2.1]
explains the relations between a; and as.

1950018-6
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Proposition 2.1. Let ay,as € S{/z(RQd) and Ay, Ay € M(d,R). Then

Opy, (a1) = Opy,(az) & e APelagy(z &) = M PeLolg (2,6).  (2.9)

2.4. Modulation spaces

Let ¢ € Sl/Q(Rd)\O, p,q € (0,00] and w € Zr(R>?). The modulation space
M(pu’g(Rd) is the set of all f € S{/Q(Rd) such that V f € L’(’;)q) (R?4), and M(pu’g(Rd)
is equipped with the quasi-norm

F= Az = Vo Flices- (2.10)

Here LP"% (R*?) is the space of all complex-valued measurable functions F on R??

such that HF||L1(D% < 00, where

1Fllp = [ Fpwllee with  Fpu(@) = [F(- w(-,&)llrs, € €RY

On the even-dimensional phase space R??, one may define modulation spaces
based on the symplectic STFT. Thus if w € Zg(R*), p,q € (0,00] and ® €
S1/2(R?*)\0 are fixed, the symplectic modulation space J\/[I(’;)q) (R2?) is obtained by
replacing the STFT a +— Vga by the symplectic STFT a — Vga in ZI0). It holds

(ct. 17)

M3 R = ML (R, w(z, &, y,n) = wo(x, & —2n, 2y),

so all properties that are valid for M 6’3 carry over to M’(D;)q).
In the following propositions, we list some properties of modulation spaces and
refer to [§ 132] for proofs.

Proposition 2.2. Let p,q € (0, o0].

(1) If w € Pr(R2?) then ¥1(R?) C M(pu’g(Rd) C ¥ (RY).

(2) If w € ZE(R??) satisfies [B3) for every r > 0, then S;(R?) C M(pu’)‘i(Rd) C
S (RY).

(3) If w e 2(R*) then #(RY) C M&‘;(Rd) C .7 (RY).

Proposition 2.3. Let v € (0,1], p,q,p;,q; € (0,00] and w,wj,v € Pr(R>?),

J=1,2, satisfy r < min(p, q), p1 < p2, ¢1 < g2, wa S wi, and let w be v-moderate.

(1) If ¢ € M, (RH\O then f € M&‘;(Rd) if and only if (BIQ) is finite. In par-

ticular M&‘;(Rd) is independent of the choice of ¢ € M{U)(Rd)\O. The space

M(pg(Rd) is a quasi-Banach space under the quasi-norm (2I0), and different
choices of ¢ give rise to equivalent quasi-norms. If p,q > 1 then M(pg(Rd) s a
Banach space with norm (2I0).

(2) MED (R) © MP2 (RY).

1950018-7
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We will rely heavily on Gabor expansions so we need the following concepts.
The operators in Definition [Z4] are well defined and continuous by the analysis
in [I7, Chaps. 11-14].

Definition 2.4. Let A € R? be a lattice, let A2 = AxA C R??, let w,v €
Zp(R??) be such that w is v-moderate, and let ¢, € M|, (R?).

(1) The Gabor analysis operator Cy = Cj is the operator from M5 (RY) to
E‘(’Z)(Az) given by
Cof ={Vaf(,)}juen-
(2) The Gabor synthesis operator Dy = Df‘p is the operator from E‘(fj)(AQ) to
M “)(Rd) given by

(w
Dje= Y c(G.oev(- —j).
JLEA
(3) The Gabor frame operator S = Sé}yw is the operator on M(Oj) (R?) given by
sz o C;}, ie.
Shuf = Vef(j,) e (- —j).
JLEA
The following result is a consequence of [17, Theorem 13.1.1] (see also [16),
Theorem S)).

Proposition 2.5. Suppose v € Pr(R>*?) is submultiplicative, and let ¢ €
M(lv)(Rd)\O. There is a constant 8y > 0 such that the Gabor frame operator S$,¢ is

a homeomorphism on M(lv)(Rd) when A = 0Z¢ and 6 € (0,0y]. The Gabor systems
{0 —)}Ygmen  and {9 =5)} e, (2.11)
are dual frames for L*>(RY) when ¢ = (S£7¢)_1¢ € M(lv)(Rd) and 6 € (0, 6o].

Let v, ¢ and A be as in Proposition 23l Then (Sf; ¢)_1¢> is called the canonical
dual window of ¢, with respect to A. We have
o (- =) = ST LN =),
when f € M(‘T’/U)(Rd) and (j,¢) € A.
The next result concerns Gabor expansion of modulation spaces. It is a special

case of [34] Theorem 3.7] (see also [IT, Corollaries 12.2.5 and 12.2.6] and [11] The-
orem 3.7]).

Proposition 2.6. Let § > 0, A = 0Z¢,

A? = A x A={(j,1)};er CR*,
let p,q,m € (0,00] satisfy ¥ < min(1,p,q), and let w,v € Pr(R>*?) be such that w
is v-moderate. Suppose ¢, € M(T’U)(Rd) are such that ZII) are dual frames for

1950018-8
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L2(R%). Then the following is true:
(1) The operators

Cp  MSRY) = (04 (A%) and Dy - €07 (A%) — MES(RY)
are conlinuous.
(2) The operators Sy = Dy o Cy and Sy, = Dy o Cy are both the identity map

on MES(R), and if | € MES(R?), then

= Vof(,0e (- —j)
JLEA
= Z Vi f(G, e (- =), (2.12)
JLEA

with unconditional quasi-norm convergence in M(pu’)‘i when p,q < oo, and with

convergence in M (Oj) with respect to the weak™ topology otherwise.

(3) If f e (1/v)( 4), then

1 llazze =< Vs flleraazy = NIVip Fllers a2

The series (212) are called Gabor expansions of f with respect to ¢, 1 and A.

Remark 2.7. There are many ways to achieve dual frames (2.11) satisfying the
required properties in Proposition 26 In fact, let v,v9 € Zr(R>??) be submulti-
plicative such that w is v-moderate and

(vo)(RQd) m LT’(RQd)'

0<r<1

This inclusion is satisfied e.g. for vo(x) = e*l*l with ¢ > 0. Proposition 5] guar-
antees that for some choice of ¢, € M(lvov)(Rd) € Mo<rea M, (R%) and lattice
A C RY, the sets in (ZI0) where ¢ = (S} ;)" "¢, are dual frames.

We usually assume that A = #Z¢, with # > 0 small enough to guarantee the
hypotheses in Propositions 5l and 26l be fulfilled, and that the window function
and its dual belong to M for every r > 0. This is always possible, in view of
Remark 27

We need the following version of Proposition .8 which is a consequence of

[3, Corollary 3.2] and the Fourier invariance of ¥; (R2%).

Lemma 2.8. Suppose v € Pr(R*) is submultiplicative, let ¢1, s € Y1 (RI)\O,
and let

B(x,8) = ¢1(2)Pa(E)e ™). (2.13)

1950018-9
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Then there is a lattice A2 C R24 such that
{®(x—j,& — L)ei(<m’n>+<k’g>)}(j,L)7(k,/-c)6A2 (2.14)
is a Gabor frame for L*(R2%) with canonical dual frame
{W(z—j, &~ L)ei(<r7ﬁ>+<k7£>)}(j7L),(k’,K,)€A27
and

U= (She) 7 0 € () M, (R*).
r>0
The right-hand side of (ZI3) is called the cross-Rihaczek distribution of ¢; and
2 [17].

Remark 2.9. The last conclusion in Lemma is a consequence of the sharper
result [20] Lemma 2].

2.5. Pseudodifferential operators and Gabor analysis

In order to discuss a reformulation of pseudodifferential operators by means of
Gabor analysis, we need the following matrix concepts [36].

Definition 2.10. Let p,q € (0,00], # > 0, let J be an index set and let A = §Z¢
be a lattice, and let w € Zp(R29).

(1) UL(J) is the set of all matrices A = (a(j, k)); xes with entries in C;
(2) Ug(J) is the set of all A = (a(j,k));jkes € Uy(J) such that a(j, k) # 0 for at
most finitely many (j,k) € J x J;
(3) for A= (a(j,k))jren € Uy(A) let
HA,w(jv k) = a’(j7j - k)w(]vj - k) and hA,PM(k) = HHA,W( '7k)H@”‘
(2.15)

The set UP%(w, A) consists of all matrices A = (a(j, k));,rea such that
(@(d, k))jreallvraw,ay = hapwlle (2.16)
is finite.

UP49(w, A) is a quasi-Banach space, and if p,q > 1 it is a Banach space.
If J is an index set then A = (a(j, k));res € Uy(J) is called properly supported
if the sets

{j€J;a(j ko) #0} and {k€J;a(jo,k)# 0},

are finite for every jo, ko € J. The set of properly supported matrices is denoted
Up(J), and evidently Uyp(J) C Up(J). The sets Uy(J) and U,(J) are rings
under matrix multiplication, and Uj(J) is a Up(J)-module with respect to matrix
multiplication.

1950018-10
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Let ¢1, ¢ € X1 (RY\0, let ® be defined by [Z.13), let A C R? be a lattice such
that A2 = A x A C R?? makes ([2.14) a Gabor frame in accordance with Lemma 2.8]
and let ¥ = (S47)71® be the canonical dual window of ®. Suppose wy € Z5(R*)
and set

w(z,&y,n) = wol(z,n,{ — 1,y — ). (2.17)

Let a € M[;! (R2), define

(wo)
a(j, k) =Vya(j, k. — Kk, k — j)ew“*j””7
where
j=0,1) €A and k= (kr) €A (2.18)
and define the matrix
A= (a(f,k))jrerz-
Then it follows from Propositions 225 and 26l that
”a”M(p“’,‘é) = || Allur.a(w,a2), (2.19)

provided 6 is sufficiently small.
By identifying matrices with corresponding linear operators, [35) Lemma 3.3]
gives

Op(a) = Dy, 0 Ao Cy,. (2.20)
Hence, if b € Sy /2 (R2%),
b(j,k) = Vab(j, ko — v, k — j)e!F=0%) 0§ ke A2
B = (b(j,k))j ke,

and the matrix C is defined as

C'=Cy, 0Dy, (2.21)

then
Op(a#eb) = Op(a) o Op(b) = Dy, 0 (Ao C o B) o Cly,, (2.22)

and
||a#obHM@g> =< ||A o C o Bllyra(w,a2)- (2.23)

2.6. Composition of pseudodifferential operators with symbols
wn Banach modulation spaces

We recall algebraic results for pseudodifferential operators with symbols in modu-
lation spaces with Lebesgue exponents not smaller than one [7} 23] B].
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If A e M(d,R), then the product #, with N factors

(@1,...,aN) = @144 - - # 40N, (2.24)

from 8y /2(R*) x -+ x 81 /2(R??) to Sy /2(R??) is defined by the formula

Opy(ar#a - #aanx) = Opylar) o---oOpylan).

The map (Z2Z4)) can be extended in different ways, e.g. as in [7, Theorem 2.11]
which is stated in a generalized form in Theorem E.TT] below. Assume that the
weight functions satisfy

wo(Ta(Xn, X0)) S [[wi(Ta(X;,X;-1)),  Xo,..., Xy € R, (225)
j=1
where
Ta(X,)Y) = (y+ Az —y),{+ A" (n = &).n — &2 —y),
X =(z,8) eR™, Y =(y,n) e R™ (2.26)

Here A* denotes A transposed. Assume that the Lebesgue parameters satisty

1 1 1 1
max(Ry(q'),0) < min [ —,—,—,—,Rnx(p 2.27
(R(@),0) < _in (pa e 0 (227)
or
1 1 1 1 1 1
Ryv(p) >0, —<—<- and - <—<-, j=1,...,N, (228)
qQ ~ Py 2 G pj 2
where
N
1 1
Ry(p) = (N —1)7" ———,
jzlp] Po

P = (p07p17 cee 7pN) S [17 OO}N+1'

Theorem 2.11. Suppose pj,q; € [1,00], j = 0,1,...,N satisfy Z27) or (Z28),
and suppose w; € P(R*), j =0,1,...,N, satisfy Z2Z5) and ZZ8). Then the
map ZZ4) from S jo(R*)x - xSy o(R*) to Sy j2(R?*?) extends uniquely to a con-
tinuous and associative map from M&l’()“ (R?)x---x M&VN")IN (R%9) to Mg""’q" (R?),

wo)
and

N
lai#a - #AaNHMg?“)IO S H ”a’jHMp-?'"‘-?'v
0 =1 (wj)

foraj € M(p:)';()“(de)7 j=1,...,N.
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Theorem follows by similar arguments as in the proof of [7, Theorem 2.11].
The details are left for the reader.

Remark 2.12. We note that the definition of T4 in [7, Eq. (2.30)] is incorrect and
should be replaced by (226) with A = ¢I, in order for [7, Theorem 2.11] to hold. A
corrected version of [7] has been posted on arXiv.

3. Composition of Pseudodifferential Operators with Symbols
in Quasi-Banach Modulation Spaces

In this section, we deduce a composition result for pseudodifferential operators with
symbols in modulation spaces with Lebesgue parameters in (0, oo].
If A e M(d,R), then the map

(a1,a2) — a1# 402 (3.1)
from Sy /2(R*?) x 81 /2(R*?) to Sy /2(R??) is defined by
Opa(ai#4a2) = Opy(a1) o Op,(az).

The following result is the principal result of this paper. It concerns sufficient
conditions for the unique extension of ([B) to symbols in quasi-Banach modulation
spaces.

The weight functions are assumed to obey the estimates

wo(Ta(Z, X)) S wi(Ta(Y, X ))wo(Ta(Z,Y)), X,Y,Z e R*, (3.2)
where
TA(X,Y)=(y+ Az —y),+ A"(n = &),n— &z —y),
X = (z,8) e R Y = (y,n) € R*. (3.3)
(ct. @25) and E2B)).

Theorem 3.1. Let A € M(d,R) and suppose w; € Pp(R*), j = 0,1,2, satisfy
B32) and B3). Suppose p;,q; € (0,00], j =0,1,2, satisfy

1 1 1
— St (3.4)
Po b1 D2
and either
41,92 < go < min(1, po) (3.5)
or
1 1 1 1
min(l,po) < q1,q2 < qo and —0——+— < —+ — (3.6)

min(l,p0) g ~ @ ¢
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Then the map (a1, az) — a1# a2 from Sy j2(R*) x 8y /5(R*) to Sy /2(R?*) extends
uniquely to a continuous map from M&l")h (R2%) x ij;)” (R??) to M(p:j(;‘)m (R2%), and

lar#aazliaro-co S laallarrran llazllagrz.oz,
0) (w1) (w2)
for all ay € M(p;l’()“ (R??) and ay € ij;)” (R2%),

We need some preparations for the proof. The following result contains the
needed continuity properties for matrix operators.

Proposition 3.2. Let A C RY be a lattice, let pj,q; € (0,00, j = 0,1,2, be such
that B4)-B0) hold, and suppose wo,wr,ws € Pr(R??) satisfy

(,(JO(.’E7Z) S wl(x7y) wg(y,z), T,Y,2 € Rd~

Then the map (A1, As) — Ay 0 Ay from Ug(A) x Ug(A) to Ug(A) extends uniquely
to a continuous map from UPY9 (wq, A) x UP2% (wq, A) to UPO 9 (wy, A), and

| A1 0 Azlluro.do (wo,a) S | A1llurrar wy,a) | A2]lurs.az (ws,a) - (3.7)

Proof. Let Uj , (A) be the set of all A € Uj(A) with non-negative entries, let
Am = (am(j, k))jren € Ug(A) NTUG 4 (A), m = 1,2, denote the matrix elements of
B :Al OAQ by b(]7k)a ]7k € A7 and set p = po, ¢ = qo, w = Wo,

am(J, k) = [am (G, 5 — B)lwm (5,5 — k) and (), k) = |b(j,5 = k)|w(G,j — k),
m = 1,2. Then
[Am [wom.am (@,n,0) = [@mllepmiam, m=1,2,
| A1 0 Az llupaqu,a)y = 1|6]ler.a,
and we first prove
[6l[era < [lar]lerr.an [lazlerziaz-
We have

b(j, k) <D a1(j,Das(i — 1,k —1). (3.8)
leA

In order to estimate ||b( -, k)||s» we consider the cases p < 1 and p > 1 separately.
First assume that p < 1, and set r; = %. Then % + % > 1 by assumption
(34)), and therefore Holder’s inequality yields for k € A

(- k) < 3 (Z a1 (. Dz (G — 1, & —w)

jeA \leA

<N (@Dl — Lk~ 1)

leA jeA
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< D llaa( Pl flaz (k= Dl

leA
- ZHal ||£P1||a2( )Hﬁpw
leA
that is

16(-,K)|ler < (c1 % cz(k))%7

with ¢, (k) = [[am (-, k)| Vo, m =1,2.
In order to estimate (¢ * 02)% we first assume (B). Then

1 1
[b]lep.a < [[(c1# ca) 7 [lea = [lex * call gy

1
< (lerllearvllezllearn)? = llarllerrallagflerza < flaflersan [[az]lera-az,

and the result follows in this case.
If instead (Z6) holds then ¢ > ¢1,92 > p, and r; = ¢;/p, j = 1,2, and r = ¢/p
satisfy
1 1 1
ri,re,r>1 and — + —>1+4 —.
T1 ) T

Hence Young’s inequality may be applied and gives

1 1
[bller.a < flex = callf < (lerller[lezller2)? = [|ar]lersoar [laz][erz.az,

and the result follows in this case as well.
Next we consider the case p > 1. By Minkowski’s and Holder’s inequalities and
the assumption ([B4) we get from (BR)

6(- k) ler <D llan( Daz(- =Lk = 1)l

leA
< ZHal ‘[PlHCLQ( k—l)”zpz = C1 *CQ(k’), (39)
leA
where ¢, (k) = [Jam (-, k)||epm, m = 1,2.
If (38) holds then ¢ > ¢1,¢2 > 1 and Young’s inequality gives
[bllera < [lex * callea < [leallen[ealleaz = [[arllers.a [Jag]|erz oo
and the result follows. If instead ([B:3) holds then ¢ < 1 and (3:9) gives

[bllera < [lex * callea < lealleallcalles = flar]lers.allazlerz-a

< lay||¢pr.a1 ||az||ep2-az -

Thus we have proved [B.17) when Ay, Ay € Ug(A) NTj  (A).

By Beppo—Levi’s theorem or Fatou’s lemma applied to the previous situation,
we obtain that A; o Ay is uniquely defined as an element in UP%(w, A) and (B
holds, provided A, € UPm 9" (wp,, A) N UG , (A) for m = 1,2.
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For A,, € UPm%m (w,,  A), m = 1,2, there are unique
Ap e € UPm9 (W, A)NTG (), m=1,2, k=1,....4,

such that

4
Z ke
= 1 Am,k7
k=1
and we have

”A s A) < HAm”UPm-,er(wm,A), m=1,2, k= 1,...,4.

Since the assertion holds true for A; , and As; in place of A; and As, it follows
from the latter estimate that

4
Ayody =Y M Ay po Ay € TP (w, A),
k=1

is uniquely defined and that (37) holds for A, € UPm9 (w,,,A), m = 1,2. |

We also need the following result on the composition of the analysis operator
and the synthesis operator defined by two Gabor systems.

Lemma 3.3. Suppose A C R? is a lattice, A2 = A x A and ¢y, 2 € $1(RH\0.
Let Cy, = C$2 be the Gabor analysis operator and let Dy, = Df;l be the Gabor
synthesis operator defined by ¢2 and ¢1, respectively, and A. Then Cy, o Dy, is the
matriz (c(j,k)); keaz where

c(j, k) =BV, 001G — k), G=(,0), k= (krK). (3.10)
Ifwo(X,Y) =w(X —Y), X,Y € R* for w e Z5(R>?), then
(c(d.k)jrerz € [ U%wo,A?). (3.11)
weggg(ode)

Proof. Let f be a sequence on A? such that f(k) # 0 for at most a finite number
of k € A%. Then

Dy, f = Z FR)1k, b1k =di(- —k)e' " k= (k k),
keA?

and

C(Dy, )(3) = Vs (D, /)(G) = D Vi1, 1(4) f (K).-
keA?

If 5 = (j,¢) then Cy, o Dy, is hence given by the matrix C' = (c(j, k)); keaz where
d

c(g k) = Vs, 01 k(3 5/ D16(Y)Pa(y — j)e 0 dy
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= (zﬂ)—%em,ﬂ—n y o (y)me‘“y*L‘”>dy

= "RV 61(5 — k),

which proves (B10).
It remains to prove (EI1). Let w € Z(R2?) and ¢ > 0. Since ¢1, ¢2 € X1 (RY),

we have by [33, Theorem 2.4]
Vi1 (, €)] S e (HIED,
for every r > 0. From (BI0) and (ZI3) we obtain
he 00,00 (k) = sup, [Hewo (4, F) = [Vo, ¢1(K)w (k).

A combination of these relations and ([ZI6) now give

[Clluse-a(wo,n2) = I1hc,00,wolles = IV f1 - wllea(az) < oo.
Hence C € U°*%(wp, A?) for any w € Zx(R??) and any ¢ > 0. m|
Proof of Theorem Bl By [36] Proposition 2.8] and Proposition 2] we may

assume that A = 0. Pick ¢1,¢2 € X1 (R%)\0 and a lattice A C R such that &, ¥
and A2 = A x A C R?? are as in Lemma 8. Let finally a,, € M™% (R?%),

m=1,2. !
By @I0)-@20), we have for m = 1,2
lam|lazzmam = || Amllupm.am (9,,,.42) (3.12)
and
Op(an) = Dy, 0 A 0 Cy,, (3.13)
where

Apm = (am(J, k))jkerz,

am(G. k) = IV am Gk e — ko k—3), §=01), k=(kr)eA?

and
(2, & y,m) = wm(@,1,§ =0,y — ).
Condition (Z2) means for the weights ¥,,,, m =0, 1,2,
o(X,Y) S (X, 2)92(2,Y), X,Y,ZeR™. (3.14)
Pick v; € Z5(R?) even so that wy is vo-moderate with
vy = @V @v v € Pp(RM),
set v =v? @ v; € Pr(R?*) and
(X, Y)=v(X -Y) € Zg(R*), X,Y € R¥,
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Then vy is designed to guarantee
92(X,Y) Swuo(X,2)02(2,Y), X,Y,Zc R*. (3.15)
We have by (221]) and (222
Op(ai1) 0o Op(az) = Dy, 0 Ao Cy,,
where
A=A10C0 A
and C = Cy, o Dy,. By Lemma[3.3
C € NU>" (v, A?).

r>0

Set r = min(1, pa, g2). Then we obtain from ([2:23), (3.14)), (B:15) and Proposition
32 applied twice

lar#oazlarro.c0 < A1 0 C 0 Azf|yro.ao (90,02)
S [ Axlluerar (9,,42) |C 0 Agllyra.az (9,,42)
S M Aillvrrar (9,,42)[[Clluser (vo,42) | A2 upz a2 (9,,42)
X || Axllyerar (9,,42) | A2lupz.a2 (95,12)
= Naallazs o flazll ez, oz

It remains to prove the claimed uniqueness of the extension. If (ZH) holds then
MP% C MY 5 = 1,2, and MPO C M1, Then the claim follows from the
(w5) (w;) : (wo) (wo)
uniqueness of the extension

M #a M) € M (3.16)

(w1 (w2) = " (wo)’
which is proved in [7, Theorem 2.11].
Suppose (B8] holds. Then the same argument applies if ¢ < 1, and if p > 1,
then the claim is a consequence of the uniqueness of the extension

MG #aMGT € MG, (8:17)

which is again proved in [7, Theorem 2.11]. Suppose p < 1 < q. If ¢1,¢2 > 1, then
the uniqueness follows again from the uniqueness of (BIZ). If ¢ > 1 > ¢q, then
it follows from the uniqueness of ([BI7) with g2 replaced by 1, and analogously for
g2 > 1 > q1. Finally if q1, g2 < 1, then the uniqueness follows from the uniqueness

of BI4). O

Let p,q € (0,00] and set » = min(1,p,q). A particular case of Theorem is
the inclusion

M4 M C MDY

(wo (w2) = 0)’
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where the weights wg,ws € P (R*?) satisfy
wo(TA(Z,X)) S wo(Ta(Y. X)) wn(Ta(Z.Y)), X.Y.Z € R¥,

and T4 is defined by B3).
We also note that Mﬁ’f; is an algebra under the product #4 provided p,q €

(0,00], ¢ < min(1,p) and w € Z5(R*?) satisfies

W(Ta(Z, X)) Sw(Ta(Y, X)) w(Ta(Z,Y)), X,Y,ZeR¥.

4. Necessary Conditions

In this final section, we show that some of the sufficient conditions in Theorem [B1]
are necessary. We need the following lemma that concerns Wigner distributions.

Lemma 4.1. Let qo,q € (0,00] satisfy qo < q, let
o(x) = e 3l for x e RY,

let A C R be a lattice, let ¢ = {c(k)}een € L(A)\LP(A), where c(k) > 0 for all
Kk € A, and finally let

fla) =) e(w)e ™ o(z) € 7' (RY).

KEA
Then
fe N MPIYRIH\ MR, (4.1)
p>0
and
Wig € () MP4(RY). (4.2)

p>0

Proof. By replacing A by a sufficiently dense lattice Ag, containing A and letting
¢(k) = 0 when k € Ag\A, we reduce ourselves to a situation where the hypothesis
in Proposition[Z8 is fulfilled. Hence we may assume that 2TIT) are dual frames for
L*(RY).

First we show (). (cf. [28] Proposition 2.6]). On one hand, we have || f|| a0 <
llc|lea for any p > 0 due to Proposition Z6(1). Thus f € ) ., MP?(R%). On the
other hand f ¢ M°%(RY).

In fact, set ¢1(z) = (27r)’%e’%‘””‘2 for # € R%. Since

Ve f(0,0) = (2m)~ % Z c(t— /i)efil"‘2 =cx*P1(L)

p>0

KREA
we obtain
lelio, =S e® < (2m) 3 S (e di ()™
LEA LEA
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= 2m)F S Vaf0,01” < 2n) Y (?2‘2 Vi £ (4, L>I> O

LEA LEA
dag
= (2m)™2 H%fHZBQ,qo(Az) = [Falsy e

again by Proposition 6. Thus it must hold f ¢ M=% (RY), since otherwise we
get the contradiction ¢ € £9°(A). We have now showed (@T]).

In order to prove [@Z), set a = Wy 4 € ./ (R??). Since MP? is increasing with
respect to p and ¢, it suffices to intersect in ([@2) over 0 < p < min(1, q). We have

llal| e = HV<I>Wf,¢||eP=q(A4),
where ®(z,¢) = (2r)~2e~(=*+1E*)  and
A*=AxAxAxACR™
By straightforward computations, we get
a(z,§) = Wyg(z,§)

= (271')_% Z C(K})ﬂ'_%/ e—%(\w—%|2+\w+%\2)€i(<w»f€)—(y7£—%))dy
KEA R4
DY c(k)el#*~1E= 5 gitwm)
KEA
This gives

V(ba(%g:??»y) = 2%71—72 Z C(K/)Fl-i(xag7777y)7
KEA

)

where
F.(z,&n,y) = (271')_% // e—(\z\2+lc—%|2+\Z—f\2—|C—£|2)e—i(<2»7l—ﬂ)+<y»€>)dzd<
R2d
— 9% gz HE=5 1) g (In—rP+1y|*) o= 5 (2 n—K) +H{y.E+5))

Hence

Vaa(z,&,n,y) = 2720793 c(r)em 2Ual e 51 =g (n=rl ol
KEA

« e~ 3 (En—r)+(v.E+5)) (4.3)
If ¢ < 0o we get, in the third inequality using p < 1,
IWrpllvea = llallvea < [{Voa(ky, 51, 52, k2) i, msenlleracasy

a

p\ P
YT (Zc(ﬁ)e%kll”mSl2>é<|~25|2+k22>>

ko,k2 \k1,k1 K

I

24\
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X

Z <Z (Z C(/f)e_(éRl—g|2+§'€2_ﬁ2)>1)> 4\

K2 K1 K

q

1
; q
) (Z (k)P e<%l~1z2+§~z~2>>

K2 RyK1

IN

1
q

}j(Z}wwf%M*f) = (|{e"y xe 817 g0

K2 K

RS TS)

X

I

N

_r 1
< (Mg lle™ sV P le) ™ < leflen < oo,

using Young’s inequality. The result follows if ¢ < oco. If ¢ = 0o, a similar argument
proves the result. O

The preceding lemma is needed in the proof of Theorem below on necessary
conditions for continuity. We aim at conditions on the exponents p;, ¢;, 7 =0, 1,2,
that are necessary for

l|a# abll prro-a0 < [lall pperan[[b]] ppp2-az, (4.4)
(w0) (1) (w2)

to hold for all a,b € . (R?4), for certain weight functions w;, j = 0, 1,2. We restrict
to weights of polynomial type.

By [36] Proposition 2.8], it suffices to prove the result in the Weyl case A = 1/2,
and then (4) in terms of symplectic modulation spaces is

Ha#bHMpo-,qo < HCLHMpl-,rn ||b||MP21LI2, a,b e <fﬂ(l:{?d) (45)
(©0) 1) (&2)
The conditions on the weights (32)) and (33]) are then transformed into

wWw(Z+X,Z-X)Sin(Y+X,Y - X)wn(Z+Y,Z-Y), X,Y,ZcR*.

(4.6)
(cf. [T, 23]).
We will consider weights with the particular structure
D2(X = Y) U2(X —Y)
X, Y) = XY)=—"—"——=
=gy e T ey @)
Ui (X -Y) .
X,Y)=
w2 X, Y) Go(X +Y)

for ¥; € Z(R??), j = 0,1,2. Then (@) is automatically satisfied. Without loss,
we may assume ¥; € C* [23, Remark 2.18].
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For 9 € 2(R??), let S™)(R??) denote the space of smooth symbols on R?
such that (9%a)/9 € L* for any a € N2<.

Lemma 4.2. Let p,q € (0,00, let ¥; € Z(R?*?), j = 1,2 and suppose w(X,Y) =
92(X = Y)/01(X +Y). Then there exist a; € S J)( ) and b; € S1/%)(R2),
7 =1,2 such that

aj#b; = bj#a; =1, j=1,2, (4.8)

and the map a — as#a#by is continuous on Y(de) and extends uniquely to a
homeomorphism from M’(’O’Jq) (R24) to MP1(R2?),

Proof. According to [2 Corollary 6.6] there exist a; € S@i)(R??) and b; €
S(/95)(R2), j = 1,2, such that EX) is satisfied.
By [I?B], Remark 2.18], we have

DR = () M7y, (R, In(X,Y) =d(X)(V) Y,
N2>0

for any ¥ € Z(R??) and any r > 0. More precisely the remark gives the equality
for r = 1, and for general r > 0, the equality follows from the embeddings

MOO,T‘Q C MOO sT1 C MOOT‘

1 1
(1/vN+4n) (1/vn) (1/vN)? when 7y <ra, No>2d <— — —)

1 T2

If we set » = min(1,p,q), then p; = 0o, 1 = 7, p2 = p, g2 = ¢, as well as
P2 =00, g2 =T, p1 = P, @1 = q, satisfy the conditions (34), and (5) or B:4) of
Theorem B.11.

From these observations, the result follows from Theorem [3.1] and a repetition
of the arguments in the proof of [, Lemma 3.3]. O

Theorem 4.3. Let pj,q; € (0,00], suppose w; € ZP(R), j =0,1,2, are given by
@) where ¥; € Z(R??), j =0,1,2. If [@ER) holds then
1 1 1 1 1

1
—<—+—, —<—+— and q.q < (4.9)
Po P1 P2 Po . Q92

Proof. By Lemma 2, the estimate (£H) with weights (£71) implies
||Cl#b||MPOx<10 S ”CL”MPL% HbHMPzMZz, a € M (de), be y(R?d). (4.10)

It thus suffices to prove the result for w; =1, 5 =0,1,2.
Let axu(z,§) = e Az*—ulél* and ax = ay,y, for gy, A > 0. Then by the proof
of [23] Proposition 3.1] (cf. [, Sec. 3])

laxllid, = 75 a p i s ATH (L4 A

and

_ A+
CL)\#CLM(X) = (]_ + )\/.L) dexp<—|X|2ﬁ>.
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Hence
||a/\#a)\H}é§,q = gl/pHl/a=1p=1/pg=1/a(] 4 \2)=Va(2\)~1/P(1 4 \)2(/pH+1/a—1),

Thus

1/d
||G,A#G,AHJ\/[P0¢10 / ZC)\ﬁ_‘—%_%
Ha)\HMPLLn ||a>\||Mp2-,q2

X (14 X2) 7% (14 A)70 o1 7s o o s,

for some c constant C > 0 which does not deperlld on \. The right hand side behaves
like A7 a1~ @ when \ is large, and like 71 T72 ~ 7 when )\ is small. The continuity

(#I0) hence implies the necessary conditions
1 1 1 1 1 1
- S — + ) - S — + —.
bo @1 Q2 bPo P1 P2

It remains to show q1,¢2 < qo. Since aj#as = az#a; (cf. [23]), it suffices to
show ¢1 < qo. We give a proof by contradiction. Suppose (£I0) holds and gp < ¢;.
Let A € R? be a lattice,

d(a) =7 1 B = fe(m)}ren € £ (AN (A),
and let
f@) =" e(r)e’ ™ ().
KEA
Then
fe () MPra(R)\M=© (R,

p1>0

a=Wye € m MPpra (RQd) and b= We.s € <5”(1:{,2(1),
p1>0
by Lemma ATl Since
Op“(a)g = (2m)"

d
2

vl

(9:9)f and Op"“(b)g = (27) 2(g,9)¢,

it follows that
Op“(a#b)p = (2m)~|¢|1-f € (| MP»2(R\M>®(R?).

p1>0

Therefore Op" (a#b) is not continuous from .7 (R?) to M°>® (R9).
On the other hand, we have by assumption

a#tb € MPo90 C N0,

If go € (0,1], then Op"(a#b) is continuous from MP>% to MPo% when
po € [qo, 0], by [35] Theorem 3.1]. This contradicts the fact that Op"“(a#b) is
not continuous from . to M°>9. Hence the assumption gy < g1 must be false.
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If instead qo € [1,00], then by [31, Theorem 4.3] Op“(a#b) is continuous from
M1 to M9  which again contradicts the fact that Op" (a#b) is not continuous
from . to M°>%. Hence the assumption ¢y < ¢ is again false.

Thus we must have ¢; < qp. O

Remark 4.4. Let 2% (R?) denote all w € Zx(R?) such that w is v-moderate for
a sub-multiplicative weight v satisfying

v(z) Serl?l z e RY,

for all r > 0. Then Z(R%) € 2%(R%). By using the new [T, Theorem 4.1] instead
of Lemma @2 it follows that Theorem A3 holds for ¥; € 2% (R?*!) and w; defined
by (@&T). The space . in (£H) is then replaced by S;.

Remark 4.5. For Banach modulation spaces with exponents p;, q; restricted to
[1, 0], we have found that the following conditions are necessary and sufficient for
continuity of the Weyl product [7, Theorems 0.1 and 3.1].

11 1
<=4

— < — 4+ —, (4.11)
Po P1 P2
1 1
q1, 42 S q0, 1 S — + ) (412)
q1 q2
1 1 1 1 1 1 1 1
—ft—<—+— If—<—+—4— j=12 (413
Po qo q1 q2 q0 q1 q2  Pj
1 1 1 1 1 1
1+—+—-<—4+—+—4+—. (4.14)

Po q0 q1 q2 P1 D2

In this paper, we have worked with exponents p;, ¢; in the full range (0, oo]. The
sufficient conditions in Theorem [BI] and the necessary conditions in Theorem [4.3]
are not equal, as conditions (11— (#£14) are for exponents in [1, o0].

In fact, consider the inclusion

M1,2#M1,2 g MOO’2’

which holds since the exponents satisfy (ZII)—(EIdl). They do however not satisfy

(34), and (3H) or (BH). Hence the sufficient conditions in Theorem Bl are not at
all necessary.

Appendix

In this appendix, we prove the formula
F([O)&) = @m) 2 (f,9¢'9), [eSURY), €S8R, €eRY (A1)

for s > £, which we claimed to be true in the definition of the STFT (). There
is a parallel formula for f € ¥, (R?), ¢ € £,(R?) and s > 1, that we also prove.
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Let f € SL(RY), let ¢ € S¢(R?) and denote
u() = 2m) F(f.0e9) = @m) E(£9e709), ceRL (A
Then u € C*(R?). We need the following estimate (cf. [5]).
Lemma A.1. The function (A.2) satisfies the estimate
u@l S e, ger?,

for any ¢ > 0.

Proof. By 24) ¢ € S; ,(R?) for all h > hg where hg > 0. Let ¢ > 0 and set

(o (£

Let a, 3 € N?. Using |7|! < dly! (cf. 27} Eq. (0.3.3)]) and 3> (7) = 2171 we
estimate for z, ¢ € R?

}xo‘ﬁf(e“”’f)d)(xm lat Bl B\ [¢[! h= }J;aaﬂ—w(x)} B8\ "*
(a!B)*(2h)l+F] =2 2 (7) V5 (al(B = y))shlats—l (7)

7<B

S

< lolls, 271 3 (6) (aii)'” <( Z?:)ﬂ

v N
AN AN
< 2-letd 3 p @
~ 7!
y<p N 7
< eclel* glatal 3 (5)
- v<p N

1

< ecléls

This implies
. 1
e D5, 0 S 7, g€ RY,
which via (Z4k) finally gives the estimate
. 1
[u@ S leet s, . S e, £ eRY

The formula (A.1) amounts to the claim .Z(f @) = u.
A priori Z(f ¢) € S.(R?) is the distribution

(Z(f0),9) = (f,43), g€ S,(R?).
To prove our claim .Z (f¢) = u we must therefore show
(139 = | u@g(o)ds = r) 2 [ (£ Fgla)eDdo, g€ SR,
R R
(A.3)
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Note that the integral is well defined due to Lemma [A1] and the estimate for
g € Ss(RY) [33, Lemma 1.6]

g(x)| S ez eRY,

which is valid for some € > 0.

In view of the definition of the Fourier transform g, formula (A.3) is true
provided we can switch order in the action of the distribution 1 ® f € S.(R2?9)
with respect to the first and second R variable, when it acts on the test func-
tion ®(x,y) = (2m)~¥24(y) g(z)e~“¥*). Note that ® € S,(R??) if ¢, g € S,(R)
and s > 1, and ® € I,(R*) if ¢,g € Z,(R?) and s > 3, cf. [8] Theorem 3.1]
and [l Proposition 3.4].

Thus the claim (A.1) is a consequence of the following Fubini-type result for
Gelfand—Shilov distributions. It corresponds to [22] Theorem 5.1.1] in the Schwartz
distribution theory.

Theorem A.2. Suppose s > %, and f; € S{(R%), j = 1,2. Then there exists a
unique tensor product distribution f = f1 ® fa € SL(R¥1492) such that

(/1 ® fo, 01 ® ¢2) = (f1, 1) {fo, b2), &; € Ss(RY), j=1,2.
It holds

(f, ) = (f1, {f2. 6(m1,22))) = (fa, (f1, d(x1,22))), & € Ss(RTT%2),

where f; acts on x; only, j =1,2.
The same conclusion holds for s > 1/2 and f; € XL(RY), j = 1,2, with test
functions in X,

Proof. We use the Hermite functions

d 1 |2

ho(z) = 78 (=)l @la) "2 2 (9% 171%), 2 € R?, a e N,

and formal series expansions with respect to Hermite functions:

f= Z calas

a€eNd

where {c,} is a sequence of complex coefficients defined by ¢, = co(f) = (f, ha)-
It is known that Gelfand—Shilov spaces and their distribution duals can be
identified by means of such series expansions, with characterizations in terms of the
corresponding sequence spaces (see [14] [37] and the references therein).
In fact, let

f= Z calas

aeNd
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and

¢= > daha,

a€eNd

with sequences {c,} and {d,} of finite support. Then the sesquilinear form

(f7 ¢) = Z Ca@; (A4)

aeNd

agrees with the inner product on L?(R?) due to the fact that {hq }aene € L2(R?) is
an orthonormal basis. The form (A.4) extends uniquely to the duality on S’(R?) x
Ss(RY) for s > 3, and to the duality on X, (R%) x X,(R?) for s > £. All spaces are
then expressed in terms of the Hilbert sequence spaces

1
E= MY = {ehi Y leale™* <oo b,
aeNd
where r € R.. For s > % the space S, (R?) is identified topologically as the inductive
limit
Ss(Rd) = U Z caha; {ca} € Ef ,
r>0 aEN
and S’ (R?) is identified topologically as the projective limit
S!(RY) = ﬂ Z Caha; {ca} €02,
r>0 acNd
For s > %, the space X4(R?) is identified topologically as the projective limit
SR = (N D caha:{ca} €67,
r>0 | aeNd
and ¥/ (R?) is identified topologically as the inductive limit
E'S(Rd) = U Z Caha; {ca} €02,
r>0 | aeNd

We have for a = (a1, a2) € N with a; € N% | j = 1,2, hg = ha, @ ha,.
This gives for f; € SL(R%), j = 1,2,

Co = Ca(fl & f2) = (flahal)(fQ,th), o = (061,(12) c 1\1(114-(127
SO Ca = C1,0,C2,a, if we denote ¢jo, = (fj,ha,) where a; € N% for j =1,2.
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Let ¢ € S;(R%%92) and denote d,(¢) = (¢, ha) for a € N%+d2 This gives for

any r > 0
1 1
Frofd)= Y cramcaae@onlE T grlonanl® (55
(a1,c2)ENd1+d2
From

{e,

1 1 1
e Tl(a1,a2)[28 < e~ zla1?s =522

ar} € 02, (ND) {con,} € 02, (N%) for any 7 > 0, {da, a0, } € F2(NFHd2) for

some r > 0, and the Cauchy—Schwarz inequality, we may now conclude that the
sum (A.5) converges absolutely.

The conclusion of the theorem is thus a consequence of the well-known Fubini

theorem with respect to the counting measure. O
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