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We study the bilinear Weyl product acting on quasi-Banach modulation spaces. We
find sufficient conditions for continuity of the Weyl product and we derive necessary
conditions. The results extend known results for Banach modulation spaces.
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1. Introduction

In this paper, we study the Weyl product acting on weighted modulation spaces
with Lebesgue parameters in (0,∞]. We work out conditions on the weights and
the Lebesgue parameters that are sufficient for continuity of the Weyl product, and
we also prove necessary conditions.

The Weyl product or twisted product is the product of symbols in the Weyl
calculus of pseudodifferential operators corresponding to operator composition. This
means that the Weyl product

(a1, a2) �→ a1#a2,

‡Corresponding author.
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of this work is permitted, provided the original work is properly cited.
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of two distributions a1 and a2 defined on the phase space T ∗Rd � R2d is defined by

Opw(a1#a2) = Opw(a1) ◦ Opw(a2),

provided the composition is well-defined.
Our result on sufficient conditions is as follows. Suppose ωj , j = 0, 1, 2, are

moderate weights on R4d that satisfy

ω0(Z +X,Z −X) � ω1(Y +X,Y −X)ω2(Z + Y, Z − Y ), X, Y, Z ∈ R2d.

Suppose pj , qj ∈ (0,∞], j = 0, 1, 2, satisfy

1
p0

≤ 1
p1

+
1
p2
,

and either

q1, q2 ≤ q0 ≤ min(1, p0),

or

min(1, p0) ≤ q1, q2 ≤ q0 and
1

min(1, p0)
+

1
q0

≤ 1
q1

+
1
q2
.

Denote the Gelfand–Shilov space of order 1
2 by S1/2, and the weighted modulation

space with Lebesgue parameters p, q > 0 and with weight ω by M
p,q
(ω). Then the

map (a1, a2) �→ a1#a2 from S1/2(R2d) × S1/2(R2d) to S1/2(R2d) extends uniquely
to a continuous map from M

p1,q1
(ω1)

(R2d) × M
p2,q2
(ω2)

(R2d) to M
p0,q0
(ω0)

(R2d), and

‖a1#a2‖M
p0,q0
(ω0)

� ‖a1‖M
p1,q1
(ω1)

‖a2‖M
p2,q2
(ω2)

. (1.1)

As a consequence for unweighted modulation spaces, we obtain new conditions
on Lebesgue parameters that are sufficient for Mp,q(R2d) to be an algebra: p, q ∈
(0,∞] and q ≤ min(1, p).

The necessary conditions we deduce are as follows. Suppose (1.1) holds for all
a1, a2 ∈ S (R2d), for a triple of polynomial type weights ωj , j = 0, 1, 2 interrelated
in a certain way, see (3.7). Then

1
p0

≤ 1
p1

+
1
p2
,

1
p0

≤ 1
q1

+
1
q2

and q1, q2 ≤ q0,

which are strictly weaker than the sufficient conditions.
Our results for the Weyl product are special cases of results formulated and

proved for a family of pseudodifferential calculi parametrized by real matrices A ∈
Rd×d. In fact, we work with a symbol product indexed by A ∈ Rd×d, denoted and
defined by

OpA(a#Ab) = OpA(a) ◦ OpA(b),

where OpA(a) is the A-indexed pseudodifferential operator with symbol a. This
family of calculi contains the Weyl quantization as the special case A = 1

2I.
The sufficient conditions and the necessary conditions that we find extend results

[7, 23] where the same problem was studied for the narrower range of Lebesgue
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parameters [1,∞]. In the latter case, modulation spaces are Banach spaces, whereas
they are merely quasi-Banach spaces if a Lebesgue parameter is smaller than one.

The Weyl product on Banach modulation spaces has been studied in e.g. [7, 18,
20, 23, 26, 29, 30]. In [7] conditions on the Lebesgue parameters were found that are
both necessary and sufficient for continuity of the Weyl product, thus characterizing
the Weyl product acting on Banach modulation spaces.

One possible reason that we do not obtain characterizations in the full range
of Lebesgue parameters (0,∞] is that new difficulties arise as soon as a Lebesgue
parameter is smaller than one. The available techniques are quite different, and
many tools that are useful in the Banach space case, e.g. duality and complex
interpolation, are not applicable or fraught with subtle difficulties.

Our technique to prove the sufficient conditions consists of a discretization of
the Weyl product by means of a Gabor frame. This reduces the continuity of the
Weyl product to the continuity of certain infinite-dimensional matrix operators.
A similar idea has been developed in [38].

The paper is organized as follows. Section 2 fixes notation and gives the back-
ground on Gelfand–Shilov function and distribution spaces, pseudo-differential cal-
culi, modulation spaces, Gabor frames, and symbol product results for Banach
modulation spaces.

Section 3 contains the result on sufficient conditions for continuity on quasi-
Banach modulation spaces (Theorem 3.1). Section 4 contains the result on necessary
conditions for continuity on quasi-Banach modulation spaces (Theorem 4.3). Finally
in Appendix, we show a Fubini type result for Gelfand–Shilov distributions that is
needed in the definition of the short-time Fourier transform (STFT) of a Gelfand–
Shilov distribution.

2. Preliminaries

2.1. Weight functions

A weight on Rd is a positive function ω ∈ L∞
loc(R

d) such that 1/ω ∈ L∞
loc(R

d). We
usually assume that ω is (v-)moderate, for some positive function v ∈ L∞

loc(R
d).

This means

ω(x+ y) � ω(x)v(y), x, y ∈ Rd. (2.1)

Here, f(θ) � g(θ) means that f(θ) ≤ cg(θ) holds uniformly for all θ in the intersec-
tion of the domains of f and g for some constant c > 0, and we write f 	 g when
f � g � f . Note that (2.1) implies the estimates

v(−x)−1 � ω(x) � v(x), x ∈ Rd. (2.2)

If v in (2.1) can be chosen as a polynomial, then ω is called polynomially moderate
or a weight of polynomial type. We let P(Rd) and PE(Rd) be the sets of all
weights of polynomial type and moderate weights on Rd, respectively.
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If ω ∈ PE(Rd), then there exists r > 0 such that ω is v-moderate for v(x) = er|x|

[19]. Hence by (2.2), for any ω ∈ PE(Rd), there is r > 0 such that

e−r|x| � ω(x) � er|x|, x ∈ Rd. (2.3)

A weight v is called submultiplicative if v is even and (2.1) holds with ω = v. In
the paper, v and vj for j ≥ 0 will denote submultiplicative weights if not otherwise
stated.

2.2. Gelfand–Shilov spaces

Let h, s ∈ R+ be fixed. Then Ss,h(Rd) is the set of all f ∈ C∞(Rd) such that

‖f‖Ss,h
≡ sup

|xβ∂αf(x)|
h|α+β|(α!β!)s

is finite, where the supremum is taken over all α, β ∈ Nd and x ∈ Rd.
Obviously Ss,h is a Banach space which increases with h and s, and it is con-

tained in the Schwartz space S . (Inclusions of function and distribution spaces
understand embeddings.) The topological dual S′

s,h(R
d) of Ss,h(Rd) is a Banach

space which contains S ′(Rd) (the tempered distributions). If s > 1
2 , then Ss,h and⋃

h>0 S1/2,h contain all finite linear combinations of Hermite functions.
The (Fourier invariant) Gelfand–Shilov spaces Ss(Rd) and Σs(Rd) are the induc-

tive and projective limits respectively of Ss,h(Rd) with respect to h. This implies

Ss(Rd) =
⋃
h>0

Ss,h(Rd) and Σs(Rd) =
⋂
h>0

Ss,h(Rd). (2.4)

The topology for Ss(Rd) is the strongest topology such that each inclusion
Ss,h(Rd) ⊆ Ss(Rd) is continuous. The projective limit Σs(Rd) is a Fréchet space
with seminorms ‖ · ‖Ss,h

, h > 0. It holds Ss(Rd) = {0} if and only if s ≥ 1
2 , and

Σs(Rd) = {0} if and only if s > 1
2 .

For every ε > 0 and s > 0,

Σs(Rd) ⊆ Ss(Rd) ⊆ Σs+ε(Rd).

The Gelfand–Shilov distribution spaces S′
s(R

d) and Σ′
s(R

d) are the projective
and inductive limits respectively of S′

s,h(R
d). Hence if s ≥ 1

2 and t > 1
2 then

S′
s(R

d) =
⋂
h>0

S′
s,h(R

d) and Σ′
t(R

d) =
⋃
h>0

S′
t,h(R

d). (2.4a)

The space S′
s(R

d) is the topological dual of Ss(Rd), and if s > 1
2 then Σ′

s(R
d) is

the topological dual of Σs(Rd) [12].
The action of a distribution f on a test function φ is written 〈f, φ〉, and the

conjugate linear action is written (u, φ) = 〈u, φ〉, consistent with the L2 inner
product ( · , · ) = ( · , · )L2 which is conjugate linear in the second argument.
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The Gelfand–Shilov (distribution) spaces enjoy many invariance properties, for
instance under translation, dilation, tensorization, coordinate transformations and
(partial) Fourier transformation.

We use the normalization

Ff(ξ) = f̂(ξ) = (2π)−
d
2

∫
Rd

f(x)e−i〈x,ξ〉dx, ξ ∈ Rd,

of the Fourier transform of f ∈ L1(Rd), where 〈 · , · 〉 denotes the scalar product on
Rd. The Fourier transform F extends uniquely to homeomorphisms on S ′(Rd),
S′
s(R

d) and Σ′
s(R

d), and restricts to homeomorphisms on S (Rd), Ss(Rd) and
Σs(Rd), and to a unitary operator on L2(Rd).

The symplectic Fourier transform of a ∈ Ss(R2d) where s ≥ 1
2 is defined by

Fσa(X) = π−d
∫
R2d

a(Y )e2iσ(X,Y )dY,

where σ is the symplectic form

σ(X,Y ) = 〈y, ξ〉 − 〈x, η〉, X = (x, ξ) ∈ R2d, Y = (y, η) ∈ R2d.

Since Fσa(x, ξ) = 2dFa(−2ξ, 2x), the definition of Fσ extends in the same way
as F .

Let φ ∈ Ss(Rd)\{0}. The short-time Fourier transform (STFT) Vφf of f ∈
S′
s(Rd) is the distribution on R2d defined by

Vφf(x, ξ) = F (fφ( · −x))(ξ) = (2π)−
d
2 (f, φ( · −x)ei〈 · ,ξ〉). (2.5)

Note that fφ( · −x) ∈ S′
s(R

d) for fixed x ∈ Rd, and therefore its Fourier trans-
form is an element in S′

s(Rd). The fact that the Fourier transform is actually a
smooth function given by the formula (2.5) is proved in Appendix.

If T (f, φ) ≡ Vφf for f, φ ∈ S1/2(Rd), then T extends uniquely to sequentially
continuous mappings

T :S′
s(R

d) × Ss(Rd) → S′
s(R

2d) ∩ C∞(R2d),

T :S′
s(R

d) × S′
s(R

d) → S′
s(R

2d),

and similarly when Ss and S′
s are replaced by Σs and Σ′

s, respectively, or by S and
S ′, respectively [6, 33].

Similar properties hold true if instead T (f, φ) = Wf,φ, where Wf,φ is the cross-
Wigner distribution of f ∈ S′

s(Rd) and φ ∈ Ss(Rd), given by

Wf,φ(x, ξ) ≡ F (f(x + · /2)φ(x− · /2))(ξ).

If q ∈ [1,∞], ω ∈ PE(Rd), f ∈ Lq(ω)(R
d) and φ ∈ Σ1(Rd) then Vφf and Wf,φ take

the forms

Vφf(x, ξ) = (2π)−
d
2

∫
Rd

f(y)φ(y − x)e−i〈y,ξ〉dy, (2.5a)

1950018-5
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and

Wf,φ(x, ξ) = (2π)−
d
2

∫
Rd

f(x+ y/2)φ(x− y/2)e−i〈y,ξ〉dy.

Here, Lp(ω)(R
d) for p ∈ (0,∞] and ω ∈ PE(Rd) denotes the space of all f ∈

Lploc(R
d) such that fω ∈ Lp(Rd), and ‖f‖Lp

(ω)
= ‖fω‖Lp.

For a ∈ S′
1/2(R

2d) and Φ ∈ S1/2(R2d)\0 the symplectic STFT VΦa of a with
respect to Φ is defined similarly as the STFT by

VΦa(X,Y ) = Fσ

(
aΦ( · −X)

)
(Y ), X, Y ∈ R2d.

There are several ways to characterize Gelfand–Shilov function and distribution
spaces, for example in terms of expansions with respect to Hermite functions [13,
24], or in terms of the Fourier transform and the STFT [5, 21, 33, 37].

2.3. An extended family of pseudodifferential calculi

We consider a family of pseudodifferential calculi parameterized by the real d × d

matrices, denoted M(d,R) [3, 36]. Let s ≥ 1
2 , let a ∈ Ss(R2d) and let A ∈ M(d,R)

be fixed. The pseudodifferential operator OpA(a) is the linear and continuous
operator

OpA(a)f(x) = (2π)−d
∫∫

R2d

a(x−A(x − y), ξ)f(y)ei〈x−y,ξ〉dydξ, (2.6)

when f ∈ Ss(Rd). For a ∈ S′
s(R

2d) the operator OpA(a) is defined as the linear
and continuous operator from Ss(Rd) to S′

s(R
d) with distribution kernel

Ka,A(x, y) = (2π)−
d
2 F−1

2 a(x−A(x− y), x− y). (2.7)

Here F2F is the partial Fourier transform of F (x, y) ∈ S′
s(R2d) with respect to the

y variable. This definition makes sense since

F2 and F (x, y) �→ F (x−A(x− y), x− y), (2.8)

are homeomorphisms on S′
s(R

2d).
An important special case is A = tI, with t ∈ R and I ∈ M(d,R) denoting the

identity matrix. In this case, we write Opt(a) = OptI(a). The normal or Kohn–
Nirenberg representation a(x,D) corresponds to t = 0, and the Weyl quantization
Opw(a) corresponds to t = 1

2 . Thus

a(x,D) = Op0(a) = Op(a) and Opw(a) = Op1/2(a).

The Weyl calculus is connected to the Wigner distribution with the formula

(Opw(a)f, g)L2(Rd) = (2π)−
d
2 (a,Wg,f )L2(R2d),

a ∈ S′
1/2(R

2d), f, g ∈ S1/2(Rd).

For every a1 ∈ S′
s(R

2d) and A1, A2 ∈ M(d,R), there is a unique a2 ∈ S′
s(R

2d)
such that OpA1

(a1) = OpA2
(a2). The following restatement of [36, Proposition 2.1]

explains the relations between a1 and a2.
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Proposition 2.1. Let a1, a2 ∈ S′
1/2(R

2d) and A1, A2 ∈ M(d,R). Then

OpA1
(a1) = OpA2

(a2) ⇔ ei〈A2Dξ,Dx〉a2(x, ξ) = ei〈A1Dξ,Dx〉a1(x, ξ). (2.9)

2.4. Modulation spaces

Let φ ∈ S1/2(Rd)\0, p, q ∈ (0,∞] and ω ∈ PE(R2d). The modulation space
Mp,q

(ω)(R
d) is the set of all f ∈ S′

1/2(R
d) such that Vφf ∈ Lp,q(ω)(R

2d), and Mp,q
(ω)(R

d)
is equipped with the quasi-norm

f �→ ‖f‖Mp,q
(ω)

≡ ‖Vφf‖Lp,q
(ω)
. (2.10)

Here Lp,q(ω)(R
2d) is the space of all complex-valued measurable functions F on R2d

such that ‖F‖Lp,q
(ω)

<∞, where

‖F‖Lp,q
(ω)

≡ ‖Fp,ω‖Lq with Fp,ω(ξ) ≡ ‖F ( · , ξ)ω( · , ξ)‖Lp , ξ ∈ Rd.

On the even-dimensional phase space R2d, one may define modulation spaces
based on the symplectic STFT. Thus if ω ∈ PE(R4d), p, q ∈ (0,∞] and Φ ∈
S1/2(R2d)\0 are fixed, the symplectic modulation space M

p,q
(ω)(R

2d) is obtained by
replacing the STFT a �→ VΦa by the symplectic STFT a �→ VΦa in (2.10). It holds
(cf. [7])

M
p,q
(ω)(R

2d) = Mp,q
(ω0)

(R2d), ω(x, ξ, y, η) = ω0(x, ξ,−2η, 2y),

so all properties that are valid for Mp,q
(ω) carry over to M

p,q
(ω).

In the following propositions, we list some properties of modulation spaces and
refer to [8–11, 17, 32] for proofs.

Proposition 2.2. Let p, q ∈ (0,∞].

(1) If ω ∈ PE(R2d) then Σ1(Rd) ⊆Mp,q
(ω)(R

d) ⊆ Σ′
1(R

d).
(2) If ω ∈ PE(R2d) satisfies (2.3) for every r > 0, then S1(Rd) ⊆ Mp,q

(ω)(R
d) ⊆

S′
1(Rd).

(3) If ω ∈ P(R2d) then S (Rd) ⊆Mp,q
(ω)(R

d) ⊆ S ′(Rd).

Proposition 2.3. Let r ∈ (0, 1], p, q, pj, qj ∈ (0,∞] and ω, ωj , v ∈ PE(R2d),
j = 1, 2, satisfy r ≤ min(p, q), p1 ≤ p2, q1 ≤ q2, ω2 � ω1, and let ω be v-moderate.

(1) If φ ∈ M r
(v)(R

d)\0 then f ∈ Mp,q
(ω)(R

d) if and only if (2.10) is finite. In par-
ticular Mp,q

(ω)(R
d) is independent of the choice of φ ∈ M r

(v)(R
d)\0. The space

Mp,q
(ω)(R

d) is a quasi-Banach space under the quasi-norm (2.10), and different
choices of φ give rise to equivalent quasi-norms. If p, q ≥ 1 then Mp,q

(ω)(R
d) is a

Banach space with norm (2.10).
(2) Mp1,q1

(ω1)
(Rd) ⊆Mp2,q2

(ω2)
(Rd).
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We will rely heavily on Gabor expansions so we need the following concepts.
The operators in Definition 2.4 are well defined and continuous by the analysis
in [17, Chaps. 11–14].

Definition 2.4. Let Λ ⊆ Rd be a lattice, let Λ2 = Λ×Λ ⊆ R2d, let ω, v ∈
PE(R2d) be such that ω is v-moderate, and let φ, ψ ∈M1

(v)(R
d).

(1) The Gabor analysis operator Cφ = CΛ
φ is the operator from M∞

(ω)(R
d) to

∞(ω)(Λ
2) given by

CΛ
φ f ≡ {Vφf(j, ι)}j,ι∈Λ.

(2) The Gabor synthesis operator Dψ = DΛ
ψ is the operator from ∞(ω)(Λ

2) to
M∞

(ω)(R
d) given by

DΛ
ψc ≡

∑
j,ι∈Λ

c(j, ι)ei〈 · ,ι〉ψ( · −j).

(3) The Gabor frame operator Sφ,ψ = SΛ
φ,ψ is the operator on M∞

(ω)(R
d) given by

DΛ
ψ ◦ CΛ

φ , i.e.

SΛ
φ,ψf ≡

∑
j,ι∈Λ

Vφf(j, ι) ei〈 · ,ι〉ψ( · −j).

The following result is a consequence of [17, Theorem 13.1.1] (see also [16,
Theorem S]).

Proposition 2.5. Suppose v ∈ PE(R2d) is submultiplicative, and let φ ∈
M1

(v)(R
d)\0. There is a constant θ0 > 0 such that the Gabor frame operator SΛ

φ,φ is
a homeomorphism on M1

(v)(R
d) when Λ = θZd and θ ∈ (0, θ0]. The Gabor systems

{ei〈 · ,ι〉φ( · −j)}(j,ι)∈Λ and {ei〈 · ,ι〉ψ( · −j)}(j,ι)∈Λ, (2.11)

are dual frames for L2(Rd) when ψ = (SΛ
φ,φ)

−1φ ∈M1
(v)(R

d) and θ ∈ (0, θ0].

Let v, φ and Λ be as in Proposition 2.5. Then (SΛ
φ,φ)

−1φ is called the canonical
dual window of φ, with respect to Λ. We have

SΛ
φ,φ(e

i〈 · ,ι〉f( · −j)) = ei〈 · ,ι〉(SΛ
φ,φf)( · −j),

when f ∈M∞
(1/v)(R

d) and (j, ι) ∈ Λ.
The next result concerns Gabor expansion of modulation spaces. It is a special

case of [34, Theorem 3.7] (see also [17, Corollaries 12.2.5 and 12.2.6] and [11, The-
orem 3.7]).

Proposition 2.6. Let θ > 0, Λ = θZd,

Λ2 = Λ × Λ = {(j, ι)}j,ι∈Λ ⊆ R2d,

let p, q, r ∈ (0,∞] satisfy r ≤ min(1, p, q), and let ω, v ∈ PE(R2d) be such that ω
is v-moderate. Suppose φ, ψ ∈ M r

(v)(R
d) are such that (2.11) are dual frames for

1950018-8
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L2(Rd). Then the following is true:

(1) The operators

CΛ
φ : Mp,q

(ω)(R
d) �→ p,q(ω)(Λ

2) and DΛ
ψ : p,q(ω)(Λ

2) �→Mp,q
(ω)(R

d)

are continuous.
(2) The operators Sφ,ψ ≡ Dψ ◦ Cφ and Sψ,φ ≡ Dφ ◦ Cψ are both the identity map

on Mp,q
(ω)(R

d), and if f ∈Mp,q
(ω)(R

d), then

f =
∑
j,ι∈Λ

Vφf(j, ι)ei〈 · ,ι〉ψ( · −j)

=
∑
j,ι∈Λ

Vψf(j, ι)ei〈 · ,ι〉φ( · −j), (2.12)

with unconditional quasi-norm convergence in Mp,q
(ω) when p, q < ∞, and with

convergence in M∞
(ω) with respect to the weak∗ topology otherwise.

(3) If f ∈M∞
(1/v)(R

d), then

‖f‖Mp,q
(ω)

	 ‖Vφf‖
p,q
(ω)(Λ

2) 	 ‖Vψf‖
p,q
(ω)(Λ

2).

The series (2.12) are called Gabor expansions of f with respect to φ, ψ and Λ.

Remark 2.7. There are many ways to achieve dual frames (2.11) satisfying the
required properties in Proposition 2.6. In fact, let v, v0 ∈ PE(R2d) be submulti-
plicative such that ω is v-moderate and

L1
(v0)

(R2d) ⊆
⋂

0<r≤1

Lr(R2d).

This inclusion is satisfied e.g. for v0(x) = eε|x| with ε > 0. Proposition 2.5 guar-
antees that for some choice of φ, ψ ∈ M1

(v0v)
(Rd) ⊆ ⋂

0<r≤1M
r
(v)(R

d) and lattice
Λ ⊆ Rd, the sets in (2.11) where ψ = (SΛ

φ,φ)
−1φ, are dual frames.

We usually assume that Λ = θZd, with θ > 0 small enough to guarantee the
hypotheses in Propositions 2.5 and 2.6 be fulfilled, and that the window function
and its dual belong to M r

(v) for every r > 0. This is always possible, in view of
Remark 2.7.

We need the following version of Proposition 2.5, which is a consequence of
[3, Corollary 3.2] and the Fourier invariance of Σ1(R2d).

Lemma 2.8. Suppose v ∈ PE(R4d) is submultiplicative, let φ1, φ2 ∈ Σ1(Rd)\0,
and let

Φ(x, ξ) = φ1(x)φ̂2(ξ)e−i〈x,ξ〉. (2.13)

1950018-9
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Then there is a lattice Λ2 ⊆ R2d such that

{Φ(x− j, ξ − ι)ei(〈x,κ〉+〈k,ξ〉)}(j,ι),(k,κ)∈Λ2 (2.14)

is a Gabor frame for L2(R2d) with canonical dual frame

{Ψ(x− j, ξ − ι)ei(〈x,κ〉+〈k,ξ〉)}(j,ι),(k,κ)∈Λ2,

and

Ψ = (SΛ2

Φ,Φ)−1Φ ∈
⋂
r>0

M r
(v)(R

2d).

The right-hand side of (2.13) is called the cross-Rihaczek distribution of φ1 and
φ2 [17].

Remark 2.9. The last conclusion in Lemma 2.8 is a consequence of the sharper
result [25, Lemma 2].

2.5. Pseudodifferential operators and Gabor analysis

In order to discuss a reformulation of pseudodifferential operators by means of
Gabor analysis, we need the following matrix concepts [36].

Definition 2.10. Let p, q ∈ (0,∞], θ > 0, let J be an index set and let Λ = θZd

be a lattice, and let ω ∈ PE(R2d).

(1) U′
0(J) is the set of all matrices A = (a(j, k))j,k∈J with entries in C;

(2) U0(J) is the set of all A = (a(j, k))j,k∈J ∈ U′
0(J) such that a(j, k) = 0 for at

most finitely many (j, k) ∈ J × J ;
(3) for A = (a(j, k))j,k∈Λ ∈ U′

0(Λ) let

HA,ω(j, k) = a(j, j − k)ω(j, j − k) and hA,p,ω(k) = ‖HA,ω( · , k)‖
p .
(2.15)

The set Up,q(ω,Λ) consists of all matrices A = (a(j, k))j,k∈Λ such that

‖(a(j, k))j,k∈Λ‖Up,q(ω,Λ) ≡ ‖hA,p,ω‖
q (2.16)

is finite.

Up,q(ω,Λ) is a quasi-Banach space, and if p, q ≥ 1 it is a Banach space.
If J is an index set then A = (a(j, k))j,k∈J ∈ U′

0(J) is called properly supported
if the sets

{j ∈ J ; a(j, k0) = 0} and {k ∈ J ; a(j0, k) = 0},
are finite for every j0, k0 ∈ J . The set of properly supported matrices is denoted
Up(J), and evidently U0(J) ⊆ Up(J). The sets U0(J) and Up(J) are rings
under matrix multiplication, and U′

0(J) is a Up(J)-module with respect to matrix
multiplication.
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Let φ1, φ2 ∈ Σ1(Rd)\0, let Φ be defined by (2.13), let Λ ⊆ Rd be a lattice such
that Λ2 = Λ×Λ ⊆ R2d makes (2.14) a Gabor frame in accordance with Lemma 2.8,
and let Ψ = (SΛ2

ΦΦ)−1Φ be the canonical dual window of Φ. Suppose ω0 ∈ PE(R4d)
and set

ω(x, ξy, η) = ω0(x, η, ξ − η, y − x). (2.17)

Let a ∈Mp,q
(ω0)

(R2d), define

a(j,k) = VΨa(j, κ, ι− κ, k − j)ei〈k−j,κ〉,

where

j = (j, ι) ∈ Λ2 and k = (k, κ) ∈ Λ2, (2.18)

and define the matrix

A = (a(j,k))j,k∈Λ2 .

Then it follows from Propositions 2.5 and 2.6 that

‖a‖Mp,q
(ω0)

	 ‖A‖Up,q(ω,Λ2), (2.19)

provided θ is sufficiently small.
By identifying matrices with corresponding linear operators, [35, Lemma 3.3]

gives

Op(a) = Dφ1 ◦A ◦ Cφ2 . (2.20)

Hence, if b ∈ S1/2(R2d),

b(j,k) = VΨb(j, κ, ι− κ, k − j)ei〈k−j,κ〉, j,k ∈ Λ2,

B = (b(j,k))j,k∈Λ2 ,

and the matrix C is defined as

C = Cφ2 ◦Dφ1 , (2.21)

then

Op(a#0b) = Op(a) ◦ Op(b) = Dφ1 ◦ (A ◦ C ◦B) ◦ Cφ2 , (2.22)

and

‖a#0b‖Mp,q
(ω0)

	 ‖A ◦ C ◦B‖Up,q(ω,Λ2). (2.23)

2.6. Composition of pseudodifferential operators with symbols

in Banach modulation spaces

We recall algebraic results for pseudodifferential operators with symbols in modu-
lation spaces with Lebesgue exponents not smaller than one [7, 23, 36].
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If A ∈ M(d,R), then the product #A with N factors

(a1, . . . , aN ) �→ a1#A · · ·#AaN , (2.24)

from S1/2(R2d) × · · · × S1/2(R2d) to S1/2(R2d) is defined by the formula

OpA(a1#A · · ·#AaN) = OpA(a1) ◦ · · · ◦ OpA(aN ).

The map (2.24) can be extended in different ways, e.g. as in [7, Theorem 2.11]
which is stated in a generalized form in Theorem 2.11 below. Assume that the
weight functions satisfy

ω0(TA(XN , X0)) �
N∏
j=1

ωj(TA(Xj , Xj−1)), X0, . . . , XN ∈ R2d, (2.25)

where

TA(X,Y ) = (y +A(x − y), ξ +A∗(η − ξ), η − ξ, x− y),

X = (x, ξ) ∈ R2d, Y = (y, η) ∈ R2d. (2.26)

Here A∗ denotes A transposed. Assume that the Lebesgue parameters satisfy

max(RN (q′), 0) ≤ min
j=1,...,N

(
1
p′0
,

1
q0
,

1
pj
,

1
q′j
,RN(p)

)
(2.27)

or

RN(p) ≥ 0,
1
q0

≤ 1
p′0

≤ 1
2

and
1
q′j

≤ 1
pj

≤ 1
2
, j = 1, . . . , N, (2.28)

where

RN (p) = (N − 1)−1

 N∑
j=1

1
pj

− 1
p0

,
p = (p0, p1, . . . , pN ) ∈ [1,∞]N+1.

Theorem 2.11. Suppose pj , qj ∈ [1,∞], j = 0, 1, . . . , N satisfy (2.27) or (2.28),
and suppose ωj ∈ PE(R4d), j = 0, 1, . . . , N, satisfy (2.25) and (2.26). Then the
map (2.24) from S1/2(R2d)×· · ·×S1/2(R2d) to S1/2(R2d) extends uniquely to a con-
tinuous and associative map from Mp1,q1

(ω1)
(R2d)×· · ·×MpN ,qN

(ωN) (R2d) to Mp0,q0
(ω0)

(R2d),
and

‖a1#A · · ·#AaN‖Mp0,q0
(ω0)

�
N∏
j=1

‖aj‖Mpj,qj
(ωj)

,

for aj ∈M
pj ,qj

(ωj)
(R2d), j = 1, . . . , N .
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Theorem 2.11 follows by similar arguments as in the proof of [7, Theorem 2.11].
The details are left for the reader.

Remark 2.12. We note that the definition of TA in [7, Eq. (2.30)] is incorrect and
should be replaced by (2.26) with A = tI, in order for [7, Theorem 2.11] to hold. A
corrected version of [7] has been posted on arXiv.

3. Composition of Pseudodifferential Operators with Symbols
in Quasi-Banach Modulation Spaces

In this section, we deduce a composition result for pseudodifferential operators with
symbols in modulation spaces with Lebesgue parameters in (0,∞].

If A ∈ M(d,R), then the map

(a1, a2) �→ a1#Aa2 (3.1)

from S1/2(R2d) × S1/2(R2d) to S1/2(R2d) is defined by

OpA(a1#Aa2) = OpA(a1) ◦ OpA(a2).

The following result is the principal result of this paper. It concerns sufficient
conditions for the unique extension of (3.1) to symbols in quasi-Banach modulation
spaces.

The weight functions are assumed to obey the estimates

ω0(TA(Z,X)) � ω1(TA(Y,X))ω2(TA(Z, Y )), X, Y, Z ∈ R2d, (3.2)

where

TA(X,Y ) = (y +A(x− y), ξ +A∗(η − ξ), η − ξ, x− y),

X = (x, ξ) ∈ R2d, Y = (y, η) ∈ R2d. (3.3)

(cf. (2.25) and (2.26)).

Theorem 3.1. Let A ∈ M(d,R) and suppose ωj ∈ PE(R4d), j = 0, 1, 2, satisfy
(3.2) and (3.3). Suppose pj , qj ∈ (0,∞], j = 0, 1, 2, satisfy

1
p0

≤ 1
p1

+
1
p2
, (3.4)

and either

q1, q2 ≤ q0 ≤ min(1, p0) (3.5)

or

min(1, p0) ≤ q1, q2 ≤ q0 and
1

min(1, p0)
+

1
q0

≤ 1
q1

+
1
q2
. (3.6)

1950018-13
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Then the map (a1, a2) �→ a1#Aa2 from S1/2(R2d)×S1/2(R2d) to S1/2(R2d) extends
uniquely to a continuous map from Mp1,q1

(ω1)
(R2d)×Mp2,q2

(ω2)
(R2d) to Mp0,q0

(ω0)
(R2d), and

‖a1#Aa2‖Mp0,q0
(ω0)

� ‖a1‖Mp1,q1
(ω1)

‖a2‖Mp2,q2
(ω2)

,

for all a1 ∈Mp1,q1
(ω1)

(R2d) and a2 ∈Mp2,q2
(ω2)

(R2d).

We need some preparations for the proof. The following result contains the
needed continuity properties for matrix operators.

Proposition 3.2. Let Λ ⊆ Rd be a lattice, let pj, qj ∈ (0,∞], j = 0, 1, 2, be such
that (3.4)–(3.6) hold, and suppose ω0, ω1, ω2 ∈ PE(R2d) satisfy

ω0(x, z) � ω1(x, y)ω2(y, z), x, y, z ∈ Rd.

Then the map (A1, A2) �→ A1 ◦A2 from U0(Λ) × U0(Λ) to U0(Λ) extends uniquely
to a continuous map from Up1,q1(ω1,Λ) × Up2,q2(ω2,Λ) to Up0,q0(ω0,Λ), and

‖A1 ◦A2‖Up0,q0 (ω0,Λ) � ‖A1‖Up1,q1 (ω1,Λ)‖A2‖Up2,q2 (ω2,Λ). (3.7)

Proof. Let U′
0,+(Λ) be the set of all A ∈ U′

0(Λ) with non-negative entries, let
Am = (am(j, k))j,k∈Λ ∈ U0(Λ) ∩ U′

0,+(Λ), m = 1, 2, denote the matrix elements of
B = A1 ◦A2 by b(j, k), j, k ∈ Λ, and set p = p0, q = q0, ω = ω0,

am(j, k) ≡ |am(j, j − k)|ωm(j, j − k) and b(j, k) ≡ |b(j, j − k)|ω(j, j − k),

m = 1, 2. Then

‖Am‖Upm,qm (ωm,Λ) = ‖am‖
pm,qm , m = 1, 2,

‖A1 ◦A2‖Up,q(ω,Λ) = ‖b‖
p,q ,

and we first prove

‖b‖
p,q ≤ ‖a1‖
p1,q1 ‖a2‖
p2,q2 .

We have

b(j, k) ≤
∑
l∈Λ

a1(j, l)a2(j − l, k − l). (3.8)

In order to estimate ‖b( · , k)‖
p we consider the cases p < 1 and p ≥ 1 separately.
First assume that p < 1, and set rj = pj

p . Then 1
r1

+ 1
r2

≥ 1 by assumption
(3.4), and therefore Hölder’s inequality yields for k ∈ Λ

‖b( · , k)‖p
p ≤
∑
j∈Λ

(∑
l∈Λ

a1(j, l)a2(j − l, k − l)

)p

≤
∑
l∈Λ

∑
j∈Λ

(a1(j, l)a2(j − l, k − l))p
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≤
∑
l∈Λ

‖a1( · , l)p‖
r1‖a2( · , k − l)p‖
r2

=
∑
l∈Λ

‖a1( · , l)‖p
p1‖a2( · , k − l)‖p
p2 ,

that is

‖b( · , k)‖
p ≤ (c1 ∗ c2(k)) 1
p ,

with cm(k) = ‖am( · , k)‖p
pm , m = 1, 2.
In order to estimate (c1 ∗ c2) 1

p we first assume (3.5). Then

‖b‖
p,q ≤ ‖(c1 ∗ c2) 1
p ‖
q = ‖c1 ∗ c2‖

1
p


q/p

≤ (‖c1‖
q/p‖c2‖
q/p)
1
p = ‖a1‖
p1,q‖a2‖
p2,q ≤ ‖a1‖
p1,q1 ‖a2‖
p2,q2 ,

and the result follows in this case.
If instead (3.6) holds then q ≥ q1, q2 ≥ p, and rj = qj/p, j = 1, 2, and r = q/p

satisfy

r1, r2, r ≥ 1 and
1
r1

+
1
r2

≥ 1 +
1
r
.

Hence Young’s inequality may be applied and gives

‖b‖
p,q ≤ ‖c1 ∗ c2‖
1
p


r ≤ (‖c1‖
r1‖c2‖
r2 )
1
p = ‖a1‖
p1,q1 ‖a2‖
p2,q2 ,

and the result follows in this case as well.
Next we consider the case p ≥ 1. By Minkowski’s and Hölder’s inequalities and

the assumption (3.4) we get from (3.8)

‖b( · , k)‖
p ≤
∑
l∈Λ

‖a1(·, l)a2(· −l, k− l)‖
p

≤
∑
l∈Λ

‖a1( · , l)‖
p1‖a2( · , k − l)‖
p2 = c1 ∗ c2(k), (3.9)

where cm(k) = ‖am( · , k)‖
pm , m = 1, 2.
If (3.6) holds then q ≥ q1, q2 ≥ 1 and Young’s inequality gives

‖b‖
p,q ≤ ‖c1 ∗ c2‖
q ≤ ‖c1‖
q1‖c2‖
q2 = ‖a1‖
p1,q1 ‖a2‖
p2,q2

and the result follows. If instead (3.5) holds then q ≤ 1 and (3.9) gives

‖b‖
p,q ≤ ‖c1 ∗ c2‖
q ≤ ‖c1‖
q‖c2‖
q = ‖a1‖
p1,q‖a2‖
p2,q

≤ ‖a1‖
p1,q1 ‖a2‖
p2,q2 .

Thus we have proved (3.7) when A1, A2 ∈ U0(Λ) ∩ U′
0,+(Λ).

By Beppo–Levi’s theorem or Fatou’s lemma applied to the previous situation,
we obtain that A1 ◦ A2 is uniquely defined as an element in Up,q(ω,Λ) and (3.7)
holds, provided Am ∈ Upm,qm(ωm,Λ) ∩ U′

0,+(Λ) for m = 1, 2.
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For Am ∈ Upm,qm(ωm,Λ), m = 1, 2, there are unique

Am,k ∈ Upm,qm(ωm,Λ) ∩ U′
0,+(Λ), m = 1, 2, k = 1, . . . , 4,

such that

Am =
4∑

k=1

ikAm,k,

and we have

‖Am,k‖Upm,qm (ωm,Λ) ≤ ‖Am‖Upm,qm (ωm,Λ), m = 1, 2, k = 1, . . . , 4.

Since the assertion holds true for A1,k and A2,l in place of A1 and A2, it follows
from the latter estimate that

A1 ◦A2 =
4∑

k,l=1

ik+lA1,k ◦A2,l ∈ Up,q(ω,Λ),

is uniquely defined and that (3.7) holds for Am ∈ Upm,qm(ωm,Λ), m = 1, 2.

We also need the following result on the composition of the analysis operator
and the synthesis operator defined by two Gabor systems.

Lemma 3.3. Suppose Λ ⊆ Rd is a lattice, Λ2 = Λ × Λ and φ1, φ2 ∈ Σ1(Rd)\0.
Let Cφ2 = CΛ

φ2
be the Gabor analysis operator and let Dφ1 = DΛ

φ1
be the Gabor

synthesis operator defined by φ2 and φ1, respectively, and Λ. Then Cφ2 ◦Dφ1 is the
matrix (c(j,k))j,k∈Λ2 where

c(j,k) = ei〈k,κ−ι〉Vφ2φ1(j − k), j = (j, ι), k = (k, κ). (3.10)

If ω0(X,Y ) = ω(X − Y ), X, Y ∈ R2d for ω ∈ PE(R2d), then

(c(j,k))j,k∈Λ2 ∈
⋂
q>0

ω∈PE(R2d)

U∞,q(ω0,Λ2). (3.11)

Proof. Let f be a sequence on Λ2 such that f(k) = 0 for at most a finite number
of k ∈ Λ2. Then

Dφ1f =
∑

k∈Λ2

f(k)φ1,k, φ1,k ≡ φ1( · −k)ei〈 · ,κ〉, k = (k, κ),

and

Cφ2(Dφ1f)(j) = Vφ2(Dφ1f)(j) =
∑

k∈Λ2

Vφ2φ1,k(j)f(k).

If j = (j, ι) then Cφ2 ◦Dφ1 is hence given by the matrix C = (c(j,k))j,k∈Λ2 where

c(j,k) = Vφ2φ1,k(j) = (2π)−
d
2

∫
Rd

φ1,k(y)φ2(y − j)e−i〈y,ι〉dy
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= (2π)−
d
2 ei〈k,κ−ι〉

∫
Rd

φ1(y)φ2(y − (j − k))e−i〈y,ι−κ〉dy

= ei〈k,κ−ι〉Vφ2φ1(j − k),

which proves (3.10).
It remains to prove (3.11). Let ω ∈ PE(R2d) and q > 0. Since φ1, φ2 ∈ Σ1(Rd),

we have by [33, Theorem 2.4]

|Vφ2φ1(x, ξ)| � e−r(|x|+|ξ|),

for every r > 0. From (3.10) and (2.15) we obtain

hC,∞,ω0(k) = sup
j∈Λ2

|HC,ω0(j,k)| = |Vφ2φ1(k)ω(k)|.

A combination of these relations and (2.16) now give

‖C‖U∞,q(ω0,Λ2) = ‖hC,∞,ω0‖
q = ‖Vφ2φ1 · ω‖
q(Λ2) <∞.

Hence C ∈ U∞,q(ω0,Λ2) for any ω ∈ PE(R2d) and any q > 0.

Proof of Theorem 3.1. By [36, Proposition 2.8] and Proposition 2.1 we may
assume that A = 0. Pick φ1, φ2 ∈ Σ1(Rd)\0 and a lattice Λ ⊆ Rd such that Φ,Ψ
and Λ2 = Λ × Λ ⊆ R2d are as in Lemma 2.8. Let finally am ∈ Mpm,qm

(ωm) (R2d),
m = 1, 2.

By (2.17)–(2.20), we have for m = 1, 2

‖am‖Mpm,qm
(ωm)

	 ‖Am‖Upm,qm (ϑm,Λ2), (3.12)

and

Op(am) = Dφ1 ◦Am ◦ Cφ2 , (3.13)

where

Am = (am(j,k))j,k∈Λ2 ,

am(j,k) ≡ ei〈k−j,κ〉VΨam(j, κ, ι− κ, k − j), j = (j, ι), k = (k, κ) ∈ Λ2,

and

ϑm(x, ξ, y, η) = ωm(x, η, ξ − η, y − x).

Condition (3.2) means for the weights ϑm, m = 0, 1, 2,

ϑ0(X,Y ) � ϑ1(X,Z)ϑ2(Z, Y ), X, Y, Z ∈ R2d. (3.14)

Pick v1 ∈ PE(Rd) even so that ω2 is v2-moderate with

v2 = v1 ⊗ v1 ⊗ v1 ⊗ v1 ∈ PE(R4d),

set v = v2
1 ⊗ v1 ∈ PE(R2d) and

v0(X,Y ) = v(X − Y ) ∈ PE(R4d), X, Y ∈ R2d.
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Then v0 is designed to guarantee

ϑ2(X,Y ) � v0(X,Z)ϑ2(Z, Y ), X, Y, Z ∈ R2d. (3.15)

We have by (2.21) and (2.22)

Op(a1) ◦ Op(a2) = Dφ1 ◦A ◦ Cφ2 ,

where

A = A1 ◦ C ◦A2

and C = Cφ2 ◦Dφ1 . By Lemma 3.3

C ∈ ⋂
r>0

U∞,r(v0,Λ2).

Set r = min(1, p2, q2). Then we obtain from (2.23), (3.14), (3.15) and Proposition
3.2 applied twice

‖a1#0a2‖Mp0,q0
(ω0)

	 ‖A1 ◦ C ◦A2‖Up0,q0 (ϑ0,Λ2)

� ‖A1‖Up1,q1 (ϑ1,Λ2)‖C ◦A2‖Up2,q2 (ϑ2,Λ2)

� ‖A1‖Up1,q1 (ϑ1,Λ2)‖C‖U∞,r(v0,Λ2)‖A2‖Up2,q2 (ϑ2,Λ2)

	 ‖A1‖Up1,q1 (ϑ1,Λ2)‖A2‖Up2,q2 (ϑ2,Λ2)

	 ‖a1‖Mp1,q1
(ω1)

‖a2‖Mp2,q2
(ω2)

.

It remains to prove the claimed uniqueness of the extension. If (3.5) holds then
M

pj ,qj

(ωj)
⊆ M∞,1

(ωj)
, j = 1, 2, and Mp0,q0

(ω0)
⊆ M∞,1

(ω0)
. Then the claim follows from the

uniqueness of the extension

M∞,1
(ω1)

#AM
∞,1
(ω2)

⊆M∞,1
(ω0)

, (3.16)

which is proved in [7, Theorem 2.11].
Suppose (3.6) holds. Then the same argument applies if q ≤ 1, and if p ≥ 1,

then the claim is a consequence of the uniqueness of the extension

M∞,q1
(ω1)

#AM
∞,q2
(ω2)

⊆M∞,q
(ω0)

, (3.17)

which is again proved in [7, Theorem 2.11]. Suppose p < 1 < q. If q1, q2 ≥ 1, then
the uniqueness follows again from the uniqueness of (3.17). If q1 ≥ 1 > q2, then
it follows from the uniqueness of (3.17) with q2 replaced by 1, and analogously for
q2 ≥ 1 > q1. Finally if q1, q2 < 1, then the uniqueness follows from the uniqueness
of (3.16).

Let p, q ∈ (0,∞] and set r = min(1, p, q). A particular case of Theorem 3.1 is
the inclusion

Mp,q
(ω0)

#AM
∞,r
(ω2)

⊆Mp,q
(ω0)

,
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where the weights ω0, ω2 ∈ PE(R4d) satisfy

ω0(TA(Z,X)) � ω0(TA(Y,X))ω2(TA(Z, Y )), X, Y, Z ∈ R2d,

and TA is defined by (3.3).
We also note that Mp,q

(ω) is an algebra under the product #A provided p, q ∈
(0,∞], q ≤ min(1, p) and ω ∈ PE(R4d) satisfies

ω(TA(Z,X)) � ω(TA(Y,X))ω(TA(Z, Y )), X, Y, Z ∈ R2d.

4. Necessary Conditions

In this final section, we show that some of the sufficient conditions in Theorem 3.1
are necessary. We need the following lemma that concerns Wigner distributions.

Lemma 4.1. Let q0, q ∈ (0,∞] satisfy q0 < q, let

φ(x) = π− d
4 e−

1
2 |x|2 for x ∈ Rd,

let Λ ⊆ Rd be a lattice, let c = {c(κ)}κ∈Λ ∈ q(Λ)\q0(Λ), where c(κ) ≥ 0 for all
κ ∈ Λ, and finally let

f(x) =
∑
κ∈Λ

c(κ)ei〈x,κ〉φ(x) ∈ S ′(Rd).

Then

f ∈ ⋂
p>0

Mp,q(Rd)\M∞,q0(Rd), (4.1)

and

Wf,φ ∈ ⋂
p>0

Mp,q(R2d). (4.2)

Proof. By replacing Λ by a sufficiently dense lattice Λ0, containing Λ and letting
c(κ) = 0 when κ ∈ Λ0\Λ, we reduce ourselves to a situation where the hypothesis
in Proposition 2.6 is fulfilled. Hence we may assume that (2.11) are dual frames for
L2(Rd).

First we show (4.1). (cf. [28, Proposition 2.6]). On one hand, we have ‖f‖Mp,q �
‖c‖
q for any p > 0 due to Proposition 2.6(1). Thus f ∈ ⋂p>0M

p,q(Rd). On the
other hand f /∈M∞,q0(Rd).

In fact, set φ1(x) = (2π)−
d
2 e−

1
4 |x|2 for x ∈ Rd. Since

Vφf(0, ι) = (2π)−
d
2

∑
κ∈Λ

c(ι− κ)e−
1
4 |κ|2 = c ∗ φ1(ι)

we obtain

‖c‖q0
q0 =
∑
ι∈Λ

c(ι)q0 ≤ (2π)
dq0
2

∑
ι∈Λ

(c ∗ φ1(ι))q0
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= (2π)
dq0
2

∑
ι∈Λ

|Vφf(0, ι)|q0 ≤ (2π)
dq0
2

∑
ι∈Λ

(
sup
j∈Λ

|Vφf(j, ι)|
)q0

= (2π)
dq0
2 ‖Vφf‖q0
∞,q0(Λ2) 	 ‖f‖q0M∞,q0

again by Proposition 2.6. Thus it must hold f /∈ M∞,q0(Rd), since otherwise we
get the contradiction c ∈ q0(Λ). We have now showed (4.1).

In order to prove (4.2), set a = Wf,φ ∈ S ′(R2d). Since Mp,q is increasing with
respect to p and q, it suffices to intersect in (4.2) over 0 < p ≤ min(1, q). We have

‖a‖Mp,q 	 ‖VΦWf,φ‖
p,q(Λ4),

where Φ(x, ξ) = (2π)−
d
2 e−(|x|2+|ξ|2), and

Λ4 = Λ × Λ × Λ × Λ ⊆ R4d.

By straightforward computations, we get

a(x, ξ) = Wf,φ(x, ξ)

= (2π)−
d
2

∑
κ∈Λ

c(κ)π− d
2

∫
Rd

e−
1
2 (|x− y

2 |2+|x+ y
2 |2)ei(〈x,κ〉−〈y,ξ−κ

2 〉)dy

= 2
d
2 π− d

2

∑
κ∈Λ

c(κ)e−|x|2−|ξ−κ
2 |2ei〈x,κ〉.

This gives

VΦa(x, ξ, η, y) = 2
d
2 π− d

2

∑
κ∈Λ

c(κ)Fκ(x, ξ, η, y),

where

Fκ(x, ξ, η, y) = (2π)−
3d
2

∫∫
R2d

e−(|z|2+|ζ−κ
2 |2+|z−x|2−|ζ−ξ|2)e−i(〈z,η−κ〉+〈y,ζ〉)dzdζ

= 2−
5d
2 π− d

2 e−
1
2 (|x|2+|ξ−κ

2 |2)− 1
8 (|η−κ|2+|y|2)e−

i
2 (〈x,η−κ〉+〈y,ξ+κ

2 〉).

Hence

VΦa(x, ξ, η, y) = 2−2dπ−d∑
κ∈Λ

c(κ)e−
1
2 (|x|2+|ξ−κ

2 |2)− 1
8 (|η−κ|2+|y|2)

× e−
i
2 (〈x,η−κ〉+〈y,ξ+ κ

2 〉). (4.3)

If q <∞ we get, in the third inequality using p ≤ 1,

‖Wf,φ‖Mp,q = ‖a‖Mp,q 	 ‖{VΦa(k1, κ1, κ2, k2)}kj ,κj∈Λ‖
p,q(Λ4)

�

∑
k2,κ2

∑
k1,κ1

(∑
κ

c(κ)e−
1
2 (|k1|2+|κ1−κ

2 |2)− 1
8 (|κ2−κ|2+|k2|2)

)p
q
p


1
q
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∑

κ2

(∑
κ1

(∑
κ

c(κ)e−( 1
2 |κ1−κ

2 |2+ 1
8 |κ2−κ|2)

)p) q
p


1
q

≤
∑

κ2

(∑
κ,κ1

c(κ)p e−( p
2 |κ1−κ

2 |2+ p
8 |κ2−κ|2)

) q
p


1
q

	
∑

κ2

(∑
κ

c(κ)pe−
p
8 |κ2−κ|2

) q
p


1
q

= (‖{cp} ∗ e− p
8 | · |2‖



q
p
)

1
p

≤ (‖{cp}‖



q
p
‖e−p

8 | · |2‖
1)
1
p 	 ‖c‖
q <∞,

using Young’s inequality. The result follows if q <∞. If q = ∞, a similar argument
proves the result.

The preceding lemma is needed in the proof of Theorem 4.3 below on necessary
conditions for continuity. We aim at conditions on the exponents pj , qj , j = 0, 1, 2,
that are necessary for

‖a#Ab‖Mp0,q0
(ω0)

� ‖a‖Mp1,q1
(ω1)

‖b‖Mp2,q2
(ω2)

, (4.4)

to hold for all a, b ∈ S (R2d), for certain weight functions ωj , j = 0, 1, 2. We restrict
to weights of polynomial type.

By [36, Proposition 2.8], it suffices to prove the result in the Weyl case A = 1/2,
and then (4.4) in terms of symplectic modulation spaces is

‖a#b‖M
p0,q0
(ω0)

� ‖a‖M
p1,q1
(ω1)

‖b‖M
p2,q2
(ω2)

, a, b ∈ S (R2d). (4.5)

The conditions on the weights (3.2) and (3.3) are then transformed into

ω0(Z +X,Z −X) � ω1(Y +X,Y −X)ω2(Z + Y, Z − Y ), X, Y, Z ∈ R2d.

(4.6)

(cf. [7, 23]).
We will consider weights with the particular structure

ω0(X,Y ) =
ϑ2(X − Y )
ϑ0(X + Y )

, ω1(X,Y ) =
ϑ2(X − Y )
ϑ1(X + Y )

,

ω2(X,Y ) =
ϑ1(X − Y )
ϑ0(X + Y )

,

(4.7)

for ϑj ∈ P(R2d), j = 0, 1, 2. Then (4.6) is automatically satisfied. Without loss,
we may assume ϑj ∈ C∞ [23, Remark 2.18].
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For ϑ ∈ P(R2d), let S(ϑ)(R2d) denote the space of smooth symbols on R2d

such that (∂αa)/ϑ ∈ L∞ for any α ∈ N2d.

Lemma 4.2. Let p, q ∈ (0,∞], let ϑj ∈ P(R2d), j = 1, 2 and suppose ω(X,Y ) =
ϑ2(X − Y )/ϑ1(X + Y ). Then there exist aj ∈ S(ϑj)(R2d) and bj ∈ S(1/ϑj)(R2d),
j = 1, 2 such that

aj#bj = bj#aj = 1, j = 1, 2, (4.8)

and the map a �→ a2#a#b1 is continuous on S (R2d) and extends uniquely to a
homeomorphism from M

p,q
(ω)(R

2d) to Mp,q(R2d).

Proof. According to [2, Corollary 6.6] there exist aj ∈ S(ϑj)(R2d) and bj ∈
S(1/ϑj)(R2d), j = 1, 2, such that (4.8) is satisfied.

By [23, Remark 2.18], we have

S(ϑ)(R2d) =
⋂
N≥0

M
∞,r
(1/ϑN )(R

2d), ϑN (X,Y ) = ϑ(X)〈Y 〉−N ,

for any ϑ ∈ P(R2d) and any r > 0. More precisely the remark gives the equality
for r = 1, and for general r > 0, the equality follows from the embeddings

M∞,r2
(1/vN+N0) ⊆M∞,r1

(1/vN ) ⊆M∞,r2
(1/vN ), when r1 < r2, N0 > 2d

(
1
r1

− 1
r2

)
.

If we set r = min(1, p, q), then p1 = ∞, q1 = r, p2 = p, q2 = q, as well as
p2 = ∞, q2 = r, p1 = p, q1 = q, satisfy the conditions (3.4), and (3.5) or (3.6) of
Theorem 3.1.

From these observations, the result follows from Theorem 3.1 and a repetition
of the arguments in the proof of [7, Lemma 3.3].

Theorem 4.3. Let pj, qj ∈ (0,∞], suppose ωj ∈ P(R4d), j = 0, 1, 2, are given by
(4.7) where ϑj ∈ P(R2d), j = 0, 1, 2. If (4.5) holds then

1
p0

≤ 1
p1

+
1
p2
,

1
p0

≤ 1
q1

+
1
q2

and q1, q2 ≤ q0. (4.9)

Proof. By Lemma 4.2, the estimate (4.5) with weights (4.7) implies

‖a#b‖Mp0,q0 � ‖a‖Mp1,q1 ‖b‖Mp2,q2 , a ∈ Mp1,q1(R2d), b ∈ S (R2d). (4.10)

It thus suffices to prove the result for ωj ≡ 1, j = 0, 1, 2.
Let aλ,µ(x, ξ) = e−λ|x|

2−µ|ξ|2 and aλ = aλ,λ, for µ, λ > 0. Then by the proof
of [23, Proposition 3.1] (cf. [7, Sec. 3])

‖aλ‖1/d
Mp,q = π

1
p + 1

q −1p−
1
p q−

1
q λ−

1
p (1 + λ)

1
p + 1

q −1,

and

aλ#aµ(X) = (1 + λµ)−d exp
(
−|X |2 λ+ µ

1 + λµ

)
.
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Hence

‖aλ#aλ‖1/d
Mp,q = π1/p+1/q−1p−1/pq−1/q(1 + λ2)−1/q(2λ)−1/p(1 + λ)2(1/p+1/q−1).

Thus( ‖aλ#aλ‖Mp0,q0

‖aλ‖Mp1,q1 ‖aλ‖Mp2,q2

)1/d

= Cλ
1

p1
+ 1

p2
− 1

p0

× (1 + λ2)−
1

q0 (1 + λ)
2

p0
− 1

p1
− 1

p2
+ 2

q0
− 1

q1
− 1

q2 ,

for some constant C > 0 which does not depend on λ. The right hand side behaves
like λ

1
p0

− 1
q1

− 1
q2 when λ is large, and like λ

1
p1

+ 1
p2

− 1
p0 when λ is small. The continuity

(4.10) hence implies the necessary conditions

1
p0

≤ 1
q1

+
1
q2
,

1
p0

≤ 1
p1

+
1
p2
.

It remains to show q1, q2 ≤ q0. Since a1#a2 = a2#a1 (cf. [23]), it suffices to
show q1 ≤ q0. We give a proof by contradiction. Suppose (4.10) holds and q0 < q1.
Let Λ ⊆ Rd be a lattice,

φ(x) = π− d
4 e−

1
2 |x|2, c = {c(κ)}κ∈Λ ∈ q1(Λ)\q0(Λ),

and let

f(x) =
∑
κ∈Λ

c(κ)ei〈x,κ〉φ(x).

Then

f ∈
⋂
p1>0

Mp1,q1(Rd)\M∞,q0(Rd),

a = Wf,φ ∈
⋂
p1>0

Mp1,q1(R2d) and b = Wφ,φ ∈ S (R2d),

by Lemma 4.1. Since

Opw(a)g = (2π)−
d
2 (g, φ)f and Opw(b)g = (2π)−

d
2 (g, φ)φ,

it follows that

Opw(a#b)φ = (2π)−d‖φ‖4
L2f ∈

⋂
p1>0

Mp1,q1(Rd)\M∞,q0(Rd).

Therefore Opw(a#b) is not continuous from S (Rd) to M∞,q0(Rd).
On the other hand, we have by assumption

a#b ∈ Mp0,q0 ⊆ M∞,q0 .

If q0 ∈ (0, 1], then Opw(a#b) is continuous from Mp0,q0 to Mp0,q0 when
p0 ∈ [q0,∞], by [35, Theorem 3.1]. This contradicts the fact that Opw(a#b) is
not continuous from S to M∞,q0 . Hence the assumption q0 < q1 must be false.
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If instead q0 ∈ [1,∞], then by [31, Theorem 4.3] Opw(a#b) is continuous from
M1,1 to M q0,q0 , which again contradicts the fact that Opw(a#b) is not continuous
from S to M∞,q0 . Hence the assumption q0 < q1 is again false.

Thus we must have q1 ≤ q0.

Remark 4.4. Let P0
E(Rd) denote all ω ∈ PE(Rd) such that ω is v-moderate for

a sub-multiplicative weight v satisfying

v(x) � er|x|, x ∈ Rd,

for all r > 0. Then P(Rd) � P0
E(Rd). By using the new [1, Theorem 4.1] instead

of Lemma 4.2, it follows that Theorem 4.3 holds for ϑj ∈ P0
E(R2d) and ωj defined

by (4.7). The space S in (4.5) is then replaced by S1.

Remark 4.5. For Banach modulation spaces with exponents pj , qj restricted to
[1,∞], we have found that the following conditions are necessary and sufficient for
continuity of the Weyl product [7, Theorems 0.1 and 3.1].

1
p0

≤ 1
p1

+
1
p2
, (4.11)

q1, q2 ≤ q0, 1 ≤ 1
q1

+
1
q2
, (4.12)

1
p0

+
1
q0

≤ 1
q1

+
1
q2
, 1 +

1
q0

≤ 1
q1

+
1
q2

+
1
pj
, j = 1, 2, (4.13)

1 +
1
p0

+
1
q0

≤ 1
q1

+
1
q2

+
1
p1

+
1
p2
. (4.14)

In this paper, we have worked with exponents pj , qj in the full range (0,∞]. The
sufficient conditions in Theorem 3.1 and the necessary conditions in Theorem 4.3
are not equal, as conditions (4.11)–(4.14) are for exponents in [1,∞].

In fact, consider the inclusion

M1,2
#M1,2 ⊆M∞,2,

which holds since the exponents satisfy (4.11)–(4.14). They do however not satisfy
(3.4), and (3.5) or (3.6). Hence the sufficient conditions in Theorem 3.1 are not at
all necessary.

Appendix

In this appendix, we prove the formula

F (fφ)(ξ) = (2π)−
d
2 (f, φei〈 · ,ξ〉), f ∈ S′

s(R
d), φ ∈ Ss(Rd), ξ ∈ Rd, (A.1)

for s ≥ 1
2 , which we claimed to be true in the definition of the STFT (2.5). There

is a parallel formula for f ∈ Σ′
s(R

d), φ ∈ Σs(Rd) and s > 1
2 , that we also prove.
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Let f ∈ S′
s(Rd), let φ ∈ Ss(Rd) and denote

u(ξ) = (2π)−
d
2 (f, φ ei〈 · ,ξ〉) = (2π)−

d
2 〈f, φ e−i〈 · ,ξ〉〉, ξ ∈ Rd. (A.2)

Then u ∈ C∞(Rd). We need the following estimate (cf. [5]).

Lemma A.1. The function (A.2) satisfies the estimate

|u(ξ)| � ec|ξ|
1
s , ξ ∈ Rd,

for any c > 0.

Proof. By (2.4) φ ∈ Ss,h(Rd) for all h ≥ h0 where h0 > 0. Let c > 0 and set

h = max
(
h0,

(
ds

c

)s)
.

Let α, β ∈ Nd. Using |γ|! ≤ d|γ|γ! (cf. [27, Eq. (0.3.3)]) and
∑
γ≤β

(
β
γ

)
= 2|β| we

estimate for x, ξ ∈ Rd∣∣xα∂βx (ei〈x,ξ〉φ(x))
∣∣

(α!β!)s(2h)|α+β| ≤ 2−|α+β|∑
γ≤β

(
β

γ

) |ξ||γ| h−|γ|

γ!s

∣∣xα∂β−γφ(x)
∣∣

(α!(β − γ)!)sh|α+β−γ|

(
β

γ

)−s

≤ ‖φ‖Ss,h
2−|α+β|∑

γ≤β

(
β

γ

)
(
c
s |ξ|

1
s

)|γ|
|γ|!


s(

(ds)s

hcs

)|γ|

� 2−|α+β|∑
γ≤β

(
β

γ

)
(
c
s |ξ|

1
s

)|γ|
|γ|!


s

≤ ec|ξ|
1
s 2−|α+β|∑

γ≤β

(
β

γ

)
≤ ec|ξ|

1
s .

This implies

‖φ ei〈 · ,ξ〉‖Ss,2h
� ec|ξ|

1
s , ξ ∈ Rd,

which via (2.4a) finally gives the estimate

|u(ξ)| � ‖φ ei〈 · ,ξ〉‖Ss,2h
� ec|ξ|

1
s , ξ ∈ Rd.

The formula (A.1) amounts to the claim F (f φ) = u.
A priori F (f φ) ∈ S′

s(R
d) is the distribution

〈F (fφ), g〉 = 〈f, φĝ〉, g ∈ Ss(Rd).

To prove our claim F (fφ) = u we must therefore show

〈f, φĝ〉 =
∫
Rd

u(x)g(x)dx = (2π)−d/2
∫
Rd

〈f, φg(x)e−i〈 · ,x〉〉dx, g ∈ Ss(Rd).

(A.3)
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Note that the integral is well defined due to Lemma A.1 and the estimate for
g ∈ Ss(Rd) [33, Lemma 1.6]

|g(x)| � e−ε|x|
1/s

, x ∈ Rd,

which is valid for some ε > 0.
In view of the definition of the Fourier transform ĝ, formula (A.3) is true

provided we can switch order in the action of the distribution 1 ⊗ f ∈ S′
s(R

2d)
with respect to the first and second Rd variable, when it acts on the test func-
tion Φ(x, y) = (2π)−d/2φ(y) g(x)e−i〈y,x〉. Note that Φ ∈ Ss(R2d) if φ, g ∈ Ss(Rd)
and s ≥ 1

2 , and Φ ∈ Σs(R2d) if φ, g ∈ Σs(Rd) and s > 1
2 , cf. [3, Theorem 3.1]

and [4, Proposition 3.4].
Thus the claim (A.1) is a consequence of the following Fubini-type result for

Gelfand–Shilov distributions. It corresponds to [22, Theorem 5.1.1] in the Schwartz
distribution theory.

Theorem A.2. Suppose s ≥ 1
2 , and fj ∈ S′

s(R
dj), j = 1, 2. Then there exists a

unique tensor product distribution f = f1 ⊗ f2 ∈ S′
s(R

d1+d2) such that

〈f1 ⊗ f2, φ1 ⊗ φ2〉 = 〈f1, φ1〉〈f2, φ2〉, φj ∈ Ss(Rdj), j = 1, 2.

It holds

〈f, φ〉 = 〈f1, 〈f2, φ(x1, x2)〉〉 = 〈f2, 〈f1, φ(x1, x2)〉〉, φ ∈ Ss(Rd1+d2),

where fj acts on xj only, j = 1, 2.
The same conclusion holds for s > 1/2 and fj ∈ Σ′

s(R
dj ), j = 1, 2, with test

functions in Σs.

Proof. We use the Hermite functions

hα(x) = π− d
4 (−1)|α|(2|α|α!)−

1
2 e

|x|2
2 (∂αe−|x|2), x ∈ Rd, α ∈ Nd,

and formal series expansions with respect to Hermite functions:

f =
∑
α∈Nd

cαhα,

where {cα} is a sequence of complex coefficients defined by cα = cα(f) = (f, hα).
It is known that Gelfand–Shilov spaces and their distribution duals can be

identified by means of such series expansions, with characterizations in terms of the
corresponding sequence spaces (see [14, 15, 37] and the references therein).

In fact, let

f =
∑
α∈Nd

cαhα,
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and

φ =
∑
α∈Nd

dαhα,

with sequences {cα} and {dα} of finite support. Then the sesquilinear form

(f, φ) =
∑
α∈Nd

cαdα, (A.4)

agrees with the inner product on L2(Rd) due to the fact that {hα}α∈Nd ⊆ L2(Rd) is
an orthonormal basis. The form (A.4) extends uniquely to the duality on S′

s(Rd)×
Ss(Rd) for s ≥ 1

2 , and to the duality on Σ′
s(Rd)×Σs(Rd) for s > 1

2 . All spaces are
then expressed in terms of the Hilbert sequence spaces

2r = 2r(N
d) =

 {cα} ;
∑
α∈Nd

|cα|2er|α|
1
2s <∞

,
where r ∈ R. For s ≥ 1

2 the space Ss(Rd) is identified topologically as the inductive
limit

Ss(Rd) =
⋃
r>0

 ∑
α∈Nd

cαhα ; {cα} ∈ 2r

,
and S′

s(R
d) is identified topologically as the projective limit

S′
s(R

d) =
⋂
r>0

 ∑
α∈Nd

cαhα ; {cα} ∈ 2−r

.
For s > 1

2 , the space Σs(Rd) is identified topologically as the projective limit

Σs(Rd) =
⋂
r>0

 ∑
α∈Nd

cαhα : {cα} ∈ 2r

,
and Σ′

s(R
d) is identified topologically as the inductive limit

Σ′
s(R

d) =
⋃
r>0

 ∑
α∈Nd

cαhα ; {cα} ∈ 2−r

.
We have for α = (α1, α2) ∈ Nd1+d2 with αj ∈ Ndj , j = 1, 2, hα = hα1 ⊗ hα2 .

This gives for fj ∈ S′
s(R

dj), j = 1, 2,

cα = cα(f1 ⊗ f2) = (f1, hα1)(f2, hα2), α = (α1, α2) ∈ Nd1+d2 ,

so cα = c1,α1c2,α2 if we denote cj,αj = (fj , hαj ) where αj ∈ Ndj for j = 1, 2.
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Let φ ∈ Ss(Rd1+d2) and denote dα(φ) = (φ, hα) for α ∈ Nd1+d2 . This gives for
any r > 0

〈f1 ⊗ f2, φ〉 =
∑

(α1,α2)∈Nd1+d2

c1,α1c2,α2 e
−r|(α1,α2)|

1
2s dα1,α2 e

r|(α1,α2)|
1
2s . (A.5)

From

e−r|(α1,α2)| 1
2s ≤ e−

r
2 |α1|

1
2s e−

r
2 |α2|

1
2s ,

{c1,α1} ∈ 2−r(N
d1), {c2,α2} ∈ 2−r(N

d2) for any r > 0, {dα1,α2} ∈ 2r(N
d1+d2) for

some r > 0, and the Cauchy–Schwarz inequality, we may now conclude that the
sum (A.5) converges absolutely.

The conclusion of the theorem is thus a consequence of the well-known Fubini
theorem with respect to the counting measure.
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