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Abstract
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Introduction

Thepresent paper is a continuationof [16],wherewehave studied a class of constrained
evolution problems, called sweeping processes, in the framework of a realHilbert space
X endowed with scalar product 〈x, y〉 and norm |x | = √〈x, x〉. In order to describe
the processes studied in [16], we assume that we are given right-continuous functions
u : [0, T ] → X andw : [0, T ] → W , where W is a real Banach space and we suppose
that u and w are regulated, i. e. they admit left limits at every point t ∈ (0, T ]. We also
assume that a not necessarily convex moving constraint Z(w(t)) ⊂ X is given and
that Z(w(t)) is r -prox-regular, i.e. Z(w(t)) is a closed sets having a neighborhood of
radius r > 0 where the metric projection exists and is unique.

Assuming that the sets Z(w(t)) satisfy a suitable uniform non-empty interior con-
dition, we have proved in [16] that for every initial condition x0 ∈ Z(w(0)) there
exists a right-continuous function ξ : [0, T ] → X of bounded variation (BV ) such
that the variational inequality

∫ T

0
〈x(t) − z(t), dξ(t)〉 + 1

2r

∫ T

0
|x(t) − z(t)|2 dV (ξ)(t) ≥ 0, x(0) = x0,

(0.1)

is satisfied for every regulated test function z : [0, T ] → X such that z(t) ∈ Z(w(t))
for all t ∈ [0, T ], with x(t) := u(t)−ξ(t) and V (ξ)(t) := Var[0,t] ξ , the variation of ξ
over [0, t] for t ∈ [0, T ]. The two integrals in (0.1) can be interpreted in the sense of the
Kurzweil integral introduced in [20]: In the first integral we are integrating X -valued
functions, while the second integral corresponds to the standard case of real-valued
functions.

Since the normal cone NZ (x) of a closed Z ⊆ H at x ∈ Z is defined by the formula

NZ (x) =
{
ξ ∈ X : 〈ξ, x − z〉 + |ξ |

2r
|x − z|2 ≥ 0 ∀z ∈ Z

}
, (0.2)

the variational inequality (0.1) can be formally interpreted as a BV integral formulation
of the differential inclusion

ξ̇ (t) ∈ −NC(t)(ξ(t)), ξ(0) = u(0) − x0 (0.3)

with C(t) = u(t) − Z(w(t)), t ∈ [0, T ].
In [16, Section 5], we have shown under some technical assumptions, but dropping

the uniform non-empty interior condition for Z(w(t)), that if the inputs u, w are
absolutely continuous, then the output ξ is absolutely continuous and satisfies the
pointwise variational inequality

〈
x(t) − z, ξ̇ (t)

〉 + |ξ̇ (t)|
2r

|x(t) − z|2 ≥ 0, x(t) + ξ(t) = u(t), x(0) = x0

(0.4)
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for a. e. t ∈ (0, T ) and all z ∈ Z(w(t)). The existence and uniqueness result for (0.4)
was stated and proved in [16, Corollary 5.3] and we recall the precise statement below
in Proposition 2.3.

A detailed survey of the literature related to non-convex sweeping processes was
given in [16] and we do not repeat it here. Instead, we pursue further the study of (0.4)
in the space of absolutely continuous functions. Let us mention only the publications
that have particularly motivated our research, namely the pioneering paper [24] where
the concept of sweeping process was elaborated, the detailed studies [7,25] of prox-
regular sets, and a deep investigation of prox-regular sweeping processes carried out
in [8,26].

It turns out that it is convenient in this context to represent the sets Z(w) = {x ∈ X :
G(x, w) ≤ 1} as sublevel sets of a function G : X × W → [0,∞) satisfying suitable
technical assumptions. A detailed comparison of different continuity criteria has been
done in the convex case in [5]. In the nonconvex case treated in the present paper we
prove as our main result that the input-output mapping (u, w) → ξ is strongly contin-
uous with respect to the W 1,1-norms if G is continuously differentiable with respect
to both x and w, and Lipschitz continuous if both gradients ∇x G,∇wG are Lipschitz
continuous. As a consequence of the Lipschitz input-output dependence, we apply
the Banach contraction principle to prove the unique solvability of an implicit state
dependent problem with w of the form w(t) = g(t, u(t), ξ(t)) with a given smooth
function g : [0, T ]× X × X → W . The authors are not aware of any result of this kind
in the literature on prox-regular sweeping processes. Implicit problems in the convex
case have been solved under suitable additional compactness assumptions in [18,19]
and without compactness in [5]. The non-convex case has been considered for exam-
ple in [1,2,12,13,21], but to our knowledge, in all existing publications, the sweeping
process is regularized by some kind of compactification or viscous regularization. In
our case, no compactification or other kind of regularization comes into play.

The paper is structured as follows. In Sect. 1, we identify sufficient conditions on
the function G(·, w) which guarantee that the sublevel set Z(w) is r -prox-regular
for every w ∈ W . Section 2 is devoted to finding additional hypotheses on the w-
dependence of G which guarantee the validity of the existence and uniqueness result
for Problem (0.4) in [16, Corollary 5.3]. The strong continuity of the (u, w) → ξ

input-output mapping with respect to the W 1,1-norm is proved in Sect. 3, and the local
Lipschitz continuity of themapping u → ξ in the implicit casew(t) = g(t, u(t), ξ(t))
is proved in Sect. 4.

1 Prox-Regular Sets of Class C1

Let us start by recalling the definition of prox-regular set, in agreement with [25, items
(a) and (g) of Theorem 4.1].

Definition 1.1 Let X be a real Hilbert space endowed with scalar product 〈·, ·〉 and
norm |x | = √〈x, x〉, let Z ⊂ X be a closed connected set, and let dist(x, Z) :=
inf{|x − z| : z ∈ Z} denote the distance of a point x ∈ X from the set Z . Let r > 0
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be given. We say that Z is r -prox-regular if the following condition hold.

∀y ∈ X : dist(y, Z) = d ∈ (0, r) ∃ x ∈ Z : dist
(

x + r

d
(y − x), Z

)

= r

d
|y − x | = r . (1.1)

We have the following characterization of prox-regular sets (see, e. g., [16,25]).

Lemma 1.2 A set Z ⊂ X is r-prox-regular if and only if for every y ∈ X such that
d = dist(y, Z) < r there exists a unique x ∈ Z such that |y − x | = d and

〈y − x, x − z〉 + |y − x |
2r

|x − z|2 ≥ 0 ∀z ∈ Z . (1.2)

We represent the sets Z as the sublevel sets of a function G : X → [0,∞) in the
form

Z = {z ∈ X : G(z) ≤ 1} . (1.3)

We define the gradient ∇G(x) ∈ X of G at a point x ∈ X by the formula

〈∇G(x), y〉 = lim
t→0

1

t

(
G(x + t y) − G(x)

) ∀y ∈ X . (1.4)

The following hypothesis is assumed to hold.

Hypothesis 1.3 Let X be a real Hilbert space endowed with scalar product 〈·, ·〉 and
norm |x | = √〈x, x〉. We assume that (1.3) holds for a function G : X → [0,∞),
∇G(x) exists for every x ∈ X, and there exist positive constants λ, c and a continuous
increasing function μ : [0,∞) → [0,∞) such that μ(0) = 0, lims→∞ μ(s) = ∞,
and

(i) G(x) = 1 �⇒ |∇G(x)| ≥ c > 0 for all x ∈ X;
(ii) |∇G(x) − ∇G(y)| ≤ μ(|x − y|) for all x, y ∈ Z;
(iii) 〈∇G(x) − ∇G(z), x − z〉 ≥ −λ|x − z|2 for all x ∈ ∂ Z and z ∈ Z.

Throughout the paper, for a set S ⊂ X , the symbols ∂S, Int S, and S will denote
respectively the boundary, the interior, and the closure of S. It is easy to check that
under Hypothesis 1.3 we have ∂ Z = {x ∈ X : G(x) = 1}, so that an element x ∈ X
belongs to Int Z if and only if G(x) < 1. Indeed, if G(x) = 1, then

lim
t→0

1

t

(
G(x + t∇G(x)) − G(x)

) = |∇G(x)|2 ≥ c2 > 0.

For n ∈ N put xn := x + 1
n ∇G(x). We have G(xn) > 1 for n sufficiently large, hence

xn /∈ Z . Since xn converge to x as n → ∞, we conclude that x ∈ ∂ Z .
In the convex case, we can choose G to be theMinkowski functional MZ (or gauge)

associated with Z defined as MZ (x) = inf{s > 0 : 1
s x ∈ Z}. Then condition (iii) of
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Hypothesis 1.3 is automatically satisfied, since ∇MZ is monotone, and (ii) is just the
uniform continuity condition of∇MZ . For non-convex sets Z , condition (iii) excludes
sharp concavities of ∂ Z .

We now prove the following result.

Proposition 1.4 Let Hypothesis 1.3 hold and let r = c/λ. Then for every y ∈ X such
that d = dist(y, Z) ∈ (0, r) there exists a unique x ∈ ∂ Z such that

y = x + d
∇G(x)

|∇G(x)| ,

and

〈 ∇G(x)

|∇G(x)| , x − z

〉
+ λ

2c
|x − z|2 ≥ 0 ∀z ∈ Z . (1.5)

In particular, Z is r-prox-regular.

The statement of Proposition 1.4 is not new.Thefinite-dimensional casewas already
solved in [28]. The fact that the conditions of Hypothesis 1.3 are sufficient for a set
given by (1.3) to be prox-regular also in the infinite-dimensional case was shown in [4,
Theorem 9.1] (see also [3]). The proof there refers to a number of deep concepts from
non-smooth analysis along the lines, e. g., of [6, Chapter 2]. Here we present instead
an elementary self-contained proof using no other analytical tools but the properties of
the scalar product, and the argument is split into several steps including two auxiliary
Lemmas.

Lemma 1.5 Let Hypothesis 1.3 hold and let r = c/λ. Then for all x ∈ ∂ Z and z ∈ Z
we have

〈∇G(x), x − z〉 + |∇G(x)|
2r

|x − z|2 ≥ 0.

Proof of Lemma 1.5 For x ∈ ∂ Z and z ∈ Z we have

0 ≤ G(x) − G(z) = d

dt

∫ 1

0
G(z + t(x − z)) dt

=
∫ 1

0
〈∇G(z + t(x − z)), x − z〉 dt

= 〈∇G(x), x − z〉 −
∫ 1

0
〈∇G(x) − ∇G(x − (1−t)(x − z)), x − z〉 dt

≤ 〈∇G(x), x − z〉 + λ

2
|x − z|2.

and the assertion follows.
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xα

xα + t(y − yα) y

yα
Z

Fig. 1 Illustration to Lemma 1.6

Lemma 1.6 Let Hypothesis 1.3 hold, let V ⊂ X be the set of all y ∈ X for which there
exists x ∈ Z such that |y − x | = dist(y, Z), and let Ur := {y ∈ Z : dist(y, Z) < r}.
Then the set V ∩ Ur is dense in Ur .

Ahighly involved proof of Lemma 1.6 can be found in amuchmore general setting,
e. g., in [6, Theorem 3.1, p. 39]. For the reader’s convenience, we show that in our
special case, it can be proved in an elementary way.

Proof of Lemma 1.6 We prove that for a given y ∈ Ur and every ε > 0 there exists
y∗ ∈ V ∩ Ur such that

|y − y∗| < ε. (1.6)

Let y ∈ X be arbitrarily chosen such that d := dist(y, Z) < r . For any α ∈ (0, r − d)

we find xα ∈ ∂ Z such that |y − xα| = d + α and put (see Fig. 1)

yα := xα + (d + α)nα, γα := |∇G(xα)|, nα := ∇G(xα)

γα

,

n̄α := y − xα

d + α
, qα := 〈nα, n̄α〉 . (1.7)

Using Lemma 1.5 we check that yα ∈ V , |yα − xα| = d + α = dist(yα, Z). We
have by (1.7) that y − yα = (d + α)(n̄α − nα), hence,

|y − yα|2 = (d + α)2(2 − 2 〈n̄α, nα〉) = 2(d + α)2(1 − qα). (1.8)

This implies that−1 ≤ qα < 1. Indeed, if qα = 1, then y = yα and dist(y, Z) = d+α

which is a contradiction. Furthermore,

lim
t→0+

1

t

(
G(xα + t(y − yα)) − G(xα)

)

= 〈∇G(xα), y − yα〉 = γα(d + α) 〈nα, n̄α − nα〉
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= γα(d + α)(qα − 1) < 0. (1.9)

We have G(xα) = 1, hence G(xα + t(y − yα)) < 1 in a right neighborhood of 0. Put
Tα := inf{t > 0 : G(xα + t(y − yα)) ≥ 1}. Then Tα > 0, and for every tα ∈ (0, Tα),
by hypothesis that dist(y, Z) = d and by (1.7), (1.8) we find

d2 < |y − (xα + tα(y − yα))|2 = |(1 − tα)(y − xα) + tα(yα − xα)|2
= (d + α)2|(1 − tα)n̄α + tαnα|2
= (d + α)2

(
(1 − tα)2 + t2α + 2tα(1 − tα)qα

)
= (d + α)2

(
1 − 2tα(1 − tα)(1 − qα)

)
= (d + α)2 − tα(1 − tα)|y − yα|2,

so that

tα(1 − tα)|y − yα|2 < (d + α)2 − d2

= (2d + α)α ∀tα ∈ (0, Tα), ∀α ∈ (0, r − d). (1.10)

If lim supα↘0 Tα > 1/2, then for all α such that Tα > 1/2 we can take tα = 1/2 in
(1.10) and obtain that

|y − yα|2 < 4α(2d + α),

and (1.6) is satisfied provided we choose y∗ = yα for a sufficiently small α such that
Tα > 1/2.

It remains to consider the case lim supα↘0 Tα ≤ 1/2.WehaveG(xα+Tα(y−yα)) =
1, thus, by Hypothesis 1.3 and (1.8), we find

0 = G(xα + Tα(y − yα)) − G(xα) =
∫ Tα

0
〈∇G(xα + t(y − yα)), y − yα〉 dt

= Tα 〈∇G(xα), y − yα〉 +
∫ Tα

0
〈∇G(xα + t(y − yα)) − ∇G(xα), y − yα〉 dt

≤ −Tαγα(d + α)(1 − qα) +
∫ Tα

0
μ(t |y − yα|)|y − yα| dt

= −Tαγα|y − yα|2
2(d + α)

+
∫ Tα |y−yα |

0
μ(σ) dσ.

For p ≥ 0 put

M(p) =
∫ p

0
μ(σ) dσ.

The function M : [0,∞) → [0,∞) is increasing and convex, and the function
M̂(p) = M(p)/p is increasing, unbounded, and M̂(0+) = μ(0) = 0. From the
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above computations we conclude that

M̂(Tα|y − yα|) ≥ c

2r
|y − yα|, (1.11)

where c is the constant from Hypothesis 1.3 (i).
Put tα = Tα/2. Then tα < 1/2 for α sufficiently small. Using (1.11) and (1.10) we

infer that

|y − yα| M̂−1
( c

2r
|y − yα|

)
≤ Tα|y − yα|2 = 2tα|y − yα|2

< 2(1 − tα)−1(2d + α)α < 4(2d + α)α, (1.12)

hence, putting pα := M̂−1(c/(2r)|y − yα|), we obtain

M(pα) = pα M̂(pα) <
2c

r
(2d + α) α

and we obtain (1.6) for y∗ = yα and α > 0 sufficiently small from the continuity of
μ, M and M̂ at 0.

We are now ready to prove Proposition 1.4.

Proof of Proposition 1.4 To prove that Z is r -prox-regular, consider any d ∈ (0, r) and
put

	 = ∂ Z = {y ∈ X : G(y) = 1},
	d = {y ∈ X : dist(y, Z) = d}.

Let f : 	 → X be the mapping defined by the formula

f (x) = x + d
∇G(x)

|∇G(x)| . (1.13)

Then f is continuous and f (	) ⊂ 	d . Indeed, we have | f (x)− x | = d and, choosing
an arbitrary z ∈ Z ,

| f (x) − z|2 = |x − z|2 + d2 + 2d

〈 ∇G(x)

|∇G(x)| , x − z

〉

≥
(
1 − d

r

)
|x − z|2 + d2 ≥ d2

by virtue of Lemma 1.5. Furthermore, by Lemma 1.6, for y from a dense subset of 	d

there exists x ∈ 	 and a unit vector n(x) such that y = x + dn(x) and |y − z| ≥ d
for all z ∈ Z . We consequently have |x + tn(x) − z| ≥ |x + dn(x) − z| − (d − t) ≥ t
for all t ∈ (0, d]. Put

n̂(x) = ∇G(x)

|∇G(x)| .
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We have for all t ∈ (0, d) that x+tn(x)−t n̂(x) /∈ Int Z , henceG(x+tn(x)−t n̂(x)) ≥
1, and

0 ≤ lim
t→0+

1

t

(
G(x + tn(x) − t n̂(x)) − G(x)

) = 〈∇G(x), n(x) − n̂(x)
〉
,

and we conclude that n(x) = n̂(x). The range f (	) of the mapping f defined by
(1.13) is therefore dense in 	d . Assume that there exists y ∈ 	d \ f (	). We find a
sequence of elements y j ∈ f (	), j ∈ N, which converges to y, y j = f (x j ). For
j, k ∈ N we have in particular

y j − yk = x j − xk + d

( ∇G(x j )

|∇G(x j )| − ∇G(xk)

|∇G(xk)|
)

.

By Lemma 1.5 we have

〈( ∇G(x j )

|∇G(x j )| − ∇G(xk)

|∇G(xk)|
)

, x j − xk

〉
≥ −1

r
|x j − xk |2,

hence,

|x j − xk |2 ≤ r

r − d

〈
y j − yk, x j − xk

〉
.

We conclude that {x j } is a Cauchy sequence in X , hence it converges to some x ∈ 	

and the continuity of f yields y = f (x). We have thus proved that for each y ∈ 	d

there exists a unique x ∈ 	 such that y = f (x), and the assertion follows from
Lemma 1.6.

2 Absolutely Continuous Inputs

We now consider a family of sets {Z(w) : w ∈ W } parameterized by elements w of a
Banach space W with norm | · |W and defined as the sublevel sets

Z(w) = {z ∈ X : G(x, w) ≤ 1} (2.1)

of a locally Lipschitz continuous function G : X × W → [0,∞). Similarly as in
(1.4), we define the partial gradients ∇x G(x, w) ∈ X , ∇wG(x, w) ∈ W ′ for x ∈ X
and w ∈ W by the identities

〈∇x G(x, w), y〉 = lim
t→0

1

t

(
G(x + t y, w) − G(x, w)

) ∀y ∈ X , (2.2)

〈〈∇wG(x, w), v〉〉 = lim
t→0

1

t

(
G(x, w + tv) − G(x, w)

) ∀v ∈ W , (2.3)
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where W ′ is the dual of W , and 〈〈·, ·〉〉 is the duality W → W ′.We assume the following
hypothesis to hold.

Hypothesis 2.1 Let X be a real Hilbert space endowed with scalar product 〈·, ·〉 and
norm |x | = √〈x, x〉 and let W be a real Banach space with norm | · |W . We assume
that (2.1) holds for a locally Lipschitz continuous function G : X × W → [0,∞) for
which ∇x G(z, w) exists for every (z, w) ∈ Z × W and there exist positive constants
λ, c, L and functions μ1 : W × [0,∞) → [0,∞), μ2 : [0,∞) → [0,∞) such that
μ1(w, 0) = μ2(0) = 0, lims→∞ μ1(w, s) = lims→∞ μ2(s) = ∞ for every w ∈ W ,
and

(i) G(x, w) = 1 �⇒ |∇x G(x, w)| ≥ c > 0 for all x ∈ X and w ∈ W ;
(ii) |∇x G(x, w) − ∇x G(y, w)| ≤ μ1(w, |x − y|) for all x, y ∈ Z(w) and w ∈ W ;
(iii) 〈∇x G(x, w) − ∇x G(z, w), x − z〉 ≥ −λ|x − z|2 for all x ∈ ∂ Z(w), z ∈ Z(w),

and w ∈ W ;
(iv) |G(x, w) − G(x, w′)| ≤ L|w − w′|W for all x ∈ X and w,w′ ∈ W ;
(v) ∀ρ > 0 ∀w ∈ W ∀x ∈ X :

dist(x, Z(w)) ≥ ρ �⇒ G(x, w) − 1 ≥ μ2(ρ). (2.4)

The property (v) in Hypothesis 2.1 is a kind of uniform coercivity of the function
G which will play a role in the next Lemma. Let us observe that Hypothesis 2.1 and
Proposition 1.4 imply that the set Z(w) given by (2.1) is r -prox-regular for every
w ∈ W .

Lemma 2.2 Let Hypothesis 2.1 hold. Then for every K > 0 there exists a constant
CK > 0 such that

max{|w1|W , |w2|W } ≤ K �⇒ dH (Z(w1), Z(w2)) ≤ CK |w1 − w2|W , (2.5)

for every w1, w2 ∈ W , where dH denotes the Hausdorff distance

dH (Z(w1), Z(w2)) := max
{

sup
z∈Z(w1)

dist(z, Z(w2)), sup
z′∈Z(w2)

dist(z′, Z(w1))
}
.

Proof Let K > 0 be given and let max{|w1|W , |w2|W } ≤ K . We first check that

dH (Z(w1), Z(w2)) ≤ DK := μ−1
2 (2K L). (2.6)

Indeed, if this was not true, we can assume that there exists x ∈ Z(w1) such that
dist(x, Z(w2)) ≥ DK + α for some α > 0. By Hypotheses 2.1 (iv)-(v) we then have

L|w1 − w2|W ≥ G(x, w2) − G(x, w1) ≥ G(x, w2) − 1 ≥ μ2(DK + α) > 2K L,

which is a contradiction.
We now consider the cases dH (Z(w1), Z(w2)) ≥ r or dH (Z(w1), Z(w2)) < r

separately. Let us start with the case
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A. dH (Z(w1), Z(w2)) ≥ r .
Then for x ∈ Z(w1) we have by Hypotheses 2.1 (iv)-(v) that

L|w1 − w2|W ≥ G(x, w2) − G(x, w1) ≥ G(x, w2) − 1 ≥ μ2(r),

and (2.6) yields

dH (Z(w1), Z(w2)) ≤ DK ≤ DK L

μ2(r)
|w1 − w2|W . (2.7)

In the case
B. dH (Z(w1), Z(w2)) < r
we proceed as follows. For every ε > 0 there exists xε ∈ Z(w1) be such that dε :=

dist(xε, Z(w2)) ∈ (0, r) and dH (Z(w1), Z(w2))− ε ≤ dε ≤ dH (Z(w1), Z(w2)). By
Proposition 1.4, there exists x ′

ε ∈ ∂ Z(w2) such that xε = x ′
ε + dεn′

ε, where

n′
ε = ∇x G(x ′

ε, w2)

|∇x G(x ′
ε, w2)| . (2.8)

We have G(x ′
ε, w2) = 1, G(xε, w2) > 1, and by (2.8), Hypotheses 2.1 (i) and 2.1

(iii),

G(xε, w2) − G(x ′
ε, w2) =

∫ 1

0

〈∇x G(x ′
ε + tdεn′

ε, w2), dεn′〉 dt

= 〈∇x G(x ′
ε, w2), dεn′

ε

〉

+
∫ 1

0

〈∇x G(x ′
ε + tdεn′

ε, w2) − ∇x G(x ′
ε, w2), dεn′

ε

〉
dt

≥ cdε − λ

2
d2
ε = c

2
dε

(
2 − dε

r

)
≥ cdε

2
.

On the other hand, we have G(xε, w1) ≤ 1 = G(x ′
ε, w2), hence, by Hypothe-

sis 2.1 (iv),

dH (Z(w1), Z(w2)) − ε ≤ dε ≤ 2

c
(G(xε, w2) − G(x ′

ε, w2))

≤ 2

c
(G(xε, w2) − G(xε, w1)) ≤ 2L

c
|w1 − w2|W , (2.9)

and combining (2.7) with (2.9) and with the arbitrariness of ε we complete the proof.

We cite without proof the following result.

Proposition 2.3 Let {Z(w);w ∈ W } be a family of r-prox-regular sets and let (2.5)
hold for every K > 0 and every w1, w2 ∈ W . Then for every u ∈ W 1,1(0, T ; X),
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w ∈ W 1,1(0, T ; W ), and every initial condition x0 ∈ Z(w(0)) there exists a unique
solution ξ ∈ W 1,1(0, T ; X) such that

x(t) := u(t) − ξ(t) ∈ Z(w(t)) for every t ∈ [0, T ], (2.10)

〈
x(t) − z, ξ̇ (t)

〉 + |ξ̇ (t)|
2r

|x(t) − z|2 ≥ 0 ∀z ∈ Z(w(t)), for a.e. t ∈ (0, T ),

(2.11)

x(0) = x0. (2.12)

The statement was proved in [16, Corollary 5.3] under the assumption that the
constant CK in (2.5) can be chosen independently of K . This is indeed not a real
restriction, since the input values w(t) belong to an a priori bounded set. We obtain
global Lipschitz continuity under the hypotheses of Proposition 2.3 by choosing K >

supt∈[0,T ] |w(t)|W in (2.5) and modifying the function G for |w|W ≥ K for instance

as G̃(x, w) = G(x, f (|w|W )w), where f : [0,∞) → [0,∞) is a smooth function
such that f (s) = 1 for s ∈ [0, K ] and s f (s) ≤ K for s > K .

The above developments have shown that the assumptions of Proposition 2.3 are
fulfilled if Hypothesis 2.1 holds. The existence and uniqueness of solutions to (0.4)
is therefore guaranteed for all u ∈ W 1,1(0, T ; X), w ∈ W 1,1(0, T ; W ), and every
initial condition x0 ∈ Z(w(0)). We now prove the following identity which plays a
substantial role in our arguments.

Lemma 2.4 Let Hypothesis 2.1 hold and let u, w, ξ, x be as in Proposition 2.3. Let
∇wG : X × W → W ′ be continuous. Then

〈
ξ̇ (t), ẋ(t) + s(t)

〉 = 0 (2.13)

for almost all t ∈ (0, T ) with the choice

s(t) = ∇x G(x(t), w(t))

dist(x(t), ∂ Z(w(t)) + |∇x G(x(t), w(t))|2 〈〈ẇ(t),∇wG(x(t), w(t))〉〉 .

(2.14)

Proof Wefirst check that the denominator in (2.14) is bounded away fromzero. Indeed,
thanks to Hypothesis 2.1(ii) we find δc > 0 such that the implication

|x1 − x2| < δc �⇒ |∇x G(x1, w(t)) − ∇x G(x2, w(t))| <
c

2
∀t ∈ [0, T ]

holds for all x1, x2 ∈ Z(w(t)). Then we have

dist(x(t), ∂ Z(w(t))) < δc ⇒ ∃x̂ ∈ ∂ Z(w(t)) : |x̂ − x(t)|
< δc ⇒ |∇x G(x(t), w(t))| >

c

2
.

123



Applied Mathematics & Optimization (2021) 84 (Suppl 2):S1477–S1504 S1489

With this choice of x̂ , we have

dist(x(t), ∂ Z(w(t))) + |∇x G(x(t), w(t))|2 ≥ min

{
δc,

c2

4

}
(2.15)

for all t ∈ [0, T ]. For a. e. t ∈ (0, T ) one of the following two cases occurs:

(1) ξ̇ (t) = 0,
(2) ξ̇ (t) �= 0.

Let B = {t ∈ (0, T ) : ξ̇ (t) �= 0}. For t ∈ B we have x(t) ∈ ∂ Z(w(t)), that is,
G(x(t), w(t)) = 1. Hence, for a. e. t ∈ B we have

〈ẋ(t),∇x G(x(t), w(t))〉 + 〈〈ẇ(t),∇wG(x(t), w(t))〉〉 = 0. (2.16)

Moreover, for t ∈ B, the vector ξ̇ (t) points in the direction of the unit outward normal
vector n(x(t), w(t)) to Z(w(t)) at the point x(t), that is,

ξ̇ (t) = |ξ̇ (t)|
|∇x G(x(t), w(t))|∇x G(x(t), w(t)). (2.17)

From (2.16)–(2.17) we obtain for t ∈ B the identity

〈
ξ̇ (t), ẋ(t)

〉 +
〈
ξ̇ (t),

∇x G(x(t), w(t))

|∇x G(x(t), w(t))|2 〈〈ẇ(t),∇wG(x(t), w(t))〉〉
〉

= 0,

(2.18)

which is of the desired form

〈
ξ̇ (t), ẋ(t) + ŝ(t)

〉 = 0 (2.19)

with

ŝ(t) = ∇x G(x(t), w(t))

|∇x G(x(t), w(t))|2 〈〈ẇ(t),∇wG(x(t), w(t))〉〉 , (2.20)

which holds for a. e. t ∈ B by the above argument. Since dist(x(t), ∂ Z(w(t))) = 0
for t ∈ B, we obtain (2.13) directly from (2.19). For t ∈ (0, T ) \ B, identity (2.13) is
trivial since ξ̇ (t) = 0 a. e. on t ∈ (0, T ) \ B.

Under Hypothesis 2.1, the mapping (x, w) → dist(x, Z(w)) is locally Lipschitz
continuous. This can be easily proved as follows. Let x, x ′ ∈ X , w,w′ ∈ W be given.
Put d = dist(x, Z(w)), d ′ = dist(x ′, Z(w′)), and assume for instance that d ≥ d ′.
For an arbitrary ε > 0 we find z′ ∈ Z(w′) such that |x ′ − z′| ≤ d ′ + ε, and z ∈ Z(w)

such that |z − z′| ≤ dH (Z(w), Z(w′)) + ε. Then
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d ≤ |x − z| ≤ |x − x ′| + |x ′ − z′| + |z′ − z| ≤ |x − x ′| + d ′

+ dH (Z(w), Z(w′)) + 2ε (2.21)

and the assertion follows from (2.5). Moreover the following statement holds true.

Lemma 2.5 Let Hypothesis 2.1 hold, and let K > 0 be given. Then there exists mK > 0
such that for all w,w′ ∈ W satisfying the inequalities

max{|w|W , |w′|W } ≤ K , |w − w′|W < mK (2.22)

and for all x, x ′ ∈ X, x ∈ Z(w), x ′ ∈ Z(w′) we have

|dist(x, ∂ Z(w)) − dist(x ′, ∂ Z(w′))| ≤ |x − x ′| + dH (Z(w), Z(w′)).

Proof Put d = dist(x, ∂ Z(w)), d ′ = dist(x ′, ∂ Z(w′)), and assume d ≥ d ′. For every
ε > 0 we find z′ ∈ ∂ Z(w′) such that |x ′ − z′| ≤ d ′ + ε, and z ∈ ∂ Z(w) such that
|z′ − z| ≤ dH (∂ Z(w), ∂ Z(w′)) + ε. We argue as in (2.21) and obtain

d ≤ |x − z| ≤ |x − x ′| + |x ′ − z′| + |z′ − z| ≤ |x − x ′| + d ′

+ dH (∂ Z(w), ∂ Z(w′)) + 2ε.

The proof will be complete if we prove that for a suitable value of mK and for w,w′
satisfying (2.22) we have

dH (∂ Z(w), ∂ Z(w′)) ≤ dH (Z(w), Z(w′)). (2.23)

We claim that the right choice of mK is

mK = d∗

CK

with CK from Lemma 2.2 and any d∗ < r with r as in Proposition 1.4.
Indeed, from Lemma 2.2 it follows that ρ := dH (Z(w), Z(w′)) ≤ d∗. Consider

any z ∈ ∂ Z(w) and assume that z /∈ ∂ Z(w′). We distinguish two cases: z ∈ Int Z(w′)
and z /∈ Z(w′). For z ∈ Int Z(w′) and t ≥ 0 we put

z(t) = z + t
∇x G(z, w)

|∇x G(z, w)| .

Then for t < r we have dist(z(t), Z(w)) = |z(t)− z| = t . Since dH (Z(w), Z(w′)) =
ρ ≤ d∗ < r , there exists necessarily t ≤ ρ such that z(t) ∈ ∂ Z(w′), and we conclude
that dist(z, ∂ Z(w′)) ≤ ρ. In the case z /∈ Z(w′) we use Proposition 1.4 and find
z′ ∈ ∂ Z(w′) such that dist(z, Z(w′)) = dist(z, ∂ Z(w′)) = |z − z′| ≤ ρ and (2.23)
follows.
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It is easy to see that a counterpart of inequality (2.23) does not hold for general
sets. It suffices to consider R1 > R2 > 0 and Z1 = BR1(0), Z2 = Z1 \ BR2(0), where
for x ∈ X and R > 0 we denote by BR(x) the open ball {y ∈ X : |x − y| < R}.
Then dH (Z1, Z2) = R2, dH (∂ Z1, ∂ Z2) = R1 − R2, so that (2.23) is violated for
R2 < R1/2.

The solution mapping of (2.10)–(2.12) is continuous in the following sense.

Theorem 2.6 Let Hypothesis 2.1 hold and let ∇wG : X × W → W ′ be continuous.
Let u ∈ W 1,1(0, T ; X) and w ∈ W 1,1(0, T ; W ) be given, and let {un; n ∈ N} ⊂
W 1,1(0, T ; X) and {wn; n ∈ N} ⊂ W 1,1(0, T ; W ) be sequences such that un(0) →
u(0), wn(0) → w(0) as n → ∞, and

lim
n→∞

∫ T

0
(|u̇n(t) − u̇(t)| + |ẇn(t) − ẇ(t)|W ) dt = 0 (2.24)

as n → ∞. Let ξn, ξ ∈ W 1,1(0, T ; X) be the solutions to (2.10)–(2.12) corresponding
to the inputs un, wn, u, w, respectively, with initial conditions x0n ∈ Z(wn(0)), x0 ∈
Z(w(0)) such that |x0n − x0| → 0 as n → ∞. Then

lim
n→∞

∫ T

0
|ξ̇n(t) − ξ̇ (t)| dt = 0. (2.25)

The proof of Theorem 2.6 relies on the following general property of functions in
L1(0, T ; X) proved in [14].

Lemma 2.7 Let {vn; n ∈ N ∪ {0}} ⊂ L1(0, T ; X), {gn; n ∈ N ∪ {0}} ⊂ L1(0, T ;R)

be given sequences such that

(i) limn→∞
∫ T
0 〈vn(t), ϕ(t)〉 dt = ∫ T

0 〈v(t), ϕ(t)〉 dt ∀ϕ ∈ C([a, b]; X),

(ii) limn→∞
∫ T
0 |gn(t) − g0(t)| dt = 0,

(iii) |vn(t)| ≤ gn(t) a.e. ∀n ∈ N,
(iv) |v0(t)| = g0(t) a.e.

Then limn→∞
∫ T
0 |vn(t) − v0(t)| dt = 0.

Notice that Lemma 2.7 does not follow from the LebesgueDominated Convergence
Theorem, since we do not assume the pointwise convergence. The proof is elementary
and we repeat it here for the reader’s convenience.

Proof of Lemma 2.7 We first prove that property (i) holds for every ϕ ∈ L∞(0, T ; X).
For a fixed ϕ ∈ L∞(0, T ; X) and δ > 0 we use Lusin’s Theorem to find a function
ψ ∈ C([0, T ]; X) and a set Mδ ⊂ [0, T ] such that meas(Mδ) < δ and ψ(t) = ϕ(t)
for all t ∈ [0, T ] \ Mδ, ‖ψ‖ ≤ ‖ϕ‖. We then have

∣∣∣∣
∫ T

0
〈vn(t) − v0(t), ϕ(t)〉 dt

∣∣∣∣ ≤
∣∣∣∣
∫ T

0
〈vn(t) − v0(t), ψ(t)〉 dt

∣∣∣∣
+ 2‖ϕ‖

(∫ T

0
|gn(t) − g0(t)| dt + 2

∫
Mδ

g0(t) dt

)
.
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Since δ can be chosen arbitrarily small and g0 ∈ L1(0, T ), the integral of g0 over Mδ

can be made arbitrarily small and we obtain

lim
n→∞

∫ T

0
〈vn(t), ϕ(t)〉 dt =

∫ T

0
〈v0(t), ϕ(t)〉 dt ∀ϕ ∈ L∞(0, T ; X). (2.26)

Let us note that the transition from (i) to (2.26) is related to theDunford-PettisTheorem,
see [10]. To prove Lemma 2.7 we put for t ∈ [0, T ]

ϕ(t) :=
{
0 if v0(t) = 0,
v0(t)
g0(t)

if v0(t) �= 0.

Then ϕ ∈ L∞(0, T ; X) and the inequality

|vn(t) − v0(t)|2 ≤ g2
n(t) − 2 〈vn(t), v0(t)〉 + g2

0(t)

= |gn(t) − g0(t)|2 + 2g0(t)
(
gn(t) − g0(t) + 〈v0(t), ϕ(t)〉 − 〈vn(t), ϕ(t)〉 )

holds for a. e. t ∈ [0, T ]. By Hölder’s inequality we have

∫ T

0
|vn(t) − v0(t)| dt ≤

∫ T

0
|gn(t) − g0(t)| dt +

(∫ T

0
2g0(t) dt

)1/2

(∫ T

0

(
gn(t) − g0(t) + 〈v0(t), ϕ(t)〉 − 〈vn(t), ϕ(t)〉 )

dt

)1/2

,

and the assertion follows from (2.26).

We are now ready to prove one of our main results, namely Theorem 2.6.

Proof of Theorem 2.6 By Lemma 2.4 we check that sn given by the formula

sn(t) = ∇x G(xn(t), wn(t))

dist(xn(t), ∂ Z(wn(t))) + |∇x G(xn(t), wn(t))|2 〈〈ẇn(t), ∇wG(xn(t), wn(t))〉〉 (2.27)

satisfy a. e. the identity

〈
ξ̇n(t), ẋn(t) + sn(t)

〉 = 0. (2.28)

Theorem 4.4 of [16] states that xn → x uniformly in C([0, T ]; X). Using Lemma 2.5
and formulas (2.15), (2.24) we conclude that sn converge strongly to s in L1(0, T ; X).
Put yn = u̇n + sn − 2ξ̇n = ẋn + sn − ξ̇n , y = u̇ + s − 2ξ̇ = ẋ + s − ξ̇ . For a. e.
t ∈ (0, T ) we have by (2.13), (2.28) that

|yn(t)|2 = |ẋn(t) + sn(t) − ξ̇n(t)|2 = |ẋn(t) + sn(t) + ξ̇n(t)|2
= |u̇n(t) + sn(t)|2, (2.29)
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and similarly |y(t)|2 = |u̇(t) + s(t)|2. Put vn(t) = yn(t), v0(t) = y(t), gn(t) =
|u̇n(t) + sn(t)|, g0(t) = |u̇(t) + s(t)|. We see that hypotheses (ii)–(iv) of Lemma 2.7
are satisfied. The assertion of Theorem 2.6 will follow from Lemma 2.7 provided we
check that

lim
n→∞

∫ T

0
〈yn(t) − y(t), ϕ(t)〉 dt = 0 ∀ϕ ∈ C([0, T ]; X). (2.30)

This will certainly be true if we prove that

lim
n→∞

∫ T

0

〈
ξ̇n(t) − ξ̇ (t), ϕ(t)

〉
dt = 0 ∀ϕ ∈ C([0, T ]; X). (2.31)

Let ϕ ∈ C([0, T ]; X) be given. For an arbitrary ε > 0 we find ψ ∈ C1([0, T ]; X)

such that ‖ψ − ϕ‖ < ε. There exists a constant C > 0 independent of n and ε such
that

∣∣∣∣
∫ T

0

〈
ξ̇n(t) − ξ̇ (t), ϕ(t) − ψ(t)

〉
dt

∣∣∣∣ ≤ Cε,

hence,

∣∣∣∣
∫ T

0

〈
ξ̇n(t) − ξ̇ (t), ϕ(t)

〉
dt

∣∣∣∣ ≤
∣∣∣∣
∫ T

0

〈
ξ̇n(t) − ξ̇ (t), ψ(t)

〉
dt

∣∣∣∣ + Cε, (2.32)

where we can integrate by parts and obtain

∫ T

0

〈
ξ̇n(t) − ξ̇ (t), ψ(t)

〉
dt = 〈ξn(T ) − ξ(T ), ψ(T )〉 − 〈ξn(0) − ξ(0), ψ(0)〉

−
∫ T

0

〈
ξn(t) − ξ(t), ψ̇(t)

〉
dt .

(2.33)

By [16, Theorem 4.4], the right-hand side of (2.33) converges to 0 as n → ∞. Since
ε in (2.32) can be chosen arbitrarily small, we obtain (2.30) from (2.32) and (2.33).
Using Lemma 2.7 we conclude that

lim
n→∞

∫ T

0
|yn(t) − y(t)| dt = 0

and the assertion of Theorem 2.6 easily follows.

3 Local Lipschitz Continuity

We have proved in the previous section that the solution mapping (u, w) → ξ of
Problem (2.10)–(2.12) is strongly continuous with respect to the W 1,1-norm provided

123



S1494 Applied Mathematics & Optimization (2021) 84 (Suppl 2):S1477–S1504

Hypothesis 2.1 holds and ∇wG is a continuous function. Here we show that if ∇x G,
∇wG are Lipschitz continuous, then the solution mapping of Problem (2.10)–(2.12)
is locally Lipschitz continuous with respect to the W 1,1-norm. Here are the precise
assumptions.

Hypothesis 3.1 Let Hypothesis 2.1 hold. Assume that the partial derivatives∇x G(x, w)

∈ X, ∇w G(x, w) ∈ W ′ exist for every (x, w) ∈ X × W and there exist positive con-
stants K0, K1, C0, C1 such that

(i) |∇x G(x, w)| ≤ K0, |∇wG(x, w)|W ′ ≤ K1 ∀(x, w) ∈ X × W ,
(ii) for every (x, w), (x ′, w′) ∈ X × W we have

|∇x G(x, w) − ∇x G(x ′, w′)| ≤ C0(|x − x ′| + |w − w′|W ) , (3.1)

|∇wG(x, w) − ∇wG(x ′, w′)|W ′ ≤ C1 (|x − x ′| + |w − w′|W ). (3.2)

In the following two lemmas we derive some useful formulas.

Lemma 3.2 Let Hypothesis 3.1 (i) hold, and let (u, w) ∈
W 1,1(0, T ; X) × W 1,1(0, T ; W ), x0 ∈ Z(w(0)), and ξ ∈ W 1,1(0, T ; X) satisfy
(2.10)–(2.12) with x(t) = u(t) − ξ(t). For t ∈ (0, T ) set

A[u, w](t) = 〈
ξ̇ (t),∇x G(x(t), w(t))

〉
,

B[u, w](t) = 〈u̇(t),∇x G(x(t), w(t))〉 + 〈〈ẇ(t),∇wG(x(t), w(t))〉〉 ,

Then for a. e. t ∈ (0, T ) we have either

(i) ξ̇ (t) = 0, d
dt G(x(t), w(t)) = B[u, w](t),

or
(ii) ξ̇ (t) �= 0, x(t) ∈ ∂ Z(w(t)), A[u, w](t) = B[u, w](t) > 0,

maxτ∈[0,T ] G(x(τ ), w(τ)) = G(x(t), w(t)) = 1, d
dt G(x(t), w(t)) = 0, and

ξ̇ (t) = A[u, w](t)
|∇x G(x(t), w(t))|2 ∇x G(x(t), w(t)) . (3.3)

Moreover, for a. e. t ∈ (0, T ) we have that

|B[u, w](t)| ≤ |∇x G(x(t), w(t))| |u̇(t)| + K1|ẇ(t)|W , (3.4)

|ξ̇ (t)| ≤ |u̇(t)| + K1

c
|ẇ(t)|W , (3.5)

with c from Hypothesis 2.1 (i).

Proof Let L ⊂ (0, T ) be the set of Lebesgue points of all functions u̇, ẇ, ξ̇ . Then L
has full measure in [0, T ], and for t ∈ L we have

d

dt
G(x(t), w(t)) = 〈ẋ(t),∇x G(x(t), w(t))〉 + 〈〈ẇ(t),∇wG(x(t), w(t))〉〉 . (3.6)
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If ξ̇ (t) = 0, then ẋ(t) = u̇(t), and (i) follows from (3.6). If ξ̇ (t) �= 0, then
x(t) ∈ ∂ Z(w(t)), hence G(x(t), w(t)) = 1 = maxτ∈[0,T ] G(x(τ ), w(τ)) and
d
dt G(x(t), w(t)) = 0, so that (3.3) follows from (2.17). Furthermore, (3.6) yields
〈ẋ(t),∇x G(x(t), w(t))〉 = − 〈〈ẇ(t),∇wG(x(t), w(t))〉〉, hence
〈
ξ̇ (t),∇x G(x(t), w(t))

〉 = 〈u̇(t),∇x G(x(t), w(t))〉 − 〈ẋ(t),∇x G(x(t), w(t))〉
= 〈u̇(t),∇x G(x(t), w(t))〉 + 〈〈ẇ(t),∇wG(x(t), w(t))〉〉 ,

Weare left to prove (3.4)–(3.5). Formula (3.4) follows fromHypothesis 3.1 (i). Formula
(3.5) is trivial if ξ̇ (t) = 0; otherwise we have |ξ̇ (t)| = A[u, w](t)/|∇x G(x(t), w(t))|
= B[u, w](t)/|∇x G(x(t), w(t))|, x(t) ∈ ∂ Z(w(t)), and (3.5) follows.

Lemma 3.3 Let Hypothesis 3.1 (i) hold, let (ui , wi ) ∈ W 1,1(0, T ; X)×W 1,1(0, T ; W )

and x0i ∈ Z(wi (0)) be given for i = 1, 2, let ξi ∈ W 1,1(0, T ; X) be the respective
solutions to (2.10)–(2.12) with xi = ui − ξi for i = 1, 2. Then for a. e. t ∈ (0, T ) we
have

|A[u1, w1](t)−A[u2, w2](t)| + d

dt
|G(x1(t), w1(t)) − G(x2(t), w2(t))|

≤ |B[u1, w1](t) − B[u2, w2](t)| , (3.7)

|ξ̇1(t) − ξ̇2(t)| ≤ 1

c
|A[u1, w1](t) − A[u2, w2](t)|

+ 1

c

(
|u̇1(t)| + K1

c
|ẇ1(t)|W

)
|∇x G(x1(t), w1(t))

−∇x G(x2(t), w2(t))| . (3.8)

where A and B are defined as in Lemma 3.2.

Proof The assertion follows directly from Lemma 3.2 if ξ̇1(t) = ξ̇2(t) = 0. Assume
now

• ξ̇1(t) �= 0, ξ̇2(t) �= 0.
Then (3.7) is again an immediate consequence of Lemma 3.2. To prove (3.8), we

use (3.3) and the elementary vector identity

∣∣∣∣ z

|z|2 − z′

|z′|2
∣∣∣∣ = 1

|z||z′| |z − z′| for z, z′ ∈ X \ {0} ,

to obtain

|ξ̇1(t) − ξ̇2(t)| ≤ |A[u1, w1](t)|
∣∣∣∣ ∇x G(x1(t), w1(t))

|∇x G(x1(t), w1(t))|2
− ∇x G(x2(t), w2(t))

|∇x G(x2(t), w2(t))|2
∣∣∣∣

+ 1

|∇x G(x2(t), w2(t))| |A[u1, w1](t) − A[u2, w2](t)|

= |B[u1, w1](t)|
|∇x G(x1(t), w1(t))| |∇x G(x2(t), w2(t))|

|∇x G(x1(t), w1(t)) − ∇x G(x2(t), w2(t))|

+ 1

|∇x G(x2(t), w2(t))|
|A[u1, w1](t) − A[u2, w2](t)|.
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By Hypothesis 2.1 (i) we have |∇x G(xi (t), wi (t))| ≥ c for i = 1, 2, and combining
the above inequalities with (3.4) we obtain the assertion.

Let us consider now the case
• ξ̇1(t) �= 0, ξ̇2(t) = 0.
Then |A[u1, w1](t) − A[u2, w2](t)| = A[u1, w1](t), G(x1(t), w1(t)) − G(x2(t),

w2(t)) = 1 − G(x2(t), w2(t)) ≥ 0, hence

|A[u1, w1](t) − A[u2, w2](t)| + d

dt
|G(x1(t), w1(t)) − G(x2(t), w2(t))|

= A[u1, w1](t) − d

dt
G(x2(t), w2(t))

= B[u1, w1](t) − B[u2, w2](t) ,

hence (3.7) is fulfilled. We further have similarly as above that

|ξ̇1(t) − ξ̇2(t)| = |ξ̇1(t)| ≤ 1

c
A[v1, u1](t) = 1

c
|A[u1, w1](t) − A[u2, w2](t)| ,

hence (3.8) holds. The remaining case
• ξ̇1(t) = 0, ξ̇2(t) �= 0

is analogous, and Lemma 3.3 is proved.

We are now ready to prove the following main result.

Theorem 3.4 Let Hypothesis 3.1 hold, let (ui , wi ) ∈ W 1,1(0, T ; X)×W 1,1(0, T ; W )

and x0i ∈ Z(wi (0)) be given for i = 1, 2, let ξi ∈ W 1,1(0, T ; X) be the respective
solutions to (2.10)–(2.12) with xi = ui − ξi for i = 1, 2. Then for a. e. t ∈ (0, T ) we
have

|ξ̇1(t) − ξ̇2(t)| + 1

c

d

dt
|G(x1(t), w1(t)) − G(x2(t), w2(t))|

≤ 1

c

(
K0|u̇1(t) − u̇2(t)| + K1|ẇ1(t) − ẇ2(t)|W

)

+ 1

c

(
2C0|u̇1(t)| +

(
C1 + C0K1

c

)
|ẇ1(t)|W

) (|w1(t)−w2(t)|W
+ |x1(t)−x2(t)|

)
. (3.9)

Proof By Lemma 3.3, we have

|ξ̇1(t) − ξ̇2(t)| + 1

c

d

dt
|G(x1(t), w1(t)) − G(x2(t), w2(t))|

≤ 1

c
|B[u1, w1](t) − B[u2, w2](t)|

+ 1

c

(
|u̇1(t)| + K1

c
|ẇ1(t)|W

)
|∇x G(x1(t), w1(t)) − ∇x G(x2(t), w2(t))|,
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where B[u, w] is defined as in Lemma 3.2. Hence (3.9) follows since from Hypothe-
sis 3.1 and the triangle inequality applied to B[u, w] we infer that

|B[u1, w1](t) − B[u2, w2](t)| ≤ K0|u̇1(t) − u̇2(t)| + K1|ẇ1(t) − ẇ2(t)|W
+ (

C0|u̇1(t)| + C1|ẇ1(t)|
)(|x1(t) − x2(t)| + |w1(t) − w2(t)|W

)
.

Corollary 3.5 For every R > 0 there exists a constant C(R) > 0 such that for
every (ui , wi ) ∈ W 1,1(0, T ; X) × W 1,1(0, T ; W ) and every x0i ∈ Z(wi (0)) for

i = 1, 2 such that max{∫ T
0 |u̇1(t)| dt,

∫ T
0 |ẇ1(t)|W dt} ≤ R, the respective solutions

ξi ∈ W 1,1(0, T ; X) to (2.10)–(2.12) satisfy the inequality

∫ T

0
|ξ̇1(t) − ξ̇2(t)| dt ≤ C(R)

( ∫ T

0
(|u̇1(t) − u̇2(t)| + |ẇ1(t) − ẇ2(t)|W ) dt

+ |w1(0) − w2(0)|W + |x01 − x02 |
)

. (3.10)

Proof In the situation of Theorem 3.4 put K2 = max{K0, K1}/c, and

�ξ(t) =
∫ t

0
|ξ̇1(τ ) − ξ̇2(τ )| dτ + 1

c
|G(x1(t), w1(t)) − G(x2(t), w2(t))|,

D(t) = |u̇1(t) − u̇2(t)| + |ẇ1(t) − ẇ2(t)|W ,

m(t) = 1

c

(
2C0|u̇1(t)| +

(
C1 + C0K1

c

)
|ẇ1(t)|W

)
.

Then from (3.9) it follows that

d

dt
�ξ(t) ≤ K2D(t) + m(t)

(|w1(t) − w2(t)|W + |x1(t) − x2(t)|
)

≤ K2D(t) + m(t)

(∫ t

0

(|ẇ1(τ ) − ẇ2(τ )|W + |ẋ1(τ ) − ẋ2(τ )|) dτ

+ |w1(0) − w2(0)|W + |x01 − x02 |
)

≤ K2D(t)

+ m(t)

(
�ξ(t) +

∫ t

0
D(τ ) dτ + |w1(0)−w2(0)|W + |x01−x02 |

)
.

(3.11)

We now use Gronwall’s argument and put M(t) = ∫ t
0 m(τ ) dτ . It follows from (3.11)

that

d

dt

(
e−M(t)�ξ(t)

)

≤ e−M(t)
(

K2D(t) + m(t)

(∫ t

0
D(τ ) dτ + |w1(0)−w2(0)|W + |x01−x02 |

))
.
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Integrating from 0 to T we obtain the assertion.

Remark 3.6 The local Lipschitz continuity of the input-output mapping cannot be
expected if∇x G is not Lipschitz even if G is convex. A counterexample is constructed
in [15, Theorem 2.2]. On the other hand, the global W 1,1-Lipschitz continuity of the
sweeping process holds if Z(w) is a convex polyhedron. This is shown for instance in
[9] for Z independent of w, and it is generalized in [17] to the case of non-orthogonal
projections to the convex polyhedron, i.e. when the time derivative of ξ lies in a
prescribed cone of admissible directions.

4 Implicit Sweeping Processes

In this section we consider the state dependent problem corresponding to (2.10)–
(2.12), where it is assumed that there exists a function g : [0, T ] × X × X → W such
that

w(t) = g(t, u(t), ξ(t)). (4.1)

More specifically„ given u ∈ W 1,1(0, T ; X) and x0 ∈ X such that x0 ∈
Z(g(0, u(0), u(0) − x0)), one has to find ξ ∈ W 1,1(0, T ; X) such that

x(t) := u(t) − ξ(t) ∈ Z(g(t, u(t), ξ(t))) for every t ∈ [0, T ], (4.2)

〈
x(t) − z, ξ̇ (t)

〉+|ξ̇ (t)|
2r

|x(t)−z|2≥0 ∀z ∈ Z(g(t, u(t), ξ(t))) for a. e. t ∈ (0, T ),

(4.3)

x(0) = x0. (4.4)

Using the Banach contraction principle, we prove that (4.2)–(4.4) is uniquely solvable
in W 1,1(0, T ; X) under the following assumptions on the function g.

Hypothesis 4.1 A continuous function g : [0, T ] × X × X → W is given such that its
partial derivatives ∂t g, ∂u g, ∂ξ g exist and satisfy the inequalities

|∂ξ g(t, u, ξ)|L(X ,W ) ≤ γ , (4.5)

|∂u g(t, u, ξ)|L(X ,W ) ≤ ω , (4.6)

|∂t g(t, u, ξ)|W ≤ a(t) , (4.7)

|∂ξ g(t, u, ξ) − ∂ξ g(t, v, η)|L(X ,W ) ≤ Cξ (|u − v| + |ξ − η|) , (4.8)

|∂u g(t, u, ξ) − ∂u g(t, v, η)|L(X ,W ) ≤ Cu (|u − v| + |ξ − η|) , (4.9)

|∂t g(t, u, ξ) − ∂t g(t, v, η)|W ≤ b(t) (|u − v| + |ξ − η|) (4.10)

for every u, v, ξ, η ∈ X and a.e. t ∈ (0, T ) with given functions a, b ∈ L1(0, T ) and
given constants γ, ω, Cξ , Cu > 0 such that

δ := K1γ

c
< 1, (4.11)
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where c, K1 are as in Hypotheses 2.1 (i) and 3.1.

Let us start our analysis with two auxiliary results.

Lemma 4.2 Let Hypotheses 3.1 and 4.1 hold and let ξ ∈ W 1,1(0, T ; X) satisfy
(4.2)–(4.4) with some u ∈ W 1,1(0, T ; X) and some x0 ∈ X such that x0 ∈
Z(g(0, u(0), u(0) − x0)). Then we have

|ξ̇ (t)| ≤ 1

1 − δ

((
1 + ωK1

c

)
|u̇(t)| + K1

c
a(t)

)
for a. e.t ∈ (0, T ). (4.12)

Proof We set w(t) = g(t, u(t), ξ(t)) for t ∈ [0, T ]. From Hypothesis 4.1 follows that
w ∈ W 1,1(0, T ; W ), thus u, w, ξ and x0 satisfy (2.10)–(2.11) and Lemma 3.2 applies.
In particular inequality (4.12) is an easy consequence of (3.5). Indeed, using (4.5),
(4.6) we obtain |ẇ(t)|W ≤ a(t)+ω|u̇(t)|+γ |ξ̇ (t)| so that (4.12) follows from (4.11).

Motivated by (4.12), we define for any u ∈ W 1,1(0, T ; X) the set

�(u) :=
{

η ∈ W 1,1(0, T ; X) : |η̇(t)| ≤ 1
1−δ

((
1 + ωK1

c

)
|u̇(t)|+ K1

c a(t)
)
a. e.

η(0) = u(0) − x0

}

(4.13)

and prove the following statement.

Lemma 4.3 For all u ∈ W 1,1(0, T ; X) and η ∈ �(u), the solution ξ ∈ W 1,1(0, T ; X)

of (2.10)–(2.12) with w(t) = g(t, u(t), η(t)) belongs to �(u). Moreover, there exist
constants m0 > 0, m1 > 0 such that for every u1, u2 ∈ W 1,1(0, T ; X) and every
ηi ∈ �(ui ), i = 1, 2, the solutions ξi ∈ W 1,1(0, T ; X) of (2.10)–(2.12) with wi (t) =
g(t, ui (t), ηi (t)) and xi

0 ∈ X with xi
0 ∈ Z(g(0, ui (0),ui (0) − xi

0)) i = 1, 2, satisfy
for a. e. t ∈ (0, T ) the inequality

|ξ̇1(t) − ξ̇2(t)| + 1

c

d

dt
|G(x1(t), w1(t)) − G(x2(t), w2(t))|

≤ m1|u̇1(t) − u̇2(t)| + δ|η̇1(t) − η̇2(t)|
+ m0 (a(t) + b(t) + |u̇1(t)|)

(|u1(t) − u2(t)| + |ξ1(t) − ξ2(t)| + |η1(t) − η2(t)|
)
.

(4.14)

Proof u ∈ W 1,1(0, T ; X) and η ∈ �(u) be given. By (3.5), (4.1)–(4.7) and (4.11),
we have for a. e. t ∈ (0, T ) that
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|ξ̇ (t)| ≤
(
1 + ωK1

c

)
|u̇(t)| + K1

c
(a(t) + γ |η̇(t)|)

≤ 1

1−δ

((
1 + ωK1

c

)
|u̇(t)| + K1

c
a(t)

)
,

hence ξ ∈ �(u). To prove (4.14), we notice that the inequalities

|ẇ1(t) − ẇ2(t)|W ≤ ω|u̇1(t) − u̇2(t)| + γ |η̇1(t) − η̇2(t)|
+ (

b(t) + Cu |u̇1(t)| + Cξ |η̇1(t)|
)
(|u1(t) − u2(t)| + |η1(t) − η2(t)|) ,

|w1(t) − w2(t)|W ≤ ω|u1(t) − u2(t)| + γ |η1(t) − η2(t)|,
|ẇ1(t)|W ≤ a(t) + ω|u̇1(t)| + γ |η̇1(t)|

≤
(
1 + δ

1 − δ

)
a(t) +

(
ω + γ

1 − δ

(
1 + ωK1

c

))
|u̇1(t)|.

hold for a. e. t ∈ (0, T ) By virtue of Hypothesis 4.1. We now apply Theorem 3.4 and
insert the above estimates into (3.9). The estimate (4.14) now follows with constants
m0 > 0, m1 > 0 depending only on c, C0, C1, K0, K1, γ, ω, Cξ , and Cu .

We now prove the main result of this section.

Theorem 4.4 Let Hypotheses 3.1 and 4.1 hold, and let u ∈ W 1,1(0, T ; X) and x0 ∈ X
be given such that x0 ∈ Z(g(0, u(0),u(0) − x0)). Then there exists a unique solution
ξ ∈ �(u) to (4.2)–(4.4).

Proof We proceed by the Banach Contraction Principle. For an arbitrarily given
u ∈ W 1,1(0, T ; X) and each η ∈ �(u) we use Lemma 4.3 to find the solution
ξ ∈ W 1,1(0, T ; X) of (2.10)–(2.12) with w(t) = g(t, u(t), η(t)). It suffices to prove
that the mapping S : �(u) → �(u) : η → ξ is a contraction on �(u).

Let η1, η2 ∈ �(u) be given. From (4.14) with u1 = u2 = u it follows that

|ξ̇1(t) − ξ̇2(t)| + 1

c

d

dt
|G(x1(t), w1(t))−G(x2(t), w2(t))|

≤ δ|η̇1(t) − η̇2(t)| + m(t)
(|ξ1(t) − ξ2(t)| + |η1(t) − η2(t)|

)
(4.15)

with m(t) = m0(a(t) + b(t) + |u̇(t)|). We have m ∈ L1(0, T ), and we may put for
t ∈ [0, T ]

M(t) =
∫ t

0
m(τ ) dτ, Mε(t) = e− 1

ε
M(t),

where ε ∈ (0, 1) is chosen in such a way that

δ∗ := δ + ε

1 − ε
< 1. (4.16)
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We multiply (4.15) by Mε(t) and integrate from 0 to T . For simplicity, put

	(t) = 1

c
|G(x1(t), w1(t)) − G(x2(t), w2(t))|. (4.17)

We have

∫ T

0
Mε(t)	̇(t) dt = 	(T )Mε(T ) + 1

ε

∫ T

0
m(t)Mε(t)	(t) dt ≥ 0,

hence,

∫ T

0
Mε(t)|ξ̇1(t) − ξ̇2(t)| dt

≤ δ

∫ T

0
Mε(t)|η̇1(t) − η̇2(t)| dt

− ε

∫ T

0
Ṁε(t)

(∫ t

0

(|ξ̇1(τ ) − ξ̇2(τ )| + |η̇1(τ ) − η̇2(τ )|) dτ
)

dt . (4.18)

We use the fact that

Mε(T )

(∫ T

0

(|ξ̇1(τ ) − ξ̇2(τ )| + |η̇1(τ ) − η̇2(τ )|) dτ
)

≥ 0,

and integrating by parts in the right-hand side of (4.18) we obtain

(1 − ε)

∫ T

0
Mε(t)|ξ̇1(t) − ξ̇2(t)| dt ≤ (δ + ε)

∫ T

0
Mε(t)|η̇1(t) − η̇2(t)| dt . (4.19)

Hence, by virtue of (4.16), the mapping S : �(u) → �(u) : η → ξ is a contraction
with respect to the complete metric induced on �(u) by the norm

‖η‖ε :=
∫ T

0
Mε(t)|η̇(t)| dt,

and we infer the existence of a solution ξ ∈ �(u) to (4.2)–(4.4).

Corollary 4.5 Let Hypotheses 3.1 and 4.1 hold. Then the mapping which with u ∈
W 1,1(0, T ; X) and x0 ∈ Z(g(0, u(0), u(0) − x0)) associates the solution ξ ∈ �(u)

of (4.2)–(4.4) is locally Lipschitz continuous in the sense that for every R >

2m0
∫ T
0 (a(t) + b(t)) dt there exists K (R) > 0 such that if u1, u2 ∈ W 1,1(0, T ; X)

are given and

∫ T

0
|u̇1(t)| dt ≤ R

2m0
−

∫ T

0
(a(t) + b(t)) dt, (4.20)
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then the solutions ξi ∈ W 1,1(0, T ; X), i = 1, 2 to (4.2)–(4.4) associated with the
inputs ui and initial conditions xi

0 ∈ X, xi
0 ∈ Z(g(0, ui (0), ui (0) − xi

0)) for i = 1, 2
satisfy the inequality

∫ T

0
|ξ̇1(t) − ξ̇2(t)| dt

≤ K (R)

(
|x10 − x20 | + |u1(0) − u2(0)| +

∫ T

0
|u̇1(t) − u̇2(t)| dt

)
. (4.21)

Proof By virtue of (4.14) with ηi = ξi we have for a. e. t ∈ (0, T ) that

(1 − δ)|ξ̇1(t) − ξ̇2(t)| + 1

c

d

dt
|G(x1(t), w1(t)) − G(x2(t), w2(t))|

≤ m1|u̇1(t) − u̇2(t)|
+ 2m0(a(t) + b(t) + |u̇1(t)|)

(|u1(t) − u2(t)| + |ξ1(t) − ξ2(t)|
)
. (4.22)

We proceed as in the proof of Theorem 4.4 choosing ε ∈ (0, 1 − δ) and putting for
t ∈ [0, T ]

m̂(t) = 2m0(a(t) + b(t) + |u̇1(t)|),
M̂(t) =

∫ t

0
m̂(τ ) dτ,

M̂ε(t) = e− 1
ε

M̂(t).

Note that by (4.20) we have

M̂(T ) =
∫ T

0
2m0(a(t) + b(t) + |u̇1(t)|) dt ≤ R.

Multiplying (4.22) by M̂ε(t) and using the notation (4.17) we obtain after integrating
from 0 to T that

(1 − δ)

∫ T

0
e− 1

ε
M̂(t)|ξ̇1(t) − ξ̇2(t)| dt ≤ 	(0) + m1

∫ T

0
e− 1

ε
M̂(t)|u̇1(t) − u̇2(t)| dt

− ε

∫ T

0

d

dt
M̂ε(t) (|u1(0)−u2(0)| + |ξ1(0)−ξ2(0)|) dt

− ε

∫ T

0

d

dt
M̂ε(t)

(∫ t

0
|u̇1(τ )−u̇2(τ )| + |ξ̇1(τ )−ξ̇2(τ )| dτ

)
dt . (4.23)

On the right-hand side of (4.23) we integrate by parts and obtain
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(1 − δ − ε)

∫ T

0
e− 1

ε
M̂(t)|ξ̇1(t) − ξ̇2(t)| dt

≤ (m1 + ε)

∫ T

0
e− 1

ε
M̂(t)|u̇1(t) − u̇2(t)| dt + C

(
|u1(0)−u2(0)| + |x10−x20 |

)

(4.24)

with a constant C > 0 independent of R. Thus, as 0 ≤ M̂(T ) ≤ R we obtain the final
estimate

∫ T

0
|ξ̇1(t) − ξ̇2(t)| dt

≤ CeR/ε

(
|x10 − x20 | + |u1(0) − u2(0)| +

∫ T

0
|u̇1(t) − u̇2(t)| dt

)
(4.25)

with a constant C > 0 independent of R, which we wanted to prove.

Remark 4.6 The smallness of ∂ξ g in (4.5) is indeed a necessary condition for the
existence of a solution of the implicit problem even in 1D with Z(t) = [−r(t), r(t)],
r(t) = g(ξ(t)). It is easy to see that we have existence and uniqueness if |g′(ξ)| < 1,
and non-existence if g′(ξ) ≤ −1. Furthermore, even in the convex case, the Lipschitz
regularity of ∇g is a necessary condition for uniqueness in the implicit problem. An
example of nonuniqueness is provided in [5, Section 8] when the C1,1-condition for
g is violated.

Remark 4.7 Similar result to Theorem 4.4 is obtained if (4.1) is replaced with

w(t) = g(t, u(t), Vξ (t)), Vξ (t) =
∫ t

0
|ξ̇ (τ ) dτ. (4.26)

In application to elastoplasticity, Vξ (t) corresponds to dissipated energy during the
time interval [0, t], which can be considered as a measure of accumulated cyclic
fatigue. For example, in [11], the Gurson model for fatigue is based on the assumption
that set Z(t) of admissible stresses shrinks as Vξ (t) increases.
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17. Krejčí, P., Vladimirov, A.: Lipschitz continuity of polyhedral Skorokhod maps. J. Anal. Appl. 20,

817–844 (2001)
18. Kunze, M., Marques, M.D.P.Monteiro: Existence of solutions for degenerate sweeping processes. J.

Convex Anal. 4, 165–176 (1997)
19. Kunze,M.,Marques,M .D .P.Monteiro:Onparabolic quasi-variational inequalities and state-dependent

sweeping processes. Topol. Methods Nonlinear Anal. 12, 179–191 (1998)
20. Kurzweil, J.: Generalized ordinary differential equations and continuous dependence on a parameter.

Czechoslovak Math. J. 7, 418–449 (1957)
21. Migórski, S., Sofonea, M., Zeng, S.: Well-posedness of history-dependent sweeping processes. SIAM

J. Math. Anal. 51(2), 1082–1107 (2019)
22. Marques, M. D. P. Monteiro: Differential Inclusions in Nonsmooth Mechanical Problems - Shocks and

Dry Friction. Birkhäuser Verlag, Basel, (1993)
23. Moreau, J.-J.: Rafle par un convexe variable I. Sém. d’Anal. Convexe, Montpellier 1 (1971), Exposé

No. 15
24. Moreau, J.-J.: Evolution problem associated with a moving convex set in a Hilbert space. J. Differ.

Equ. 26, 347–374 (1977)
25. Poliquin, R.A., Rockafellar, R.T., Thibault, L.: Local differentiability of distance functions. Trans. Am.

Math. Soc. 352, 5231–5249 (2000)
26. Thibault, L.: Sweeping process with regular and nonregular sets. J. Differ. Equ. 193, 1–26 (2003)
27. Thibault, L.: Moreau sweeping process with bounded truncated retraction. J. Convex Anal. 23, 1051–

1098 (2016)
28. Vial, J.-P.: Strong and weak convexity of sets and functions. Math. Oper. Res. 8, 231–259 (1983)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Explicit and Implicit Non-convex Sweeping Processes in the Space of Absolutely Continuous Functions
	Abstract
	Introduction
	1 Prox-Regular Sets of Class C1
	2 Absolutely Continuous Inputs
	3 Local Lipschitz Continuity
	4 Implicit Sweeping Processes
	Acknowledgements
	References




