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Motzkin spin chains are frustration-free models whose ground state is a combination of Motzkin paths. The
weight of such path contributions can be controlled by a deformation parameter t . As a function of the latter,
these models, besides the formation of domain wall structures, exhibit gapped Haldane topological orders with a
constant decay of string order parameters for t < 1. A behavior compatible with a Berezinskii-Kosterlitz-Thouless
phase transition at t = 1 is also presented. By means of numerical calculations we show that the topological
properties of the Haldane phases depend on the spin value. This allows one to classify different kinds of
hidden antiferromagnetic Haldane gapped regimes associated with nontrivial features such as symmetry-protected
topological order. On one hand, our results allow one to clarify the physical properties of Motzkin frustration-free
chains, and on the other hand, suggest them as an interesting and paradigmatic class of local spin Hamiltonians.
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Spin chains play a crucial role in many fundamental
physical phenomena such as magnetism [1], quantum phase
transitions [2], topological orders [3], and quantum compu-
tation [4]. A fundamental contribution to the understanding
of spin chains is provided by the seminal papers of Haldane
[5], where a new topological phase, the Haldane phase (HP),
uniquely detectable via a nonlocal string order parameter
(SOP) [6], was discovered for spin-1 XXZ Heisenberg chains.
This has driven significant efforts to look for new kinds of
models whose topological order can be described in terms
of a SOP [7], motivating the discovery of the celebrated
Affleck-Kennedy-Lieb-Tasaki (AKLT) model [8]. Although
the argument of Haldane is given for integer spin chains,
only integer spin XXZ-like and AKLT-like chains have a
topological HP, and it is therefore nontrivial to find and study
new classes of Hamiltonians where the HP emerges. Owing to
the strongest quantum “resource,” namely, the entanglement,
spin models also play a fundamental role in the simulation
of quantum logical gates for quantum computation [4]. For
this reason, finding and studying Hamiltonians with highly
entangled spins is currently one of the most challenging and
intriguing fields in quantum physics.

In this direction, local integer frustration-free spin Hamil-
tonians whose ground state can be expressed as a combination
of Motzkin paths [9] have been recently introduced [10,11].
Among other interesting aspects, their importance is shown by
the fact that they possess a level of entanglement entropy which
strongly exceeds the one exhibited by other previously known
local models. Relevantly, also for half-integer spins, a similar
class of Hamiltonians, the Fredkin spin chains, exhibiting
the same features [12,13], has been introduced. In addition
to their entanglement properties, Motzkin chains also have
very peculiar properties. Indeed, even if they are purely local
models, for high spin values s (i.e., s � 2) they behave as
de facto long-range Hamiltonians as they are able to violate
cluster decomposition properties (CDPs) and the area law (AL)
scaling of entanglement entropy [12]. Very recently, deformed
versions of Motzkin [14] and of Fredkin [15] chains have been

introduced, and their gaps studied [16], with the contribution
of Motzkin or Fredkin paths to the ground state being weighted
through the introduction of a parameter t .

Due to the aforementioned arguments it appears clear that
these new models are both very interesting by themselves, and
they could open the path towards fundamental applications.
This motivates us to investigate a Motzkin chain for different
spin values and in the presence of path deformations. Here,
after an introduction of the model in terms of deformed
Motzkin paths, we present density matrix renormalization
group (DMRG) [17] calculations which allow one to reveal
the appearance of different phases as a function of the
deformation parameter t . In particular, we show that local
magnetization is able to capture the t > 1 regime where a
clear domain wall structure takes place independently by the
spin value s. On one hand, once t < 1, the system undergoes a
Berezinskii-Kosterlitz-Thouless (BKT) type phase transition
[18] as signaled by an exponential opening of the gap.
Moreover, our numerical calculations confirm that for this kind
of deformation the entanglement entropy is bounded and size
independent [14]. Crucially, we find that this gapped regime
can be described solely by a nonvanishing value of SOP, thus
showing the topological nature of the t < 1 deformed Motzkin
chains. For s = 1 only one SOP is finite, similarly to what
happens in the SU(2)-Haldane phase for XXZ or AKLT spin-1
models, thus revealing the presence of a symmetry-protected
topological (SPT) order. On the other hand, for s = 2, different
kinds of Haldane phases have been obtained [19,20]. In
particular, for the spin-2 Motzkin chain, we show that two
SOPs display a constant decay exhibiting a phase similar to
the SO(5)-topological Haldane order occurring in the s = 2
AKLT model [21]. Interestingly, unlike the undeformed case
t = 1, for t < 1, the CDP [22] is valid.

Model. The spin model we consider has the peculiarity
of having a ground state which can be expressed in terms
of Motzkin paths describing all the possible 2n moves
that one can make go from a point of height h = 0 to
another point of the same h without crossing the zero line

2469-9950/2017/96(18)/180404(5) 180404-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.96.180404


RAPID COMMUNICATIONS

BARBIERO, DELL’ANNA, TROMBETTONI, AND KOREPIN PHYSICAL REVIEW B 96, 180404(R) (2017)

FIG. 1. Upper panels: Cartoons of a possible Motzkin path and its
representation in terms of spins for the two cases: (a) uncolored s = 1
and (b) colored s = 2. Central panels: DMRG local magnetization
for a system of length 2n = 60 at different t deformation values 〈Sz

i 〉
for (c) s = 1 and (d) s = 2. Lower panels: Thermodynamic limit of
the gap � = E1 − E0 as a function of t for (e) s = 1 (red circles)
and (f) s = 2 (blue squares). The continuous lines are fitted with the
form ∼ exp(−b/

√
tc − t), with tc = 1 and b is a fitting parameter.

The thermodynamic limit is extrapolated by using chains of lengths
up to 2n = 60. All DMRG simulations are performed by keeping at
most 1024 DMRG states and five finite size sweeps with an error
energy <10−9 (10−7) for s = 1 (s = 2).

[10,11]. As shown in Figs. 1(a) and 1(b), spins can be seen
as moves by imposing that up/zero/down spin corresponds
to increasing/conserving/decreasing the height of the path.
Of course, for spin s = 1 only uncolored steps (uncolored
Motzkin chain) are allowed, while larger values of s can be
achieved when colored steps are possible (colored Motzkin
chain). The Hamiltonian reads

H =
2n−1∑

j=1

�j,j+1(s,t) + �∂ (s) +
2n−1∑

j=1

�cross
j,j+1(s), (1)

where �j,j+1(s,t) = ∑s
k=1(|φ(t)k〉〈φ(t)k|j,j+1 +

|ψ(t)k〉〈ψ(t)k|j,j+1| + |�(t)k〉〈�(t)k|j,j+1) is the bulk term,
and �∂ (s) = ∑s

k=1 |−k〉〈−k|1 + |k〉〈k|2n is the boundary
term which makes it more favorable for the first spin to
point upward, |k〉, and the last downward, |−k〉. The latter
term in Eq. (1), �cross

j,j+1(s) = ∑
k �=k′ = |k,−k′〉〈k,−k′|,

present only for s > 1, ensures the color matching
of up and down spins with the same h. The
parameter t appearing in �j,j+1(s,t) describes path
deformations and |φ(t)k〉 = (1 + t2)−1/2(|k,0〉 − t |0,k〉),
|ψ(t)k〉 = (1 + t2)−1/2(|0,−k〉 − t |−k,0〉), and |�(t)k〉 =
(1 + t2)−1/2(|k,−k〉 − t |0,0〉). The deformation induced by
t �= 1 keeps the model frustration free [14], and, while for
t = 1 we recover the undeformed model [10–12], for t > 1
(t < 1) the paths having larger (smaller) h are favored in the
ground state. Notice that, for t = 1, one can have analytical
expressions for the magnetization and the z-z correlation
functions, which were tested against DMRG results in
Ref. [12]. However, for t �= 1, the corresponding results are

not available and therefore we will rely on DMRG results to
have a physical description of the properties of the model.

t � 1 regime. This latter point explains the t > 1 behavior
of the local magnetization 〈Sz

j 〉 observed in Figs. 1(c) and
1(d) for s = 1 and s = 2, respectively. Indeed, since t > 1
makes higher paths more probable, in terms of spins this
corresponds to a domain wall (DW) structure where the up
and down spins are separated in two different regions of
equal length n [23] and the zero spins are basically absent.
Relevantly, as shown in Figs. 1(e) and 1(f), this latter regime
is gapless (� = 0), meaning that the difference between the
ground state E0 and the first excited state E1 energy goes to
zero in the thermodynamic limit (TDL). The aforementioned
features allow one to find the analogy between Eq. (1) and the
XXZ chains for both spin 1 and 2 [24] for strong negative
z anisotropies. Further similarities can be also noticed for
the t = 1 case where a gapless regime is associated with
a power-law decay of the correlation function 〈S+

i S−
j 〉 and,

as exactly shown in Ref. [12], an exponential decay of
〈Sz

i S
z
j 〉 − 〈Sz

i 〉〈Sz
j 〉 [25], thus resembling the XY phase of XXZ

models, but with the key feature that both AL decay and CDP
are violated for s = 2.

t < 1 regime. On one hand, as already mentioned, a t < 1
deformation minimizes the height of the possible paths. This is
clearly visible in the 〈Sz

j 〉 behavior shown in Figs. 1(c) and 1(d)
where an almost totally flat local magnetization with h = 0 is
observed. Crucially, 〈Sz

j 〉 shows also antiparallel peaks at the
edges of the chain, thus supporting the possible presence of
edge states. This effect, as explained before, is produced by the
�∂ (s) term in Eq. (1), which also plays the role of breaking the
ground-state degeneracy. The almost flat magnetization can
also explain the fact that the entanglement entropy, S(A) =
−Tr ρA log2 ρA of a subsystem A, is bounded and does not
depend on either the chain or on the partition length [14],
meaning that the AL scaling is fulfilled. Indeed, as it is possible
to see in Fig. 2(a), we find that S(A) is constant at fixed t for
any 2n while it grows almost linearly with the deformation
strength. The latter is easily explained by the fact that, for
t < 1, the strength of t actually affects mainly the first and the
last move with flat 〈Sz

j 〉 = 0 in the bulk. Consequently, a larger
(smaller) t will produce a higher (lower) value of |〈Sz

i 〉| in the
first and last site, as shown in Fig. 1, thus generating more (less)
entropy, which is, however, size independent (see the inset in
the top panel of Fig. 2) because of the flatness of the paths that
mainly contribute to the ground state. Notice that, as shown in
Fig. 2(a), this behavior holds for any s value considered. A less
trivial aspect, conjectured in Ref. [14], emerges by looking at
Figs. 1(e) and 1(f), namely, t < 1 deformations support the
presence of a finite gap in the TDL. As is visible in the same
figures, for both s = 1 and s = 2, the gap opens compatibly
with an exponential decay � ∼ exp (−b/

√
tc − t), where tc =

1 and b is a fitting parameter, thus signaling a BKT-like phase
transition. In integer spin chains, the gapped regime can be
usually associated with either an antiferromagnetic (AF) order
described by the two-point correlation functions

C(|i − j |) = 〈
Sz

i S
z
j

〉 − 〈
Sz

i

〉〈
Sz

j

〉
, (2)

or with Haldane orders described by a SOP,

Ok,k̄(|i − j |) = 〈
L

k,k̄
i eıπ

∑
i�
<j L

k,k̄

 L

k,k̄
j

〉
, (3)
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FIG. 2. (a) Entanglement entropy S(A) for a subsystem having
length n with 1 � i � n for s = 1 (red symbols) and s = 2 (blue
symbols). The inset shows the constant behavior of S(A) as a function
of size 2n. (b) C(|i − j |) for different t < 1 values. (c) O1,−1(|i − j |)
for different t < 1 values. The correlations in (b) and (c) are evaluated
in a system of size 2n = 60 with i pinned in the first chain site. We
checked that different i values do not alter the physical behavior of
the correlations.

where Lk,k̄ = |k〉〈k| − |−k〉〈−k|. Notice that, for s = 1, k(k̄)
can be solely equal to 1(−1), thus L

1,−1
i = Sz

i , while for
s = 2, k(k̄) can take the values 1(−1) and 2(−2) and Sz

i =
2 L

2,−2
i + L

1,−1
i . The important information encoded in such

nonlocal order parameters is that, once it is finite, Eq. (3)
describes a topological phase, usually called HP, with a hidden
antiferromagnetism (HAF). The HAF order is given by the fact
that it cannot be described by the usual two-point correlation
functions Eq. (2) thus describing a phase where spins up and
down are rigorously alternated and separated by a random
number of zero spins. Of course, while for s = 1 the HP can
be given only by alternating +1 and −1 spins thus signaled
by a finite O1,−1(|i − j |), for s = 2, the hidden order can be
signaled, as it will be clear in the following, by two or even
solely one finite Ok,k̄(|i − j |).

s = 1 case. Here, we start our analysis of the s = 1 case
by evaluating both O1,−1(|i − j |) and C(|i − j |) for different
t < 1 values. Figure 2 clearly shows that while C(|i − j |)

rapidly decays to zero, the SOP remains constant as a function
of distance, thus signaling the presence of a HP. This aspect, in
analogy with XXZ chains, supports our prediction regarding
the BKT nature of the phase transition. We also checked that
the SOPs along transverse directions decay. Furthermore, as
visible in Fig. 2(c), O1,−1(|i − j |) saturates to a constant value
which becomes bigger the larger is t . At first glance this
aspect could seems counterintuitive since one expects that
the larger the gap, the stronger is the SOP. Nevertheless,
an easy interpretation of the O1,−1(|i − j |) behavior as a
function of t comes from the geometrical meaning of the
deformations. Indeed, as explained before, a small t favors
paths with low h. Intuitively, one can argue that the path with
smaller h is the one where the first and last moves correspond
to respectively the rising and the lowering steps with a series
of flat moves in the middle. This means that the number
of +1, −1 spins producing the HAF order is minimized by
reducing t , thus producing a lower saturation value of the SOP.
Nevertheless, we checked that even very small deformations
support the presence of a constant O1,−1(|i − j |), suddenly
disappearing [O1,−1(|i − j |) = 0] for t = 1, thus allowing one
to unambiguously conclude that the uncolored t < 1 Motzkin
chain has a topological order with HAF. This phase is usually
called the SU(2)-Haldane phase and it has been observed in
both spin-1 XXZ [6,26] chains and in the AKLT model [27].
We will keep this nomenclature even if for our model only the
operator

∑
i S

z
i = ∑

i L
1,−1
i commutes with the Hamiltonian.

This is similar to what happens in the spin-1 XXZ model
when a single ion anisotropy term is included, breaking the
SU(2) invariance but preserving the HP. For certain systems
such as the spin-1 XXZ model, the topological order is also
captured by an even degeneracy of the entanglement spectrum
(ES) [28]. On the other hand, in different models, such as,
for instance, the AKLT [29] or exotic bosonic Hamiltonians
[30], the ES does not present an even degeneracy, but the
topological order is assured by the presence of edge modes
and finite SOPs. We checked that this happens also in our
case where the ES of t < 1 deformed Motzkin chains does
not display any degeneracy. Nevertheless, the edge modes,
visible in Figs. 1(c) and 1(d), and the finite SOP in Fig. 2
assure the topological order [31]. The latter has a further
fundamental property due to fact that it appears for an odd
value s of the spin. Indeed, once a HP takes place for odd
spins s, SPT order [7] is generated. This is given by the fact that
the edge modes fractionalize in two half-integer spins which
cannot be removed unless they are in the presence of a phase
transition or an explicit symmetry breaking. This consideration
allows one to conclude that the s = 1 version of Eq. (1) with
t < 1 deformations supports the presence of SPT topological
order with bounded and size-independent entanglement thus
strongly characterizing the Motzkin chains.

s = 2 case. As shown in Refs. [11,12], the s > 1 unde-
formed t = 1 chains have many more intriguing properties
with respect to the lower spin case. These are induced by the
presence of colors which increase the symmetry of the system.
As for the s = 1, s = 2 XXZ Heisenberg and AKLT models
can support the presence of gapped phases for positive z

anisotropies. The gap can again be associated with the AF order
detected by C(|i − j |) or to different kinds of HP (see, for
instance, Refs. [19,32] and references therein). In particular,
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FIG. 3. (a) C(|i − j |) for different t < 1 values. (b) O1,−1(|i −
j |) for different t < 1 values. (c) O2,−2(|i − j |) for different t < 1
values. All the correlations are evaluated in a system of size 2n = 60
with i pinned in the first chain site. We checked that using different
values of i does not alter the physical behavior of the correlations.

in such systems, SPT topological order is signaled by finite
values of both O1,−1(|i − j |) and O2,−2(|i − j |). Moreover,
as conjectured in Ref. [33] and shown in Refs. [32,34],
single ion anisotropy terms can support the formation of a
SPT SU(2)-Haldane order even for s = 2. Our calculations in
Fig. 1(f) show that again the colored Motzkin chain is gapped
for t < 1 and the gap is associated with HAF since C(|i − j |)
has a clear exponential decay rapidly saturating to zero, as
shown in Fig. 3(a). On the other hand, both O1,−1(|i − j |) and
O2,−2(|i − j |) have a constant and basically equal behavior,
thus clarifying that the s = 2 Motzkin chains with t < 1
deformations support the presence of an SO(5)-HP. It is
worth stressing that SO(5) is not the symmetry of our model,
rather U (1) × U (1) × Z2, since only

∑
i L

2,−2
i and

∑
i L

1,−1
i

commute with the Hamiltonian, as in the s = 2 AKLT model
when the term

∑
i(S

z
i )2 is switched on. Also, in that case, the

SO(5)-Haldane phase survives once the symmetry is lowered
from SO(5) to U (1) × U (1) [35]. In our case the symmetry
is supplemented by the invariance under interchanging the
two colors (Z2). This is the reason why O1,−1(|i − j |) and
O2,−2(|i − j |) are the same, as shown in Fig. 3. Moreover,

it is important to notice that, in analogy with the s = 1 case,
the SOPs become stronger with increasing t . Figure 3(b) also
shows more information encoded in the C(|i − j |) behavior.
Indeed, contrary to the t = 1 regime [12], its exponential
decay is associated with a zero edge-to-edge value, thus
holding the CDP. The opening of a gap in a colored Motzkin
chain therefore restores the pure locality of the model in
Eq. (1), in agreement with the general findings for gapped
local Hamiltonians [36].

Conclusions and perspectives. In conclusion, our results
demonstrate the existence of topological Haldane orders in a
different class of spin Hamiltonians. Furthermore, we have
shown the behavior of Motzkin chains as a function of the
deformation strength t . While the undeformed t = 1 case has
XY -like features, for t > 1, the system presents a gapless
domain wall structure. On the other hand, at t = 1, we pre-
sented evidence of a BKT-like phase transition, characterized
by an exponential opening of the gap, occurring for any t < 1
values. The gapped regime is associated with SPT-hidden
Haldane antiferromagnetic orders signaled by finite values of
string nonlocal order parameters. The two possible Haldane
orders have the peculiarity of having an entanglement entropy
independent of both block and chain size. Moreover, our results
suggest that it would be very interesting to have a physical
implementation of the Motzkin spin chains. In this respect,
cold atomic systems, which have been already proposed to
simulate several kinds of spin Hamiltonians with topological
orders [37], could provide a possible physical platform to
implement Motzkin chains. Their experimental realization
could be relevant for technological achievements since, on
one hand, symmetry-protected topological orders have been
proposed as ideal candidates towards the realization quantum
devices such as quantum repeaters [38] and substrates for
measurement-based quantum computation [39], while, on the
other hand, Motzkin paths may have applications in the field
of polymer absorption [40]. Finally, we underscore that, in
future works, it would be very interesting to study the gapped
regimes in the fermionic version of the s = 3/2 Fredkin model
where exotic Haldane regimes can take place [41].

Note added. Recently, we became aware of work where a
Motzkin spin chain is considered by introducing a field theory
approach to study certain observables and entanglement mea-
sures [42]. We think that addressing the properties discussed in
the present Rapid Communication by such an approach would
be very interesting, in particular, the discussion on the BKT
nature of the transition at t = 1.
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