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The differing ability of polypeptide conformations to act as the native state of proteins has long been
rationalized in terms of differing kinetic accessibility or thermodynamic stability. Building on the successful
applications of physical concepts and sampling algorithms recently introduced in the study of disordered
systems, in particular artificial neural networks, we quantitatively explore how well a quantity known as the local
entropy describes the native state of model proteins. In lattice models and all-atom representations of proteins,
we are able to efficiently sample high local entropy states and to provide a proof of concept of enhanced stability
and folding rate. Our methods are based on simple and general statistical-mechanics arguments, and thus we
expect that they are of very general use.

DOI: 10.1103/PhysRevE.104.064117

I. INTRODUCTION

Proteins are the machinery of life. In order to perform
their functions, the majority of proteins fold into a compact
native state that is intimately linked with their polypeptide
conformation, as has been known for 30 years [1]. The goal of
this study was to rationalize the observation that the number of
protein sequences is largely more abundant than the number
of protein conformations, causing substantial degeneracy in
the map between sequence and structure. The problem has
regained importance in recent years, when it has become
feasible to design proteins de novo with custom functions, and
thus it has become critical to understand which conformations
can be best designed [2].

Most theoretical results point to the conclusion that we
can observe a small subset of all possible protein confor-
mations because they exhibit physical properties that make
them biologically more fit rather than just because they are
poorly sampled by evolution. Some conformations therefore
appear to be more “designable” than others [3]. Some works
justify the better designability of existing conformations by
their greater kinetic accessibility during the folding process,
often associated with conformational symmetries such as sec-
ondary structures [4–6]. An optimal balance between local
and nonlocal contacts would make the folding rate of some
native conformations particularly fast. This hypothesis is sup-
ported by the correlation observed in proteins between the
average linear separation between residues in contact in the
native state and the rate of folding [7]. Other works relate
the design of a native conformation to its thermodynamic
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stability, thus focusing on its equilibrium rather than kinetic
characteristics. The basic idea is that stable proteins exhibit a
large gap between the energy of the native state and those of
competing conformations [8], and this gap can accommodate
a large number of sequences that fold to the same native state
[9,10]. Different conformational properties may contribute to
this enhanced thermodynamic stability. More compact con-
formations are more stable because they can exhibit more
attractive interactions and because they protect more effi-
ciently hydrophobic residues from the solvent. Daisy-like
conformations that maximize the trace of the eighth power
of the contact matrix have also been shown to be particularly
stable [11]; in fact, this quantity has been shown to correlate
with the evolutionary age of the proteins [12]. Similarly, the
presence of loops of specific sizes has been found to improve
thermodynamic stability and justified by [13] energy argu-
ments.

Still, the fact that specific protein conformations can be
particularly stable at equilibrium is usually associated with
the property of amino acid sequences to exhibit markedly
low potential energy in those conformations, thus more ef-
ficiently minimizing system frustration. On the other hand,
although the native state of proteins is usually considered
macroscopically unique, its entropy is not negligible com-
pared to the competing denatured state [14]. This entropy
arises from the constellation of conformations, structurally
similar to the ground state, that lie beyond the transition state.
They certainly include several vibrational states, conforma-
tional substates [15], and perhaps other conformations whose
contribution to the partition function cannot be separated from
that of the ground state.

The hypothesis we wish to further investigate in the present
work is whether the entropy of the native state of natural
proteins, and not just the potential energy, is particularly
optimized compared to that of random conformations. This
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hypothesis was suggested several years ago [16] by a qualita-
tive computational analysis in which some of the most mobile
dihedrals of small proteins were changed and the number of
conformations within 4 Å from native conformations and de-
void of steric clashes was estimated. It was found that natural
proteins exhibit more neighboring conformations than ran-
dom decoys. More recently, a knowledge-based local-entropy
parametrization was used to predict contact changes between
amino acids during protein conformational changes [17].

From a statistical-physics point of view, this quantity is
captured by the so-called local entropy, i.e., the log of the
number of low-energy configurations within a given distance
from a reference configuration (for continuous systems the
definition can be generalized straightforwardly). Recently, it
has been seen that the notion of local entropy plays a central
role in systems that exhibit a potentially very complex energy
landscape and at the same time possess highly accessible
states that correspond to high local entropy minima [18,19].
The latter turn out to be accessible by a multitude of dy-
namical processes which are not designed to have the Gibbs
distribution as a stationary probability measure, due, e.g., to
nonthermal external perturbations. Systems of this type are
nonconvex models of artificial neural networks (including
deep neural networks), in which entropic phenomena play
essential roles [20] for the (unexpected) success of the current
learning processes, largely based on nonequilibrium variants
of gradient descent.

Here we generalize the algorithmic schemes introduced for
sampling high local entropy ground states in neural systems
[21] and apply them to simple models of 3D protein structures.
Considering both lattice model and all-atom representations
of proteins, we show that by sampling native states with
high local entropy (which are in principle rare compared to
states that dominate the Gibbs measure) we find a decrease
in the linear separation between contact residues. In addition,
the “flatness” of the energy profile in the native state can
extend to the transition state, having consequences both on
the thermodynamic stability of the protein, lowering the free
energy of the native state, and on the folding rate, lowering the
free energy of the transition state. The generality of the sam-
pling method would allow it to be used in conjunction with
any structure prediction method, such as AlphaFold [22] and
RoseTTA fold [23], and could aid in the search for sequences
folding onto the most designable structures.

II. LOCAL ENTROPY AND HOW TO CALCULATE IT

To define a probability measure that ignores narrow ground
states and enhances the statistical weight of large dense re-
gions of ground states, we can consider the local free entropy

Sloc(�, γ , β ) = log
∫

d�′ exp [−βU (�′) − γ d (�,�′)],

(1)
where d (�,�′) is any metrics suitable for the model under
consideration and γ is its conjugate Lagrange multiplier. We
describe the explicit choice of d in Sec. III [see Eq. (7)]. Here
and in the following, we shall set Boltzmann’s constant to 1.
In the limit of β → ∞, this expression reduces (up to an
additive constant) to a “local entropy”: it counts the number of

minima �′ of the energy, weighing them (via the parameter γ )
by the distance to a reference configuration �. For continuous
variables, the local entropy becomes the log of a weighted
volume around a reference configuration. We can then define
the probability distribution

P(�; y, γ , β ) = 1

Z (y, γ , β )
eySloc (�,γ ,β ), (2)

where y determines the degree of concentration of the prob-
ability distribution on high local entropy regions. When y is
large, only the configurations � that are surrounded by an
large number of local minima will have non-negligible weight.
By increasing the value of γ , it is possible to focus on tighter
neighborhoods around �, and at large values of γ the target
� will also share with high probability the properties of the
surrounding minima. From an algorithmic perspective we can
use the high local entropy probability distribution as a starting
point for designing a Markov chain, in the same way that
simulated annealing uses the Gibbs measure. One possibility
[19,21] is to observe that if we take y to be a non-negative
integer we can rewrite the partition function as a product of
identical systems connected by a distance constraint

Z (y, γ , β ) =
∫

d�eySloc (�,γ ,β )

=
∫

d�c

y∏
a′=1

d�a′ e−β
∑y

a=1 U (�a )+γ
∑y

a=1 d (�a,�c )−βU (�c ),

(3)

where �c is the “central” reference configuration, and {�a}
are the configurations of the replicated systems. This partition
function describes a system of y + 1 interacting replicas of
the initial system, one of which acts as the reference system,
while the other y systems are subject to a distance constraint
with respect to the reference system. This gives us a very
simple and general scheme to direct algorithms to sample
wide minima of the the energy landscape: replicate the model,
add an interaction term with a reference configuration, and run
the algorithm on the resulting extended system. In practice we
need only to consider the effective system

Ueff(�c, {�a}) =
y∑

a=1

[
U (�a) − γ

β
d (�a, �c)

]
+ U (�c) (4)

and run our preferred Monte Carlo (MC) Markov chain up-
date. Replicas are initialized at random, while the center
configuration is initialized at the average of the replica con-
figurations. It is worth noting that y controls the value of the
local entropy and that relatively small values of y are sufficient
to obtain the results we are interested in. By taking the inverse
temperature of the individual systems β to be large, we focus
the sampling on flat ground states.

III. EFFECTS OF THE LOCAL ENTROPY ON THE
EQUILIBRIUM CONFORMATIONS OF POLYMERS

We first tested the effect of controlling the local entropy
of a polymer on a simple cubic-lattice model, which offers
the advantage of a fast sampling of the conformational space
of the system and of defining unambiguously the zero of the
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(a) (b)

FIG. 1. Local entropy changes the properties of a lattice homopolymer. (a) Radius of gyration as a function of the inverse temperature
for increasing values of γ . Rg is dimensionless, since measure lengths in units of the lattice step which is set to 1. The points represent
thermal averages. y = 3 + 1 replicas were used, the last one being the center. (b) Distribution of the range of contacts |i − j| at β = 100 for
increasing values of γ . Increasing γ suppresses long-range contacts and favors short-range ones. The error bars on the first bin are generated
by bootstrapping.

entropy. We employed a standard model on a cubic lattice [8]
in which the beads, sitting on the vertices of the lattice, cannot
overlap. They interact with a contact potential depending on
the conformation � = {�xi}N

i=1:

U (�) = 1

2

N∑
i j=1

Ji j�i j (�), (5)

where the contact function �i j (�) is 1 if the ith and jth beads
are neighbors in space and |i − j| > 2 and zero otherwise.

The chain is simulated with a standard Monte Carlo al-
gorithm that includes the corner flip, the crankshaft, and
rotations of the ends as elementary moves. At each step, a
monomer is chosen at random for it with flat a priori proba-
bility, and a random move is chosen randomly with uniform

probability among those that are possible, accepting it with
the standard Metropolis probability. The initial conformation
is generated from a random self-avoiding walk in the lattice.
The simulations for computing equilibrium quantities consist
of 107 steps, recording the conformation every 104 steps.
See Fig. S1 in the Supplemental Material [24] for examples
of trajectories that reach equilibrium. Simulations we use to
compute the folding time consist of 106 steps, recording the
conformation every 102 steps.

In order to control the local entropy of the system, we
performed a Monte Carlo simulations of y replicas of the
system starting from independent conformations and inter-
acting with the potential defined in Eq. (4). The Metropolis
acceptance rate now reads paccept = min(1, e−�), where � =
β�E + γ�d and

�d =
{

d
(
�new

a , �c
) − d

(
�old

a , �c
)
, if we are moving a replica a

1
y

∑
y

[
d
(
�a, �

new
c

) − d
(
�a, �

old
c

)]
, if we are moving the center c.

(6)

A. Increased local entropy depletes long-range contacts
in homopolymers

The simplest polymer model that can be studied is the
lattice homopolymer, obtained setting Ji j = −1 in Eq. (5) for
each pair i, j. We compared the results of a standard Monte
Carlo sampling of the Boltzmann distribution with a repli-
cated Monte Carlo, which controls the local entropy through
the parameter γ , as described in Sec. II. To define the local
free entropy we adopt for this system a distance function
defined by

d (�1, �2) = 1 − 1

Nc

N∑
i< j

�i j (�1)�i j (�2), (7)

which is the fraction of different contacts between the two
conformations �1 and �2; here Nc is the maximum number of

contacts that the chain can build. As displayed in Fig. S2 in
[24], we have checked that the results are robust with respect
to the distance function (e.g., by comparison with root-mean-
square distance) and to a different coupling scheme of the
replicas. What might be an optimal definition of distance is an
interesting problem that goes beyond the scope of our study
and that might deserve further study.

In a homopolymer the only relevant equilibrium effect
is the coil-globule transition. A comparison between the
transition described by a Boltzmann sampling and that ob-
tained controlling the local entropy (cf. Sec. II) is shown
in Fig. 1(a) for a polymer with N = 70 (see Fig. S3 in
[24] for two examples of configurations). In the case of
Boltzmann sampling (γ = 0) the coil-globule transition is
marked by a jump of the radius of gyration (Rg) at an inverse
temperature β ≈ 30. In the lattice model we measure lengths

064117-3



M. NEGRI, G. TIANA, AND R. ZECCHINA PHYSICAL REVIEW E 104, 064117 (2021)

in units of the lattice step, which is set to 1 so that Rg is dimen-
sionless. Increasing the bias associated with the local entropy
(i.e., by increasing γ ) leads to a stabilization of the globule,
the transition temperature increasing with γ . At the same time,
we observe a compaction of the coil state, associated with the
fact that at short distances more compact conformations have
certainly a larger number of neighboring other conformations
[cf. Eq. (7)] and thus a larger local entropy. The globular
phase, in which the polymer is maximally compact, is weakly
affected.

In Fig. 1(b) we compared the distributions of contact range
(i.e., of the values of |i − j| when i and j are in contact)
for fixed inverse temperature β = 100, at which the system
is in the globule phase at all values of γ we simulated. A ho-
mopolymeric globule is expected to display an initial decrease
of the contact probability up to the distance corresponding
to the diameter of the globule, followed by a flat distribution
[25]. At γ = 0 the distribution displays overall the expected
character but is quite irregular because of the constraints
imposed by the cubic lattice on the Rg of highly compact
conformations (i.e., there is a nonmonotonic relation between
Rg and energy). Increasing γ , we observed a regular increase
of short-range contacts at the expense of long-range contacts.

B. Increased local entropy simultaneously stabilizes
and decreases folding time of model proteins

To obtain a clear picture of the effects of the local entropy
on the folding properties of model proteins, we calculated the
equilibrium stability and the folding rate of a Go model [26]
on a lattice. This is defined choosing a target conformation �0

and setting

Ji j = −J�i j (�0) (8)

in Eq. (5), where J defines the energy scale and was set to 1.
With this choice of Ji j , the target conformation is by definition
the ground state of the system, and thus the equilibrium state
at low temperature. The reason for using a Go model is to
decouple the effect of protein sequence from that of protein
structure, focusing our attention only on the latter. Here the
protein sequence is described effectively, assuming that evo-
lution has minimized energetic frustration to the maximum
degree [27].

We chose as target conformation �0 either conformation
sampled by the homopolymeric model according to Boltz-
mann distribution (β = 100 and γ = 0) or biasing their local
entropy (β = 100 and γ > 0), in all cases taking care to
select only globular conformations (our choice for the cutoff
is Rg < 2.5). We thus obtained different potentials that depend
on γ through the choice of �0.

We then simulated at low temperature (β = 120) the
dynamics of the system starting from a random, high-
temperature, coil state with the standard Metropolis scheme,
that at fixed temperature approximates the Smoluchowski
equation and thus reports realistic trajectories of the system
[28]. From each trajectory we obtained the fraction of native
contacts fN (t ) (that for the Go model is = U [�(t )]/U (�0),
where �(t ) is the conformation of the chain at time t), we
calculated the average fN (t ) over 40 simulations and fitted

them by a two-state kinetics

fN (t ) = feq(1 − e−t/τ ) + f0, (9)

where τ is the mean folding time, f0 is the residual fraction
of native contacts in the initial conformation, and feq is the
equilibrium similarity to the target conformation, that in the
two-state approximation is equal to the equilibrium probabil-
ity of the native state (cf. Fig. S4 in [24]). We show in Table S1
in [24] the average and standard deviation of the mean square
error for each fitted curve.

In Fig. 2(a) we plot the values of τ (in MC steps) and feq as
a function of the parameter γ that controls the local entropy
of the target conformation �0. The values are medians over 60
realizations of �0. The corresponding standard deviations are
shown in Table S1 in [24]. It is shown that the stability of the
native state increases with γ , while the folding time displays
a nonmonotonic behavior with a minimum at γ ≈ 1.2 × 104.

To rationalize these results, we estimated what is the radius
of the neighborhood of the target conformation that is affected
by the increase in local entropy at varying γ . In Fig. 2(b) we
plot the average interconformation distance obtained from the
replica simulation from which we obtained the conformations
�0 [cf. Eq. (4)] as a function of γ . For large γ (>1.5 × 104)
the average distance displays a plateau at d ≈ 0.6; decreasing
γ the average distance increases, overcoming 0.9 for plain
Monte Carlo simulations. In the plot is also marked the transi-
tion state at d = 0.7, which separates the denatured state from
the native basin.

Both the stabilization and the kinetic effects of the local
entropy can be clarified noting what part of the free-energy
profile F (d ) = E (d ) − T S(d ) is affected by the local entropy.
At large γ the local entropy affects only the close neigh-
borhood of the �0 (d � 0.4), decreasing its free energy and
thus stabilizing it with respect to the denatured state, which is
unaffected. The transition state is not affected as well, so the
folding rate, which according to Kramers’ theory depends on
the free energy of the transition state calculated with respect
to the denatured state, is similar to that at γ = 0. When γ is
decreased, the neighborhood of �0 affected by the increase in
local entropy reaches the transition state (d � 0.7) and lowers
it, decreasing the folding time. The nonmonotonicity of the
folding time arises from the fact that making γ even smaller,
the denatured state also is affected and then the folding barrier
grows again.

The degree of cooperativity of the folding transition de-
creases slightly with γ (see Table S2 in [24]). This is not
unexpected because γ > 0 leads to the stabilization of con-
formations with varying distance from the native one, thus
decreasing the two-state character of the folding transition.

IV. THE LOCAL ENTROPY OF NATURAL PROTEINS
IS LARGER THAN THAT OF RANDOM DECOYS

We then tested the hypothesis that the native state of natural
proteins displays a larger local entropy than random polypep-
tidic conformations with the same density. We studied seven
natural proteins and a stable protein designed de novo (HHH)
[2].

To estimate the local entropy associated with the native
state we need to describe the energy of the protein in the
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(a) (b)

FIG. 2. Structures with high local entropy are more stable and fold faster. (a) The average folding time (in MC steps, orange triangles,
left y-axis) for target conformations �0 obtained at different values of γ and the average stability of the structure (blue circles, right y-axis).
The orange bar indicates the transition state ‡ calculated in the right panel. (b) The average distance between the central conformation and the
replicas at different values of γ obtained from the simulation used to generate the �0. Aligned with the right axis we show the free energy
of a Go model as function of the distance from the native state for various structures at low γ . Both the distance and the free energy are
dimensionless given the definition of the model. We can see that the region around γ = 1 × 104, marked with an orange bar, corresponds to
the typical distance between native and transition states.

neighborhood of the crystallographic structure. For this pur-
pose we made use of an all-atom Go model [26], which is
expected to be particularly realistic in the native basin. At the
same time, it allows one to decouple the effect of the sequence
from that of the native conformation in the calculation of the
local entropy.

In order to evaluate the local entropy, we performed molec-
ular dynamics (MD) simulations with Gromacs 2020.4 [29]
using the all-atom Go model obtained by Smog2 [30]. The
native conformations of the proteins were the following: pro-
tein G (pdb code 1pgb, 56 residues), ACBP (pdb code 2abd,
87 residues), CI2 (pdb code 2ci2, 83 residues), src-SH3 (pdb
code 1srl, 64 residues), villin headpiece (pdb code 5vnt, 63
residues), barnase (pdb code 1bnr, 110 residues), and HHH
(artificial protein, pdb code 5uoi, 43 residues). MD simula-
tions were performed in the range of temperature from 1 to
200 (in energy units) for 2 × 105 steps of time step 5 × 10−4

ps with stochastic dynamics [29]. The Go potential of each
decoy, whose parameters in Smog2 depend on the number
of residues and of native contacts in the native conforma-
tion, is rescaled to that of the corresponding native protein
in order to facilitate the comparison among them. The mi-
crocanonic entropy S(E ) is extracted from all simulations
performed at different temperatures for the same protein with
the maximum-likelihood code developed in Ref. [31].

As a control model we generated putative native conforma-
tions from a homopolymeric model, derived from the original
models as follows. Starting from the crystallographic structure
of each protein, we generated an all-atom model similar to
that described above (i.e., with the same atomic structure), but
where each pair of atoms interacts instead in the same way
with the Lennard-Jones potential

VLJ(ri j ) = C(12)
i j /r12

i j − C(6)
i j /r6

i j, (10)

where for all i, j we set C(6)
i j = 1.4 × 10−2 kJ mol−1 nm6 and

C(12)
i j = 1.0 × 10−4 kJ mol−1 nm6. No potential is applied to

the dihedrals at this stage. The parameters C(6) and C(12) are
chosen with a grid search so that, after an annealing MD of the
chain, the number of contacts in the putative conformations is
not smaller than in the original model (see Fig. S5 in [24]) to
rule out trivial effects in the calculation of the local entropy.
The resulting conformation is used as putative �0 (examples
of these configurations can be found in Fig. S6 in [24]).

The entropy S(E ) for four proteins is displayed in
Figs. 3(c)–(f) (see also Fig. S7 in [24]) and compared with the
random decoys of each of them, matching the different curves
at infinite temperature (cf. the insets). In most cases, proteins
display in the native energy region (below the transition state)
an entropy that is larger than that of the random decoys. This
effect is summarized in Fig. 3(a), which displays the density
of local entropy

sloc = 1

N
log

E‡∑
E=EN

e−βE+S(E ), (11)

where EN is the minimum energy of the system and E‡ is
the energy of the transition state, approximated as the average
energy at the transition temperature (cf. the caption of Table
S3 in [24]). The local entropy is calculated at low temperature
(β = 10−1) at which all proteins and decoys are stable (cf. Fig.
S8 in [24]). Equation (11) is the microcanonical counterpart
of Eq. (1). The density of local entropy of native proteins is
always larger than the average s of the decoys, in five cases out
of eight for more than one standard deviation σs. From s and σs

we estimated the P values associated with the null hypothesis
that the entropy density of the native protein is smaller than
that of the decoys within a Gaussian approximation, that, is
p = {1 − erf([s − s)/

√
2σs]}/2, where erf is the error func-
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(a) (b)

(c) (d)

(e) (f)

FIG. 3. Natural structures have higher local entropy than random ones at low energy. (a) The density of local entropy of the native state
(orange crosses), the average density of local entropies of the decoys (blue circles) and the associated standard deviation (blue bars) for each
protein. On the right axis are shown the associated P values. (b) The native conformation of CI2 (2ci2) and an example of decoy. (c–e) The
entropy density calculated as a function of energy for four proteins (solid orange curves) and for the associated decoys (dashed blue curves).
The gray vertical bars indicate the region where the transition states are (the band is centered on the average over the protein and the decoys,
its width is twice a standard deviation). In the inset is displayed the whole entropy density, whereas in the main figures only the region of the
native state. Note the energy density has been rescaled for each structure as described in Sec. IV, so the energy units are arbitrary.

tion. The P values are rather low, except for CI2 (2ci2) and
for the CHE-Y (1cye).

The protein HHH, designed de novo and not shaped by nat-
ural evolution, seems to display the same features of natural
proteins. However, one has to consider that the scaffold they
used for the design is a helix bundle typical of natural proteins.

Finally (cf. Fig. S8 in [24]), we observed that the peaks in
the specific heat of the four proteins tend to be wider and less
pronounced, in agreement with what we found in Sec. III B:
the wider the specific heat, the less cooperative the transition
[32] (a measure of cooperativity of the transition can be found

in Table S2 in [24]). At the same time, the majority of native
proteins display a larger folding temperature (cf. the main
peak in the specific heat in Fig. S8 in [24]), in agreement with
the fact that a larger local entropy stabilizes the native state.

V. THE LOCAL ENTROPY DEPENDS ON THE TOPOLOGY
OF CONTACTS

Finally, one can investigate whether there is an elementary
way to reinterpret why natural proteins display a larger local
entropy than random conformations. This aspect can be stud-

064117-6



NATIVE STATE OF NATURAL PROTEINS OPTIMIZES … PHYSICAL REVIEW E 104, 064117 (2021)

ied easily in the context of a Go model in which the frustration
associated with the sequence is minimized [27].

In fact, in this case one can insert in the definition of local
entropy of Eq. (1) the expressions of Eqs. (5), (7), and (8),
obtaining

Sloc(�0) = log
∫

d� exp

[(
βJ+ γ

Nc

) N∑
i< j

�i j (�0)�i j (�)

]
,

(12)

where d� ≡ dx1dx2 · · · and an immaterial constant has been
disregarded. This is essentially the free energy of the Go
model at a rescaled temperature. The exponential in the in-
tegrand can be expanded in series:

e... = 1 +
(
βJ + γ

Nc

) N∑
i< j

�i j (�0)�i j (�)

+ 1

2

(
βJ + γ

Nc

)2 N∑
i< j
k<l

�i j (�0)�kl (�0)�i j (�)�kl (�)

+ · · · . (13)

Moving the �i j (�0) out of the integral and defining the in-
teraction volume as v ≡ ∫

d��i j (�) and the total volume
available to each degree of freedom as V , one obtains

(14)

where the graphs indicate the terms of the expansions. For
example,

(15)

is the contribution of a single contact, that depends on the
number

∑
�i j (�0) of contacts of the native conformation.

Thus, the larger is the number of contacts on the native con-
formation, the larger is the local entropy. Similarly,

(16)

where
∑

�i j (�0)� jk (�0) is the number of triples of nodes
(e.g., amino acids) interacting pairwise. For a graph with
loops, for example,

(17)

where A� = 3/4 is a parameter that arise in the integration of
the contact functions � from the constraints given by looped
graphs. In fact,∫

dxi dx j dxk�(|xi − x j |)�(|x j − xk|)�(|xk − xi|) = V
3

4
v2.

(18)

For a generic graph, A � 1 and is equal to the unity if the
graph does not contain loops because the variables can be in-
tegrated sequentially. For a fully connected graph of n nodes,
that in the language of network theory is called a clique,
A = n/2n−1.

By the linked cluster theorem, the sum of graphs in Eq. (13)
is the exponential of the sum of connected graphs, so the local
entropy results simply the sum of connected graphs. Note
that the connected graphs are different from zero only if the
associated

∑
�i j (�0)� jk (�0) · · · is different from zero, that

is, the corresponding structure is in the native protein. The
goal is to spot the most important graphs. The general form of
a graph is

A

l!

(
βJ + γ

Nc

)l
V N−n+1vn−1 × (no. of instances in �0), (19)

where n is the number of interacting nodes, l is the number
of links (i.e., interactions between nodes), and A depends on
how links loop together. Each term is also proportional to
the number of instances that the specific graph appears in the
native conformation of the protein.

Proteins will display a large local entropy if they are rich
with graphs with large values of

w ≡ A

l!
BlV N−n+1vn−1, (20)

where we defined B ≡ βJ + γ /Nc. Thus, local entropy de-
pends on the topology of native contacts. For unlooped graphs
(A = 1), for fixed n, w has a maximum at l∗ = B. Typically,
for proteins βJ is of the order of 1; γ /Nc for the model of
Fig. 2(b) is of the order of 104/102 = 102, and consequently
l∗ ∼ 102.

However, for graphs composed of l∗ links, fully connected
graphs display a larger weight w. In fact, if we compare the
value of wclique for a fully connected graph (l ∼ n2) with that
wunloop of an unlooped graph (l ∼ n) at l = B, one obtains
wclique/wunloop = (V N/v)B/2B−1/2, which is large for B  1.

It was shown [11] that Tr [�i j (�0)]n for n  1 is a
good determinant of protein designability. Since this quantity
counts the number of closed paths of length n in the inter-
action network of the protein, it will be correlated with the
number of clusters with large w; consequently, the tendency
of evolution to maximize Tr [�i j (�0)]8 [12] is tantamount
to the optimization of the local entropy. Notice that for the
lattice-model proteins discussed above, the average values of
Tr [�i j (�0)]n with n = 4, 8 are increasing with γ , that is with
the bias towards having high entropy at short distances (cf.
Table S4 in [24]).

VI. DISCUSSION AND CONCLUSIONS

The concept of local entropy was used to explain the
properties of complex systems like artificial neural networks
[18,19], in which the “energy” landscape is very rough and
the system learning dynamics leads to atypical configurations
with respect to the Gibbs measure. In particular, states charac-
terized by a large local entropy can be easily accessed in spite
of the abundance of competing states that tend to block the
learning procedure.
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In the present work we claimed that the concept of lo-
cal entropy plays an important role also in systems that can
move in a smoother energy landscape and thus are not in a
glassy regime. In particular, we focused our attention on the
three-dimensional conformation of proteins, which evolved
along the eons through a complex dynamics described by Dar-
winian evolution. The high diversity of native conformations
of known proteins and their redundancy (i.e., the existence of
analogous proteins) suggests that evolution explored a large
part of conformational space and thus that protein conforma-
tions can be regarded as stationary realizations of the evolutive
dynamics.

In the present work, we made use of a Go model to es-
timate the local entropy of proteins, in order to separate the
evolutionary problem of sequence design from that of confor-
mational selection, removing in this way frustration from the
system [33]. Although it is known [34] that frustration plays
an important role in determining the features of the denatured
state up to the formation of the transition state, one expects
it to be less relevant to determine the local properties of the
native state and thus the estimation of its local entropy, in
agreement with the principle of minimal frustration of the
native state [27]. The Go model is thus particularly suitable
for the specific problem we face.

A relevant question is then whether the ensemble of native
conformations can be described by Boltzmann statistics or the
evolutionary accessibility of native conformations is impor-
tant to define the fitness of proteins. The latter case would
imply that out-of-equilibrium effects affect the set of existing
protein conformations. In the cases we studied, the local en-
tropy of proteins is indeed larger than that of random decoys

displaying the same length and density. As already mentioned
in the introduction, these ideas are not new. However, our aim
was to provide a simple proof of concept with a technique
that can be generalized to more realistic settings for protein
design. While previous estimates of the local entropy are ei-
ther qualitative [16] or based on a knowledge-based, empirical
function [17], the methods we suggest inspired by the study of
complex systems [18] make use of a direct calculation of the
local entropy. Being based on simple statistical-mechanical
concepts, we expect this method to be widely applicable to
different class of models.

In fact, we showed that the large local entropy of model
proteins has consequences on both their thermodynamic
and equilibrium properties. It straightforwardly stabilizes
the native state, decreasing its free energy, but extending
to the transition state can also improve the folding rate.
From this point of view, the concept of evolutionary op-
timization of the local entropy is related to the dynamical
variational principle stated in Ref. [6]. In fact, the mech-
anistic reason for the increase in the folding rate also is
the same: local entropy biases the stabilizing contacts to be
closer along the sequences, making their formation kinetically
faster [7].

Although this point is not within the scope of the present
work, we note that the results we discuss could be used in
connection with the recent advancements in the understanding
of the relation between protein sequence and structure [22,23]
to improve the design of new proteins.

The scripts and the main data used and produced in this
work can bee freely downloaded at [35].
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