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Abstract—Novel low-voltage, low latency, non-volatile memory
(NVM) technologies allow long-term wearable biomedical moni-
tors to benefit from large storage capability, avoiding costly wire-
less transmissions and enabling, along with proper signal process-
ing and architectural optimization, minimal energy operations
and extended battery life. The recently proposed rakeness-based
Compressed Sensing (RCS) offers high compression rate with
an associated low computational power. This allows an energy
trade-off between the compression stage and the storage stage. In
this paper we introduce a novel approach, namely zeroing CS,
which reduces RCS computational requirements to extremely
low levels. The new energy trade-off is analyzed, considering
a suitable multi-core DSP and different NVM technologies for
local storage. According to our analysis, the proposing zeroing
approach is up to 80% more efficient than a standard CS solution
and 70% w.r.t. RCS when overall energy requirement is not
dominated by storage.

I. INTRODUCTION

Human modern behavior-related diseases such as cardiovas-
cular ones require continuous and long-term medical supervi-
sion, with increasing and unsustainable costs for the traditional
healthcare system [1]. A scalable and cost-effective solution
to this problem is offered by ultra-low power (ULP) personal
monitoring systems (PMS), enabling ubiquitous and long-term
monitoring policies for the future healthcare system.

However, the design of such devices is subject to two con-
flicting requirements: the power budget must be reduced for
an extended battery life, while high computation capabilities
are required to process and reduce the amount of data to be
locally stored for further medical analysis. In this direction, the
Compressed Sensing (CS) paradigm [6] has shown to be a very
good candidate for lowering power requirements with respect
to state-of-the-art compression algorithms [7], especially in
electrocardiogram (ECG) signals compression [8], [9]. Re-
cently, the standard CS (SCS) theory has been enhanced by
the concept of rakeness [12], that exploits statistical features
of the input signal (i.e., localization) to further increase the
achievable compression rate at a given reconstruction quality
level, and thus determining an additional reduction in terms
of energy requirements in a CS-based system [13].

To find the right trade-off between PMS size, energy and
storage, several aspects must be considered. Using novel non-
volatile memory technologies, such as ReRAM [2], PCM
[3], STT-MRAM [4] in the design of an ULP digital signal
processor (DSP) for biomedical monitoring [5], may increase
density level and lower access energy cost to a level that

paves the way to new CS approaches that trade-off more
carefully computational cost vs compression capabilities. In
other words, when cost of storage is high and space is
limited, then the most effective compression feasible for the
DSP capabilities may be pursed. Complementary, if write
access energy is small and memory capacity is large, then
it may be convenient to reduce DSP activity (i.e., DSP energy
consumption) at the cost of compression effectiveness.

The aim of this work is to address this opportunity by
formalizing the zeroing CS (ZCS) technique that further
reduces the energy requirement for processing. The basic
idea is to randomly remove many mathematical operations
characterizing the rakeness-based CS (RCS). This limits the
compression capabilities with respect to RCS but at the same
time outperforms SCS and RCS approaches in terms of
memory footprint and energy requirements.

Motivated by the inherent parallel nature of medical-grade
monitoring, a suitable multi-core DSP architecture is con-
sidered, as it proved its efficiency compared to single-core
solutions [14]. Testing the proposed algorithmic solutions on
such target architecture we show that: (i) RCS leads, with
respect to SCS, to a ≈ 33% improvement in terms of computa-
tional efficiency with an output data size reduction of ≈ 40%;
(ii) the novel ZCS introduces several trade-offs in terms of
input data compression, reconstruction quality, computational
requirements and memory footprint. This approach proved its
effectiveness for forth-coming NVM technolgies with respect
to both SCS and RCS, with up to ≈ 80% energy savings
compared with SCS, and 70% w.r.t. RCS when overall energy
in not dominated by storage.

The rest of the paper is organized as follows. In Section II
concepts of CS, rakeness and zeroing are introduced. Section
III presents the overall monitoring system architecture and the
description of the experimental setup and the results in terms
of energy efficiency and monitoring time considering different
technological solutions for output storage. Conclusions are
finally drawn.

II. CS BASED ON RAKENESS AND ZEROING

Let us refer to a time-limited discrete-time signal x ∈ RN ,
defined by the N Nyquist-rate samples of the original analog
signal x(t). CS aims to overcome the limit imposed by the
Nyquist-Shannon sampling theorem under the assumption that
each signal instance x has a sparse representation. This means
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that there is an N -dimensional sparsity basis Ψ ∈ RN×N , such
that for any x we have x = Ψα, where α has at most K � N
non-zero components.

Given a sensing matrix Φ ∈ RM×N , M < N , the CS theory
ensures [6] that the information content of x is preserved in
a M -dimensional measurement vector y ∈ RM , obtained by
projecting x on the M rows of Φ, i.e.:

y = Φx+ ν = ΦΨα+ ν (1)

where ν is an additive term used to model non-idealities such
as the quantization error or the input noise.

Since ΦΨ ∈ RM×N , with M < N , the inversion of (1) to
obtain the reconstructed signal x̂ is an ill-posed problem with
an infinite number of solutions. The impasse is overcome by
looking for the sparsest x̂ = Ψα̂, i.e. by determining

α̂ = arg min
α
‖α‖l1 s.t. ‖ΦΨα− y‖l2 < ε (2)

where ‖ · ‖l1 =
∑ | · | and ‖ · ‖l2 =

∑ ·2 are the standard l1
and l2 norms and ε bounds the effects of the noise term ν.

The convergence of x̂ to x is guaranteed [6] when M ≥
O(K log(N/K)) and Φ is made by independent and identi-
cally distributed (i.i.d.) random variables [10],[11], including
a sequence of random binary antipodal symbols with equal
probability to be −1 or +1 [12].

The CS theory has recently been expanded with the intro-
duction of the concept known as rakeness [12], that allows
either to increase CS reconstruction quality or to reduce M
(i.e. increase compression) at a given performance level. The
basic idea behind this approach is to exploit localization of
signals, i.e. the assumption that the information is not equally
distributed in the whole domain, but that some realizations
of the input process have a higher probability with respect
to all other ones [12]. The goal is to collect (“rake”) the
maximum amount of energy by a statistical matching between
x and the j-th row φj of Φ, while at the same time preserving
the randomness of Φ. More formally, let us model φj and x
as realizations of two stochastic processes φ and x. We can

so define rakeness as ρ(φ, x) = Eφ,x

[
|〈φj , x〉|2

]
1. Hence,

referring without loss of generality to a random antipodal
sensing matrix Φ ∈ {+1,−1}M×N , the idea of increasing the
collected energy, under the constraint that the φj are random
enough to preserve the reconstruction ability, is translated into
the following optimization problem:

max
φ

ρ(φ, x) s.t. 〈φj , φj〉 = N and ρ(φ, φ) ≤ τN2 (3)

where τN2 is an upper bound of the randomness2 of the
φ. The output of the optimization problem (3), analytically
solved in [12], is the second-order statistical characterization
of φ. The problem of generating random sequences with a
prescribed second-order statistic is far from being trivial, since
standard techniques (see f.i. [15]) are insufficient and linear

1Eφ,x stands for the expected value with respect to both φ and x.
2The tuning of τ is not critical, as shown in [17].
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Fig. 1. Average RSNR as a function of the compression ratio (CR) for
Standard CS, Rakeness-based CS and Zeroing CS with different ζ values.

probability feedback processes based architectures [16] need
to be exploited.

When Φ is either an SCS or an RCS antipodal sensing
matrix, the computational complexity of (1) is already low,
since only M ·N sums or subtractions are required. The basic
idea underlying this paper is to further reduce this complexity
with the ZCS approach, i.e. by zeroing some entry of Φ and
allowing Φ ∈ {+1, 0,−1}M×N . Starting from an antipodal
Φ, obtained with the RCS approach, we set to zero all Φ
elements except ζ entries in each column, with 0 < ζ ≤ M .
The effect is a perturbation of the statistical characterization
imposed by (3), with an expected reduction in performance,
but also a reduction of the computational complexity of (1) to
ζN sums. This trade-off presents many advantages as shown
in the following.

The SCS, RCS and ZCS approaches have been tested on real
ECG signals from the MIT-BIH arrhythmia database [18]. For
the sake of illustration, here we present results from 71.1 s
of the the record 101. This signal is sampled at 360 Hz, and
its signal-to-quantization noise ratio (SQNR) is estimated as
38.5 dB. The signal has been partitioned in 50 non-overlapping
time windows with N = 512 samples each, and different
values of M are used. The considered sparsity matrix Ψ is
the Symmlet orthonormal basis. For each approach, a unique
sensing matrix Φ has been selected for each value of M by
means of preliminary tests on synthetic ECGs [19]. More
specifically, we generated 100 synthetic ECGs and: (i) for the
SCS case, we chose Φ as the random antipodal matrix ensuring
the best average reconstruction performance; (ii) for the RCS
case, we used the same synthetic ECG generators to estimate
the correlation profile required by (3) and we chose Φ again
as the matrix guaranteeing best performance; (iii) for the ZCS
case, we take the optimal matrix Φ in (ii) and randomly set
to zero M − ζ entries in each of its column. This ensures the
maximum fairness, since the Φ is not biased on any particular
real signal.

The considered figure of merit is the reconstruction signal-
to-noise ratio, defined as RSNR = (‖x‖l2/‖x− x̂‖l2)dB, and
averaged over the 50 considered time windows. The x̂ is re-
constructed by solving (2) (see [20] for more details). Results
for different compression ratios CR = N/M , are shown in
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TABLE I
CR, M AND # OF SUMS NEEDED SNR=28 DB FOR VARIOUS CS CASES.

CS CR M # sums
SCS 2.36 217 1.1× 105

RCS 3.90 131 6.7× 104

ZCS
ζ = 64 2.93 175 3.2× 104

ζ = 16 2.56 200 8192
ζ = 2 2.34 219 1024

Fig. 1, where the SCS, the RCS and the ZCS approach with
different values of ζ are considered. As expected, the RCS
outperforms all other approaches, while performance for the
ZCS is increasing with the ζ value, and drops to that of the
SCS only for very low ζ.

As an additional figure of merit, we consider the maximum
CR for which system performance is assessed to a minimum
target RSNR. In the example provided here, we set this
threshold at 28 dB that represents in our experiments a good
trade-off between the SQNR and a good visual representation
of the signal. This is confirmed by Fig. 2 that shows short
chunks of reconstructed ECG signals at the target RSNR. The
maximum CR (and corresponding M ) for all considered CS
approaches, along with the computational complexity in terms
of number of sums required to compute y, is shown in Table I.

With respect to the RCS, the zeroing technique can greatly
reduce the computational cost required to compress a signal
at the expense of a lower CR, i.e., of increasing M . As it
will be shown in the following, in several cases this leads to a
reduction in the overall energy requirement of the system. The
optimal choice of ζ is therefore a trade-off depending on the
power consumption of the DSP computing the CS encoding
and on the energy required for storing the M measurements.

III. BIOMEDICAL MONITOR AND EVALUATION

The biomedical system we are considering, with its phases
and architectural components, is shown in Fig. 3. It is char-
acterized by a multi-core DSP architecture mimicking the
solutions in [14], [13] which are particularly capable of target-
ing the digital biosignal processing domain. The architectural
template features P processing elements (PEs), which do not
have instruction nor data caches, therefore avoiding refill costs
and coherency protocol overheads. Each PE has a private
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single-cycle instruction memory (IM) where the CS code is
stored, while they all share a B-banks scratchpad data memory
(DM) trough a suitable mesh-of-trees interconnection network
(INTC), supporting single-cycle communication between PEs
and memory banks [13]. During the data collection phase, the
input l-channel biosignal is sampled by the Analog Front End
(AFE) with a fixed sampling frequency (fs), and the multi-core
DSP waits for the samples required to perform compression.
To reduce the AFE buffer size and avoid double buffering
overhead, the DMA is triggered every 1/fs seconds. Whenever
a new set of samples is available, the DMA empties the AFE
buffer and moves l new samples into the DM, then once all the
N samples are copied the compression phase starts with the
DSP performing the CS algorithm as a burst of computation on
the available data3. The DSP is operating in a SIMD fashion,
where each core is processing, in parallel with the others, the
data relative to one of the l input channels. After input data
compression, the compressed output data are moved in a non-
volatile memory (NVM) for future off-line medical analysis.
During all the time where the DSP is idle, we assume a deep
low-power state.

The considered multi-core DSP architectural template has
been modeled and integrated in a SystemC-based cycle-
accurate virtual platform [21], with back-annotated power
numbers extracted from a RTL-equivalent architecture [22].
SystemC vs. RTL execution cycles misalignment is below 7%.

The 8-cores DSP architecture has been configured with a
16-banks DM, private IM of size 1 KB per core and a stack
portion in DM of 512 B for each core (sufficient for the
CS execution). Static data allocation is performed by means
of cross-compiler attributes and linker script sections. From
an algorithmic point of view, in both SCS and RCS the
sensing matrix Φ is full and suitable for a normal vector-
matrix projection. Instead if we consider the ZCS case, Φ is
sparse and therefore suitable for a more efficient LUT-based
algorithmic implementation [13]. Due to the varying amount
of measurements required to achieve the target RSNR (see
Table I) and to the different algorithmic implementations, the
footprint in the DSP data memory varies. For all cases the
DM memory has to allocate the input samples: considering
fs = 360 Hz, N = 512, l = 8 and 12-bit ADC resolution it
leads to 6 KB. For the measurement vectors and the sensing
matrix Φ, in full or sparse form, the DM requirements are
different: SCS = 111.9 KB, RCS = 67.5 KB and for the

3Note that in our architecture CS is used to compress signal in the digital
domain (similar to what proposed in [7]) and not in the analog domain as
originally considered in [6].
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zeroing cases, ZCS64 = 66.7 KB, ZCS16 = 19.1 KB and
ZCS2 = 5.4 KB.

To evaluate the energy consumption of the compression
stage we are considering a 28 nm FD-SOI [23] technological
library, a key technology to achieve ultra-low power operation
for the CS workload requirements. More specifically, we
consider the design corner (RVT,25 C,0.6 V) @ 10 MHz. To
reduce power consumption, for the dynamic power the logic
is clock-gated during the idle phases, while for leakage contri-
bution we consider a reverse body bias voltage VRBB = 1 V,
leading to 7× leakage power reduction [23]. For what concerns
the storage system we consider different NVM technologies,
namely ReRAM, Flash/PCM and STT-MRAM. The energy
required to store the data was assumed to be as follows:
EReRAM = 10 nJ/bit [2], EFlash/PCM = 1 nJ/bit [24], [3],
ESTT-MRAM = 0.1 nJ/bit [4] and used as a parameter for the
power model in [13]. As a comparison, during the compression
phase the DSP in average consumes ≈ 3 nJ/bit.

The results are presented in Fig. 4. The plotted bars show
the energy requirements within a time window for the DSP
(blue), stacked with the energy required for storage in the
NVM (green). For a fair comparison, we include the case of
no compression, i.e. input data stored after sampling (NO CS).

For the DSP component, we can observe that RCS and ZCS
always outperform SCS, where the RCS saves ≈ 33% and
for the zeroing approach the compression energy decreases,
as expected, with the number of non-zeros, with the highest
savings for ZCS2 (≈ 83%). Conversely, as the energy/bit
decreases, ZCS gives greater benefits. Indeed for Flash/PCM,
ZCS2 achieves ≈ 70% of energy savings w.r.t. standard CS
(Fig. 4), while providing the same monitoring time (Table II).
When the storage energy gets negligible, STT-MRAM in
Fig. 4, two different trends can be observed: ZCS2 achieves
81% of energy savings w.r.t. standard CS, but loses ≈ 10%

TABLE II
MONITORING TIME AS A FUNCTION OF NVM CAPACITY.

CS 512KB 32MB 1GB
time (m) time (h) time (d)

NO CS 0.76 0.81 1.08
SCS 3.58 3.82 5.09
RCS 5.93 6.32 8.43

ZCS, ζ = 64 4.44 4.73 6.31
ZCS, ζ = 2 3.55 3.78 5.04

w.r.t. no compression. Compared to no compression, ZCS2

enables a 5x longer monitoring time. One can therefore
conclude that RCS and ZCS allow to find the optimal design
trade-off in between energy consumption and monitoring time.

IV. CONCLUSION

RCS and its zeroing version enable trading off the compu-
tation requirements with the amount of data for later storage.
In this paper we evaluated such trade-offs considering a multi-
core DSP and different NVM technologies for storage. Exper-
imental results showed that ZCS proves to be more energy
efficient than the SCS approach when energy requirement for
storage is significant. Moreover, when compression energy
and storage energy are comparable, such approaches allow the
flexibility of several design choices for what concerns energy
consumption and monitoring time.
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