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Abstract. The transition towards 4th generation systems is making district heating increasingly efficient and complex: a 

broad variety of novelties are being introduced, like the ever-growing integration of renewable sources, the use of lower 

operating temperatures, the interaction with other energy grids. These new elements are challenging the features of existing 

numerical models, which may be better analyzed and revisited taking into account the even more important role assumed 

by thermal transients. In this framework, the aim of this paper is to study the effect of the heat capacities of the steel pipe 

and of the insulation layer on the thermal response of the systems. Four different approaches are presented and compared: 

a one-equation model, a two-equations model, a three-equation model, and an equivalent one-equation model. These 

approaches are tested over a pure advection problem in a long pipe. The performances of each model are evaluated both in 

terms of accuracy and computational effort. Then, an application to the Turin district heating network, is discussed. Results 

show that the equivalent one-equation model is capable to produce accurate solutions with impressive computational time 

reductions (more than 96%) with respect to the more detailed methods. 

Keywords: Network modelling; thermal behavior; heat capacity; equivalent model; thermal delay. 

1. Introduction 

District heating (DH) is a convenient solution to improve the energy efficiency of heating systems in communities 

[1]. Today it is recognized that this technology can have a key role in the cost-effective decarbonization of the 

European energy system [2]. Despite DH infrastructures are widely spread in Europe since the 1970s [3], nowadays 

these systems are experiencing a gradual transition towards a new generation, which is aimed at reaching a future non-

fossil energy system based on completely renewable energy sources such as solar, waste heat and geothermal energy 

[4]. This have led to the conceptualization of 4th generation district heating (4GDH) [5,6], which is characterized by 

new features such as lower operating temperatures and lower grid losses, the possibility to recycle heat from low-

temperature sources and integrate renewable heat sources and the ability to be part of an integrated smart energy 

system [5]. 

In this framework, it becomes essential to use suitable numerical models to simulate, design and optimize the 

configuration of existing and planned district heating networks. In the literature, multiple approaches have been 

developed for district heating modelling. They can be grouped in two major families: black-box models and physical 

models [7]. Black-box models are based on standard transfer function models or neural networks. These methods 

suffer from low accuracy in the time-delay estimation, especially when there are abrupt temperature changes [7]. On 

the other hand, physical models address the physical description of all the relevant components of a network. For this 

reason, they are preferred when large and quick temperature changes occur within the network and when the estimation 

of physical parameters is relevant [8]. Among the physical models, many different approaches can be found. The 

element method and the node method, introduced by Benonysson [9], have been used in many contributions [7,10]. 



Other popular methods are the characteristics method [11,12], the plug-flow model [13,14] and the finite volume 

method [8,12]. This last method will also be used in this paper.  

Since the transition towards the fourth generation heavily affects the thermal dynamics within the network, having 

a tool which allows to accurately describe the thermal response of district heating systems is becoming more and more 

important. Thus, there is a need of defining which are the relevant parameters to take into account in a thermal model. 

Indeed, the aforementioned methods often uses many different approximations for some different aspects of the model. 

An example is the heat capacity of the pipe. The influence of this parameter is neglected by many authors in literature 

[12-13,19]. An example is the study proposed by Wang et al. [12], who uses a model that relies on a single partial 

differential equation including just the water thermal capacity to find the optimal scales of time and spatial steps for 

two different methods, namely implicit upwind model and characteristic line model. On the other hand, the pipe heat 

capacity is explicitly considered by other authors [10,15-18]. Among them, the function method introduced by Zheng 

et. al [15] is based on two balance equations – one for the pipe wall and one for the fluid.  Moreover, Sartor and 

Dewalef [18] showed that the pipe thermal inertia produces a delay on the outlet pipe temperature response. 

In this context, it becomes essential to compare the different formulations to understand whether it is worthy to 

increase the complexity of a district heating network model in order to include the thermal capacity of the pipe. Hence, 

, the aim of the current study is a) to analyze the influence of the heat capacity of the steel pipe (and alsoof the 

insulation layer) on the thermo-fluid dynamic behavior of a district heating network and b) to find an approach which 

allows to consider all the relevant parameters without jeopardizing the viability of the application with unreasonable 

CPU times. To do that. four different formulations of the thermal problem are compared. The first formulation involves 

a single partial differential equation which describes the thermal evolution of water and neglects the two contributions 

of the steel pipe heat capacity and of the insulation layer heat capacity. The second one is made up by two partial 

differential equations, taking into account the thermal evolution of water and steel. The third formulation contains all 

the contributions by means of a three-equation model. Finally, a fourth equivalent formulation combines the heat 

capacities of water and steel in a unique one-equation model, by approximating the two temperature evolutions as 

equal, while the heat capacity of insulation is again neglected. 

The comparison of the four models is performed over a pure-advection model problem in a pipe. Finally, the 

performances of the standard one-equation model and of the equivalent one-equation model were tested on a real 

application. A case-study taken from the Turin district heating network, which is among the largest systems in Europe, 

is presented and discussed.  

 

2. Methodology 

In this section, the model used to simulate the thermo-fluid dynamic behavior of the district heating network is 

presented. The model aims at reproducing the evolution of pressures, mass-flow rates and temperatures within the 

whole system. Since different formulations are adopted for the thermal model, the differences among them are 

discussed and explained. 

The model is based on a pseudo-dynamic approach: while the hydraulic problem, expressed by the conservation 

equations of mass and momentum, is treated as steady-state, the energy equation is solved dynamically. This is due to 

the fact that the fluid-dynamic perturbations are quickly transferred to the whole network, in a period of time of few 

seconds. In contrast, temperature perturbations travel at the fluid velocity and could take a long time to be propagated 

within the network.  

The problem was treated as one-dimensional and the complex structure of the network was described by means of 

the graph theory [20]. Hence, each pipe was treated as a branch which connects two nodes, corresponding to the inlet 

and the outlet sections. The network topology was described by means of the incidence matrix 𝐀, which has as many 

rows as the number of nodes (NN) and as many columns as the number of branches (NB). The general element 𝐴𝑖𝑗 is 

equal to 1 if the 𝑖-th node is the inlet node of the 𝑗-th branch, -1 if the 𝑖-th node is the outlet node of the 𝑗-th branch 

and 0 if the 𝑖-th node and the 𝑗-th branch are not related to each other. 

The finite volume method [21] was adopted for the solution of the problem. In particular, the continuity and energy 

equations were integrated over control volumes including each junction node and half of the branches entering or 

exiting that node. Actually, in the case of the energy equation, a greater number of control volumes was used in order 

to limit the effect of numerical diffusivity by reducing the mesh size [21]. Instead, the momentum equation was 

integrated over control volumes including a branch and the two delimiting nodes. 

 



 

 

2.1 The hydraulic problem 

 

The hydraulic problem can be expressed by the conservation equations of mass and momentum, respectively 

reported in Eq. (1) and Eq. (2): 

 

 
𝜕𝜌𝑤

𝜕𝑡
+

𝜕(𝜌𝑤𝑣𝑤)

𝜕𝑥
= 0 (1) 

 

 𝜌𝑤
𝜕𝑣𝑤

𝜕𝑡
+ 𝜌𝑤𝑣𝑤

𝜕𝑣𝑤

𝜕𝑥
= −

𝜕𝑝𝑤

𝜕𝑥
− 𝐹𝐹𝑅𝐼𝐶𝑇 + 𝐹1 (2) 

 

where 𝐹𝐹𝑅𝐼𝐶𝑇  takes into account the viscous forces and 𝐹1 represents the source term accounting for the effect of 

local fluid dynamic resistance due to valves or junctions and the effects of pressure rise due to pumps. If steady-state 

conditions are considered, as previously explained, and continuity and momentum equations are integrated according 

to the finite volume method, the following formulation of the hydraulic problem can be obtained: 

 

 𝐀 ⋅ 𝐆 + 𝐆𝐞𝐱𝐭 = 𝟎 (3) 

 

 𝐆 = 𝐘 ⋅ 𝐀𝐓 ⋅ 𝐏 + 𝐘 ⋅ 𝛕 (4) 

 

The unknown terms in Eq. (3) and Eq. (4) are: array 𝐆 (length: NB), containing the mass flow rates in each branch, 

array 𝐏 (length: NN), composed by the values of pressure at each node. The known terms are: the aforementioned 

incidence matrix 𝐀 (size: NN × NB); array 𝐆𝐞𝐱𝐭 (length: NN), which contains the mass flow rates injected in or 

extracted from the system; fluid dynamic conductance matrix 𝐘 (size: NB × NB), accounting for the pressure losses; 

vector 𝛕 (length: NB), which represents the pressure rise due to pumps. A detailed description of the algorithm used 

for the solution of the hydraulic problem can be found in Sciacovelli et al. [22]. 

 

2.2 The thermal problem 

 

In order to predict the thermal behavior of the network, the energy conservation equation must be solved for the 

whole system. In this paper, four different formulations have been used for the thermal problem. All of them rely on 

some common assumptions: 

- the fluid is incompressible; 

- the specific heat is constant; 

- the axial thermal conduction is ignored; 

- the ground heat capacity is neglected. 

First, the following three models were analyzed: 

a) (One-equation model, Approach a) The first formulation is based on a single Partial Differential Equation – 

Eq. (5), which describes the thermal evolution of the water flowing in the pipe. The heat capacities of the steel 

pipe and of the insulation layer are neglected. As represented in Figure 1(a), just the fluid heat capacity is 

considered. 

 

 𝜌𝑤𝑐𝑝,𝑤
𝜕𝑇𝑤

𝜕𝑡
+ 𝜌𝑤𝑐𝑝,𝑤𝑣𝑤

𝜕𝑇𝑤

𝜕𝑥
+ 𝜑𝑙𝑜𝑠𝑠,𝑤→𝑔 = 0 (5) 

  

The first term in Eq. (5) represents the transient term, which contains the water density 𝜌𝑤, the specific heat 

capacity of water 𝑐𝑝,𝑤 and the water temperature 𝑇𝑤 partial derivative with respect to time 𝑡. The second term 

is the convective term, in which 𝑣𝑤 represents the water velocity and 𝑥 the spatial coordinate. Finally, 

𝜑𝑙𝑜𝑠𝑠,𝑤→𝑔 accounts from the thermal losses from water to ground. 

b) (Two-equations model, Approach b) The second formulation involves two coupled PDEs to include the 

thermal evolution of water and steel. The equations are reported in Eq. (6). This formulation takes into account 

the heat capacities of water and steel pipe, while the insulation heat capacity is neglected. A schematic 

representation is given in Fig. 1(b).  

 



 

{
 
 

 
 𝜌𝑤𝑐𝑝,𝑤

𝜕𝑇𝑤

𝜕𝑡
+ 𝜌𝑤𝑐𝑝,𝑤𝑣𝑤

𝜕𝑇𝑤

𝜕𝑥
+ 𝜑𝑙𝑜𝑠𝑠,𝑤→𝑠 = 0

 
 
 

𝜌𝑠𝑐𝑝,𝑠
𝜕𝑇𝑠

𝜕𝑡
+ 𝜑𝑙𝑜𝑠𝑠,𝑠→𝑤 + 𝜑𝑙𝑜𝑠𝑠,𝑠→𝑔 = 0 

 (6) 

 

In this case, the first equation reported in Eq. (6) represents the thermal evolution of water and differs from 

Eq. (5) in that the thermal losses taken into account (𝜑𝑙𝑜𝑠𝑠,𝑤→𝑠) are from water to steel. The second equation 

represents the thermal evolution of steel temperature 𝑇𝑠. 𝜌𝑠 and 𝑐𝑝,𝑠 respectively represent the steel density 

and specific heat. As for the thermal sources/losses, both the contributions towards water 𝜑𝑙𝑜𝑠𝑠,𝑠→𝑤 and ground 

𝜑𝑙𝑜𝑠𝑠,𝑠→𝑔 must be taken into account.   

c) (Three-equations model, Approach c) A third formulation is used to include the heat capacity of the 

insulation, as illustrated in Fig. 1(c). Three coupled PDEs – reported in Eq. (7) – are used to describe the 

thermal transient of water, steel and of the insulation layer. This is the most accurate approach among the ones 

proposed in this paper. On the other hand, the problem could become computationally intensive. 
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𝜌𝑠𝑐𝑝,𝑠
𝜕𝑇𝑠

𝜕𝑡
+ 𝜑𝑙𝑜𝑠𝑠,𝑠→𝑤 + 𝜑𝑙𝑜𝑠𝑠,𝑠→𝑖𝑛𝑠 = 0 

 
 

𝜌𝑖𝑛𝑠𝑐𝑝,𝑖𝑛𝑠
𝜕𝑇𝑖𝑛𝑠

𝜕𝑡
+ 𝜑𝑙𝑜𝑠𝑠,𝑖𝑛𝑠→𝑠 + 𝜑𝑙𝑜𝑠𝑠,𝑖𝑛𝑠→𝑔 = 0 

 (7) 

The expression for the water thermal evolution is the first one reported in Eq. (7) and it is the same as in the 

previous case. Instead, the second equation, which describes the steel temperature evolution, differs from the 

one of Approach (c) due to the thermal losses, which in this case are computed from steel to insulation 

(𝜑𝑙𝑜𝑠𝑠,𝑠→𝑖𝑛𝑠). The last equation is the insulation equation. The first term is again the transient term, which 

includes the insulation density 𝜌𝑖𝑛𝑠, its specific heat 𝑐𝑝,𝑖𝑛𝑠 and the insulation temperature 𝑇𝑖𝑛𝑠 temporal 

derivative. The sources/losses include both the contributions to the steel pipe 𝜑𝑙𝑜𝑠𝑠,𝑖𝑛𝑠→𝑠 and the ground 

𝜑𝑙𝑜𝑠𝑠,𝑖𝑛𝑠→𝑔. 

 

 

 
(a) (b) (c) 

 

FIGURE 1. Graphical representation of a portion of the pipe. Colored parts are associated to heat capacities which are included 

in each model. In detail, model (a) just takes into account the water heat capacity; in model (b) the heat capacities of water and 

steel are considered; finally, model (c) involves the consideration of the heat capacities of water, steel and insulation.  

 

 



In order to solve the thermal problem, the different equations were integrated over their corresponding control 

volumes. As previously mentioned, the number of control volumes used for the solution of the energy conservation 

equations is greater than that used for the hydraulic problem (𝑁𝑁′ > 𝑁𝑁 and 𝑁𝐵′ > 𝑁𝐵). This aims at reducing the 

effect of artificial diffusivity and increases the accuracy of the solution. The Upwind Differencing Scheme [20] was 

used to relate boundary and nodal values of temperature.  

Then, the matrix form of the problem – given in Eq. (8) – was obtained. 

 

 𝐌 ⋅ 𝐓̇ + 𝐊 ⋅ 𝐓 = 𝐠 (8) 

 

The size and the meaning of the terms in Eq. (8) are different according to the model formulation adopted. They 

are summarized in Table 1. While in case (a) the unknown vector accounts for the nodal values of water temperature, 

in case (b) and (c) it also takes into account respectively the nodal temperature values of steel and of steel and 

insulation. 

 

TABLE 1. Description and size of the arrays and matrices in the energy conservation equation – Eq. (8). 

Term Description Size 

Approach (a) Approach (b) Approach (c) 

𝐓 Unknown vector 𝑁𝑁′ × 1 2𝑁𝑁′ × 1 3𝑁𝑁′ × 1 

𝐌 Mass matrix 𝑁𝑁′ × 𝑁𝑁′ 2𝑁𝑁′ × 2𝑁𝑁′ 3𝑁𝑁′ × 3𝑁𝑁′ 
𝐊 Stiffness matrix 𝑁𝑁′ × 𝑁𝑁′ 2𝑁𝑁′ × 2𝑁𝑁′ 3𝑁𝑁′ × 3𝑁𝑁′ 
𝐠 Known terms vector 𝑁𝑁′ × 1 2𝑁𝑁′ × 1 3𝑁𝑁′ × 1 

 

 

2.3 Equivalent thermal model 

In this paper a further approach is presented to achieve a trade-off between time and accuracy; this is an equivalent 

one-equation model. It takes into account the heat capacities of water and steel in a unique equation, thanks to the 

assumption that the pipe immediately reaches the thermal equilibrium with the water. As a consequence, the steel 

temperature is assumed equal to the water temperature, and the thermal resistance between the two is considered equal 

to zero. This is a reasonable assumption, since the heat transfer between water and steel is very high. 

This model (Equivalent one-equation model, Approach d) relies on the Partial Differential Equation reported in 

Eq. (9). With respect to Eq. (5), this equation considers a greater thermal inertia for the fluid. 

 

 (𝜌𝑤𝑐𝑝,𝑤 + 𝜌𝑠𝑐𝑝,𝑠) 
𝜕𝑇𝑤

𝜕𝑡
+ 𝜌𝑤𝑐𝑝,𝑤𝑣𝑤

𝜕𝑇𝑤

𝜕𝑥
+ 𝜑𝑙𝑜𝑠𝑠,𝑠→𝑔 = 0 (9) 

 

The first term reported in Eq. (9) represents the transient term and includes both the heat capacities of water and 

steel. Once integrated over the 𝑖-th control volume, this term becomes 

 

(𝜌𝑤𝑐𝑝,𝑤𝑉𝑤
𝑖 + 𝜌𝑠𝑐𝑝,𝑠𝑉𝑠

𝑖) 
𝜕𝑇𝑤

𝜕𝑡
  

 

  where 𝑉𝑤
𝑖  and 𝑉𝑠

𝑖 are respectively the water volume and the steel volume. The second term in Eq. (9) is the 

convective term. Finally, the last term accounts for the thermal dispersion to the ground. 

As for the matrix form of the problem, the meaning and the size of the arrays and matrices is the same as in the 

Approach (a) (see Table 1). Only the matrix 𝐌 is slightly different since in this last case it contains both water and 

steel thermal inertia. 

Overall, thanks to this approximation, the steel heat capacity can be included in the model without weighing down 

the simulation. To evaluate the performances of this approach, an application to the pure advection problem previously 

stated is performed. 

 

3. Application 

In this paper, four different approaches to the numerical solution of the thermal problem were proposed: a one-

equation model which just solves the energy conservation equation for the fluid; a two-equations model involving the 



energy conservation equations for the fluid and the steel pipe; a three-equations model which considers the fluid, the 

steel pipe and the insulation layer; finally, an equivalent one-equation model which combines the fluid and the steel 

pipe, considering both the heat capacities in a unique equation. 

At first, the four models proposed and described in Section 2 were tested on a pure advection problem over a pipe. 

The test involved a constant water mass-flow rate flowing in a pipe which had a length of 1 km and internal diameter, 

external diameter and insulation thickness respectively equal to 50 mm, 125 mm and 29 mm. The water in the pipe 

was supposed at an initial temperature of 15 °C. Then, a mass-flow rate at 120 °C was injected at the inlet section. 

This is to simulate a start-up transient after the night set-back. The water velocity was imposed equal to 0.3 m/s. The 

ground temperature was supposed to be 15 °C. A thermal transient was simulated using the three thermal models. All 

the simulations were conducted with very fine spatial and temporal discretization (Δ𝑥 = 0.01 𝑚 and Δ𝑡 = 0.1 𝑠) in 

order to minimize the numerical error. 

Then, the two one-equation models – Approach (a) and Approach (d), which according to the first tests resulted to 

be the most performing ones – were used to perform a comparison in the case of a real system. The case-study analyzed 

belongs to the Turin district heating network, which is the largest in Italy and one of the largest in Europe. It satisfies 

the thermal request of more than 5000 buildings, which have a total volume of about 56 million m3. 

The network can be imagined as composed of two interconnected parts: the transport network and the distribution 

network. The transport network is the backbone of the system and is composed by pipes with larger diameters. It 

connects the thermal plants to the various areas of the city. The distribution network, instead, connects the transport 

network to the buildings located in an area. Connection points between the distribution networks and the transport 

network are called the thermal barycenters. 

In the Turin district heating network, six thermal plants are available. Among them, there are three cogeneration 

units, which can produce up to 760 MW of heat. Then, the production capacity is completed by means of heat-only 

boilers and thermal storages. The supply temperature is kept close to the nominal one, that is about 120 °C in winter 

and over 90 °C in summer; the temperature on the return pipeline depends on the thermal load. 

For this analysis, a simulation of the thermo-fluid dynamic behavior of a distribution network during a typical 

winter day was carried out. The selected distribution network connects 66 buildings to the main pipeline. A schematic 

of the network is reported in Figure 2. The mass-flow rates extracted by each building and the expected thermal 

profiles were obtained from the data gathering system, which is installed in building’s substations for billing purposes.  

The simulation was performed for both the supply and return lines of the network. The time-step adopted for the 

solution of the thermal problem was equal to 10 𝑠. For what concerns the spatial discretization, nodes were placed 

with a granularity of 1 node per meter. 

The two one-equation models were used to evaluate the temperature of the water coming back at the barycenter 

through the return line (𝑇𝑟𝑒𝑡𝑢𝑟𝑛,𝐵𝐶𝑇). Also, the heat flux request of the distribution network at the barycenter level was 

evaluated by means of the formula reported in Eq. (10): 

 

 Φ𝑡𝑜𝑡,𝐵𝐶𝑇(𝑡) = 𝐺𝑡𝑜𝑡,𝐵𝐶𝑇(𝑡)𝑐𝑝(𝑇𝑠𝑢𝑝𝑝𝑙𝑦,𝐵𝐶𝑇 − 𝑇𝑟𝑒𝑡𝑢𝑟𝑛,𝐵𝐶𝑇(𝑡)) (10) 

 

where 𝐺𝑡𝑜𝑡,𝐵𝐶𝑇 represents the total mass flow rate and 𝑇𝑠𝑢𝑝𝑝𝑙𝑦,𝐵𝐶𝑇  is the supply temperature of the distribution network 

(equal to 118 °C in this case). 

 

 



 

FIGURE 2. Graphical representation of the distribution network. 

 

 

4. Results and discussion 

The goal of this paper was to provide a quantitative analysis of the influence of the heat capacities of the steel pipe 

and of the insulation layer on the thermal response in district heating systems, in order to get a better view of the 

approximations introduced in numerical thermal models. To do that, four different approaches have been taken under 

consideration. The four approaches have been compared first on a transient pure advection problem over a pipe (results 

reported in section 4.1), and then in a real case-study (results reported in section 4.2).  

 

4.1 Transient pure advection problem 

 

A pure advection transient problem over a single pipe was simulated to compare the different approaches proposed 

in this paper. A detailed description of the test parameters is reported in Section 3. 

Figure 3 shows the results provided by the various approaches in terms of spatial temperature distribution. In 

Figure 3(a), the water temperature distribution over the pipe after 40 minutes – obtained using Approach (a) – is 

illustrated. Approach (b) allows to obtain the temperature distribution of both water and steel, as reported in Figure 

3(b). The three-equations model expressed by Approach (c) solves the energy equation of water, steel and insulation; 

their temperature distributions are depicted in Figure 3(c). The solution of Approach (c) represents the most accurate 

among the ones proposed in this paper. Since the relative error between the water temperature distribution and the 

steel temperature distribution is only 1.4% at 𝑡 = 40 𝑚𝑖𝑛, these two temperatures could be considered as equal with 

negligible loss of accuracy. Hence, the approximation introduced by the equivalent thermal model – Approach (d) – 

can be considered as acceptable. Vice versa, it is not possible to introduce the same approximation for the insulation 

layer since its temperature profile is quite different. Finally, Figure 3(d) displays the solution produced by Approach 

(d), which just involves water temperature. 



The differences among the water temperature profile provided by each model are highlighted in Figure 4. It is 

worth to observe that the hydraulic front – which represents, at each time step, the coordinate of the extreme point 

reached by the mass-flow rate and can be computed as 𝑥(𝑡) = 𝑥0 + 𝑣 ⋅ (t − t0) – is located at 𝑥 = 720 𝑚 after 40 

minutes. By comparing the temperature distributions obtained with the one-equation model (1 PDE) and with the two-

equations model (2 PDEs), it comes out that the consideration of the steel pipe heat capacity significantly modifies 

the solution of the problem, since it is responsible for the cool-down of a relevant portion of the mass-flow rate. On 

the other hand, introducing a further partial differential equation (3 PDEs) to take into account the transient in the 

insulation layer does not produce relevant additional improvements (relative error equal to 0.1 %). Finally, the 

equivalent one-equation model (labelled as 1 eq. PDE) is capable to capture the thermal delay due to the steel pipe 

heat capacity, despite it does not reproduce the smoothing of the solution. 

In Figure 5, the water temperature evolution of the control volume located at 𝑥 = 500 𝑚 is reported. While in the 

one-equation model – Approach (a) – the temperature of the control volume considered steeply rises to 120 °C at 𝑡 =
27.8 𝑚𝑖𝑛, in the solutions obtained with the two most precise models – Approach (b), i.e. the two-equations model, 

and Approach (c), i.e. the three-equations model – this temperature change is delayed and gradual. Particularly, the 

temperature gradually increases from 15 °C to 120 °C in the time range between 35 and 60 minutes. The equivalent 

one-equation model – Approach (d) – is able to take into account the time delay due to the greater thermal inertia and 

shifts the temperature change at 𝑡 = 47.2 𝑚𝑖𝑛, with a 19.4 minutes delay with respect to Approach (a). Again, it can 

be observed that, in this case, the temperature change is sharp. 

Since the temperature rise in the equivalent thermal model is abrupt, the concept of equivalent thermal front can 

be introduced. The equivalent thermal front can be defined as the coordinate of the extreme “hot” point of the mass-

flow rate and can be computed as 𝑥(𝑡) = 𝑥0 + 𝑣𝑡ℎ,𝑒𝑞 ⋅ (t − t0), where 𝑣𝑡ℎ,𝑒𝑞  is the equivalent thermal velocity, i.e. 

the propagation speed of the thermal perturbation. The equivalent thermal velocity can be expressed as: 

 

  𝑣𝑡ℎ,𝑒𝑞 = 𝑣𝑤
𝜌𝑤𝑐𝑝𝑤𝑉𝑤

𝜌𝑤𝑐𝑝𝑤𝑉𝑤+𝜌𝑠𝑐𝑝𝑠𝑉𝑠
 (11) 

 

In the specific case, the equivalent thermal velocity assumes the value of about 0.18 m/s, with a hydraulic velocity 

of 0.3 m/s. Generally, it depends on the steel mass of the pipe and, in particular, it decreases as the ratio between the 

volumes of steel and water increases. As a consequence, the larger the volume ratio, the larger the delay. 

The hydraulic front and the equivalent thermal front are represented in Figure 6, where the water temperature along 

the pipe is reported at 𝑡 = 40 𝑚𝑖𝑛. While in the solution provided by the one-equation model (a), the hydraulic front 

is coincident with the thermal front, the two-equations (b) and the three-equations models (c), which are the ones that 

represent in the most appropriate way the real physical problem, the thermal drop occurs in a thermal drop region, 

which is delayed with respect to the hydraulic front. Finally, in the equivalent one-equation model (d) it is possible to 

recognize the equivalent thermal front, which is capable to take into account the delay although the temperature gap 

is sharp. 

The computational time required by each approach for the solution of the 40-minutes thermal transient is reported 

in Table 2. For the one-equation approach (a), the simulation lasts approximately 1 minute. Instead, the two-equations 

(b) and the three-equations models (c) require respectively about 26 minutes and 4.2 hours. Finally, the same 

simulation can be performed in less than 1 minute using the equivalent one-equation model (d). The solution of the 

problem shown in Figure 4 and Figure 5 and the analysis of these data clearly suggest that the best trade-off between 

performance and accuracy is provided by the equivalent one-equation model, Approach (d). On the other hand, the 

use of model (a) is not highly recommended, since the computational time is of the same order of magnitude, but it is 

less accurate. Then, despite the two-equations model (b) is more precise with respect to the equivalent approach (d), 

it is unusable for application to real case studies due to its high time complexity. Finally, it is quite evident that the 

computational time required by Approach (c) makes it inapplicable even for applications to small test-cases. Indeed, 

this approach introduces an unjustified increase in computational cost, given that, as previously stated, the quality of 

the solution does not significantly improve with respect to Approach (b). Hence, this study suggests that is to advisable 

to use the equivalent thermal model – Approach (d), which allows a reduction in the computational time of 96.4 % 

and 99.6 % with respect to – respectively – Approaches (b) and (c), at the costs of a reduction in accuracy in the 

reproduction of the smoothness of the solution. However, it may be observed that this kind of error could – generally 

speaking – counteract the truncation error introduced by artificial diffusivity (numerical diffusivity), which tents to 

smooth the solution. 



 
(a) One-equation thermal model (b) Two-equations thermal model 

 
(c) Three-equations thermal model (d) One-equation equivalent thermal model 

FIGURE 3. Temperature distributions obtained with the four approaches (Approaches (a) to (d)) for a transient pure advection 

problem in a pipe (length = 1 km, internal diameter = 50 mm, external diameter = 125 mm, insulation thickness = 29 mm, fluid 

velocity = 0.3 m/s, initial temperature = 15 °C, ground temperature = 15  °C, inlet temperature = 120 °C) after 40 minutes. 

 

 

 

FIGURE 4. Water temperature distribution obtained with the four approaches (Approaches (a) to (d)) for a transient pure 

advection problem in a pipe (length = 1 km, internal diameter = 50 mm, external diameter = 125 mm, insulation thickness = 29 

mm, fluid velocity = 0.3 m/s, initial temperature = 15 °C, ground temperature = 15  °C, inlet temperature = 120 °C) after 40 

minutes. The hydraulic front is located at x = 720 m. 



 

 

 

FIGURE 5. Water temperature evolution for a pure advection problem in a pipe (length = 1 km, internal diameter = 50 mm, 

external diameter = 125 mm, insulation thickness = 29 mm, fluid velocity = 0.3 m/s, initial temperature = 20 °C, inlet 

temperature = 120 °C) at x  = 500 m using the four models (Approaches (a) to (d)). 

 

 

 

 

 

 

 

 
(a) One-equation thermal model (b) Two-equations thermal model 

 

 

 

 
(c) Three-equations thermal model (d) One-equation equivalent thermal model 

FIGURE 6. Water temperature along the pipe at t = 40 min for a pure advection problem (length = 1 km, internal diameter = 50 

mm, external diameter = 125 mm, insulation thickness = 29 mm, fluid velocity = 0.3 m/s, initial temperature = 15 °C, ground 

temperature = 15  °C, inlet temperature = 120 °C). 

 

 



 

TABLE 2. Computational time required for the solution of a 40-minutes-lasting transient pure advection problem in a pipe 1 km 

long, with dx = 0.01 m and dt = 0.1 s, using the four approaches presented in this paper. All simulations were run on a PC laptop 

with a total of 16 GB of memory and an Intel i7-8565U CPU @ 1.80 GHz. The software MATLAB® was used and the function 

adopted for the solution of the linear systems was mldivide with its default options. 

 

Approach Number of 

PDEs 

Water heat 

capacity 

Pipe heat 

capacity 

Insulation 

heat capacity 

Equivalent 

approach 

Computational 

time [s] 

(a) 1 ✔    61 

(b) 2 ✔ ✔   1544 

(c) 3 ✔ ✔ ✔  15098 

(d) 1 ✔ ✔  ✔ 55 

 

 

4.2 Real case-study 

 

In this section, results of the application to the distribution network belonging to the Turin district heating network 

are reported. The simulation has been carried out for a typical winter day with the standard one-equation model 

(Approach a) and the equivalent one-equation model (Approach d). The temperature evolution of the mass-flow rate 

in the return line at the barycenter level (which is the connection point of the distribution network with the transport 

network) is reported in Figure 7(a). The thermal delay due to the increased heat capacity is particularly evident in the 

early morning, during the heating phase of the system. The relative error is around 3.8% and the maximum temperature 

difference among the curves obtained with the two approaches is of 8 °C. The thermal load of the whole distribution 

network is illustrated in Figure 7(b). In this case, the differences between the two approaches are less relevant; the 

relative error is 2.1 %. However, it is worth to observe that the modification of the thermal response of the network 

may cause important implications in some applications, like for example optimization applications.  

Finally, the results obtained with the one-equation equivalent model are compared to real measurements for validation 

purposes. Figure 8(a) shows the comparison among the measured and computed switch-on time of each user (which 

is represented by the time that is needed by the temperature perturbation to reach each user’s substation). The 

experimental data were obtained from the gathering system of the substations that has a discretization of 5 minutes. It 

is possible to appreciate that the great majority of the computed results are within a 15-minutes tolerance with respect 

to the measured data. In Figure 8(b), the water temperature evolution at the inlet of a user’s substation is reported; in 

this case, the model gives a result that is approximately 6 minutes in advance with respect to the measurements. If one 

considers that the experimental measures are also subject to uncertainty, the computational result turns out to be an 

excellent reproduction of the physical phenomenon. 

 



 
(a) (b) 

FIGURE 7. Temperature of the mass-flow rate coming back to the barycenter (a) and thermal load of the distribution network 

(b) depicted in Figure 2, obtained with the simulation of a 24-hours thermal transient for a typical winter day. The blue line 

represents the solution obtained with the standard one-equation model; the green dashed line represents the solution obtained 

with the equivalent one-equation model. 

 

 

 
(a) (b) 

FIGURE 8. Comparison of the measured and computed switch-on time of each user of the network (a); details of the 

temperature evolution at user 35 (b). 

 

5. Conclusions 

The present work was aimed at assessing the impact of the pipeline thermal capacity in district heating network 

modelling and proposing a proper approach to simulate the thermal transients precisely and with reasonable 

computational costs.  

These goals were reached by comparing four different approaches. The first is based on a single partial differential 

equation, which describes the thermal evolution of water and neglects the influence of the heat capacities of the steel 

and of the insulation, in the wake of what has been done by various authors in literature [12-13,19]. The second one 

uses two partial differential equations to represent the transients in both water and steel, while the heat capacity of the 

insulation is again neglected, as done by [10,15-17]. The third approach involves all the three contributions and is 

made up by three partial differential equations. Finally, a fourth formulation is proposed as an innovative solution that 



combines the heat capacity of steel and water in an equivalent one-equation model, which is based on the assumption 

of equal temperatures in the two bodies. 

The approaches were firstly tested on a transient pure advection problem on a pipe and secondly the standard one-

equation model and the equivalent one-equation model were compared on a real case-study, taken from the Turin 

district heating network. 

The main results of the analysis are the following: 

• the steel heat capacity has a significant influence on the thermal response of the system, being responsible 

for a time delay in temperature propagation; instead, the insulation heat capacity does not make the solution 

much different. Hence, it is worth to include the steel heat capacity in the model, while the insulation heat 

capacity can be neglected without loss of accuracy. 

• the equivalent one-equation model, including water and steel heat capacities in a single partial differential 

equation, appears to be the best choice among the proposed approaches. The approximation introduced is 

affordable and the temperature delay is reproduced in a sufficiently accurate way. Moreover, the use of the 

equivalent one-equation model substantially reduces the computational time required for the simulation (over 

than 96% computation time reduction), making this approach the best trade-off between performance and 

accuracy. 
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Nomenclature 

𝑐𝑝 Specific heat [J/kg/K] Abbreviations and subscripts 

𝑝 Pressure [Pa] 𝐵𝐶𝑇 Barycenter 

𝑡 Time [s] 𝑔 Ground  

𝑇 Temperature [K] 𝑖𝑛𝑠 Insulation 

𝑣 Velocity [m/s] 𝑁𝐵 Number of branches 

𝑉 Volume [m3] 𝑁𝑁 Number of nodes 

𝑥 Position [m] 𝑠 Steel  

  𝑤 Water 

Greek symbols   

𝜌 Density [kg/m3]   

𝜑𝑙𝑜𝑠𝑠 Volumetric heat losses [W/ m3]   

Φ𝑡𝑜𝑡 Total thermal load [W]   
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