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Nicolò Abratea, Sandra Dullaa,b, Piero Ravettoa,b, Paolo Saraccoc

aPolitecnico di Torino, Dipartimento Energia,
Corso Duca degli Abruzzi, 24 - 10129 Torino (Italy)

bI.N.F.N. - Sezione di Torino - Via P. Giuria, 1 - 10125 Torino (Italy)
cI.N.F.N. - Sezione di Genova, Via Dodecaneso, 33 - 16146 Genova (Italy)

Abstract

In this work some characteristics of the eigenvalue problem for the neutron
transport equations are considered. Various formulations are examined, dis-
cussing some theoretical and practical aspects. The standard multiplication
eigenvalue that is particularly relevant for nuclear reactor physics applica-
tions is analysed, together with the time eigenvalue, including also the con-
tribution of delayed neutrons. In addition, the less common collision and
density eigenvalues are also discussed, highlighting interesting physical fea-
tures. A semianalytical approach is developed allowing to evidence some
interesting structures of the eigenvalue spectra.
The study is carried out within the spherical harmonics approach. For the
plane one dimensional geometry, the mathematical relationship between even
and odd-order approximations for the homogeneous form of the equations for
the eigenvalue formulation is investigated. It is shown that the even-order
system of equations can be re-cast in the form of the contiguous lower odd-
order one. Numerical results are obtained in the two-group energy model for
various configurations for which a reference is available, providing also re-
sults for high-order approximations. The study includes a presentation and
discussion of the spectra patterns for the various eigenvalue formulations.
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sandra.dulla@polito.it (Sandra Dulla), piero.ravetto@polito.it (Piero Ravetto),
paolo.saracco@ge.infn.it (Paolo Saracco)

Preprint submitted to Elsevier October 6, 2021



Keywords: PN approximation, spherical harmonics, eigenvalue problems,
neutron transport equation

Foreword by Piero Ravetto

With the death of Massimo Salvatores our community lost a giant. All
those who scientifically interacted with him could immediately realize that
he was no ordinary scientist. Moreover, all those who had the privilege to
know him in person beyond the professional field can attest that he had also
extraordinary human qualities. And he will be sorely missed by all.

Massimo visited Politecnico di Torino many times over the years, to give
seminars, short courses or just to meet. The first time I invited him, he gave
a short course on actinide transmutation and on sensitivity analysis, many
years before these topics became hot issues. He will be always remembered
for his outstanding contributions to the studies on the practical applications
of nuclear energy, but he also contributed significantly to several aspects
of theoretical reactor physics and to neutron transport theory. He never
disowned his original mathematical and physical background, as he earned a
degree in physics at the University of Torino. He was also fond of the beauty
of mathematical elegance.

This work with which my younger colleagues and I wish to contribute to
give honour to his memory addresses some basic mathematical and physical
aspects of the spectrum of the neutron transport equation. When meeting,
we often discussed on the importance of fully understanding the mathemat-
ical subtleties of neutron transport, especially for the education of young
researchers. Within the enormous corpus of his scientific production one can
find various papers on such very fundamental topics.

I personally want to express my deep gratitude to Massimo for his endur-
ing friendship and, at last, for coming to my retirement party at the Inter-
national Conference on Transport Theory held in Paris in September 2019
and I am honoured to have treated him for a beer afterwards. Unfortunately,
that was also the last time I met him.

1. Introduction

The determination of the eigenvalues and eigenfunctions of the neutron
transport equation is one of the fundamental problems in nuclear reactor
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physics. Eigenvalues and eigenfunctions provide an important physical in-
sight into the characteristics of a multiplying system and are very useful for
various applications in both steady-state and dynamic conditions. For real-
istic systems their determination requires sophisticate numerical techniques.
However, the solution of the eigenproblem for simple configurations allows
to understand the physical features of the transport model adopted.

In a recent paper [1], various formulations of the eigenproblem were pre-
sented and discussed within the spherical harmonics approach to the neutron
transport equation. In that study a convergence assessment was carried out,
allowing to investigate some peculiar properties of even and odd-order ap-
proximations from a novel point of view. A further paper [2] is investigating
the possibility to use methods for the acceleration of the process to reach a
high-quality benchmark accuracy in the results, validated by Monte Carlo,
which might, therefore, be useful as a reliable reference for numerical tech-
niques.

The spherical harmonics methodology (often referred to as the PN approx-
imation [3]) is used also in this work that extends and completes the analysis
previously performed. As the interest is mainly analytical, methodological
and didactic, only the one-dimensional planar geometry is here considered.
At first, the relationship between odd and even-order approximations is dis-
cussed for the eigenproblem, showing how it is possible to cast the set of
differential equations for an even-order approximation into the same form
as the equations for the preceding odd-order, by suitably linearly combin-
ing the unknown moments and redefining the coefficients. Afterwards, the
various formulations of the eigenproblem are considered. The interest is es-
pecially focused on the energy features, analysing the multigroup model and
presenting numerical results for the two-group case.

The eigenvalue problem has been given various formulations along the
history of neutron transport. All the different formulations are physically
interesting, as they may highlight some specific features of the transport
process and are all mathematically useful and attractive in order to under-
stand the intricate mathematics connected to the transport equation. For
instance, among other applications, Massimo Salvatores used reactor har-
monics for the investigation of the degree of decoupling of a system and for
the exploitation of higher-order forms of perturbation theory [4].

For standard nuclear engineering applications, mainly the classic mul-
tiplication eigenvalue k has been used, as it can be directly connected to
the approach to reach criticality through the adjustment of the multiplica-
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tive properties of the material constituting the nuclear reactor [5]. More
recently, the time eigenvalue α has attracted some attention, owing to its
strict connection to the time evolution of a non-critical system, in particular
to its asymptotic behaviour when considering the fundamental one [6]. The
α eigenvalue can be introduced in association to the Laplace transform of
the transport equation. If the important effect of the delayed emissions is
also considered, a more complicated eigenvalue model is obtained by applica-
tion of the Laplace transform, where the eigenvalue appears in a non-linear
form strictly related to the theory of omega-modes [7]. This model is worth
studying, as it is of great interest for the rich physical information that can be
retrieved for nuclear reactor kinetics applications and for the interpretation
of neutronic experiments.

More exotic forms of the eigenvalue problem have also been proposed
over the years, since, in principle, it can be assumed the eigenvalue modifies
any term appearing in the transport equation. The collision eigenvalue is
assumed to modify all the emission terms, both scattering and fission [8];
the density eigenvalue modifies all the terms involving a neutron collision [9].
Although these two formulations are mathematically well founded, they have
not attracted much interest from the engineering community and are seldom
considered. Very limited investigations on their physico-mathematical signif-
icance are thus available. In this paper, also these eigenvalues are considered.

2. Mathematical model

The general form of the integro-differential neutron transport model, in-
cluding fission delayed emissions from R precursor families, is given by the
following system of equations:
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(1)

1

v

∂φ(~r, E, Ω̂, t)

∂t
+ ~∇ ·

(
~Ωφ(~r, E, Ω̂, t)

)
+ Σ(~r, E)φ(~r, E, Ω̂, t) =∫

dE ′
∮
dΩ̂′Σs(~r, E

′)φ(~r, E ′, Ω̂′, t)fs(~r, E
′ −→ E, ~Ω · ~Ω′)+

(1− β)
χp(~r, E)

4π

∫
dE ′

∮
d~Ω′ νΣf (~r, E

′)φ(~r, E ′, Ω̂′, t)+

R∑
i=1

χi(~r, E)

4π
λiCi(~r, t) + S(~r, E, Ω̂, t)

∂Ci(~r, t)

∂t
= βi

∫
dE ′

∮
dΩ̂′ νΣf (~r, E

′)φ(~r, E ′, Ω̂′, t)− λiCi(~r, t),

i = 1, . . . , R,

where the symbols here and in the following have their standard meaning,
as defined in all nuclear reactor physics books [5, 10]. The eigenvalue is
introduced when taking the steady-state form of this system of equations
and eliminating the external source. For the purpose of a compact writing,
it is convenient to introduce the following operators:
the streaming operator

T̂ = ~∇ ·
(

Ω̂ ∗
)

; (2)

the removal by collision operator

Σ̂ = Σ(~r, E)∗; (3)

the scattering operator

Ĉ =

∫
dE ′

∮
dΩ̂′Σs(~r, E)fs(~r, E

′ −→ E, ~Ω · ~Ω′)∗; (4)

the prompt fission operator

F̂p = (1− β)
χp(~r, E)

4π

∫
dE ′

∮
d~Ω′ νΣf (~r, E

′)∗; (5)
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the delayed fission operator for the ith delayed precursor family

F̂i = βi
χi(~r, E)

4π

∫
dE ′

∮
dΩ̂′ νΣf (~r, E

′)∗; (6)

the total fission operator

F̂ = F̂p +
R∑
i=1

F̂i; (7)

the net loss operator .
L̂ = T̂ + Σ̂− Ĉ . (8)

Assuming a steady-state situation, the delayed neutron precursor balance
equations can be solved and back-substituted into the neutron balance equa-
tion. Eliminating the source, the following two eigenvalue formulations can
be obtained:
the multiplication eigenvalue (effective multiplication factor) k equation,

L̂φ =
1

k
F̂φ; (9)

and the collision or γ-eigenvalue equation,(
T̂ + Σ̂

)
φ =

1

γ

(
Ĉ + F̂

)
φ . (10)

Alternatively, the so-called time eigenvalue α can be introduced in the bal-
ance equation:

T̂ φ+
(

Σ̂ +
α

v

)
φ =

(
Ĉ + F̂

)
φ, (11)

where the term α/v amounts to a modification of the capture cross section
and should therefore denoted as time capture, rather than the most common
time absorption, which would also involve a modification of the operators
appearing in the right-hand side. In equation (11), the total fission operator
F̂ is considered: physically, this means that the energy aspect of delayed
neutrons is accounted for, but they are assumed to be emitted at the same
time of the fission event.

If the delayed neutrons are explicitly included in the time formulation
of the problem, the delayed neutron precursor equations need to be Laplace
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transformed and the concentrations back substituted into the neutron trans-
port equation. This operation leads to the following time eigenvalue ω equa-
tion:

T̂ φ+
(

Σ̂ +
ω

v

)
φ = Ĉφ+ F̂pφ+

R∑
i=1

λi
ω + λi

F̂iφ . (12)

A further eigenvalue equation can be obtained supposing the eigenvalue
to act on all terms that contain a macroscopic cross section, thus effectively
acting on the density of the material constituting the system where neutrons
are diffusing. This leads to the δ eigenvalue equation:

T̂ φ =
1

δ

(
Ĉ + F̂ − Σ̂

)
φ . (13)

The question arises on the significance of such an artificial operation intro-
duced to reach a steady-state solution. A first observation that might help in
the physical interpretation of the numerical results presented in the following
can be made noticing that both the production (scattering and fission) and
the removal (total collision) terms are modified by the same factor, thus intro-
ducing a “competition” between positive and negative contributions. Quite
differently, the δ factor may be regarded as a modification of the streaming
term, leaving all the other terms unaltered. This action appears to be a
modification of the relationship between the angular current (Ω̂φ) and the
angular flux. Alternatively, one can view this action as operating a re-scaling
of the spatial coordinates. In other words, the eigenvalue is acting to mod-
ify the free-flight kernel of the transport process, as it can be easily verified
by constructing the spatial integral form of the integro-differential equation
(13), with standard mathematical procedures [11].

2.1. PN equations: one- and two-group models

As anticipated, in this article the spherical harmonics PN approximation
[3] for a homogeneous one-dimensional plane system shall be studied: it is
thus worth to report the basic formulae that constitute the model, at least in
the one- and two-group energy group approaches that are used in this work.

In the one-group case, the angular flux shall depend only on one spatial
coordinate x and on the cosine of the azimuthal angle µ, φ(x, µ). Such flux
is represented as a truncated series of Legendre polynomials, namely:

φ(x, µ) =
N∑
n=0

2n+ 1

2
φn(x)Pn(µ) . (14)
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Consequently, the streaming and scattering terms take the form:

T̂ φ = µ
∂

∂x

N∑
n=0

2n+ 1

2
φn(x)Pn(µ)

=
N∑
n=0

2n+ 1

2

dφn(x)

dx

(n+ 1)Pn+1(µ) + nPn−1(µ)

2n+ 1

(15)

and

Ĉφ =
N∑
n=0

2n+ 1

2
Σsfnφn(x)Pn(µ) (16)

where fn are the moments of the scattering function, explicitly defined as:

fn ≡
∫
dµ0fs(µ0)Pn(µ0) . (17)

To simplify notation, it is worth setting the following definitions:

Σn = Σsfn

Fn = νΣf (1− β)δn 0 (18)

Di n = νΣfβiδn 0 , i = 1, 2, . . . , R .

All the eigenvalue problems presented above can be included in the following
system of N + 1 differential equations:

εδ

[
n+ 1

2n+ 1

dφn+1(x)

dx
+

n

2n+ 1

dφn−1(x)

dx

]
+
(

Σ +
εα
v

)
φn(x) =

εγ

[
Σn + εk

(
Fn +

R∑
i=1

λi
λi + εω

Di n

)]
φn(x), n = 0, . . . , N, (19)

where the values of the ε parameters are given in Table 1.
It is easy to generalise the above formulation to multi-group. For instance,

in the two-group case the two-dimensional vector flux shall take the form

~φ =

(
φ1(x, µ)
φ2(x, µ)

)
=

N∑
n=0

2n+ 1

2

(
φ1,n(x)
φ2,n(x)

)
Pn(µ) =

N∑
n=0

2n+ 1

2
~φn(x)Pn(µ).

(20)
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eigenvalue critical value εk εα εω εγ εδ
k 1 1/k 0 0 1 1
α 0 1 α 0 1 1
ω 0 1 ω ω 1 1
γ 1 1 0 0 1/γ 1
δ 1 1 0 0 1 δ

Table 1: The set of ε parameters to be used in eq. (19).

It is then possible to write the streaming and scattering terms as:

T̂ =
N∑
n=0

2n+ 1

2

d

dx

(
φ1,n(x)
φ2,n(x)

)
(n+ 1)Pn+1(µ) + nPn−1(µ)

2n+ 1
, (21)

Ĉ =
N∑
n=0

2n+ 1

2

(
Σ1→1f1→1,n 0
Σ1→2f1→2,n Σ2→2f2→2,n

)(
φ1,n(x)
φ2,n(x)

)
Pn(µ), (22)

with obvious definitions for fg′→g,n.
For conciseness sake, the following matrix operators are introduced,

V̂ =

(
1
v1

0

0 1
v2

)

Σ̂ =

(
Σ1 0
0 Σ2

)
Σ̂n =

(
Σ1→1f1→1,n 0
Σ1→2f1→2,n Σ2→2f2→2,n

)
F̂n =

(
ν1Σf,1χp,1 ν2Σf,2χp,1
ν1Σf,1χp,2 ν2Σf,2χp,2

)
(1− β)δn0

D̂i,n =

(
ν1Σf,1χi,1 ν2Σf,2χi,1
ν1Σf,1χi,2 ν2Σf,2χi,2

)
βiδn0, i = 1, ..., R.

(23)

The eigenvalue problems take the following form that generalises eq. (19):

εδ

[
n+ 1

2n+ 1

d~φn+1(x)

dx
+

n

2n+ 1

d~φn−1(x)

dx

]
+
(

Σ̂ + εαV̂
)
~φn(x) =

εγ

[
Σ̂n + εk

(
F̂n +

R∑
i=1

λi
λi + εω

D̂i n

)]
~φn(x), (24)
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where the ε parameters are again given in table 1. In this work, the eigenvalue
equations are numerically solved with a spatial discretisation based on finite
differences as described in detail in [1].

2.2. The boundary conditions

In this work the classic boundary conditions proposed by Mark [12, 13]
and by Marshak [14] are used. For the sake of completeness, they are briefly
given in the following. A more detailed and thorough treatment and physical
discussion of the problem of boundary conditions can either be found in the
original works by Mark and Marshak or in various books, e.g. [3]. The
solution of the PN system of first-order differential equations introduces a
finite number of degrees of freedom for the moments of the angular flux. It is
therefore impossible to satisfy exactly the correct conditions for the transport
solution that involve the angular flux for all the incoming directions. In the
case of vacuum boundary, the angular flux should vanish for all µ > 0 at a
left boundary and for µ < 0 at a right boundary. In the Marshak formalism,
such a situation is approximated by making to vanish some half-range integral
functionals of the angular flux, namely for a left boundary x=0:∫ 1

0

dµφ(x = 0, µ)Pm(µ) = 0, for m = 1, 3, . . . . (25)

It is worth noticing that this condition for m=1 yields a zero incoming partial
current. In the Mark formalism, the angular flux is imposed to vanish for
a selected set of directions, usually chosen as the roots µi of the Legendre
polynomials PN+1(µ), when N is odd. Therefore, for a left boundary:

φ(x = 0, µi) = 0, (26)

for all N+1
2

positive values of µi.
In the case of an even value of N , one can choose either the roots of the

polynomial PN+1(µ), excluding 0 (option A in the following) or the roots
of PN(µ) (option B). At last, it is worth mentioning that both boundary
conditions lead to negative values of the angular flux at the boundary for some
directions, which may significantly affect the results especially for optically
thin systems.
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3. Some analytical results

The study of eigenvalue spectra through discretisation of the spatial de-
pendence has the great advantage in the possibility to use highly efficient
numerical algorithms for matrix eigenvalue determination: these techniques
have been widely employed in the past and in our previous paper, where also
a vast bibliography can be found [1]. However, a well known side effect of
discretisation is a distortion of the topological disposition of the eigenvalues
in the complex plane and also the possible presence of spurious eigenvalues.

To give some insight on this topic we develop a semi-analytical approach
to the study of α eigenvalues without spatial discretisation. However, the
formal complications of the method make it practically useful only for the
simplest, lower order PN approximations, in contrast to the focus on high N
we followed in [1].

The condition for the eigenvalues derives from imposing proper homo-
geneous boundary conditions to the general solution of the PN system of
differential equations, which, for the case of constant cross sections, is a lin-

ear combination of exponentials of the form eqj(α)x. The arguments of the
exponentials are given in terms of the solutions of the characteristic poly-
nomial, which obviously depend on α (or, more in general, on the chosen
eigenvalue). As we shall see, the knowledge of the explicit relation between
the q’s and α is a required starting point to find the α spectrum. The char-
acteristic polynomial is given by the determinant of a tridiagonal matrix:

det



z −∆0 q 0 0 . . . 0
q
3 z −∆1

2q
3 0 . . . 0

0
2q
5 z −∆2

3q
5 0

... . . . . . . . . .
. . .

0 0 . . . 0
Nq

2N + 1 z −∆N−1


, (27)

where we conveniently defined z = α
v + Σ and ∆n = νΣfδn0 + ηnΣs. It

is immediate to realise, by direct inspection, that the dependence of the
allowed frequencies qj on α is rather involved because the solution of an
N + 1 degree algebraic equation is required. Since it is not possible to find
explicit expressions for the roots of polynomials of degree N > 4, the strategy
we follow is then to find some approximated model in which the allowed q’s
and the eigenvalues can be explicitly determined; after that, we locally search
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the true eigenvalues in the proximity of these approximated values, by means
of well assessed numerical zero finding algorithms, like e.g. a combination of
Newton and secant methods.

By inspection it appears evident that such simple model can be obtained
if no scattering and no fission are present, i.e. for a purely absorbing system:
in such a case all the ∆j vanish and the characteristic polynomial of the PN
system reduces to

QN(q) = det



z q 0 0 . . . 0
q
3 z

2q
3 0 . . . 0

0
2q
5 z

3q
5 0

... . . . . . . . . .
. . .

0 0 . . . 0
Nq

2N + 1 z


. (28)

Such determinants can be evaluated by using the recurrence for the contin-
uants of a tridiagonal matrix

QN = zQN−1 −
(N − 1)2

(2N − 3)(2N − 1)
q2QN−2 Q0 = 1, Q−1 = 0, (29)

yielding easily

QN =
qN+1

CN+1

PN+1

(
z

q

)
, where CN+1 =

2N(3/2)N
(2)N

, (30)

in terms of the Pochhammer symbol (a)n = a(a+ 1) · · · (a+ n− 1) = Γ(a+
n)/Γ(a). According to this expression, the allowed values for q are expressible
by the inverse of the zeros of the Legendre polynomials of order N + 1, say
ξ
(N)
j , multiplied by z: this is precisely the analytic approximate relation for

the allowed values qj(α) we are looking for; it is true for every value of N ,
through the (irrational) zeros of the Legendre polynomials,

q
(N)
j (α) =

α

v
+ Σ

ξ
(N)
j

⇐⇒ LN

(
ξ
(N)
j

)
= 0 , ξ

(N)
j 6= 0 . (31)

The equation for the α eigenvalues derives from the compatibility condition
on the set of equations imposing proper homogeneous boundary conditions.
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In the simplest case, the P1 approximation using Mark boundary condition
(BC)1, we arrive at the condition

cosh(qs)+
5

3
sinh(qs) = 0 =⇒ cosh(

√
3zs)+

5

3
sinh(

√
3zs) = 0 (32)

for a slab of width 2s. In such a simple case, by splitting the real and
imaginary part α = αR + iαI , we conclude that

αR
v

= −Σ− log 2√
3s

,
αI
v

=
nπ√
3s
, (33)

because, remarkably, log 2 = tanh−1
(

3
5

)
. Then, the solution is found and all

the allowed eigenvalues lie on a straight line parallel to the imaginary axis.
We remark that two conditions enabled to find the results: (i) the existence of
an explicit invertible relation q(α), and (ii) the ability to solve the algebraic
equation (32). This second condition is difficult to be realized starting from
N = 3, because the equivalent of condition (32) will be of the form

2N∑
j=1

cje
q
(N)
j (α)s = 0 , j = 1, . . . , 2N (34)

for a slab of width 2s in an odd PN scheme, as it can be verified by direct cal-
culation; the real coefficients cj depend on the specific form of the (vacuum)
boundary condition that is employed. The solution for such a condition can
be a very difficult task in a general case.

A trick is helpful to reach the goal, at least numerically. Mathematica®
[15] is in fact able to solve equations of the form (34), provided the q

(N)
j (α)

are given in terms of rational numbers. Then, we can approximate the zeros
of the Legendre polynomials with rational expressions to find some approx-
imation to the eigenvalues and then use them as starting points for a local
numerical search. In principle this algorithm could be adopted for any N ,
but in practice the evaluation of the coefficients cj may become very heavy.

For the results presented in the following, it is assumed that the half-
thickness of the slab is s = 1 mfp and the particle velocity is unitary. In
Figure 1 we show the result of such algorithm for the P7 approximation. It is

1For which some additional algebraic simplifications occur, being given for µ = ± 1√
3
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Figure 1: The approximated α-spectrum for the P7 case in the complex z plane, when
a two digit decimal approximation to the zeros of the Legendre polynomial is used (left,
black dots); on the right, white dots show the positions of the numerically exact eigenvalues
when only absorption is present. The coloured background is a plot of the argument of the
complex function representing the eigenvalue condition, using a colour function spanning
from −π (yellow) to π (purple) counterclockwise around the zeros.

remarkable to observe that the solutions of the rational approximation to the
eigenvalue condition lie on a set of (N + 1)/2 lines parallel to the imaginary
axis; our guess is that the same happens for any N also for the ”exact”
numerical results which are shown on the right side of the figure.

To conclude, we need to bring back interactions into the game: this can be
done in the same way just shown before, but this time using as starting points
for the search of the zeros the values obtained with the above procedure,
which is effective only if the relation q(α) can be found. We show in Figures
2 and 3 the results for the P1 and P3 cases, respectively. In both cases, the
analytical structure of the compatibility condition for the eigenvalues in the
complex plane is more complicated when interaction is switched on: in P1,
for instance, the relation q(z) changes as

q(z) = ±
√

3
√
z2 −→ ±

√
3
√
z2 − z∆0, (35)

which implies a branch cut from −∆0 to ∆0. An even more involved relation
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is valid in the P3 case, namely:

q(z) = ±

√
90z2 + 55z∆0 ±

√
5z
√

864z2 + 1224z∆0 + 605∆2
0

3
√

2
. (36)

As we noted in a previous paper it is clear from Figure 3 by confronting
the positions of the true eigenvalues with the ones obtained with ∆0 = 0
how the presence of the interaction manifests itself into a sort of repulsion
between different branches of the spectrum, in complete analogy to what
happens for a system of coupled oscillators [1, 16]. It is also clear, by looking
at the two plots at the centre and at the right, how this effect is ruled by the
amount of the interactions itself: this should be expected, but it prevents us
from concluding that the true eigenvalues also lie on a straight line, which is
clearly not true. The fact that the eigenvalues are located on a straight line
in this particular physical case has to be ascribed to the absence of scattering
implying no angular redistribution of particles, thus decoupling the behaviour
of particles moving in different directions. This coupling phenomenon recalls
the physics of two interacting oscillators [16].

4. Even-odd reduction

There is a further relevant point that can be analytically explored: usually
the PN approximation is developed for odd orders, because it is commonly
believed that even ones tend to be less accurate than the previous odd ones
[17, 18]: from a purely mathematical point of view it should be observed
that in the even case the system of PN equations is only apparently an
ordinary system of differential equations, but it can be shown to be really
a differential-algebraic system of equations, which is a system that contains
both differential and algebraic equations, or it is equivalent to such a form
[19, 20]. This can be seen explicitly by simply considering the P2 case that
entails the system: 

φ′1(x) + aφ′0 = 0

2

3
φ′2(x) +

1

3
φ′0 + φ1 = 0

2

3
φ′1(x) + φ2(x) = 0

, (37)
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Figure 2: The approximated α-spectrum for the P1 case in the complex z plane; left:
∆0 = 0, center: ∆0 = 0.5, right: ∆0 = 1. Black dots correspond to no scattering and no
fission (∆0 = 0), white dots are the numerical zeros. The coloured background is a plot
of the argument of the complex function representing the eigenvalue condition, using the
same colour code as in Figure 1.

where a = Σ−∆0. By direct manipulation such a system reduces to
φ′1(x) + aφ′0 = 0(

4

15
a+

1

3

)
φ′0 + φ1 = 0

−2

5
aφ0(x) + φ2(x) = 0

, (38)

where two facts are made explicit: (i) the last equation is algebraic and
simply amounts to a definition of φ2 in terms of lower order moments, and
(ii) the P2 system is made equivalent to a P1 model, with the replacement

1

3
−→

(
4

15
a+

1

3

)
. (39)
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Figure 3: The approximated α-spectrum for P3 in the complex z plane; left: ∆0 = 0,
center: ∆0 = 0.5, right: ∆0 = 1. Black dots correspond to no scattering and no fission
(∆0 = 0.), white dots are the numerical zeros. The coloured background is a plot of the
argument of the complex function representing the eigenvalue condition, using a the same
colour code as in Figure 1.

In the usual P1 approximation the coefficient multiplying φ′0 is related to the
definition of the diffusion coefficient, so that equation (39) suggests the P2

approximation is really equivalent to P1, but with a different diffusion coeffi-
cient. It becomes then legitimate to ask if the same mechanism works also for
higher-order even approximations, that is, if an even-order PN approximation
is effectively equivalent to an (odd) PN−1 with modified coefficients.

It is not difficult to show that this is indeed true, by using a similarity
transformation, derived essentially by an algorithm similar to Gauss reduc-
tion. We give some examples of such algorithm in the case of pure isotropic
scattering in the appendix: remarkably, such algorithm, which for higher
values of N turns out to imply a recursion, is finite because the PN system
is represented by a lower triangular matrix.

The process begins by iteratively solving even-order equations with re-
spect to the highest order moment derivative; in the P4 case, for instance,
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this leads to replacing the last (m = 4) equation with:

φ4(x) = −4

9
φ′3(x) =

4

9

5

3

(
−2

5
aφ0(x) + φ2(x)

)
, (40)

having previously solved m = 0, 2 equations as explained; then φ4 results
directly defined in terms of lower-order even moments. It is clear, by recur-
sion, how this process works for every even-order approximation, because the
sequence of (preceding) even equations enables to find all odd-order deriva-
tives.

Then, after substituting the result for the highest order even angular flux
moment into the previous m = N − 1 = 3 equation, one immediately recog-
nizes that this is not in the required P3-like form because of the presence of
φ0. However, one can now use the even equations to eliminate the unwanted
term(s) iterating, if required; after this step has been performed the m = 3
equation really involves only φ2, as it is in the form of the original P3 system,
with a different coefficient, as expected. Moreover, the equation contains not
simply φ3, but the combination

Φ3(x) = φ3(x)− 4

7

4

9
2aφ0(x) . (41)

This clearly suggests that it is convenient to introduce a new unknown func-
tion, by using the above equation. This replacement, which must be substi-
tuted back into the system, has the side effect of modifying also the m = 2
equation. Then, the suggested algorithm permits to recast the P4 system
into a P3 form, with modified coefficients at the price of a redefinition of the
unknowns through linear combination. This is quite obviously not a prob-
lem to our goal, because we can conclude that the P4 approximation is really
equivalent to a P3 one with ”effective” coefficients.

At higher values of N the same procedure applies, but it turns out that an
iteration is involved because equations - and the corresponding redefinitions
of the unknowns - are even-odd interleaved. Then, a redefinition of some
fixed m flux moment involves not only lower index equation, but also the
(m+ 1)-th one. One is thus led to an iteration, that - as anticipated - always
requires a finite number of steps. This concludes the proof, establishing that
at every even N order we are able to reduce the PN system to the form of an
odd-order one with modified coefficients and with linear combinations of the
unknowns.
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Moreover, clearly all the operations involved in such a proof are equiva-
lence transformations to be operated in sequence on the original system, so
that globally they give rise to an equivalence transformation, that then can be
represented by left and right matrix multiplication operations: left ones cor-
respond to Gauss pivoting to remove unwanted derivative terms from higher
index rows, while right operations correspond to the sequences of required
redefinitions. The question of the physical interpretation of the modified mo-
ments introduced in this reduction remains open and it will be considered in
the future work.

5. Results for a two-group model

In this section the results of the calculations for a two-group model are
presented. The PN equations are solved numerically with the algorithms
described in [1]. Table 4 presents the physical data employed. The data are
taken from [21] and are consistent with the one-speed problem studied in [1],
i.e. they refer to the same Pu-239 critical slab. Since the reference does not
provide the precursors data and neutron velocities, reasonable data for the
system under consideration have been adopted and are included in tables 4
and 5. The delayed fission spectra have been assumed equal to the prompt
ones.

Figures 4 and 5 show the convergence trends for the fundamental eigenval-
ues k, γ, α and δ with 121 spatial meshes. These results are qualitatively very
similar to the one-group results presented in [1], although the δ eigenvalue
was not addressed there. When Mark boundary conditions are imposed, it
is possible to observe that the even PN approximations computed using the
roots of the successive odd-order Legendre polynomial PN+1(µ) (option A)
yield eigenvalues that are larger than the reference critical one. The fact that
the two approximation results envelop the correct ones is a very interesting
feature that could be exploited also for acceleration purposes [22].

An intuitive explanation for this even-order PN feature may be the fact
that the directions associated to the roots of the successive odd-order PN+1

polynomial are more forward peaked than the ones associated to the even-
order PN , as it can be seen from the examples in table 2. As a consequence,
option A effectively introduces a smaller extrapolation distance and therefore
increases the boundary leakage, consistently with the fact that eigenvalues
are larger than the reference values.
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A simple yet physically significant proof of this fact can be derived refer-
ring to the one-speed P1 and P2 models, which are equivalent to diffusion.
Assuming an isotropic scattering and a non-multiplying medium, for the sake
of simplicity, the two models yield respectively

dφ1

dx
+ Σφ0 = Σsφ0

1

3

dφ0

dx
+ Σφ1 = 0

, (42)

and 

dφ1

dx
+ Σφ0 = Σsφ0

2

3

dφ0

dx
+ Σφ1 +

2

3

dφ2

dx
= 0

2

5

dφ1

dx
+ Σφ2(x) = 0

. (43)

With some algebra, it is possible to find
dφ1

dx
= −(Σ− Σs)φ0 = −Σaφ0

φ1 = − 1

3Σ

dφ0

dx
= −DP1

dφ0

dx

, (44)

and 

dφ1

dx
= −(Σ− Σs)φ0 = −Σaφ0

φ1 = −
( 1

3Σ
+

4

15

Σa

Σ2

)dφ0

dx
= −(DP1 +DP2)

dφ0

dx

φ2 = − 2

5Σ

dφ1

dx
= −2

5

Σa

Σ
φ0

. (45)

Imposing Mark boundary conditions on the left boundary leads to the fol-
lowing equations:

φ(x = 0, µ1) =
1

2
φ0(0) +

3

2
µ1φ1(0)

=
1

2
φ0(0)− 3

2
µ1DP1

dφ0

dx

∣∣∣∣
x=0

= 0,
(46)
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and

φ(x = 0, µ∗1) =
1

2
φ0(0) +

3

2
µ∗1φ1(0) +

5

2

1

2
(3µ∗21 − 1)φ2(0)

=
1

2
φ0(0)− 3

2
µ∗1(DP1 +DP2)

dφ0

dx

∣∣∣∣
x=0

+
5

4

2

5

(
3µ∗1 − 1

)Σa

Σ
φ0(0) = 0,

(47)

where µ1 is the positive root of P2 and µ∗1 is either the positive root of P3

(option A) or the positive root of P2 (option B). Similar equations can be
obtained using the negative, symmetric roots for the right boundary.

Defining the extrapolated distance as the ratio between the total flux and
its derivative, it is possible to get

dP1 = 3µ1DP1 =
µ1

Σ
, (48)

and

dP2 =

3

2
µ∗1(DP1 +DP2)

1

2

(
1 + (3µ∗21 − 1)

Σa

Σ

) =

µ∗1
Σ

+
4

5

Σa

Σ2
µ∗1

1 + (3µ∗21 − 1)
Σa

Σ

. (49)

Table 3 helps to understand the behaviour of the extrapolated distance
with respect to the approximation order and the boundary condition option
adopted. For a purely absorbing medium, the largest extrapolated distance
is obtained with option B. On the contrary, when a non-absorbing medium is
considered, option A yields the largest extrapolation distance, while option B
provides the same distance as P1. In the case of an intermediate situation, the
extrapolated distances computed using the two even-order cases are similar.
As it can be noticed from eq. (48) and (49), i) the extrapolation distances
are fixed when P1 and P2 with option A are considered, ii) dP1 is always
smaller than dP2 with the same option. These observations allow to induce
that, while the convergence for the even-order PN with option B may be case-
dependent, the eigenvalue sequences computed with an even PN with option
A should always converge from the opposite side of sequences computed with
an odd-order situation.

In the case the roots of the even-order Legendre polynomial PN(µ) are
considered (option B), the eigenvalues are less accurate than the ones com-
puted with the previous PN order, yielding almost always to higher errors,
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i

2 0.57735
3 0.77459
4 0.33998 0.86114
5 0.53847 0.90618
6 0.23862 0.66121 0.93247
7 0.40585 0.74153 0.94911

Table 2: Positive roots for some Legendre polynomials [23].

[cm−1] P1 P2 (A) P2 (B)

Σa=0
d 0.57735 0.77460 1.03923
D 0.33333 0.60000 0.60000
d/L 0.99999 1.00000 1.34164

Σa=0.5
d 0.57735 0.77460 0.80829
D 0.33333 0.46667 0.46667
d/L 0.70710 0.80179 0.83666

Σa=1
d 0.57735 0.77460 0.57735
D 0.33333 0.33333 0.33333
d/L 0 0 0

Table 3: Extrapolated distance d, expressed in cm, diffusion coefficient D, expressed in
cm, and extrapolated distance to diffusion length ratio L, for P1 and P2 with options A
and B for medium with Σ = 1 cm−1.

with the exception of P2 with respect to P1. This fact may help reconsidering
P2 as a viable alternative to P1.

When Marshak boundary conditions are imposed, both even- and odd-
order approximations lead to eigenvalues that are smaller than the reference,
with some notable exceptions regarding P2 and P4, in analogy with what
observed in the one-group case. The reader is referred to [1] for a possible
justification of this peculiar behaviour.

For both Mark and Marshak cases, the α eigenvalue results show abso-
lute errors that are much larger than for the other cases, where the error
is expressed in pcm. It should be remarked though that, in the transport
equation, α is divided by the neutron velocity, which makes the time capture
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term very small indeed.

ν1 Σ1 Σf,1 Σ1→1 Σ1→2 χ1 v1
−1

3.1 0.22080 0.09360 0.07920 0.04320 0.575 4.53849E-08

ν2 Σ2 Σf,2 Σ2→1 Σ2→2 χ2 v2
−1

2.93 0.33600 0.08544 0 0.23616 0.425 2.18142E-06

Table 4: Material data for the case study adopted to investigate the rôle of boundary
conditions and parity order. The data are taken from ref. [21] (two-group Pu-239 slab).
The data have their usual dimensions: cross sections are expressed in cm−1, the inverse of
the velocity is expressed in s/cm while the number of neutrons emitted by fission and the
fission spectra are dimensionless. Scattering is assumed isotropic. The critical thickness
is equal to 3.5912040 cm.

i λi [s−1] βi [−]

1 0.0133826 8.86440 · 10−05

2 0.0308055 6.75625 · 10−04

3 0.1170030 5.37368 · 10−04

4 0.3066840 1.22693 · 10−03

5 0.8780670 7.10462 · 10−04

6 2.9378800 2.50592 · 10−04

Table 5: Delayed neutron precursors family data for the cases presented throughout the
paper.

Tables 6 and 7 show the fundamental eigenvalues for all the formulations
considered in this paper computed with relatively high-order PN approxima-
tions. The purpose of such tables is two-fold: i) observing the convergence
trend shown in figs. 4 and 5 for more accurate approximations, ii) providing
reference results, since, to the authors’ knowledge, high-order PN calculations
for these eigenvalues are completely missing in the literature.

It is interesting to notice that up to P202 adopting option A the eigenvalues
k, γ and δ are still larger than the reference, while starting from P401 both
options A and B yield values that are smaller than the reference, suggesting
that there is a certain order for which the error is minimum. A similar
behaviour occurs also for α and ω, although the latter keeps always the
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Figure 4: Convergence of the fundamental values for k, γ, α and δ, adopting Mark bound-
ary conditions.

same sign. The justification of this trend may be the lack of accuracy in the
critical thickness of the slab, which is provided in [21] with only 5 significant
digits. Another interesting feature that can be observed in the tables is
the fact that ω is much closer to 0 than the prompt time eigenvalue α.
This behaviour can be justified considering the presence of the clusters of
delayed eigenvalues, which force the fundamental eigenvalue to be larger
than -λ1, consistently with elementary nuclear reactor physics and also more
sophisticated approaches [24, 25].

Figure 6 shows the fundamental eigenfunctions and the associated spec-
tral index (ratio between fast and thermal distributions) for a close-to-critical
and two off-critical cases, in order to appreciate the behaviour of the har-
monics with respect to the eigenvalue formulations. The distributions have
been computed using P51 with Mark boundary conditions and 121 spatial
meshes. For the sub- and super-critical cases the critical thickness has been
halved and doubled, respectively. As expected, the eigenfunctions cannot be
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Figure 5: Convergence of the fundamental values for k, γ, α and δ, adopting Marshak
boundary conditions.

easily distinguished when the system is very close to criticality, while their
behaviour is quite different in the sub- and super-critical cases. The direct in-
spection of the graphs for the spectral indices shows that even far away from
the boundaries no space-energy separability [5] is shown. This is consistent
with the small optical dimensions of the systems adopted in the reference
cases.

6. Time eigenvalue spectra

In this section we present the spectra of the time eigenvalues α and ω.
The spatially discretised version of the PN equations leads to a finite set of
eigenvalues. The main goal of this section is to provide an idea of the effect
of the different PN approximation orders on the pattern of the eigenvalue
spectrum.
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N
BC k γ δ α ω

option [-] [-] [-] [s−1] [s−1]

201 0.9999678725 0.9999803980 0.9999518269 -8.6828282535 -0.0008211782

202
B 0.9999622839 0.9999769882 0.9999434487 -10.1932439604 -0.0009593605
A 1.0000077738 1.0000047430 1.0000116573 2.1009131707 0.00020570523

401 0.9999755828 0.9999851023 0.9999633873 -6.5990034889 -0.0006282912

402
B 0.9999758138 0.9999852433 0.9999637337 -6.5365820922 -0.0006224728
A 0.9999879542 0.9999926505 0.9999819373 -3.2554890613 -0.0003133042

601 0.9999772297 0.9999861072 0.9999658567 -6.1538958367 -0.0005867509

602
B 0.9999777461 0.9999864223 0.9999666310 -6.0143364578 -0.0005737018
A 0.9999835466 0.9999899613 0.9999753284 -4.4466753337 -0.0004263066

801 0.9999779404 0.9999865408 0.9999669223 -5.9618235960 -0.0005687884

802
B 0.9999783105 0.9999867666 0.9999674772 -5.8618085744 -0.0005594263
A 0.9999817887 0.9999888887 0.9999726924 -4.9217874910 -0.0004711359

1001 0.9999783238 0.9999867747 0.9999674972 -5.8582115034 -0.0005590894

Table 6: Values of fundamental k, γ, δ, α and ω for various PN orders and Mark boundary
conditions using 121 spatial meshes.

Figure 7 compares the spectra computed with P1, P3 and P7 when only
prompt, α, or prompt and delayed neutrons, ω, are considered. The dif-
ference between the two cases cannot be appreciated ictu oculi, as both the
distribution and the values in the complex plane are approximately the same,
except for the region around the origin, that for scale reasons is not well re-
solved. The difference between the two spectra in this region can be observed
in fig. 8.

The prompt eigenvalues are by far larger than the delayed ones, which
cluster as the roots of the in-hour equations, approaching the values -λi, i =
1, ..., R [7]. Also in the two-group case, it is possible to observe that the
eigenvalues are distributed in different sets, which can be interpreted referring
to the relationship with a N + 1 discrete directions model. Moving from one
odd approximation to the next odd one, the eigenvalues present a new pattern
involving the addition of two pitches towards the negative portion of the real
axis. Since the roots of the Legendre polynomials are symmetric with respect
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N
k γ δ α ω
[-] [-] [-] [s−1] [s−1]

201 0.9999757396 0.9999851980 0.9999636225 -6.5566304223 -0.0006243417
202 0.9999798359 0.9999876973 0.9999697648 -5.4495411470 -0.0005207699
401 0.9999781586 0.9999866739 0.9999672495 -5.9028576703 -0.0005632693
402 0.9999804984 0.9999881015 0.9999707578 -5.2704980078 -0.0005039507
601 0.9999786556 0.9999869772 0.9999679947 -5.7685302820 -0.0005506890
602 0.9999799800 0.9999877852 0.9999699804 -5.4106092928 -0.0005171149
801 0.9999788751 0.9999871111 0.9999683238 -5.7092086649 -0.0005451298
802 0.9999796438 0.9999875801 0.9999694764 -5.5014640514 -0.0005256448
1001 0.9999789882 0.9999871801 0.9999684934 -5.6786445762 -0.0005422648

Table 7: Values of fundamental k, γ, δ, α and ω for various PN orders and Marshak
boundary conditions using 121 spatial meshes.

to the real axis origin, also the eigenvalues are symmetric with respect to the
real axis in the complex plane.

The impact of the even-order approximation on the time delayed spec-
trum can be appreciated in fig. 9. As it can be clearly seen, the overall shape
of the spectrum is preserved, as expected, with respect to the preceding odd-
order. Therefore, the only effect is a slight distortion in the eigenvalues
distribution.

7. Density eigenvalue spectrum

This section is devoted to investigate on the physical meaning of the most
exotic and less studied eigenvalue among the ones presented in this paper,
i.e. the effective density (or streaming) one. We start considering a purely
absorbing medium and progressively adding scattering and fission, leading
to four cases whose data are summarized in Table 8.

Figure 10 shows the spectra for the purely absorbing medium (case A in
table 8), evaluated with increasing odd- and even-orders. It is of paramount
importance to remark that, while the odd-order spectra are fully described
by these plots, the even-order cases are only a zoom that excludes a set of
extremely large eigenvalues (∼ 1015). The appearance of such eigenvalues
may be justified by the fact that the streaming operator, whose eigenvalue
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Figure 6: Fundamental eigenfunctions (left) and spectral indeces (right) for the five eigen-
problem formulations in sub-critical (k=0.61421, top), close-to-critical (k=0.99976, center)
and super-critical (k=1.52469, bottom), using a P51 approximation with Mark boundary
conditions using 100 spatial meshes.

is δ itself, is singular when the even-order PN is employed, consistently with
the proof provided in section 4. This mathematical justification may be
strengthened also by a physical fact: in analogy with the SN approach, even-
order approximations introduce a streaming direction that is parallel to the
slab boundaries, µN/2+1 = 0. Neutrons streaming along this direction would
never leak out of the system, leading to an algebraic equation that may be
expressed using the equivalent SN+1 model [26]

µN/2+1

∂φ(x, µN/2+1)

∂x
= −1

δ
Σφ(x, µN/2+1) = 0. (50)

Assuming Σ and φ are non-zero, eq. (50) can be satisfied only if δ → ∞.
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Figure 7: Spectra of α (left) and ω (right) eigenvalues for a slab in the two-group energy
model for P1, P3 and P7 approximations (from top to bottom). The blue star is the
fundamental eigenvalue.

Similarly to previous eigenvalue formulations, the increasing PN order intro-
duces more patterns in the δ spectrum, while the odd-even order comparison
results into a distortion of such patterns.

Figure 11 shows that δ eigenvalues can be either positive or negative:
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Figure 8: Spectra of α (left) and ω (right) eigenvalues for a slab in the two-group energy
model for P7 approximation. The blue star is the fundamental eigenvalue, while the black
dashed lines are located at -λ1, ..., -λ6.

Figure 9: Spectra of ω eigenvalues for a slab in the two-group energy model for P1, P2,
P3, P4, P7 and P8 approximations (from left to right and from top to bottom). The blue
star is the fundamental eigenvalue. Columns 2 and 4 zoom the spectra near the origin.

this is due to the particular rôle played by this eigenvalue, which modifies all
collision terms that give a competing contribution in the balance equation,
as previously observed.

The introduction of the δ eigenvalue opens several theoretical problems
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Case Σs,0 Σf ν
A 0 0 0
B 0 0.05 2.5
C 0 0.5 2.5
D 0.5 0.5 0

Table 8: Material data for the cases adopted to investigate the δ eigenvalue spectra in the
one-speed formulation. Cross sections are expressed in cm−1. The medium is characterized
by Σ=1 cm−1. The slab thickness is equal to 3.5912040 cm.

and intricacies in its physical interpretation. In a further work, these aspects
will be considered in some more detail.

8. Conclusions

In this paper, all the known eigenvalue formulations of the neutron trans-
port equation have been addressed in the framework of the plane geometry
PN approximation. In addition to the classical formulations, i.e. multipli-
cation (k), collision (γ) and prompt time (α) eigenvalues, also the density
eigenvalue δ and the delayed time eigenvalue ω have been analysed.

The first part of the paper presents a semi-analytical approach for the
calculation of the one-group α spectrum in the idealised case of a purely
absorbing medium. Remarkably, this is a very particular situation because
only thanks to the use of a Legendre expansion of the transport equation it
is possible to obtain an α spectrum, which would not be present in the same
limit for the exact transport equation or its discrete ordinates formulation.
Then, the same approach is used to study the spectrum modification when
scattering and fission are considered.

Afterwards, we provide a proof of the fact that it is possible, in general,
to cast an even-order PN equation in plane geometry into an equivalent, yet
different, odd-order formulation. This evidence justifies the historical prefer-
ence, within the transport community, for the odd-order PN approximations
rather than the successive even-order one.

In the second part of the paper, we study the angular convergence be-
haviour for a Pu-239 critical slab in a two-group model , obtaining trends
that are very similar to the ones already observed in [1] for a one-group prob-
lem, using both Mark and Marshak boundary conditions. The impact of the
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Figure 10: Spectra of δ eigenvalues for a slab in a one-group model for P1, P2, P3, P4, P7

and P8 approximations in absence of scattering, with Mark boundary conditions. The blue
star is the fundamental eigenvalue. The plots on the right (even-order PN ) are zoomed in
order to exclude very large eigenvalues that appear in the spectrum.

PN order on the eigenvalues convergence is studied also for relatively high N ,
showing once again the same trend. These results highlight a very interesting
and useful feature of the eigenvalue sequences when Mark boundary condi-
tions are imposed. As a matter of fact, both odd- and even-order sequences
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Figure 11: Spectra of δ eigenvalues for a slab in a one-group model for P7 approximations,
with Mark boundary conditions. Top-left is case A, top-right is case B, bottom-left is case
C and bottom-right is case D. The blue star is the fundamental eigenvalue.

converge from opposite sides to the reference values when the angular flux is
made to vanish in the directions corresponding to the roots of the Legendre
polynomial PN+1(µ), where N is the approximation order adopted, even or
odd. This property discloses the possibility to get very accurate estimates of
the eigenvalues using suitable acceleration techniques that could thus benefit
also from even-order approximations.

Finally, the spectra of ω and δ are studied with respect to the N approx-
imation order. While the ω spectrum is not much affected when an even-
order PN is adopted instead of an odd-order one, the δ spectrum presents
very large, spurious eigenvalues, which may be physically explained thanks
to the PN -SN+1 equivalence.

Future work will be devoted to study eigenvalue convergence acceleration
and to extend this analysis also to reflected systems, in order to evaluate
the influence of non-multiplying media on the different eigenvalue spectra,
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especially δ and ω. Furthermore, a deeper analysis of the mathematical
features and physical meaning of the density eigenvalue is necessary to better
understand its characteristics and to open the possibility of its application
for reactor physics.

In the future work we plan also to investigate further formulations of the
eigenvalue problem, such as the capture eigenvalue, involving a modification
only on the capture cross sections. This formulation would be of practical
interest for applications in the field of control engineering of nuclear reactors.
At last, other transport models should be investigated, e.g. discrete ordinates
and models based on the integral transport equation.

Appendix A. Even to odd reduction as equivalence transforma-
tion

Two matrix Â and B̂ are said to be equivalent if there exist invertible
matrices Q̂ and P̂ such that

B̂ = Q̂−1 · Â · P̂ . (A.1)

Equivalent matrices represent the same linear transformation V −→ W with
two different choices of the basis in V and in W ; the set of operations known
as Gauss elimination process is an example of equivalence transformation.

Here we explain how to build the matrices necessary to reduce an even
PN system to its equivalent PN−1, as it was outlined in the main text. First,
we convert the original system to a purely algebraic one by taking its Laplace
transform. Then, the first operation is to find the solution for the highest an-
gular flux moment: this corresponds to finding the sequence of row operations
enabling to remove any dependence from the complex Laplace frequency ω.
This can be done by recursively eliminating terms of the last line depending
on ω by using, to this purpose, the row displaying an ω dependence as the
last non-vanishing element. The fact that this is always possible is a trivial
consequence of the tridiagonal structure of the PN system.

Every operation of such sequence is an elementary operation from the
Gauss reduction set and it has unitary determinant; moreover, they commute
one with each other. At the end of the sequence, the last line does not depend
on ω and its last element is equal to 1. Then, we use again Gauss elimination
to remove the highest angular flux moment from the rest of the system, by
using the modified last line.
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To make the element Bmn of a given matrix vanish, we need simply to
subtract from its m-th line the k-th one multiplied by −Bmn/Bkn, provided
naturally that Bkn 6= 0: this is done by left multiplication by an identity
matrix of the same dimension of the number of rows in B̂ - in such a way
that the matrix product is properly defined - with also a 1−Bmn/Bkn term
at the k-th column. This has the side effect of changing also other elements
of the same row: however, the number of elements in the row that depends
on ω is reduced by 1. In such a way we conclude to be always able to find a
matrix equivalent to the original one depending (linearly) on ω only on the
super and subdiagonals.

However, the procedure is not terminated because other terms indepen-
dent on ω can remain on the line under examination: to get rid of them -
leaving only a tridiagonal subsystem with the required features - we resort
to a redefinition of the unknowns. This can be done by right multiplying by
a proper matrix.

Having sketched the procedure, we show it explicitly at work in the case
of the reduction of P̂6, which begins considering the 7× 7 matrix

P̂6 =



a ω 0 0 0 0 0
ω
3 1 2ω

3 0 0 0 0

0 2ω
5 1 3ω

5 0 0 0

0 0 3ω
7 1 4ω

7 0 0

0 0 0 4ω
9 1 5ω

9 0

0 0 0 0 5ω
11 1 6ω

11
0 0 0 0 0 6ω

13 1


. (A.2)

A first sequence of 3 Gauss eliminations enables to find the solution for φ6

L̂3 · L̂2 · L̂1 · P̂6 =



a ω 0 0 0 0 0
ω
3

1 2ω
3

0 0 0 0
0 2ω

5
1 3ω

5
0 0 0

0 0 3ω
7

1 4ω
7

0 0
0 0 0 4ω

9
1 5ω

9
0

0 0 0 0 5ω
11

1 6ω
11

−16a
65

0 8
13

0 −54
65

0 1


, (A.3)

that, as anticipated, informs us that φ6 is not an unknown, being simply

−16a

65
φ0(x) +

8

13
φ2(x)− 54

65
φ4(x) + φ6(x) = 0 , (A.4)
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thanks to a sequence of 3 successive Gauss eliminations L̂1, L̂2 and L̂3 to
remove sequentially the ω dependencies from row m = 6, column n = 5
using the pivot at line m = 4, then the induced dependency at row m = 6,
column n = 3 with the pivot in line m = 2, finally the one in row m = 6,
column m = 1. This has been accomplished by the 3 matrices L̂1, L̂2 and L̂3,
globally resulting into the transformation:

L̂3 · L̂2 · L̂1 =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
−16

65
0 8

13
0 −54

65
0 1


. (A.5)

The expression in eq. (A.4) can be replaced - by using a similar L̂4 matrix
into the m = 5 equation to remove the ω dependence from the last term of
row m = 5: to do this, clearly we have to multiply the row m = 6 by ω, so
modifying the dependency on ω of the transformed matrix:

L̂4 · L̂3 · L̂2 · L̂1 · P̂6 =



a ω 0 0 0 0 0
ω
3

1 2ω
3

0 0 0 0
0 2ω

5
1 3ω

5
0 0 0

0 0 3ω
7

1 4ω
7

0 0
0 0 0 4ω

9
1 5ω

9
0

96aω
715

0 −48ω
143

0 59ω
65

1 0
−16a

65
0 8

13
0 −54

65
0 1


. (A.6)

Remarkably, L̂4 does not commute with L̂3 · L̂2 · L̂1: it has been inserted on
the left because this transformation must happen after the others. We now
have to play the same game to remove the first two ω dependencies from line
m = 5, the last being the required one.

With other two transformations L̂5, L̂6 (with pivot respectively at rows
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m = 0 and m = 3), this can be easily done, yielding:

L̂6 · L̂5 · L̂4 · L̂3 · L̂2 · L̂1 · P̂6 = (A.7)

.



a ω 0 0 0 0 0
ω
3

1 2ω
3

0 0 0 0
0 2ω

5
1 3ω

5
0 0 0

0 0 3ω
7

1 4ω
7

0 0
0 0 0 4ω

9
1 5ω

9
0

0 −288a
715

0 448a
715

+ 112
143

256aω
715

+ 969ω
715

1 0
−16a

65
0 8

13
0 −54

65
0 1


.

Here, as anticipated in the main text, the suggestion is to redefine the variable
φ5(x) in such a way to remove the unwanted terms in columns n = 1 and
n = 3; this can be done by the right multiplication by R̂1

R̂1 =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 288a

715
0 −448a

715
− 112

143
0 1 0

0 0 0 0 0 0 1


, (A.8)

which again is manifestly non-singular. The result is

a ω 0 0 0 0 0
ω
3

1 2ω
3

0 0 0 0
0 2ω

5
1 3ω

5
0 0 0

0 0 3ω
7

1 4ω
7

0 0
0 32aω

143
0 4ω

429
− 448aω

1287
1 5ω

9
0

0 0 0 0 256aω
715

+ 969ω
715

1 0
−16a

65
0 8

13
0 −54

65
0 1


. (A.9)

We proceed as outlined by eliminating the ω dependent term at row m = 4,
column n = 1; by inspection this yields to the replacement (matrix R̂2, not
explicitly shown)

−80a

143
φ2 + φ4 = Φ4, (A.10)

in such a way to recast also the row m = 4 into the desired form. However,
this substitution modifies also the m = 5, 6 equations that depend on φ4,
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forcing to repeat the elimination procedure from row m = 5 where a new
term proportional to φ2 appeared, but, and this ensures the process is finite,
with a lower number of elements to be modified:(

4096a2ω

20449
+

15504aω

20449

)
φ2 +

(
256aω

715
+

969ω

715

)
Φ4 + Φ5. (A.11)

The term proportional to φ2 must be eliminated using the pivot in line m = 3,
then a new variable is introduced through

−((112a(969 + 256a))

(143(429 + 320a)))
φ3 + Φ5 = Ψ5 , (A.12)

where Φ5 was introduced using the matrix R̂1. To summarize, the original
P̂6 matrix is transformed into the equivalent

P̂ ′6 =



a ω 0 0 0 0 0
ω
3 1 2ω

3 0 0 0 0
0 2ω

5 1 3ω
5 0 0 0

0 0 (320a+429)ω
1001 1 4ω

7 0 0

0 0 0 4(3−220a)ω
1287 + 560a(256a+969)ω

1287(320a+429) 1 5ω
9 0

0 0 0 0 3(256a+969)ω
5(320a+429) 1 0

− 16a
65 0 8

13 −
864a
1859 0 − 54

65 0 1


,

(A.13)

where the last line expresses explicitly the solution for φ6 and the remaining
part is a P̂5-like matrix with modified coefficients. At last, we remark that,
after this procedure, the interpretation of the new flux moments is not trivial
because of the sequence of redefinitions that has been carried on.
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