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1 INTRODUCTION TO MULTIPHASE FLOWS

1 Introduction to multiphase flows

The objective of these notes is to describe the different types of multiphase flows that
are typically encountered in nature and in engineering applications and the corresponding
computational models that can be used for their simulation. Multiphase flows are char-
acterized by the simultaneous presence of different phases. A first classification can be
based on the number of phases present. Most multiphase systems are characterized by
the presence of two phases only and they are generally referred to as two-phase flows. As
depicted in Fig. 1 different types of multiphase flows are encountered, namely:

Figure 1: A possible classification of multiphase systems based on the type of phases
involved.

• gas-liquid,

• gas-solid,

• liquid-solid,

• liquid-liquid.

In some cases more than two phases are present, as for example in the case of gas-liquid-
solid systems, and these are referred to as three-phase flows.

This classification is not exhaustive, as in some cases multi-phase systems can be
observed when three (or more) immiscibile liquids are mixed together. Another example
can be the case of a gas transporting both droplets and solid particles. However with
a reasonable degree of approximation what depicted in Fig. 1 can be used as a working
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1 INTRODUCTION TO MULTIPHASE FLOWS 1.1 Gas-liquid systems

definition of multiphase flow. Readers interested in more details can refer to the specialized
literature (Prospetti and Grétar, 2007; Marchisio and Fox, 2007; Bird et al., 1960; Clift
et al., 1978; Marchisio and Fox, 2013).

Another important definition is that of dispersed and separated flows, depicted in Fig. 2.
The former (i.e. dispersed) being those consisting of finite particles, droplets or bubbles
distributed within a continuous phase. The latter (i.e. separated) is defined as consisting
of two or more continuous streams of fluids separated by interfaces. Only gas-liquid and
liquid-liquid systems can be separated. It is important to highlight that in many practical
applications (such as for example during boiling flows) a system can be simultaneously
dispersed and separated.

Figure 2: Sketches representing separated or dispersed multiphase flows. A dispersed
system (c) is characterized by individual bubbles, droplets or solid particles. A separated
flow (b) is characterized by continuous streams of the involved phases separated by an
interface. It is important to highlight that in many practical applications (such as for
example during boiling flows) a system can be simultaneously dispersed and separated
(a).

1.1 Gas-liquid systems

Gas-liquid systems are encountered in numerous engineering applications and can be clas-
sified depending on the type of flow regimes and the type of flow structures observed, as
depicted in Fig. 3 . For example, when a liquid and a gas are flowing together in a pipe
and depending on the relative flow rates of the two phases different regimes are observed.
For a given liquid flow rate, when the gas low rate is low, typically the gas appears in
the form of individual bubbles, resulting in the so-called bubbly flow. Under these con-
ditions the liquid can be defined as continuous phase, also referred to as primary phase,
whereas gas bubbles can be defined as disperse phase, also referred to as secondary phase.
When the gas flow rate is increased the resulting regimes are classified as: slug flow,
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1.1 Gas-liquid systems 1 INTRODUCTION TO MULTIPHASE FLOWS

semi-annular flow and annular flow. Under these conditions it is not possible to identify
a continuous phase and a disperse phase and the two phases can be locally continuous or
disperse. When the gas flow rate is much larger than the liquid flow rate, phase inversion
occurs and the misty flow regime is observed, in which the continuous primary phase is
the gas and the disperse secondary phase is the liquid. Under these conditions the liquid
appears in the form of individual droplets, which depending on their size can be classified
as aerosol, although the word aerosol is also used to identify a gas carrying around small
solid particles. Systems in which liquid droplets are dispersed into a continuous gas phase
are also referred to as sprays.

Figure 3: A possible classification of gas-liquid flows.

Engineering applications. Gas-liquid systems are omnipresent in engineering applica-
tions, such as for example in boiling flows, for energy production processes or cooling, in
pipelines of the oil and gas industry, or in chemical reactors. Numerous chemical pro-
cesses are conducted in reactors called bubble columns, with no moving parts, in which
gas bubbles are dispersed in a liquid to promote mass and heat transfer between the two
phases to conduct, under controlled conditions, chemical reactions. Other applications
in the chemical industry involve gas-liquid stirred tanks, in which the contact between
phases is helped by mechanical stirring. Figure 3 depicts four different reactor configura-
tions employed for example in fermentation processes and bioreactors in general. Relevant
examples can be found in the specialized literature (Li et al., 2021, 2020, 2019; Gemello
et al., 2019; Shiea et al., 2019).

Misty flows are encountered in filters and separators, in which the liquid droplets are
removed from the gas by using a porous medium or repeated obstacles. Sprays are very
common in industrial painting, as well as in combustion processes, where a liquid fuel
is atomized into small droplets that then evaporates to react with the surrounding gas
phase. A typical evaporating spray is sketched in Fig. 5 together with the phenomena
involved. The first atomization is called primary breakup, followed by the rupture of the
droplets into smaller droplets, referred to as secondary breakup.
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1 INTRODUCTION TO MULTIPHASE FLOWS 1.2 Gas-solid systems

Figure 4: Four different reactor configurations for gas-liquid systems: (a,b) gas-liquid
stirred tank with different feeding strategies and (c,d) bubble columns with different design
options to favor the contact between phases.

1.2 Gas-solid systems

In gas-solid systems the gas phase carries around solid particles. These systems are
generally always disperse, in the sense that it is always possible to identify a continuous
phase, the gas, and a disperse phase, the solid particles. The solid particles typically
interact with the surrounding gas phase by exchanging mass, momentum and energy, and
interact with each other via collisions. Depending on the solid concentration different
regimes can be identified. At low solid particle concentration collisions are not frequent
and the most relevant phenomena are limited to the interaction between the solid and
the gas phases. This is the so-called kinetic regime. When the solid content increases
collisions are more important and dominate the dynamics of the system, resulting in the
so-called collisional regime. When the solid content is further increased the enduring
contacts between particles control the corresponding transport phenomena and this is
called the frictional regime.

Engineering applications. Gas-solid systems are encountered in nature, when solid parti-
cles are transported by a gas flow, as for example in sand storms or vulcano’s eruptions. In
engineering applications gas-solid flows are common in pneumatic transport or in fluidized
beds. Fluidized beds are employed in the chemical industry for combustion, polymeriza-
tion and gassification processes. Figure 6 depicts what happens at increasing gas flow
rates in a typical fluidized bed. At the low gas flow rate the bed of solid particles is
packed and the particles remain deposited at the bottom of the reactor. When the gas
flow rate is increased over a critical value, called minimal fluidization velocity, the drag
force exerted on the particle is enough to suspend them in what is called the homogeneous
fluidization regime. When the gas flow rate is further increased flow instabilities induce
the formation of gas bubbles that grow as they rise and leave the bed, in what is called
the bubbling flow regime. Further increase of the gas flow rate induces the development
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1.3 Liquid-solid systems 1 INTRODUCTION TO MULTIPHASE FLOWS

Figure 5: Sketch representing a spray and the phenomena involved in its formation, namely
primary and secondary breakup.

of other flow regimes depicted in the figure. At last it can be mentioned that gas-solid
granular flows are also very common in the pharmaceutical industry. Relevant examples
can be found in the specialized literature (Pollack et al., 2019; Salenbauch et al., 2019).

1.3 Liquid-solid systems

In liquid-solid systems solid particles, which constitute the secondary disperse phase,
are suspended in a liquid resulting in flow configurations that are very similar to those
exhibited by gas-solid systems. The main difference is that here the continuous phase is a
liquid, that being generally more dense and viscous of a gas, makes particle collisions less
important. These flows are dominated by the interaction between the solid particles and
the surrounding liquid phase and a crucial parameter is played here by the particle size.
When the particle size is very small the solid particles tend to move together with the fluid
and the liquid-solid system is treated as a pseudo-single phase system. For larger particle
sizes inertial effects start to be important and the solid particles tend to move with their
own velocity. Under these conditions the system cannot be treated as a pseudo-single
phase system and other approaches are needed. To distinguish between one regime and
the other a dimensionless number, the Stokes number, is typically introduced. This will
be discussed later in Section 1.6.

Engineering applications. Liquid-solid flows are very frequent in nature, as in many
environmental applications solid particles are transported by a liquid (typically water)
in rivers, lakes and aquifers. Liquid-solid flows are also common in the chemical, phar-
maceutical and food industries. One important application that is worth mentioning is
crystallization, a very popular separation method. In crystallization processes solid for-
mation is induced in a liquid by changing the solubility of a substance by displacing a
solvent or by changing the temperature. Solid particle formation is governed by nucleation
which can be homogeneous or heterogeneous, depending on the characteristic value of the
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1 INTRODUCTION TO MULTIPHASE FLOWS 1.4 Liquid-liquid systems

Figure 6: Fluidization regimes in fluidized beds. From left to right: fixed bed, bubbling
regime, slugging regime, turbulent regime, fast fluidization and pneumatic conveying or
transport.

driving force, which is known as supersaturation. After particles are formed they can
grow continuously, due to the addition of single molecules of the solute, or via aggrega-
tion. During aggregation formed particles can collide and stick together forming a larger
particle called aggregate or agglomerate. In a typical crystallization process, particles
can also undergo breakage, due to fluid dynamics stresses or impact of the particle on a
surface, either a wall of the crystallizer or the blade of an impeller. Relevant examples
can be found in the specialized literature (Boccardo et al., 2019b; Frungieri et al., 2020;
Marcato et al., 2021).

1.4 Liquid-liquid systems

Liquid-liquid systems are obtained when two immiscible liquids are mixed together. Most
liquid-liquid systems are constituted by a polar liquid mixed with a non-polar liquid. In
liquid-liquid emulsions it is always possible to identify one continuous primary phase and
a secondary disperse phase, constituted by individual droplets. When the concentration,
often expressed in terms of the volume fraction, of the disperse phase increases over a
critical value, the disperse phase can become continuous and, viceversa, the continuous
phase can become disperse. This is called phase inversion and depending on the situation
this can be a wanted or unwanted situation. When surface active ingredients, such as
surfactants, are added the liquid-liquid dispersion becomes stable and is often referred
to as emulsion. Liquid-liquid dispersions and emulsions are often characterized by a
relatively small density ratio between the disperse phase and the continuous phase. This
situation leads to small, if not negligible, inertial effects, allowing for their treatment as
a pseudo-single phase system. Very important is the role played by the viscosity ratio,
between the disperse and continuous phases. Depending on this ratio different behaviors
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1.4 Liquid-liquid systems 1 INTRODUCTION TO MULTIPHASE FLOWS

are observed, especially in terms of the droplet breakage rate. Liquid-liquid dispersions
and emulsions when treated as a pseudo-single phase system exhibit non-Newtonian shear
thinning rheological behaviors, as well as an elastic component. These behaviors depend
on the disperse phase volume fraction, as summarized in Fig. 7. When the disperse
phase is dilute the rheology is dictated by the continuous phase, whereas when a critical
concentration is overcome (concentrated regime) non-Newtonian shear-thinning behaviors
are observed. A further increase in the disperse phase concentration leads to the formation
of caged or closely-packed microstructures, resulting in an elastic component. The system
remains fluid, as if a strong enough shear rate is applied the system starts flowing. In
that sense emulsions are often referred to as soft matter.

Figure 7: Rheological response observed in liquid-liquid systems and emulsions. When
the disperse phase is dilute the system exhibit a Newtonian behavior. When the disperse
phase concentration is increased non-Newtonian shear-thinning and elastic responses are
also observed.

Figure 8: Typical separator for liquid-liquid dispersions employed in the oil and gas
industry.
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1 INTRODUCTION TO MULTIPHASE FLOWS 1.5 Disperse and polydisperse flows

Engineering applications. Liquid-liquid systems, dispersions and emulsions are very
common in the oil and gas industry. During drilling, extraction and oil recovery ap-
plications oil often ends up being mixed with water generating liquid-liquid dispersions.
In order to separate the two phases, ad-hoc separators are designed and in this area the
investigation of their property and features is of paramount importance. An example of
such a system is reported in Fig. 8. Other interesting application areas in which emulsions
are often encountered are the pharmaceutical, cosmetic and food industries. Probably the
most popular food emulsion is mayonnaise. Mayonnaise is constituted by a highly concen-
trated dispersion of oil droplets, in an aqueous phase, stabilized by surfactants molecules
contained in the egg yolk, namely proteins (e.g. apovitellenin I) and phospholipids. In
industrial applications the production and fate of liquid-liquid systems is often dictated
by the the dynamics of coalescence and breakup. Coalescence results from the merging of
two colliding droplets, whereas breakup is the generation if two or more daughter droplets,
due to the excessive deformation of one mother droplet. Both coalescence and breakup are
caused by fluid flow and deformation. Relevant examples can be found in the specialized
literature (Marcato et al., 2021; Castellano et al., 2019; Boccardo et al., 2019a).

1.5 Disperse and polydisperse flows

As mentioned, dispersed multiphase flows are characterized by the presence of a continuous
phase, either a liquid or a gas, and a disperse phase, constituted by individual droplets,
bubbles and particles. Their features are very different from separated flows, which are
instead characterized by a consistent stratification of one phase over another, with large
regions with only of one the two phases present. Separated flows, very important in
nature, as for example in the dynamics of waves or breaking waves, are dominated by
interfacial forces, active in the interface between the two phases.

Figure 9: Examples of particle size distributions.

The dynamics of disperse flows is of paramount importance in engineering and offers
interesting scientific challenges, due to the complexity of the phenomena involved. Under
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1.5 Disperse and polydisperse flows 1 INTRODUCTION TO MULTIPHASE FLOWS

some conditions, disperse multiphase systems are monodisperse. Monodisperse implies
that all the droplets, bubbles or particles are characterized by the same identical size. Due
to the already mentioned phenomena of nucleation, grow, aggregation, agglomeration and
breakup, the elements of the disperse phase are characterized a range of size values. This
situation is referred to as polydispersity and such a system is defined polydisperse.

The polydispersity is characterized by the droplet, bubble or particle size distribution.
Two examples, referring to solid particles dispersed in a fluid, are depicted in Fig. 9, where
it is evident that the yellow curve denotes a population of smaller solid particles, whereas
the blue curve represents a population or larger and more diverse particles.

From the mathematical point of view the droplet, bubble or particle size distribution,
PSD in what follows, is defined so that the following quantity (Marchisio and Fox, 2013;
Shiea et al., 2020):

n(L) dL

represents the number density (i.e. number of particles per unit volume) of particles with
size in between L and L+ dL. A more compact way to represent the PSD is through its
moments. The moment of order k of the distribution is defined as follows:

mk =

∫ ∞
0

n(L)Lk dL. (1)

The moment of order zero, m0, represents the total particle number density, the mo-
ment of order one, m1, represents the total particle length density, the moment of order
two, m2 is related to the specific surface area of the particles, and the moment of order
three, m3, is related to the particle volume fraction. In fact, the specific surface area is:
a = kam2, whereas the particle volume fraction is: αp = kvm3, where ka and kv are the
area and volume shape factors. For a spherical particle: ka = π and kv = π/6, whereas
for a cubic particle: ka = 6 and kv = 1. In general for Euclidean objects the ratio between
ka and kv is equal to six.

The moments of the PSD are also useful to define averaged particle sizes. The number-
averaged particle size is defined as the ratio between the moments of order one and zero:

d10 = µ =
m1

m0

, (2)

the surface-averaged particle size, also known as mean Sauter diameter, MSD, is defined
as the ratio between the moments of order three and two:

d32 =
m3

m2

, (3)

whereas the volume-averaged particle size is defined as the ratio between the moments of
order four and three:

d43 =
m4

m3

. (4)

For a monodisperse population of particles these different mean particle sizes are all
equal and polydispersity is often measured by the distance between these different mean
particle sizes. Other measures of polydispersity are the variance of the distribution, de-
fined as follows:
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1 INTRODUCTION TO MULTIPHASE FLOWS1.6 Relevant dimensionless numbers

σ2 = m2 −m2
1, (5)

or the coefficient of variation (CoV), defined as follows:

CoV =
σ

µ
= m0

√
m2

m2
1

− 1. (6)

Another quantification of polydispersity is the polydispersity index (PDI) defined via
d10% and d90%. These two numbers can be identified from the cumulative PSD with the
following criterion: d10% is the particle size such that 10 % of the particles are smaller
than d10% and similarly for d90%. PDI can be defined for example as the ratio between
d90% and d10%.

1.6 Relevant dimensionless numbers

Numerous dimensionless numbers are employed to characterize multiphase flows, espe-
cially disperse multiphase flows. The most relevant quantities are reported in Tab. 1 and
the discussion is here limited to disperse multiphase flows, in which a continuous phase
and a disperse phase can be identified. The properties of the disperse phase are identified
by the suffix d whereas those of the continuous phase by the suffix c.

The phase-density ratio is simply the ratio between the disperse-phase density and the
continuous-phase density; it is useful to identify the importance of inertial effects. The
phase-mass ratio is instead the ratio between the disperse-phase mass and the continuous
phase mass. When this quantity is small the disperse phase is considered dilute, whereas
an increase of this quantity leads to moderately dense and dense systems.

The phase-viscosity ratio is the ratio between the viscosity of the disperse phase and
the viscosity of the continuous phase. It is defined only in the case of disperse multiphase
systems, with both continuous and disperse phases being fluid. This definition applied
therefore only to gas bubbles dispersed in a liquid or liquid droplets dispersed in an
immiscible liquid or a gas.

The relative importance of inertial forces (related to the movement of the elements of
the disperse phase) and viscous forces (relative to the continuous phase) is represented
by the disperse-phase Reynolds number. This number is useful in calculating interfacial
forces, such as the drag force, and identifies the type of interaction between the continuous
and the disperse phases.

The Eötvöv number measures the importance of gravitational forces compared to
surface tension forces and is used (together with Morton number) to characterize the
shape of bubbles or drops moving in a surrounding fluid. Figure 10 reports the different
observed shapes as a function of the bubble Reynolds number and the Eötvöv number. As
it is seen at low values of both dimensionless numbers surface tension forces prevails over
gravitational and inertial forces and bubbles are spherical. An increase of both results
in the formation of ellipsoidal bubbles, wobbling bubbles, dimpled ellipsoidal-cup, skirted
and spherical-cap bubbles.

The Capillary number is a dimensionless quantity representing the relative effect of
viscous deformation forces versus surface tension forces acting across an interface between
a liquid and a gas, or between two immiscible liquids. For example, an air bubble in a
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1.6 Relevant dimensionless numbers1 INTRODUCTION TO MULTIPHASE FLOWS

Table 1: Most relevant dimensionless numbers in disperse multiphase flow. ρd and ρc are
the densities of the disperse and continuous phases, αd and αc are the volume fractions
of the disperse and continuous phases, µd and µc are the viscosities of the disperse and
continuous phases, Ud and Uc the velocities of the disperse and continuous phases, d is the
diameter of the disperse phase elements, g is the gravity acceleration, σ is the interfacial
tension between the disperse and continuous phases, γ̇ is the shear rate of the continuous
phase and τc is the characteristic time scale associated with the continuous phase.

Phase-density ratio φ1 = ρd/ρc

Phase-mass ratio φ2 = ρdαd/(ρcαc)

Phase-viscosity ratio λ = µd
µc

Disperse-phase Reynolds number Red = ρd|Uc−Ud|d
µc

Eötvös number Eo = d2g|ρc−ρd|
σ

Morton number M = gµ4c |ρc−ρd|
ρ3cσ

3

Capillary number Ca = µcγ̇d
2σ

Stokes number St = ρdd
2

18µcτc

liquid flow tends to be deformed by the friction of the liquid flow due to viscosity effects,
but the surface tension forces tend to minimize the surface area.

The Capillary number is often used to established whether or not a bubble or a droplet
can breakup, forming daughters, due to the effect of viscous forces, quantified by the shear
rate γ̇. The extent of deformation forces that result in the successful breakup or a bubble
or droplet is identified by the critical Capillary number, Cacr. In the case of pure shear
flow the critical Capillary number can be calculated as follows:

log10 Cacr = −0.506− 0.0994 log10 λ+ 0.124(log10 λ)2 − 0.115

log10 λ− 0.611
. (7)

It is worth mentioning that this expression is valid for λ < 4, as for λ > 4 the critical
capillary number tends to infinity, implying that for λ > 4 pure shear flow is not effective
in breaking bubbles or droplets. In the case of flows with an elongational component the
critical capillary number reads as follows:

Cacr = 0.14λ−1/6 (8)

Figure 11 reports the dependency of the critical Capillary number versus the phase-
viscosity ratio for pure shear flow and pure elongational flow. As it is seen, for every
value of the viscosity ratio λ reported, the critical Capillary number for pure elongational
flow is smaller than for pure shear flow, indicating that flows with an elongational compo-
nent are more effective in breaking droplets. This is particularly true for viscous disperse
phases, where λ > 4. In these cases in fact the critical Capillary number for pure shear
flows is infinitely large, implying that pure shear flow cannot break the droplet, no matter
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1 INTRODUCTION TO MULTIPHASE FLOWS1.6 Relevant dimensionless numbers

Figure 10: Bubble shapes as a function of the bubble Reynolds number and the Eötvös
number. The Morton number is here indicated as M.

how intense is the shear rate. When λ > 4 only an elongational component can break the
droplet.

Eventually it is worth mentioning the Stokes number. This is defined by applying a
simple force balance to a bubble, droplet or particle moving within a continuous phase.
If only inertia and viscous Stokes drag force is considered, this reads as follows:

ρd

(
πd3

6

)
dvd

dt
= 3µcπd(Uc − vd), (9)

where vd is the velocity of one single bubble, droplet or particle surrounded by a
continuous phase characterized by a velocity equal to Uc. Equation 9 can be rewritten as
follows: (

ρdd
2

18µc

)
dvd

dt
=

1

τd

dvd

dt
= (Uc − vd), (10)

where τd = ρdd
2

18µc
is the characteristic bubble, droplet or particle relaxation time, namely

the time required by a disperse phase element to adapt to the local value of the continuous
phase velocity Uc. The Stokes number (St) is therefore defined as the ratio between the
characteristic time associate with the disperse phase and that associated with the disperse
phase. When St� 1 the elements of the disperse phase tend to move with the continuous
phase, whereas when St ≥ 1 the elements of the disperse phase tend to have their own
independent velocity. Under these conditions interesting phenomena, such as Particle
Trajectory Crossing (PTC), occur.
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Figure 11: Dependency of the critical Capillary number, Cacr versus the viscosity ratio
for pure shear flow (black line) and pure elongational flow (red lines).
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1 INTRODUCTION TO MULTIPHASE FLOWS 1.7 Phase coupling

1.7 Phase coupling

Figure 12 sketches the different regimes of interactions between the continuous and dis-
perse phases. Under the one-way coupling regime the continuous phase affects the trajec-
tory and velocity of the elements of the disperse phase, however the disperse phase is so
diluted that the continuous phase is not affected by the presence of the disperse phase.
Viceversa, when the phase-mass ratio increases the continuous phase affects the evolution
of the disperse phase and the disperse phase affects the motion of the continuous phase.
A further increase in the phase-mass ratio leads to interactions between the elements of
the disperse phase, due to their proximity, via their wakes. This interaction intermediated
by the continuous phase is called three-way coupling. Finally when the elements of the
disperse phase are very dense they interact directly, resulting in collisions, that can in
turn lead to coalescence, aggregation or agglomeration.

1.8 Discrete phase element evolution

In many multiphase flows the disperse phase evolves not only because of momentum trans-
fer with the continuous phase but also because of phenomena that lead to the formation
of new elements of the disperse phase (i.e. nucleation) and to their continuous transfor-
mation due to molecular growth, aggregation, agglomeration, breakage and deposition.
They are usually classified depending on their order.

Zero-order processes are those in which the evolution of the disperse phase do not
depend on the disperse phase, but on the continuous phase only. Among them the most
important is primary homogeneous nucleation, in which new elements of the disperse phase
are formed by some physical and chemical phenomena occurring in the continuous phase.
Relevant examples are condensation of droplets in the gas phase, formation of droplets
of an immiscible liquid in the bulk of another liquid, due to a temperature reduction, or
formation of a solid phase (i.e. solid particles) due to a chemical reaction occurring in the
continuous phase or a temperature reduction which decreases the solubility of a solute.

Once the elements of the disperse phase are formed they can growth and shrink due to
addition or depletion of single molecules. This is called molecular growth and is typically
described as a continuous process. Relevant examples are the growth of droplets suspended
in a supersaturated gas, the evaporation of droplets in an undersaturated gas phase, or
the growth or dissolution of solid particles in a liquid.

First-order processes are those whose rate is proportional to the concentration of dis-
perse phase elements. The most common example is breakage or breakup. Droplets or
bubbles suspended in a liquid or a gas can break because of deformation and shear on
the continuous phase. Relevant engineering examples are droplets of a spray and bubbles
or solid particles in liquid. The rate with which droplets, bubbles or particles breakup is
usually written with a first-order kinetics, namely the rate is proportional to their concen-
tration in the continuous phase and the proportionality constant is called breakup kernel.
Another engineering example is droplet or particle deposition on the walls of duct or vessel
or on the walls of a porous medium, as in the case of filtration.

Second-order processes are instead those whose rate is proportional to the concen-
tration of the disperse phase elements to the second power. In this category we find
aggregation, agglomeration and coalescence. The term aggregation is usually employed in
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Figure 12: Sketch representing the different regimes of interactions between the continuous
and disperse phases, labelled as one-, two-, three- and four-way coupling.

Figure 13: Sketch representing the difference between aggregation and agglomeration.
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Figure 14: Sketch representing the main steps involved during coalescence.

the context of solid particles sticking together because of secondary-forces, such as attrac-
tive Van der Waals interactions. Aggregation is typically reversible and aggregates, due
to the flow of the continuous phase, can easily breakup into the original primary particles.
Agglomeration, also used in the context of solid particles, is instead typically considered
irreversible. During agglomeration, particles after colliding and sticking together form
stable chemical bonds (e.g. thanks to molecular growth), which are difficult to break be-
cause of flow deformation and shear in the continuous phase. Figure 13 sketches the main
difference between aggregation and agglomeration. The term coalescence is employed in
the context of liquid droplets or gas bubbles. Droplets and bubbles to coalesce need to
collide and interact together for a time interval, long enough to allow the drainage of the
continuous phase entrapped between them. In these cases not only the viscous resistance
of the draining film is important, also the attractive forces between the two approaching
interfaces play an important role. The involved steps are schematically represented in
Fig. 14.
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2 Classification of computational models

A plethora of methods is available for the simulation of multiphase flows. They are
generally classified depending on a number of criteria and they are summarized in Fig.
15. As evident from the figure the computational models are characterized by an increase
of accuracy and computational costs when moving from left to right.

2.1 Molecular dynamics models

A first classification is based on the type of approach employed to describe the multiphase
systems. When the molecules appearing in the involved phases are explicitly described
the computational model is often labelled as atomistic. Among atomistic models dif-
ferent options are available, namely: full-atom molecular dynamics (FAMD), dissipative
particle dynamics (DPD), smoothed particle hydrodynamics (SPH) and Lattice Boltz-
mann method (LBM). All these are particle-based meshless models in which the particles
representing atoms, molecules or groups of molecules, are free to move in the computa-
tional domain which is not discretized by using for example the finite-difference (FD), the
finite-element (FE) or the finite-volume (FV) schemes.
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Figure 15: Possible classification of computational models for multiphase flows.

In FAMD all the atoms composing the involved molecules are explicitly tracked and
interact with each other via bonded and non-bonded interactions. Bonded interactions
represent chemical bonds between atoms and are represented by using different types of
potentials (e.g. Harmonic potential) whereas non-bonded interactions represent attractive
and repulsive forces exchanged between atoms belonging to different molecules. They are
typically represented by the Lennard-Jones potential. The values for the parameters
appearing in these potentials are tabulated in force fields, such as for example AMBER,
CHARMM, GROMOS and OPLS, just to cite a few (Bazzano et al., 2019; Lavino et al.,
2018; Karimi et al., 2018; Lavino et al., 2017; Di Pasquale et al., 2014).
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The main limit of FAMD stands in the length- and time-scales explorable and therefore
the computational model is often coarse-grained to integrate out the faster degrees of
freedom. One very popular approach is the so-called MARTINI force field (Lavino et al.,
2020). In some cases not only atoms are grouped together forming super-atoms or beads,
but also molecules are groups together in beads. One such approach is dissipative particle
dynamics (DPD) where the number of molecules coarse-grained in one bead is the so-called
coarse-graining factor, Nm (Boccardo et al., 2019a; Pasquino et al., 2019; Droghetti et al.,
2018). Since the beads in DPD now represent groups of molecules they can interpenetrate
each other resulting in the use of soft-potentials, on the contrary of what happens in
FAMD. Moreover, the coarse-grained degrees of freedom must be accounted for and this
is typically done by including not only conservative forces (such as the bonded and non-
bonded interactions described above) but also considering dissipative and stochastic forces.
These two contributions must be balanced and this is usually done by making use of the
fluctuation dissipation theorem. An approach similar to DPD is the smoothed particle
hydrodynamics (SPH) and the Lattice Boltzmann methods (LBM). The LBM is reported
in Fig. 15 in between atomistic and continuum models as it is often interpreted as a
continuum model.

Another interesting point is the governing equations involved. In the case of FAMD
the governing equations, written in terms of the trajectories of the single atoms involved,
are the Newton equation of motion. In the case of DPD instead the introduction of the
dissipative and stochastic terms transform the Newton equation in the so-called Langevin’s
equation. When the same models are instead written in terms of the corresponding
distribution functions in this case the main governing equation is the Liouville equation,
whose equilibrium solution is the Maxwell-Boltzmann distribution. In the case of the
LBM the main governing equation is instead the Boltzmann equation. Atomistic models
are usually solved in a Lagrangian framework, namely by tracking the evolution of each
individual trajectory of the particles representing atoms, in the case of FAMD, or groups or
atoms and molecules, in the case of DPD, SPH or LBM. These methods can be indifferently
applied to the description of separated multiphase flows, as well as disperse multiphase
flows.

2.2 Direct numerical simulation

When the continuum hypothesis holds the atomistic description of the multiphase flow
can be discarded and the involved phases can be described as continuous phases. In this
case the model is generally labelled as direct numerical simulation (DNS) or interface
tracking method (ITM). In the case of fluid-fluid multiphase systems, namely gas-liquid
or liquid-liquid flows, the most popular methods are the volume-of-fluid (VOF) model
and the level-set method (LSM). In both approaches the presence of one phase or another
is indicated by an indicator or color function which assumes for example values equal to
one when one phase is present and zero when the other one is present. VOF and LSM
differ on the way in which the interface is directly tracked. The governing equations
are in this context usually solved in an Eulerian framework as briefly described in the
following sections. It is interesting to notice here that the continuum hypothesis holds
as long as the involved phases can be described as continuous. When for example two
bubbles suspended in the liquid merge and coalesce, or when two droplets dispersed in a
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gas or a liquid merge and coalesce, the rupture of the film undergoing drainage cannot
be treated by continuum models. This is caused by the emergence of molecular forces
(e.g. van der Waals intermolecular forces) that require the use of surrogate models to
describe coalescence or bubbles and droplets with VOF and LSM. In the case of solid-
gas or solid-liquid systems, solid particles are described within the Lagrangian framework,
resulting in the so-called discrete element method (DEM) usually coupled with an Eulerian
solver to describe the evolution of the continuous phase (Frungieri et al., 2020). Also in
the DEM the interface between the solid particles and the surrounding gas or liquid
is tracked explicitly, as long as the continuum hypothesis holds. This is not valid for
example during particle-particle collisions, when a small amount of continuous phase is
entrapped within the two colliding particles. Also in this case to account for the effect of
molecular forces surrogate models are necessary. A relevant example in this context is that
of lubrication forces, particular important in solid-liquid systems, otherwise negligible in
solid-gas systems. VOF and LSM can indifferently applied to separated and dispersed
multiphase flows. DEM is instead applied to describe solid-gas and solid-liquid systems,
which are inherently dispersed.

2.3 Probability density function methods

The explicit tracking of the interface characterizing VOF, LSM and DEM results in great
accuracy, which allows to reduce the number of simplification hypothesis and simplifica-
tions, expect for the continuum hypothesis, and large computational costs. To reduce
the associated computational costs a possibility is to neglect the details of the evolution
of the interface(s) present and focus instead on the probability density function (PDF)
characterizing the state of the multiphase system. This PDF can be written for example
in terms of the velocity of the bubbles, droplets or solid particles involved, and in terms of
other relevant properties, such as for example temperature, concentration of species, size
and/or shape. In this case the governing equation is a kinetic equation that dictates the
evolution of the PDF characterizing the elements of the disperse phase. This governing
equation is often called Boltzmann equation, when the internal variables (or internal coor-
dinates) are the velocities (or momenta) of the elements of the disperse phase. The term
generalized population balance equation (GPBE) is instead employed when the internal
variables or coordinates are both velocities and mass, volume or size of the disperse phase
elements. These PDF methods can theoretically be solved by using both Eulerian and
Lagrangian approaches. Eulerian methods require the discretization of the internal coor-
dinates by using for example the same numerical methods employed to discretize space
and time. However, the dimensionality of the problem (i.e. one time variable, three spatial
coordinates, three velocity coordinates, ...) leads to very high computational costs. For
this reason these computational models are often solved in a Lagrangian framework, by
using individual particle tracking, and by following the evolution over time of one possible
realization or of multiple realizations. Thanks to the Ergodic theorem averaged properties
are estimated by using time-, space- and/or ensemble averages. For these methods the
governing equations are the Navier-Stokes equation for the continuous phase and the New-
ton or Langevin equations for the disperse phase. They are typically applied to disperse
multiphase systems.
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2.4 Moment methods

With these PDF methods larger systems can be simulated but some limitations are
present. In particular, dense systems, when the number of disperse phase elements is
very large, are intractable, unless the concept of notional particle is employed. Moreover
some additional limitation in the grid size needs to be addressed. To overcome these
limitations the model can be written in terms of the moments of the PDF of the involved
variables. These methods are called moment methods (MoM). One of the most popular
version is the so-called two-fluid model (TFM). In the TFM balance equations for the
relevant properties (e.g. volume fractions and momentum) are written and solved for two
phases: the continuous and the disperse phases. The TFM was formulated for disperse
two-phase flows but can be applied, to a certain extent, also to separated flows (generally
neglecting interfacial forces). In its basic formulation the TFM is constituted by a conti-
nuity equation for the disperse phase, which dictates the evolution of the volume fraction
of the disperse phase, a two momentum balance equations for both the continuous and
disperse phases. The governing equations for the TFM are very similar to the continuity
equation and the Navier-Stokes equations for single-phase systems, solved for both the
involved phases.

The extension to multiphase systems with more than two phases, is the so-called
multi-fluid model (MFM). In the MFM transport equations for volume fractions and
phase velocities are solved similarly to what described for the TFM. The MFM is often
also used to simulate two-phase systems characterized by large polydispersity. Let us
imagine for example a gas-liquid systems with very small bubbles suspended in a liquid
together with large bubbles. Clearly the small bubbles will behave very differently from
large bubbles and therefore one option is to consider the system as constituted by three
phases: the continuous primary liquid phase, plus two disperse secondary bubbly phases,
one representing the small bubbles and one representing the large bubbles.

Under some conditions, typically when the Stokes number is moderately large, solving
a momentum balance equation for the disperse phase(s) might be unnecessary, as the
elements of the disperse phase almost instantaneously adapt to the local flow field imposed
by the continuous phase. In this case one single momentum balance equation is written for
the multiphase mixture, constituted by the continuous phase and the additional disperse
phase(s). For this reason this approach is known as the mixture model (MiM). The
velocity of the single phases can then be retrieved by using the instantaneous equilibrium
hypothesis, solving an algebraic equation, rather than a differential transport/balance
equation. Different strategies are adopted to do this and one of the most popular is the
algebraic slip model (ASM).

The MiM, TFM and MFM are often coupled with a population balance equation
(PBE) to describe the evolution of the size distribution of the elements of the disperse
phase, described in Section 1.5 at pag. 10. In the context of MoM one very popular
approach is the quadrature method of moments QMOM in which the PBE is written in
terms of the moments of the PSD as introduced in Eq. (1). Several variations of this
method have been proposed in the literature and they are generally known as quadrature-
based moment methods (QBMM). One popular open-source implementation is called
openQBMM (Passalacqua et al., 2018). These methods are summarized in Table 2 and
readers interested in more details are referred to the book of Marchisio and Fox (2013).
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An alternative but more expensive approach is the method of classes that in one popular
implementation for multiphase flows is called the MuSiG model.

2.5 Interfacial forces

In the case of molecular dynamics models and direct numerical simulations no assumptions
need to be made on the exchange of momentum, realized by interfacial forces, as they
are directly evaluated by the models themselves. In the case of PDF methods and MoM
instead specific models for the interfacial forces need to be formulated and employed. In
what follows the most important are discussed.

Drag force. Among the many relevant interaction forces that must be accounted for in
disperse multiphase systems, the most important is drag force. In the case of an isolated
bubble/droplet/particle the following expression can be used:

FD = CDAD
1

2
ρc|Uc −Ud| (Uc −Ud) , (11)

where AD is the bubble/droplet/particle cross section area and CD is the drag coefficient.
If the force is divide by the mass of the bubble/droplet/particle the acceleration can
written as follows:

AD =
CDAD

2Vd

ρc

ρd

|Uc −Ud|(Uc −Ud) (12)

where AD/Vp is the ratio between cross section area and volume equal to 3/(2d) for
spheres. As already mentioned ρc is the density of the continuous phase, ρd is the density
of the disperse phase, d is the diameter of the bubble/droplet/particle and Uc and Ud are
the characteristic velocities of the continuous and disperse phase, respectively.

In the case of solid particles and creeping (or Stokes) flow, the following definition for
the drag coefficient can be used:

CD =
24νc

|Uc −Ud|d
=

24

Red

, (13)

Table 2: Classification of QBMM. QMOM can be used only when 1 internal coordinate
(e.g. particle size) is used and is based on a discrete reconstruction of the PSD. The direct
QMOM can handle more than one internal coordinate as well as, the conditional QMOM.
DQMOM always guarantees moment realizability. The extended QMOM is based on a
continuous reconstruction of the PSD.

Name PSD reconstruction N. int. coordinates Moment realizability

QMOM Discontinuous 1 with appropriate schemes
DQMOM Discontinuous >1 always guaranteed
CQMOM Discontinuous >1 with appropriate schemes
EQMOM Continuous 1 with appropriate schemes
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where νc = µc
ρc

is the kinematic viscosity of the continuous phase and Red is the bub-

ble/droplet/particle Reynolds number. The expression in Eq. (13) is of course valid only
for a sphere characterized by very small slip velocity1, and is generally assumed valid for
Red ≤ 0.1. For spherical particles at higher particle Reynolds numbers, the following
corrections can be used:

CD =


[(

24

Red

)1/2

+ 0.5407

]2

for 0.1 < Red < 6000,

0.445 for 6000 < Red < 105.

(14)

These equations are valid for isolated spherical particles when the surrounding con-
tinuous phase can be treated as a continuum (as opposed to a rarefied gas). To establish
whether or not the continuum hypothesis is valid the ratio between the mean free path
for the continuous phase (i.e., average time interval between two subsequent collisions of
the molecules constituting the primary phase) to the particle size is generally employed:

Kn =
λf

d
. (15)

When this quantity is much smaller than unity, the continuum approach for describing
the interactions between the primary phase and the elements of the secondary phase is
appropriate. When this ratio is bigger than unity, the interactions between the primary
phase and the elements of the secondary phase must be described in terms of individual
molecules impacting and rebounding onto the particle surface; this is the so-called free-
molecular regime. For intermediate values the interactions between the primary and
secondary phases are in the slip regime, where the continuum approach for the primary
phase can still be used with some corrections, to account for the velocity jump between
the fluid adjacent to the surface of the particle. This correction results in the following
expression for the drag coefficient:

C∗D
CD

=
1

1 + Kn
[
2.49 + 0.84 exp

(
− 1.74

Kn

)] , (16)

which is commonly referred to as the Cunningham correction factor.
The calculation of the drag coefficient, CD, in gas-liquid and liquid-liquid systems,

when the elements of the disperse phase are bubbles or droplets, is complicated by im-
purities present in the continuous phase and by the fact that bubbles and droplets can
change their shapes. For clean systems (i.e. no impurities) the following expression is
obtained:

CD = max

{
min

[
16

Red

(1 + 0.15Re0.687
d ),

48

Red

]
,
8

3

(
Eo

Eo + 4

)}
. (17)

The correlation used for slightly contaminated systems is:

CD = max

{
min

[
24

Red

(1 + 0.15Re0.687
d ),

72

Red

]
,
8

3

(
Eo

Eo + 4

)}
, (18)

1The slip velocity is defined as the different between the continuous and disperse phase velocities:
Us = Uc −Ud.
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whereas for fully contaminated systems the following correlation is employed:

CD = max

[
24

Red

(1 + 0.15Re0.687
d ),

8

3

(
Eo

Eo + 4

)]
. (19)

Impurities accumulating the bubble or droplet interface are important as they affect the
mobility of the interface. When no impurities are present the interface is fully mobile and
the drag force is smaller than that of a solid particle with the same volume and size. For
slightly and fully contaminated systems the interface between the bubble/droplet and the
continuous phase sees an accumulation of impurities that make the interface immobile,
resulting in larger drag forces.

These relationships are valid for isolated bubbles or droplets moving under laminar
flow conditions. In the case of turbulent flow, the effect of turbulent eddies impinging
on the bubble surface is to increase the drag force. This is typically accounted for by
introducing an effective viscosity (rather than the molecular viscosity of the continuous
phase, µc) defined as:

µc,eff = µc + Clρcε
1/3
c d4/3

, where εc is the turbulent dissipation rate in the fluid phase and Cl is a constant usually
taken equal to 0.02. This effective viscosity, used for the calculation of the bubble/particle
Reynolds number, accounts for the turbulent reduction of slip due to the increased momen-
tum transport around the bubble, which is in turn related to the ratio of bubble/doplet
size and turbulent length scale.

Another correction often employed is the one accounting for three-way coupling. As
explained when the disperse phase becomes dense bubbles/droplets/particles interact with
each other through their wakes. The concentration of the disperse phase elements is
quantified by the disperse phase volume fraction, αd, which for a two-phase system is
related to the continuous phase volume fraction by the following expression: αc = −αc.
In the case of solid particles one of the most popular correlations to account for these
effects is the following:

CD =
24

Red

[
1 + 0.15(αcRed)0.687

]
α−βc . (20)

where β = 3.65 is a correction factor to account for the presence of other particles. In
this case, when the particulate system is very dilute (i.e., αc ≈ 1), Eq. (20) reduces to a
simpler expression.

Lift force. Particles moving in a fluid with mean shear experience a lift force perpen-
dicular to the direction of fluid flow. The shear lift originates from inertia effects in the
viscous flow around the particle and depends on the mean vorticity of the fluid phase.
For a spherical particle, the particle acceleration due to the lift force (also known as the
Saffman lift force) is equal to:

AL = CL
ρf

ρp

(Uc −Ud)× (∇×Uc) (21)

where CL is the lift coefficient that can be derived from the theory. Conflicting conclu-
sions concerning the importance and the significance of the lift force can be found in the
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literature. For example, some authors reported that the lift force seems to be necessary
for the accurate representation of flow behavior in gas-liquid systems and the work of
Monahan et al. (2005) demonstrated the importance of the lift force to the stability of
homogeneous flow predictions when using the TFM. Other authors showed that CL should
be taken equal to 0.5 to ensure good agreement with experiments. The same value has
been reported elsewhere whereas Drew and Passman (1999) suggest using CL = 0.25.
Other authors determined an empirical correlation for the net transverse lift coefficient
valid for gas-liquid systems. For air bubbles suspended in water for d < 4.4 mm, CL

was found to be a function of Rep, whereas for dp > 4.4 mm, CL was found to be a
function of the Eötvös number. Also, the sign of CL changed from positive to negative
when d = 5.8 mm. Other similar correlations based on the capillary number have been
proposed (Sankaranarayanan and Sundaresan, 2002), showing that for the majority of the
applications CL should be positive.

2.6 What about turbulence?

In many industrial applications involving multiphase flows the flow regime is turbulent
and different strategies are generally employed to deal with this problem. One option
is to resolve all the involved length- and time-scales with no simplification assumption.
This is called direct numerical simulation (DNS) and is extremely expensive from the
computational point of view. An interesting alternative is to filter out some of smaller
scales, which can be modeled, by using for example the Kolmogorov theory, and directly
simulate the larger ones. The model employed to describe the dissipation of turbulent
kinetic energy at the smallest scales is often referred to as sub-grid scale model. This
second approach is called large eddy simulation (LES) and is very popular in industrial
applications. One last approach is based on the Reynolds-average theory. A fluctuat-
ing turbulent property can be time-averaged; time-averaging is, thanks to the Ergodic
theorem, equivalent to ensemble-averaging. The governing equations, after time-average,
also known in this context as Reynolds-average, present some unclosed terms that need
to be modeled. The most popular closure models are based on the isotropy hypothesis
and assume that momentum transfer due to turbulent fluctuations and eddies is propor-
tional to the average velocity gradient, by using the so-called Bousinnesq approximation.
This latter approach is known as Reynolds-averaged Navier-Stokes equation (RANS) ap-
proach and is often formulated in terms of the continuous phase kinetic energy, kc, and
the continuous phase turbulence dissipation rate, εc.

2.7 Guidelines for choosing a model

Since numerous models are available for the simulation of multiphase flows it is extremely
important to develop guidelines that help modelers to choose the best one for their specific
needs and computational resources available. Different criteria can be followed and Fig.
16 reports one of them. When the size of the particles, d, is extremely small with respect to
the Kolmogorov length-scale2 associated with the continuous phase, η, the so-called dust
gas model can be used. In this model it is assumed that all the bubbles/droplets/particles

2The Kolmogorov microscales are the smallest scales in turbulent flow. At the Kolmogorov scale,
viscosity dominates and the turbulent kinetic energy is dissipated into heat. The Kolmogorov length-
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move with the continuous phase and their velocity is identical to that of the continuous
phase. This is a particular case of the MiM and is indicated in Fig. 16 as dusty gas
model. As the ratio d

η
increases more complex approaches should be used, as for example

the MiM together with the ASM (indicated as equilibrium Eulerian in Fig. 16) or the
TFM or MFM indicated in Fig. 16 as Eulerian. When the particle-to-Kolmogorov scale
ratio reaches unity PDF methods must be used and eventually when the ration is much
grater than unity DNS should be employed.

Figure 16: Guidelines for choosing a multiphase flow model among direct numerical sim-
ulation (fully resolved), PDF methods (Lagrangian-point particles), and MoM (Eulerian,
Equilibrium Eulerian and dusty gas model). The y-axis of the plot reports the ratio be-
tween the bubble/droplet/particle size and the Kolmogorov length-scale associated with
the continuous phase. The x-axis reports the volume fraction of the disperse phase.

Another interesting criterion is in terms of the Stokes number, summarized in Fig. 17.
When the Stokes number is very small, the elements of the disperse phase tend to move
with the continuous phase and the dusty gas model can be used. As the Stokes number
increases the MiM coupled with the ASG or the TFM should be used instead.

A third parameter that should be considered when selecting a computational model
for a multiphase system is the polydispersity index (PDI). When the PDI is small all the
bubble/droplets/particles can be considered as monodisperse and their velocity can be
calculated by any of the above mentioned methods by using a mean particle size. As PDI

scale is defined as follows: η =
(
ν3
c

εc

)1/4
, where εc is the average rate of dissipation of turbulence kinetic

energy per unit mass for the continuous phase and νc is the kinematic viscosity of the continuous phase.
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Figure 17: Guidelines for selecting a multiphase model based on the concentration of the
disperse phase (particle volume fraction) and the Stokes number.

increases the population of bubbles/droplets/particles must be represented by multiple
size values, resulting for example in the use of the MFM.

Figure 18: Guidelines for selecting a multiphase model depending on the polydispersity
index (PDI).

In summary there are three parameters that can be used to identify the best computa-
tional model for a multiphase flow: bubble/droplet/particle concentration, Stokes number
and polydispersity. When the phase-mass ratio, defined by: φ2 = ρdαd/(ρcαc), is much
smaller than one the system can be considered dilute with one-way momentum coupling,
whereas when ρdαd/(ρcαc) ≥ 0.1 two-way momentum coupling is required. We consider
the small particle Stokes number limit to be identified by St � 1, whereas moderate
and large Stokes numbers are identified by St ≈ 1 and St ≥ 1, respectively. It is impor-
tant to keep in mind that in general the Stokes number can vary from physical point to
physical point in the system, depending on the definition of the characteristic time-scale
for the continuous phase. Polydispersity can instead be identified by a polydispersity
index (PDI), defined as the ratio between the size of the largest/heaviest particles and
the smallest/lightest particles.

Based on the expected polydispersity of the multiphase systems and the type of pro-
cesses that the multiphase system undergoes, the corresponding bubble/droplet/particle
velocity can be calculated using one of the following continuum models:
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1. Pseudo-homogeneous or dusty-gas model: very small particle Stokes number and
limited polydispersity (momentum balance equation only for the continuous phase
if the system is dilute or for the mixture of continuous and disperse phases if the
system is dense).

2. Mixture model (MiM) and algebraic slip velocity model (ASM) with a single
velocity based on the mean particle size: small particle Stokes number and limited
polydispersity (momentum balance equation only for the continuous phase if the
system is dilute or for the mixture of continuous and disperse phases if the system
is dense).

3. Mixture model (MiM) and algebraic slip velocity model (ASM) with multiple
disperse phase velocities: small particle Stokes number and non-negligible polydis-
persity (momentum balance equation only for the continuous phase if the system is
dilute or for the mixture of continuous and disperse phases if the system is dense).

4. Two-fluid model (TFM) with a single velocity based on the mean particle size:
moderate particle Stokes number and limited polydispersity (in both dilute and
dense systems).

5. Multi-fluid model (MFM) with multiple disperse phase velocities: moderate par-
ticle Stokes number and large polydispersity (in both dilute and dense systems).
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3 Computational models for multiphase flows

In this section we focus on some of the computational models introduced in the previous
sections. With a focus on volume-of-fluid (VOF) model, level set method (LSM), two-fluid
model (TFM), multi-fluid model (MFM) and mixture model (MiM).

3.1 General governing equations

All the above-mentioned continuum models are derived starting from the continuity and
Navier-Stokes equations. Given ρ(x, t) and U(x, t), the density and velocity of a fluid at
time t and position x, the continuity equation can be written as follow:

∂ρ

∂t
+∇ · (ρU) = 0, (22)

whereas the momentum balance equation, which becomes the Navier-Stokes equation
for an incompressible Newtonian fluid, reads as follows:

ρ

(
∂U

∂t
+ U · ∇U

)
= ∇p− µ∇2U + ρg, (23)

where ρ is the density of the fluid and µ is its viscosity. These equations are further
modified and transformed to derive the governing equations of VOF, LSM, TFM, MFM
and MiM. A more detailed discussion can be found in the cited literature and in the work
of Tronci (2021).

3.2 Level Set Method

The LSM was developed for the first time by Osher and Sethian (1988) and consists in the
transport by the fluid velocity of the signed distance φ, that is called level set function:

∂φ

∂t
+ U · ∇φ = 0. (24)

As mentioned this is usually employed to simulate fluid-fluid multiphase systems, such
as gas-liquid or liquid-liquid systems and flows. This is the Eulerian formulation of the
level set equation, in which the interface is captured by φ. An alternative is the use of a
Lagrangian approach, which however suffers from a number of drawbacks, as for example
the one described in Fig. 19 Osher et al. (2002).

In what follows the discussion is limited to the Eulerian approach for the LSM and to
two-phase systems. For a two-phase systems the level set function, φ, is generally defined
to be zero the interface, while the negative values of φ defines the region occupied by one
phase and positive values the region occupied by the other phase:

φ(x, t)


> 0 if x ∈ phase 1

= 0 if x ∈ ∂Ω

< 0 if x ∈ phase 2

(25)

In the LSM the versor normal to the interface and the curvature of the interface are
easily defined respectively as:
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Figure 19: In this figure the particle level set problem related to the topology change of
an interface is represented. In blue the particles that define the interface are represented,
whereas the interface itself is defined in red. In A the square before the topology change is
reported whereas B reports the vector velocities in the system. In C and D the particles
and the velocities after the topology change are represented. As it can be seen there are
several particles that escape from the interface. This can results into several numerical
and physical errors Osher et al. (2002).
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n(φ) =
∇φ
|∇φ|

, (26)

kγ(φ) = −∇ ·
(
∇φ
|∇φ|

)
. (27)

This is one of the most important features of LSM. In fact, although it is not only easy
to define the versor normal and the curvature, their computation allows to reach an
incredible degree of accuracy, thanks to the high-order schemes that can be applied.
These advantages come from the continuity of φ which also changes sign smoothly at the
interface (φ = 0).

The LSM is generally completed by one single momentum balance equation in which
the properties of the fluid, namely density, ρ(φ), and viscosity, µ(φ), are written in terms
of the level set function, φ:

ρ(φ)

(
∂U

∂t
+ U · ∇U

)
= −∇p+ µ(φ)∇2U + γkγ(φ)δ(φ)∇φ+ ρ(φ)g. (28)

The terms on the left-hand side of Eq. (28) represent accumulation and convective trans-
port of momentum density, whereas the terms on the right-hand side represent the effect
of pressure, viscous forces, interfacial tension forces and gravity. γ is the interfacial tension
between phase 1 and 2.

U =

{
U1 if φ < 0

U2 if φ > 0,
(29)

ρ(φ) = ρ1 + (ρ2 − ρ1)H(φ), (30)

µ(φ) = µ1 + (µ2 − µ1)H(φ), (31)

where H(φ) is the Heaviside function defined as follows:

H(φ) =


0 if φ < 0

1/2 if φ = 0

1 if φ > 0,

(32)

and where, as already explained, the indices 1 and 2 refer to the two phases involved. The
LSM momentum equation can switch from one phase to another changing the viscosity
and the density of the two fluids. Furthermore, the surface tension term is written as a
delta function, leading the model to turn on automatically this contribution only on the
interface. The Heaviside function keeps the density and viscosity change sharp, leading to
high interface gradients. To avoid this it is necessary to smooth the interface by smoothing
the Heaviside function.

A LSM simulation is usually constituted by the following steps:

1. Initialize φ(x, 0) to be a signed distance for the interface to be captured.

2. Solve Eq. (24) and Eq. (28).
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3. Reinitialize φ(x, t).

4. Repeat step 2 and 3.

It is essential that the reinitialization step is performed after the level set evolution, in
order to solve the momentum equation with a correct signed distance φ. In general, how
often to reinitialize depends on how quickly the signed distance property of φ deteriorates.
This depends on the phenomenon that one wants to simulate and on the numerical schemes
used.

The performance of a LSM simulation is generally assessed by considering a number
of validation tests that are employed as benchmark. In one of them, proposed by Enright
et al. (2005), consists in considering a circle defining the interface between phase 1 and
2. Then the system undergoes a superimposed sinusoidal velocity that deforms the circle.
This deformation continues for 4 s and then the sign of the velocity field is changed, the
flow is reversed, and after 4 s one is expected to retrieve the original circle. One example
is reported in Fig. 20.

t = 0 s t = 4 s t = 8 s

Figure 20: In this figure the evolution of a circular level set under a sinusoidal imposed
velocity in a 126x126 grid is reported. The velocity field deforms the level set for 4s
and then the simulation is rewound till the initial position inverting the velocity. The
LSM implemented is performing well since the circle return to a shape very close to the
original Enright et al. (2005).

3.3 Volume-of-Fluid

An alternative to the LSM is the Volume of Fluid (VOF) model, proposed by Noh and
Woodward (1976); Hirt and Nichols (1981). Also here the discussion is limited to two-
phase flows. The aim of the VOF is to be easy to implement, robust and fast, since it
combines the governing equations into only one, in terms of a color function, C, which
indicates the volume fraction of one phase in each cell:

C =
Volume of the chosen phase (e.g. phase 1)

Total volume of the control volume
. (33)

It is possible to compute C for any one of the two phases as follows:

C(x, t) =


1, for a point inside fluid 1

0, for a point inside fluid 2

0 < C < 1, for a point inside a transitional area

(34)
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Once C is initialized, it is possible to compute the property of the multiphase system:

ρ(C) = Cρ1 + (1− C) ρ2, (35)

µ(C) = Cµ1 + (1− C)µ2. (36)

where the subscripts 1 and 2 indicate the properties of phase 1 and phase 2. The advection
equation for C is defined as follows:

∂C

∂t
+ U · ∇C = 0, (37)

and the VOF model is completed by the momentum balance equation, obeying a formu-
lation very similar to Eq. (28) of the LSM. Although the governing equations look very
similar there are some important differences. The main difference is that in VOF the
reconstruction of the interface is more difficult C is not continuous at the interface and
several methods have been proposed Rudman (1997).

Simple line interface calculation (SLIC): The SLIC method Noh and Woodward (1976)
represents the easiest way to perform the reconstruction. In this method the interface
is approximated with a straight line parallel to one coordinate direction. This method
is based on a direction-split algorithm. During each direction sweep, the interface is
reconstructed only with the cell neighbors in the sweep direction. Since the method looks
only to the neighbor in the flux direction, the same interface cell can be reconstructed
in a different way for each direction sweep. The results are not very accurate, since it is
random with the direction of the flow and it is difficult to represent it with high-order
scheme. An examples of the SPLIC method is shown in Fig. 21.B and Fig. 21.C

Hirt-Nichols VOF: The method of Hirt and Nichols (1981) is the “original VOF” since
it was the truly first VOF method developed. Similarly to the SLIC, the interface is
reconstructed with a straight line parallel to one direction. However, the direction it is
not chosen from the flux but from the normal direction of the interface, evaluating the
magnitude of the normal components of the cell neighbors. The results obtained are
generally more accurate than those obtained with SLIC method, even if it lacks accuracy,
since, at least, the interface is reconstructed with the value of a neighbor only. An example
is shown in Fig. 21.d.

Youngs’ method: The method developed by Youngs Youngs (1982) improves what pro-
posed by Noh and Woodward (1976); Hirt and Nichols (1981). The interface is still a
straight line, but it is not forced to be parallel to the coordinates axes. The direction is
obtain by the direction normal to the interface, but the normal is computed taking into
account the color function of all the neighbors of the interface cells. An examples of the
method of Youngs is shown in Fig. 21.E.
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Figure 21: In this figure the results of different interface reconstruction for the configu-
ration reported in (a) are represented. In (b) and (c) the results obtained with the SLIC
approach are reported respectively for two different orientations. In (d) the result ob-
tained with the method of Hirt and Nichols (1981) is reported. In (e) the reconstruction
obtained with the method of Young Youngs (1982) is reported. It is clear how the method
improves moving from (b) to (e)Rudman (1997).

Piecewise linear interface calculation (PLIC): The PLIC method goes beyond the work
of Youngs (1982), since it was understood that the key factor is played by an accurate
normal reconstruction. There are several methods to reconstruct properly the normal
of the interface and here we report the method suggested by Rudman (1997) for a two
dimensional space:

nxi,j =
1

h
(Ci+1,j+1 + 2Ci+1,j + Ci+1,j−1 − Ci−1,j+1 − 2Ci−1,j − Ci−1,j−1) , (38)

nyi,j =
1

h
(Ci+1,j+1 + 2Ci,j+1 + Ci−1,j+1 − Ci+1,j−1 − 2Ci,j−1 − Ci−1,j−1) , (39)

where the indices i and j indicate the x and y directions in a simple cartesian discretization.
After the normal is computed and the average values of C in each cell is calculated, it is
possible to calculate with good accuracy the position of the interface.

The performance of the different reconstruction methods briefly summarized here is
assessed in Fig. 22, where the same test described in Fig. 20 is analyzed. Clearly the
Youngs method shows the best performance which is however still not comparable with
that of the LSM.In fact, the VOF model is more prone to suffer from issues caused by
numerical diffusion, leading to an inaccurate evolution of the interface. It is important not
to confuse the difference between “smooth interface” and the “diffusion of the interface”.
The first is a desirable property, since it allows for an easier computation of the surface
properties, while the second artificially changes the interface thickness.
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Figure 22: Results for an advection test on the different VOF methods. In the first column
the results obtained with the SLIC method is represented. In the second, third and fourth
column the Hirt-Nichols Hirt and Nichols (1981) method result, the FCT-VOF method
of Rudman Rudman (1997) result and the method of Young Youngs (1982) result are
respectively represented. From (a) to (d) different time steps of the simulations are re-
ported. The test is the same presented in Fig. 20, based on a test case of Leveque LeVeque
(1996). Rudman (1997).
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3.4 Two-fluid Model

As already mentioned the LSM and the VOF model track the evolution of the interface,
resulting in large computational costs. An interesting alternative is to forget about the
interface and track instead the evolution of the multiphase system only in terms of the
volume fractions of the involved phases. This is the basic assumption of the TFM and in
what follows the discussion is limited to a two-phase system. The two involved phases are
treated as interpenetrating continua with volume fractions that sum to unity: α1+α2 = 1.
No information about the actual interface is tracked, the only known information is the
amount of one phase with respect to the other. This implies that the effect of interfacial
forces cannot be accounted for.

Different derivations of the TFM are reported in the literature based on volume-
, time- or ensemble-averages. Here we refer to the work of Ishii and Mishima (1984)
and of Marchisio and Fox (2013) for a model detailed discussion. In the final governing
equations for the TFM we find the continuity equations for the two phases:

∂

∂t
(α1ρ1) +∇ · (α1ρ1U1) = Γ1, (40)

∂

∂t
(α2ρ2) +∇ · (α2ρ2U2) = Γ2, (41)

where Γ1 and Γ2 represent the mass transfer terms representing positive or negative gen-
eration for the two phases. Indeed: Γ1 + Γ2 = 0, to fulfill total mass conservation. In the
case of disperse multiphase systems these terms refer to the already mentioned mecha-
nisms of nucleation, growth and dissolution. The TFM is completed by the momentum
balance equations for the two phases:

∂

∂t
(α1ρ1U1) +∇ · (α1ρ1U1U1) =

− α1∇p1 −∇ · [α1 (τ 1 + τ T1)] + α1ρ1g + Γ1U1 + MI, (42)

∂

∂t
(α2ρ2U2) +∇ · (α2ρ2U2U2) =

− α2∇p1 −∇ · [α2 (τ 2 + τ T2)] + α2ρ1g + Γ2U2 −MI. (43)

The terms appearing on the right-hand side represents the effect of pressure forces, of
viscous and turbulent stresses, gravity and momentum coupling due to interfacial forces.
Most of the terms appearing on the right-hand side need to be modeled, as any information
concerning the interface is lost in the averaging procedure.

Self-interaction terms. There are several ways to describe the viscous stresses but for a
Newtonian fluid the following constitutive equation is valid:

τ k = −µk
(
∇Uk + (∇Uk)

T
)

+
2

3
µk (∇ ·Uk) I, (44)

with k = 1, 2 and where µk is the viscosity of the corresponding phase.
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Momentum coupling. As mentioned, interfacial forces are exchanged between the in-
volved phases, resulting in the phase coupling term, MI, that is given by different contri-
butions. In the case of disperse multiphase systems the most important is the drag force,
described in Eq. (11) for one single bubble/droplet/particle. The resulting expression for
the drag force in the phase momentum balance reads as follows:

MI = −α1
3

4

ρ2CD

d
Us|Us| (45)

where Us = U2−U1 is the already introduced slip velocity, namely the velocity difference
between phase 1 and phase 2, and index 1 refers to the disperse phase and index 2 to the
continuous phase.

Turbulence. There are several methods to deal with turbulence and in section we focus
on the Reynolds-Averaged Navier-Stokes equations (RANS) approach. With this ap-
proach the turbulent stresses, τ T1, and, τ T2, are closed with an approximation similar to
Eq. (44) with the molecular viscosity replaced with the turbulent viscosity. In the case of
disperse multiphase system usually only the turbulent stresses in the continuous phase are
considered, whereas those of the disperse phase are neglected. The most popular method
to describe turbulence in the continuous phase, in the context of the RANS approach, is
the k-ε model in which additional equations for the continuous phase turbulent kinetic
energy and turbulent dissipation rate are solved:

∂α2k

∂t
+∇ · (α2U2k)−∇ ·

(
α2
νt2

σk
∇k
)

= α2

(
G+

Pb,k

ρ2

− ε
)
, (46)

∂α2ε

∂t
+∇ · (α2U2ε)−∇ ·

(
α2
νt2

σε
∇ε
)

= α2

[(
Cε,1

ε

k
G− Cε,2

ε2

k

)
+ Pb,ε

]
. (47)

where:

νt2 = Cµ
k2

2

ε2

, (48)

G = 2νt2 (∇U2 : ∇U2) , (49)

Pb,k = CbM
d
I · (U1 −U2), (50)

Pb,ε = Cbdα1
k

3/2
1

d
. (51)

and where Cb varies from 0.02 to 0.75 while Cbd varies from 0.02 to 0.2. The high
variability of these two parameters is due to the difficulties in the development of k-ε
model for multiphase systems (Marchisio and Fox, 2007).

3.5 Mixture Model

As mentioned in the previous sections, in the case of relatively small Stokes numbers, the
solution of a specific balance equation for the continuous and for the disperse phase is not
necessary. In fact, under these conditions the disperse phase instantaneously adapts to
the local value of the continuous phase. The problem can therefore be written in terms of
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the mixture between the continuous and disperse phase. The mixture is usually defined
in terms of its density:

ρm = ρcαc + ρdαd, (52)

which obeys the following equations:

∂ρm

∂t
+∇ · (ρmUm) = 0. (53)

Another important property of the mixture is its velocity:

Um = ρcαcUc + ρdαdUd, (54)

whose transport equation can be obtained by summing the momentum balance equations
for the two phases of the TFM:

∂

∂t
(ρmUm) +∇ · (ρmUmUm) = −∇pm −∇ · (τm + τTm) + ρmg, (55)

where all the properties refer to the mixture and where the mixture viscous stress reads
as follows:

τm = −µm

2∑
k=1

[
∇Uk + (∇Uk)

T − 2

3
I (∇ ·Uk)

]
, (56)

the mixture turbulent stress as follows:

τTm = −µTm

2∑
k=1

[
∇Uk + (∇Uk)

T − 2

3
I (∇ ·Uk)

]
− 2

3
ρmkmI, (57)

and where the molecular and turbulent mixture viscosities are calculated as follows:

µm =
2∑

k=1

αkµk, (58)

µTm =
2∑

k=1

αkµTk. (59)

These equation can be solved if the velocity of the continuous phase, U2 = Uc, and
of the disperse phase, U1 = Ud, are calculated from the mixture velocity, Um. One very
simple approach is to assume a constant slip velocity:

Us = U2 −U1, (60)

which can be used a model parameter. Alternatively a more rigorous approach can be
used by considering instantaneous equilibrium between the forces acting on the elements
of the disperse phase.
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4 Conclusions and perspective

In these notes after having classified the type of multiphase systems encountered in nature
and engineering applications a number of computational models for their simulation has
been discussed. They are classified by the degree of accuracy and associated computational
cost.

Starting from the most accurate and moving on to the less accurate we have:

• molecular dynamics models: the molecular details for the involved phases are ex-
plicitly described

• direct numerical simulation: continuum model in which the interfaces are tracked
directly

• probability density function methods: the interface is not tracked but the properties
of the multiphase system are expressed in terms of distribution function

• moment methods: the multiphase system is described in terms of the moments of
the above-mentioned distributions

Guidelines for selecting the most appropriate multiphase computational models are
also discussed and eventually some of them are described with more details.
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