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Abstract
An automated optimization process for designing and optimising high-performance
single microstrip antennas is presented. It consists of the successive use of two optimi-
zation methods, bottom-up optimization (BUO) and Bayesian optimization (BO), which
are applied sequentially, resulting in electromagnetic (EM)-based artificial neural network
modelling. The BUO method is applied for the initial design of the structure of the
antennas whereas the BO approach is successively implemented to predict suitable
dimensional parameters, leading to broadband, high flat-gain antennas. The optimization
process is performed automatically with the combination of an electronic design auto-
mation tool and a numerical analyser. The proposed method is easy to use; it allows one
to perform the design with little experience, because both structure modelling and sizing
are performed automatically. To verify the power of the proposed EM-based method
experimentally, two single microstrip antennas have been designed, optimised, fabricated,
and measured. The first antenna has flat-gain performance (6.9–7.2 dB) in a frequency
band of 8.8–10 GHz. The second has been designed to perform in the 8.7- to 10-GHz
band, where it exhibits flat-gain performance with reduced fluctuation in the range of
6.7–7 dB. The experimental results are in good agreement with the numerical data.

1 | INTRODUCTION

The importance of communication systems (CSs) including
various types of antennas have noticeable challenges, such as in
fifth-generation (5G) and sixth-generation (6G) networks
[1–3]. Microstrip patch antennas are the most commonly used
class in wireless CSs because of their well-known advantages;
they are cost-effective, and they have an easy fabrication
process and acceptable bandwidth (BW), and medium gain
performance obtained with a low-profile geometry [4]. Because
of the growth in population leading to data traffic in CSs,
requirements of improved antennas have been sensed to pro-
vide suitable BW and almost constant high gain in the
considered frequency band(s) [5–7].

The design of antennas by traditional and conventional
simulations based on continuous optimizations is problematic
from different viewpoints: the complexity of antenna

structures is dictated by the experience of the designer, which
limits the development of particular structure(s) [6, 8, 9]. To
tackle these problems, various optimization methods have
been reported: the differential evolution algorithm [9], spider
monkey optimization [10], and particle swarm optimization
[11]. These methods are useful solutions for designing and
optimising antennas; however, they cannot provide a fully
automated optimization-oriented process and some manual
interruptions are required [12]. Functional surrogate modelling
[13, 14], which is the particular case of machine learning
[15, 16], has received the attention of designers to model
microwave and radio-frequency circuits more accurately in an
automatic fashion without depending on the previous famil-
iarity of designers. These techniques can be applied to high-
level circuit projects using computer-aided design tools [17].
Among the various functional surrogate modelling techniques,
an artificial neural network (ANN) can model input–output
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relations more effectively and can decrease the possibility of
errors during the design [18–20]. In other words, ANN can
solve the problem of multiple-objective functional optimiza-
tion by dealing with a high-dimensional dataset [21–23].

Aiming to improve the impedance BW and gain the
performance of single microstrip antennas, electromagnetic
(EM)-based bottom-up optimization (BUO) with Bayesian
optimization (BO) is sequentially applied automatically to
generate an initial geometry of the antenna aiming to obtain
suitable design parameters. The proposed optimization method
attempts to design and size single antennas with average flat-gain
performance in a wider frequency band with respect to the
starting configuration. An EM-based BUOmethod presented in
[24] is firstly applied for constructing the initial antenna geom-
etry modelled with transmission lines (TLs). Then, the EM
simulation-based BOmethod is imposed to obtain wide BWand
almost flat high-gain singlemicrostrip antennas by predicting the
best design parameters. The BO method is based on the
Gaussian process (GP) [25] and effectively solves the design
problem of high-dimensional structures [26, 27]. To validate the
proposed optimization method, two single antennas operating
in the 8- to 11-GHz frequency band have been designed,
optimised, prototyped and experimentally characterised. The
optimization process has been automated with the combination
of an electronic design automation tool (ADS) and a numerical
analyser (MATLAB). The achieved optimal design parameters
result in improved impedance BW and good flat-gain
performance.

To the best of the authors’ knowledge, an optimization-
oriented antenna design is presented for the first time, in
which the general configuration with the sizing of single an-
tennas is achieved automatically with no human interruption.
In the first phase, the general configuration of the antenna is
extracted by employing the BUO method. This algorithm
starts modelling the antenna with one TL and then increases
the number of TLs and tests and replaces them with various

TL-microstrip models to achieve the initial acceptable perfor-
mance in terms of the S-parameter and gain. Then, in the
second phase, by applying the BO method, the optimised sizes
of all included TLs are predicted using the constructed ANN.
With no dependence on the designer’s experience, the single
antenna is designed automatically with reduced time expense.
To validate the proposed optimization-oriented method, two
microstrip antennas are designed, optimised, and fabricated.

This work is organised as follows: Section 2 provides a
short summary of the theory of the proposed BO method.
Section 3 describes the BO process to improve the impedance
BW and gain for designing and optimising general-shape
microstrip patch antennas. The simulation and measurement
results of two designed and optimised antennas are presented
in Section 4. Finally, the last section is devoted to conclusions.

2 | BAYESIAN OPTIMIZATION

A sequential design strategy is presented to approach the best
and most suitable project parameters in designing single
microstrip antennas of a complex layout. For this purpose, the
implemented global optimization that aims improving objec-
tive functions in a minimum number of steps is the BO
method. The basic criterion of such a method is to use the GP
model [25] and then an acquisition function to decide on the
number of samples. The acquisition function includes two
factors: expected improvement (EI) and the probability of
improvement (PI): PI defines the most possible points in the
search space where improvement will take place; and EI is
known as an efficient global optimization that ensures a bal-
ance between local optimization and the global search. By
considering sampling points in a k dimensional space, that is,
x = [x1,…,xk], the values of the functions for these points are
considered an a prior function [f(x1),…,f(xk)]. The new/final
points are chosen by considering the output responses of input

F I GURE 1 Flowchart of proposed optimization method leading to automatically designing wideband flat gain single antennas
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data as x ¼ argmaxx∈Rk ½EIðx Þ ⋅ PIðx Þ�. If the maximum a
posteriori metric is maximised, it corresponds to the most
suitable project parameters that have been achieved.

3 | AUTOMATED ANTENNA DESIGN
WITH BOTTOM-UP OPTIMIZATION AND
BAYESIAN OPTIMIZATION METHODS
SEQUENTIALLY

The process of optimization strategy is done automatically by
cooperation between ADS and MATLAB [28]. ADS has a
twofold responsibility: (1) to generate simulation results for the
considered geometry at the given stage of the optimization,
and (2) to prepare all outcomes in an output file. The role of
MATLAB is to collect suitable data including training (t),
validation (v), and testing (T) data based on splitting in the rates
of αt = 70%, αv = 15% and αT = 15%, respectively. The
considered cost function CF is reported in Equation (1):

CF¼ S11 − |ΔG| − |BW − BWref | ½dB� ð1Þ

where S11 denotes the average value of the input scattering
parameter S11, ΔG indicates the ripple of the gain (with respect
to the average value) and the factor in the last bracket corre-
sponds to the difference in the BW between the actual value
and the reference one (defined with respect to −10 dB). The
optimization corresponds to find min CF.

From this point forward, data refers to all simulation per-
formances that present the determined split rates to model the
antennas geometry accurately. Figure 1 presents the employed
two optimization methods for designing and optimising the
single antennas. Algorithm 1 summarises the implemented steps
for automatically designing and optimising single microstrip
antennas using the BUO and BO methods sequentially.

Algorithm 1 Sequentially automated optimization
process for designing single microstrip antennas
based on BUO and BO methods

Phase I
1: Apply the EM-based BUO method to define the
initial antenna geometry and configuration
Phase II
2: Extract the related netlist of the
constructed antenna
3: Prepare the dataset for start modelling
the antenna using the EM-based BO method
4: Apply BO method for predicting suitable
design parameters including W and L of all
included TLs
5: If the desired design goals are not
achieved, go to Step 3 and increase the
number of data for reimplementing the BO
method

Generally, the starting geometry for any low-profile antenna
design is a probe-fed microstrip patch antenna loaded with
different techniques: (1) modifying the basic shape by cuts at the
corner(s), and (2) loading it by reactive loads, which can be TLs
of different lengths, shapes and distances from the edges.
Optimization of such complex structures described by a large
number of parameters requires a multidimensional optimization
process. Hence, the proposed optimization method starts by
applying the presented BUO method in Mir et al. [24] for
automatically constructing the initial shape of the microstrip
single antenna (Step 1). The BUO method is an optimization
approach that is divided into subsections; it results in more
complex designs and circuits. The role of the BUOmethod is to
design the initial antenna model by providing an automatic
environment with the combination of MATLAB and ADS
software tools. In our problem, we start designing an antenna
with one TL. Then we increase the number of TLs and test or
replace them with various TL microstrip models to obtain
suitable output performance. The function of the algorithm is to
increase the number of TLs sequentially to improve S11 pa-
rameters and gain the performance of the structure. In this step
(i.e., Step 1), the initial design structure is achieved. To pass the
EM simulation in the ADS and generate the layout, design rules
for each TL are implemented in the optimization method [29].

Then, in the ADS platform, the netlist.log of the created
initial antenna design in Step 1 is extracted (Step 2). In the
extracted netlist file, design parameters such as width (W) and
length (L) exist that are altered in a MATLAB platform-
developed script. It is working in the background, transparent
for the user, and generates the corresponding output file (i.e.,
spectra.raw) that includes the gain performance of the single
antenna in the determined BW (Step 3). Step 3 prepares the
suitable data (i.e., sampling points). The sampling points include
training, validation and testing data (XTrain, XVal, and XTest) and
corresponding desired outputs (YTrain, YVal, and YTest) sets.
These data are generated using the Latin hypercube sampling
technique [30] within the ±10 and ±15 range of current points
achieved from the optimised antenna shape in Step 1. The design
parameters are altered in this range to achieve a suitable amount
of dataset. The variation boundary can be more or less than ±10
and ±15. The target of this variation is to achieve a suitable
amount of dataset. The total achieved dataset is split into three
groups of training, validation, and testing data with the rates of
70%, 15%, 15%, respectively (as mentioned earlier). After
constructing the ANNwith the achieved neuron numbers using
the rule of thumb [31], the network is constructed using train-
Network in MATLAB, as presented in Equation (2) Then, some
output responses are predicted (Pred) using testing data, as
shown in Equation (3) Finally, accuracy is measured by consid-
ering the difference between the actual testing outputs,YTest, and
predicted outputs, YPred:

net¼ trainNetworkðXTrain;YTrain; layers; optionsÞ ð2Þ

YPred ¼ predictðnet;XTestÞ ð3Þ
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With the prepared dataset, the BO method is applied to
model the antenna and predict the suitable W and L of all
included TLs leading to the desired BW and expected gain
performance (Step 4). If the determined design goals are not
achieved, the number of data are increased and the BO
method is reapplied (Step 5). The number of data are
increased because accurate modelling highly depends on the
number of sampling points; hence, as the amount of dataset
is increased, the accuracy of modelling is also increased [32].
Data generation is automatically stopped when the testing
accuracy becomes higher than 90%, because this amount of
accuracy demonstrates successful modelling of the design
[25]. In the proposed optimization process, the objective

function is based on the antenna’s gain performance in the
considered frequency range.

4 | PRACTICAL SINGLE ANTENNA
OPTIMIZATION

This section explains the implementation of two optimization
methods (i.e., BUO and BO) to designing and optimising
single antennas automatically. First, the initial configurations of
two antennas with achieved output results using the BUO
method are described. Then, the outcomes of two single an-
tennas optimised using the BO method are explained briefly.

F I GURE 2 Optimised antenna 1 with bottom-
up optimization method (left); unit of lines is
millimetres; Gain and S11 performance of optimised
antenna 1 (right)

F I GURE 3 Optimised antenna 2 with bottom-
up optimization method (left); unit of lines is
millimetres; Gain and S11 performance of optimised
antenna 2 (right)

F I GURE 4 Electromagnetic-based optimised
antenna 1 with Bayesian optimization method for
300 data points: computer-aided design model used
for simulations (left); unit of lines is millimetres;
photograph of fabricated prototype (right)
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After satisfied output performance is obtained for the deter-
mined BW, the optimised antennas are fabricated and
measured.

4.1 | Employment of bottom-up
optimization method for constructing initial
antenna configuration

The initial antenna structures based on the BUO method are
presented in this section. We attempted to design single an-
tennas in the X-band (8–12.5 GHz) for application in satellite
communication applications [33]. The BUO method generates
the initial configuration of the single antennas in terms of band
frequency and/or gain performance. In the optimization pro-
cess, it is constrained to have a suitable flat gain performance
in the limited X-band frequency.

Figure 2 represents the first antenna design with the related
simulation results in ADS. This antenna (i.e., antenna 1) covers
a 9.8- to 10.4-GHz frequency range (700 MHz of −10 dB BW);
the gain performance of the structure in that frequency band
does not have acceptable behaviour and it has a sharp decrease.

As mentioned, TLs located near the main radiator act as
parasitic elements; they are not directly fed (such as directors and
reflector(s) in the case of a Yagi-Uda antenna) and are also
introduced for tuning. Their presence influences antenna per-
formance in different ways: first it increases the geometrical area
and in turn the effective area of the antenna, guaranteeing a
higher gain. Second, it introduces additional resonances that will
make the overall structure of wideband. The location, dimension
and shape of these parasitic elements are all additional degrees of
freedom that can be considered during optimization, allowing
the required antenna performance to be obtained.

Hence, additional optimization is required to provide high
flat-gain performance. Moreover, another single antenna is
optimised to prove the reliability of our proposed method.
Figure 3 presents the second optimised antenna, labelled an-
tenna 2, with the output results. The working frequency of this
antenna is 13.4–14.1 GHz, which is suitable for the Ku band.

Therefore, antenna 1 has a gain problem and antenna 2 has
a frequency band problem. Hence, additional optimization

based on the BO method is needed to improve S11 with gain
performance. The final optimised antennas using BO method
are expressed next.

4.2 | Fabrication and measurement

This section deals with the optimised design of two microstrip
patch antennas, shown in Figures 4 and 5. These antennas have
been fabricated on a 20 � 18-mm Rogers (RO4003C) substrate
with tan α = 0.0027, ɛr = 3.55 and a thickness of 1.52 mm.
Owing to the availability of this substrate in our laboratory, we
prefer this substrate. These parameters were obtained from the
datasheet from the manufacturer. After the substrate is
selected, optimization is employed; the parameters of the
substrate are not optimised because they are constant.

As stated in Section 3, the initial design structures are
created using the EM-based BUO method. Concerning the
first antenna design, a larger impedance BW and acceptable
gain are achieved by erasing a triangle at the down left and
square on the top right of antenna 1 (Figure 4).

After successfully achieving the initial design requirements
with the BUO method, a second design is performed with a
change in the shape of the optimised antenna 1. In the second
antenna (i.e., antenna 2), shown in Figure 5, a circle with a

F I GURE 5 Electromagnetic-based optimised
antenna 2 with Bayesian optimization method for
300 data points: simulated (left); unit of lines is
millimetres; photograph of fabricated prototype
(right)

TABLE 1 Accuracy modelling of antennas depending on number of
data

Antenna 1 Antenna 2

Number
of data

Testing
accuracy
(%)

Number
of data

Testing
accuracy
(%)

50 48.1 50 44.8

100 53.1 100 51.2

150 65.4 150 64.7

200 74.8 200 71.4

250 85.5 250 82.4

300 96.8 300 94.2
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radius of 1 mm and a rectangular at the top right of the
structure were further erased aiming to improve both the S11
parameter and gain performance. The arc-circles of the cuts in
the TLs located around the main patch are equal to the width
of the lines: 1.96 mm. After achieving the initial design shapes
with initial design parameters, the suitable and best design
parameters, including the W and L of antennas with TLs, are

predicted automatically using the EM-based BO method.
Comparing Figures 3 and 5, the dimensions of the parasitic
elements have changed from 0.5 � 1 to 1 � 3 (mm2).

After applying the BUO method and extracting the initial
structure of antennas, the sampling points are generated, as
explained in the previous section. Modelling of the antennas
starts with a dataset including 50 data. The number data in-
creases until the antennas are modelled accurately and the
desired design goals are achieved. Table 1 shows the accuracy
modelling of antennas as a percentage with various data di-
mensions and illustrates that in the case of 300 data, acceptable
modelling accuracy (>90%) is achieved; hence the optimization
process is automatically stopped. Determining modelling ac-
curacy with testing data is more important in the BO method;
hence, the accuracy that represents the correctly predicted data
points out of testing data has been calculated (Table 1). The
proposed optimization process was implemented on a PC
equipped with an Intel Core i7-8550U CPU at 1.80 GHz with
8.00 GB RAM. For each dataset, the structure of ANN is built
using one hidden layer and determined the number of neurons
with the rule of thumb. The time cost to generate each group
of 50 data is around 15 min. Hence, a total of 300 data are
generated in around 1 h 30 min. The final ANNs for both
antennas consist of one hidden layer with 200 neurons,
resulting in more than 90% testing accuracy when the total
generated data are 300, as shown in Table 1.

To design antenna 1, the EM-based BO method was used
to analyse the created first attempt antenna geometry with the
BUO method for six different groups of data. Figure 6 shows
the return loss (S11) of the first antenna for various dataset
dimensions, such as 50, 100, 150, 200, 250, and 300 data. As
shown in Figure 6, for 300 data, the best simulation result
covers the frequency range of 8.8–10 GHz; that is, 1.2 GHz of
−10 dB BW (13.2%) is achieved. The gain performance of this
antenna for various data is also depicted in Figure 7, in which
for the frequency band and 300 data points, the gain is almost
flat, exhibiting a small variation in the interval of 6.9–7.2 dB.
By achieving acceptable simulation results for antenna 1, this
antenna was fabricated (with the determined design parameters
in the 300 dataset group) and measured. Figures 6 and 7 show

F I GURE 6 S11 parameter of antenna 1: simulation results for different
numbers of dataset (left); Comparison between best performance (300 data)
and measurement (right)

F I GURE 7 Gain of antenna 1. Simulation results for different
numbers of dataset (left); Comparison between best performance (300 data)
and measurement (right)

F I GURE 8 Measured radiation pattern of
fabricated antenna 1 at f1 = 8.8 GHz (red),
f2 = 9.17 GHz (blue), and f3 = 10 GHz (green);
ϕ = 0 (left); ϕ = 90° (right)

1542 - MIR ET AL.



that the measurement results are in good agreement with the
simulations. Measured radiation patterns at 8.8, 9.17, and
10 GHz are reported in Figure 8.

After the first antenna was optimised, one circular slot was
made in the centre with a radius of 1 mm and the BO method
was used to predict new design parameters. Figure 5 shows the
second EM-based optimised antenna with the leading di-
mensions of the geometry of antenna 2. Figure 9 shows
the performance of S11 in the operation frequency band of
8.7–10 GHz for various datasets from 50 to 300. When the data
size achieves 300, the desired BW is achieved; hence, the opti-
mization process is stopped. The flat-gain performance of the
simulated and measured second optimised antenna is 6.7–7 dB.
Measured data show a perfect match with the simulated ones, as
reported in Figure 9 for the impedance BWand in Figure 10 for
the gain. For the second design, the maximum return loss for
simulation is −21.3 dB, which occurs at 9.6 GHz, and for
measurement, the minimum S11 is −20.4 dB at 9.4 GHz.

The measured radiation pattern for the second antenna is
shown in Figure 11 at the same frequencies as in Figure 8.
Using ANN, this work provides a fully automated environment
for optimising multiple-objective antenna designs by first
modelling antennas and then sizing the design parameters. The
main contribution of this work is that it provides a completely
computerised background in which modelling and sizing are
performed with decreased human interruption. What previous
reported studies lacked [9–11], is a fully automated and holistic
environment for optimising antennas without depending on
the experience of a designer, as happened here.

5 | CONCLUSION

This study presents an automated optimization strategy by
implementing an EM-based BUO method to construct the
initial antenna structures; in a second step, it applies an
EM-based BO method to size the antennas using an ANN.
Accurate modelling of microwave designs is a challenging task
that needs a significant computational effort. To reduce this
effort, the sequential use of two optimization methods is pro-
posed to shape the geometry of the antennas and then effec-
tively size the design parameters of the antennas. As output,
ready-to-fabricate antenna geometries (i.e., layout) are gener-
ated automatically without human interruption. All processes

F I GURE 9 S11 parameter of antenna 2: simulation results for different
numbers of dataset (left); Comparison of best performance (300 data) and
measurement (right)

F I GURE 1 0 Gain of antenna 2: Simulation results for different
numbers of dataset (left); Comparison of best performance (300 data) and
measurement (right)

F I GURE 1 1 Measured radiation pattern of
fabricated antenna 2 at f1 = 8.8 GHz (red),
f2 = 9.17 GHz (blue), and f3 = 10 GHz (green);
ϕ = 0 (left); ϕ = 90° (right)
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are performed automatically with a combination of ADS and
MATLAB. Verification of the efficiency of the proposed
automated optimization process consists of the design of two
broadband microstrip patch antennas in the X-band frequency.
Experimental results in terms of input scattering parameters
and gain are in good agreement with the simulated data.

Our proposed optimization method is flexible and can be
improved by considering various substrates, using additional
feeding points (to generate circular polarisation, etc.), and
employing various types of TLs.
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