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(Received 7 May 2021; revised 9 August 2021; accepted 10 August 2021; published 29 October 2021)

The existence of a gapped chiral spin liquid has been recently suggested in the vicinity of the metal-insulator
transition of the Hubbard model on the triangular lattice, by intensive density-matrix renormalization group
(DMRG) simulations [A. Szasz, J. Motruk, M. P. Zaletel, and J. E. Moore, Phys. Rev. X 10, 021042 (2020)].
Here, we report the results obtained within the variational Monte Carlo technique based upon Jastrow-Slater wave
functions, implemented with backflow correlations. As in DMRG calculations, we consider N-leg cylinders. For
N = 4 and in the presence of a next-nearest-neighbor hopping, a chiral spin liquid emerges between the metal
and the insulator with magnetic quasi-long-range order. Within our approach, the chiral state is gapped and
breaks the reflection symmetry. By contrast, for both N = 5 and 6, the chiral spin liquid is not the state with the
lowest variational energy: in the former case, a nematic spin liquid is found in the entire insulating regime, while
for the less frustrated case with N = 6 the results are very similar to that obtained on two-dimensional clusters
[L. F. Tocchio, A. Montorsi, and F. Becca, Phys. Rev. B 102, 115150 (2020)], with an antiferromagnetic phase
close to the metal-insulator transition and a nematic spin liquid in the strong-coupling regime.

DOI: 10.1103/PhysRevResearch.3.043082

I. INTRODUCTION

The quest for spin-liquid states has fascinated the
condensed-matter physics community since the first proposal
of the resonating-valence bond (RVB) theory by Fazekas
and Anderson [1,2]. This approach has been one of the first
attempts to describe a Mott insulator without any sort of
symmetry breaking, even at zero temperature. In recent years,
spin liquids have been reported in an increasing number
of materials. Examples are given by Herbertsmithite, which
is well described by the Heisenberg model on the kagome
lattice [3], organic compounds, such as κ (ET)2Cu2(CN)3

and Me3EtSb[Pd(dmit)2]2 [4,5], or transition-metal dichalco-
genides, like 1T -TaS2, whose low-temperature behavior could
be captured by the Hubbard model on the triangular lattice [6].

An important open question concerns the nature of the in-
sulating phase of the two-dimensional Hubbard model on the
triangular lattice at half-filling. Most of the investigations have
been concentrated on its strong-coupling regime, where only
spin S = 1/2 degrees of freedom are left. Here, spin liquids
can be systematically classified, according to the projective-
symmetry group (PSG) theory [7–9]. In particular, one can
distinguish between Z2 and U (1) spin liquids, according to
the low-energy symmetry of the emerging gauge fields [10].
Starting from the Heisenberg model with nearest-neighbor
(NN) superexchange J , spin-liquid phases are expected to
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be stabilized when including either a next-nearest-neighbor
(NNN) coupling J ′ or a four-spin ring-exchange term K . The
latter can be justified within the fourth-order strong-coupling
expansion in t/U and is usually considered for an effective
description of density fluctuations close to the Mott transi-
tion [11]. As far as the J-J ′ model is concerned, a gapless
U (1) spin liquid has been proposed by both variational Monte
Carlo (VMC) [12,13] and recent density-matrix renormaliza-
tion group (DMRG) calculations [14], while older DMRG
results suggested the presence of a gapped spin liquid [15,16].
In addition, also ring-exchange terms may stabilize a gapless
spin liquid (with a spinon Fermi surface), as proposed by
earlier VMC studies [17] and confirmed by later DMRG sim-
ulations [18,19]. Further VMC investigations suggested two
other gapless spin-liquid states, neither of them possessing
a spinon Fermi surface [20]. However, more recent tensor-
network approaches, implemented from Gutzwiller-projected
wave functions, do not support the existence of a gapless spin
liquid [21].

Recently, chiral spin liquids attracted much attention be-
cause of their similarities with quantum Hall states [22,23].
Interestingly, chiral states may exist not only when the Hamil-
tonian explicitly breaks time-reversal symmetry (as in the
quantum Hall effect) [24], but also as a result of a spontaneous
symmetry breaking phenomenon [25]. On the triangular lat-
tice, some evidence of this exotic phase has been obtained by
adding a scalar chiral interaction to the Heisenberg Hamilto-
nian [26,27], or even in a fully symmetric Heisenberg model
with superexchange couplings up to the third neighbors [28].
A PSG classification of chiral states is possible, as worked out
for the fermionic case for different lattices [29]. In particular,
two simple Ansätze can be constructed [30]: The first one
(dubbed CSL1) is a U (1) chiral spin liquid, with complex
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hoppings defined on a 2 × 1 unit cell and no pairing; the
second one (dubbed CSL2) is a Gutzwiller-projected d + id
superconductor.

The situation in the Hubbard model, characterized by a
kinetic term t and an on-site Coulomb repulsion U , is much
less clear. The main difficulty comes from the presence of
density fluctuations, whose energy scale, which is related to
U , is much larger than the typical energy scale of spin fluc-
tuations, i.e., J = 4t2/U . Therefore, it is not simple to detect
tiny effects related to spin degrees of freedom when density
fluctuations are present. In addition, numerical methods like
exact diagonalization or DMRG suffer from the fact that the
local Hilbert space is doubled with respect to the case of S =
1/2. Nevertheless, this effort is necessary in order to capture
density fluctuations that are inevitably present in real mate-
rials. The possibility that a spin-liquid phase may exist not
only in the strong-coupling regime U � t , but also close to
the metal-insulator transition, has been discussed by different
theoretical and numerical approaches in the past [31–37]. The
term weak-Mott insulator has been used in this case, namely
when a spin liquid intrudes between the weak-coupling metal
and the strong-coupling antiferromagnetic insulator [11]. In
particular, recent extensive DMRG calculations [38,39] high-
lighted the possibility for a gapped chiral spin liquid close
to the Mott transition. A possible description of such a state
has been proposed within a bosonic RVB description [40], as
well as within a spin model with the four-spin ring-exchange
term [41]. Calculations of Ref. [39] are limited to four-leg
cylinders, which highly frustrate the 120◦ magnetic pattern,
since the corresponding k vectors are not allowed by the
quantization of momenta. Instead, in Ref. [38] also six-leg
cylinders have been considered, even if the presence of two
almost degenerate momentum sectors at intermediate U/t can
make the interpretation of the results not completely trivial.
In addition, a recent study at finite temperature, still focusing
on four-leg cylinders, highlighted the concomitant presence
of chiral correlations and nematic order at finite, but low,
temperature and intermediate coupling [42]. Instead, a DMRG
investigation on three-leg cylinders suggested that a gapless
and nonchiral spin liquid appears close to the Mott transition
[43]. A more conventional picture, with a direct transition
between a metal and an insulator with magnetic order, has
been found in Refs. [44–46]. We would like to remark that the
analysis of the insulating phase in the vicinity of the Mott tran-
sition is complicated by the significant difference in locating
the Mott transition, as observed with the different methods.
Finally, the effect of NNN hopping has been addressed in
Ref. [47], using the VCA method with few (12) sites, leading
to a large spin-liquid region for t ′/t > 0, and in a VMC study
that suggests always a direct transition between a metal and a
magnetic insulator, even with an asymmetry between positive
and negative values of t ′/t [48].

In this work, we present variational Monte Carlo results,
based upon Jastrow-Slater wave functions and backflow cor-
relations, for the Hubbard model on the triangular lattice on
N-leg cylinders, with N = 4, 5, and 6. The role of the NNN
hopping term t ′ is also discussed. On four-leg cylinders, we
find a chiral spin liquid on a relatively extended region in the
vicinity of the metal-insulator transition, when t ′/t < 0. This
intermediate phase is gapped, in analogy with DMRG results.

FIG. 1. Left panel: triangular lattice on a cylinder with L2 = 4,
with periodic boundary conditions along a1 and a2. This geometry is
different from the YC4 geometry of Refs. [38,39]. Right panel: first
Brillouin zone of the triangular lattice. The red dashed lines indicate
the allowed momenta on a cylinder with L2 = 4.

In addition, a gapless nonchiral state appears at larger values
of the Coulomb repulsion. For t ′/t � 0, the Mott insulator is
always nonchiral, with quasi-long-range 120◦ magnetic order,
even if the chiral spin-liquid state is quite close in energy,
at least in the vicinity of the Mott transition. On five- and
six-leg cylinders, the chiral spin liquid does not give the best
variational energy. For N = 5, the whole insulating regime
is described by a gapless nonchiral spin liquid, while for
N = 6 the phase diagram is similar to the one found in the
two-dimensional case [48], with antiferromagnetic order close
to the metal-insulator transition and a gapless nonchiral spin-
liquid phase at strong coupling.

The paper is organized as follows: in Sec. II, we describe
the model and the various variational wave functions, as well
as the quantities that have been used to obtain the important
information; in Sec. III, we present the numerical results;
finally, in Sec. IV, we draw our conclusions.

II. MODEL AND METHOD

We consider the single-band Hubbard model on the
triangular lattice:

H = − t
∑

〈i, j〉,σ
c†

i,σ c j,σ − t ′ ∑
〈〈i, j〉〉,σ

c†
i,σ c j,σ + H.c.

+ U
∑

i

ni,↑ni,↓,

(1)

where c†
i,σ (ci,σ ) creates (destroys) an electron with spin σ

on site i and ni,σ = c†
i,σ ci,σ is the electronic density per spin

σ on site i. The NN and NNN hoppings are denoted as t
and t ′, respectively; U is the on-site Coulomb interaction.
We define three vectors connecting NN sites, a1 = (1, 0),
a2 = (1/2,

√
3/2), and a3 = (−1/2,

√
3/2); in addition, we

also define three vectors for NNN sites, b1 = a1 + a2, b2 =
a2 + a3, and b3 = a3 − a1. We consider clusters with periodic
boundary conditions defined by T1 = L1a1 and T2 = L2a2, in
order to have L = L1 × L2 sites. We focus on cylinders with
four (L2 = 4), five (L2 = 5), and six (L2 = 6) legs; see the
case with L2 = 4 in Fig. 1. Most of the calculations have been
done with L1 = 30, which is large enough not to suffer from
significant finite-size effects. The half-filled case, where the
Mott transition takes place, is considered. In this case, only
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the sign of the ratio t ′/t is relevant and not the individual signs
of t and t ′.

Our numerical results are obtained by means of the VMC
method, which is based on the definition of suitable wave
functions to approximate the ground-state properties beyond
perturbative approaches [49]. In particular, we consider the
so-called Jastrow-Slater wave functions that include long-
range electron-electron correlations via the Jastrow factor
[50,51], on top of an uncorrelated Slater determinant (pos-
sibly including electron pairing). In addition, the so-called
backflow correlations will be applied to the Slater determi-
nant in order to sizably improve the quality of the variational
state [52,53]. Thanks to Jastrow and backflow terms, these
wave functions can reach a very high degree of accuracy
in Hubbard-like models for different regimes of parameters,
including frustrated cases [54]. Therefore, they represent a
valid tool to investigate strongly correlated systems, compet-
ing with state-of-the-art numerical methods, such as DMRG
or tensor networks.

Our variational wave function for describing the spin-
liquid phase is defined as

|�SL〉 = Jd |�MF〉, (2)

where Jd is the density-density Jastrow factor and |�MF〉 is
a state where the orbitals of an auxiliary Hamiltonian are
redefined on the basis of the many-body electronic configura-
tion, incorporating virtual hopping processes, via the backflow
correlations [52,53].

The density-density Jastrow factor is given by

Jd = exp

(
−1

2

∑
i, j

vi, jnin j

)
, (3)

where ni = ∑
σ ni,σ is the electron density on site i, and vi, j

are pseudopotentials that are optimized for every independent
distance |Ri − R j |. The density-density Jastrow factor allows
us to describe a nonmagnetic Mott insulator for a sufficiently
singular Jastrow factor vq ∼ 1/q2 (vq being the Fourier trans-
form of vi, j) [50,51].

The auxiliary Hamiltonian is then defined as follows:

HMF =
∑
k,σ

ξkc†
k,σ

ck,σ
+

∑
k

�kc†
k,↑c†

−k,↓ + H.c., (4)

where ξk = ε̃k − μ defines the free-band dispersion (including
the chemical potential μ) and �k is the singlet pairing am-
plitude. In our previous work on the two-dimensional lattice
[48], we found that the best spin liquid has a nematic charac-
ter, the hopping terms being given by

ε̃k = − 2t[cos(k · a1) + cos(k · a3)] − 2t̃d cos(k · a2)

− 2t̃ ′[cos(k · b1) + cos(k · b2) + cos(k · b3)].
(5)

Instead, the pairing amplitudes are

�k = 2�[cos(k · a1) − cos(k · a3)] + 2�d (cos k · a2), (6)

which possess a d-wave symmetry on the two bonds with hop-
ping t . In two dimensions, we found t̃d ≈ 0 and �d ≈ 0, while
on cylinders they may assume finite values. Remarkably, this
choice (with different couplings along a2 and a3) gives the

best variational energy also on cylinders, implying an explicit
breaking in point-group symmetries.

In addition, we focus on chiral spin-liquid states, which
have been claimed to be relevant both in the Heisenberg limit
[30] and in the Hubbard model close to the Mott transition
[38,39]. The CSL2 state is a projected d + id superconductor
characterized by uniform (real) hopping along NN and NNN
bonds and a pairing

�k = 2�[cos(k · a1) + ω cos(k · a2) + ω2 cos(k · a3)], (7)

where ω = e2iπ/3. Another chiral state (dubbed here CSL3)
may be defined by the hopping amplitude of Eq. (5) and a
different d + id pairing structure:

�k = 2�[cos(k · a1) − cos(k · a3)] + 2i�d cos(k · a2). (8)

Finally, a chiral spin liquid with U (1) symmetry has been
proposed (dubbed CSL1 in Ref. [30]), with magnetic fluxes
piercing the elementary plaquettes. In the presence of density
fluctuations, this state breaks the translational symmetry and
does not give a competitive variational energy. Therefore, in
the following, this Ansatz is not reported.

Within the two-dimensional case, antiferromagnetically or-
dered wave functions represent an important class of states,
since a large portion of the phase diagram corresponds to
phases that spontaneously break the SU(2) spin symme-
try. Cylinders are quasi-one-dimensional systems, in which
a continuous symmetry cannot be broken. Nevertheless, a
variational wave function can be still constructed from a mag-
netically ordered Slater determinant. Then, density and spin
correlations may be inserted by Jastrow factors:

|�AF〉 = JsJd |�AF〉; (9)

here, Jd is the density-density term of Eq. (3), and Js is
the spin-spin Jastrow factor, which is written in terms of a
pseudopotential ui, j that couples the z-component of the spin
operators on different sites:

Js = exp

(
−1

2

∑
i, j

ui, jS
z
i Sz

j

)
. (10)

Finally, |�AF〉 is obtained, after taking into account the back-
flow corrections, from the following auxiliary Hamiltonian:

HAF =
∑
k,σ

εkc†
k,σ

ck,σ
+ �AF

∑
i

Mi · Si, (11)

where εk is the free dispersion of Eq. (1), Si = (Sx
i , Sy

i , Sz
i )

is the spin operator at site i, and Mi is defined as Mi =
[cos(Q · Ri ), sin(Q · Ri ), 0], where Q is the pitch vector. The
three-sublattice 120◦ order has Q = ( 4π

3 , 0) or ( 2π
3 , 2π√

3
), while

the stripe collinear order with a two-sublattice periodicity
has Q = (0, 2π√

3
) or Q = (π, π√

3
). On six-leg cylinders, the

pitch vector corresponding to the 120◦ order is allowed by the
quantization of momenta; instead, on four- and five-leg cases
it is not allowed, and we take the closest possible momentum.
On five legs, also the pitch vector of the stripe collinear order
is not allowed.

In general, the effect of the spin-spin Jastrow factor Js is to
reduce the value of magnetic order of the uncorrelated Slater
determinant [55,56]. In purely one-dimensional systems, the
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presence of a long-range Jastrow factor is able to completely
destroy magnetic order, leading to the correct behavior of the
spin-spin correlations [57]. On cylinders with a finite number
of legs N , a residual magnetic order persists, thus giving rise
to a spurious wave function that breaks the SU(2) symmetry.
Here, we interpret the possibility to stabilize this kind of
variational state as the tendency to develop magnetic order in
the two-dimensional system. For simplicity, in the following,
the Ansatz of Eq. (9) will be denoted by “antiferromagnetic.”
We remark that, in principle, it would be possible to restore
the SU(2) symmetry by projecting on the S = 0 subspace [58].
However, this procedure is rather computationally expensive,
whenever the computational basis has a definite value of Sz =∑

i Sz
i but not of S2 = (

∑
i Si )2. All the pseudopotentials in the

Jastrow factors, the parameters in the auxiliary Hamiltonian,
as well as the backflow corrections are optimized with the
stochastic reconfiguration method [49].

To assess the metallic or insulating nature of the ground
state, we can compute the static density-density structure
factor:

N (q) = 1

L

∑
i, j

〈nin j〉iq·(Ri−R j ), (12)

where 〈· · · 〉 indicates the expectation value over the varia-
tional wave function. Indeed, density excitations are gapless
when N (q) ∝ |q| for |q| → 0, while a gap is present when-
ever N (q) ∝ |q|2 for |q| → 0 [53,59]. Analogously, the
presence of a spin gap can be checked by looking at the
small-q behavior of the static spin-spin correlations [60]:

S(q) = 1

L

∑
i, j

〈
Sz

i Sz
j

〉iq·(Ri−R j )
. (13)

III. RESULTS

Here, we discuss the results for the variational energy of
different states on the four-leg cylinder geometry. Let us start
from the case with t ′/t = 0; see Fig. 2 (upper panel). In this
case, the Mott transition occurs between U/t = 9 and 9.5,
as extracted from the low-q behavior of the density-density
correlations; see Fig. 3 (upper panel). In the small-U regime,
the pairing terms �k [in the spin-liquid Ansätze of Eq. (2)] or
the antiferromagnetic parameter �AF [in the magnetic wave
function of Eq. (9)] are very small and there is a tiny differ-
ence among all different variational states. This fact indicates
that the conducting phase is a standard metal, with neither
magnetic nor superconducting order. Instead, in the insulating
phase, the optimal wave function is the antiferromagnetic one
with the pitch vector corresponding to approximately 120◦
order, i.e., Q = ( 2π

3 , 7π

3
√

3
). The overall situation is not much

different from what has been obtained, within the same ap-
proach, in the two-dimensional limit [48] (except the fact that
in the latter case, a true antiferromagnetic order settles down).
We also remark that the energy gain of the antiferromagnetic
state with respect to the spin-liquid one is smaller on four legs
than in two dimensions.

Then, a large spin-liquid region appears immediately above
the Mott transition, by including a finite NNN hopping t ′/t =
−0.3; see Fig. 2 (middle panel). Here, the metal-insulator
transition takes place at U/t = 11.5 ± 0.5; see Fig. 3 (middle

FIG. 2. Energy (per site) in units of J = 4t2/U , as a function
of t/U on the four-leg cylinder for t ′/t = 0 (upper panel), t ′/t =
−0.3 (middle panel), and t ′/t = +0.3 (lower panel). Data are shown
for different trial wave functions: the antiferromagnetic state with
Q = ( 2π

3 , 7π

3
√

3
) (blue full circles), the one with Q = (0, 2π√

3
) (blue full

squares), the spin liquid (SL) with hopping in Eq. (5) and pairing in
Eq. (6) (black empty diamonds), the CSL2 with uniform hopping and
pairing given by Eq. (7) (red empty circles), and the CSL3 defined
by Eqs. (5) and (8) (red empty squares). Black arrows denote the
metal-insulator transitions. Data are shown for an L = 30 × 4 lattice
size. Error bars are smaller than the symbol size.

panel). The best variational state, between U/t = 12 and 16, is
given by the CSL3, even though the other spin-liquid states are
very close in energy. By increasing the ratio U/t , the ground
state passes through an intermediate phase where the best
variational state is the antiferromagnetic one (with collinear
order), before entering a further (strong-coupling) spin-liquid
region that has no chiral features, in analogy with the results
previously obtained in two dimensions [48]. In Fig. 2, we do

043082-4



HUBBARD MODEL ON TRIANGULAR N-LEG … PHYSICAL REVIEW RESEARCH 3, 043082 (2021)

FIG. 3. Static density-density structure factor N (q), divided by
|q|, computed for the lowest-energy states at different values of U/t .
Results for t ′/t = 0 (upper panel), t ′/t = −0.3 (middle panel), and
t ′/t = +0.3 (lower panel) are shown on a four-leg cylinder with
L = 30 × 4, along the line connecting � = (0, 0) to M ′ = (π,− π√

3
).

Error bars are smaller than the symbol size.

not report the flux phase CSL1, since its variational energy
is always significantly higher than the other states. For exam-
ple, at U/t = 12, we have E/J = −0.8907(3) for t ′ = 0 and
E/J = −0.9294(3) for t ′/t = −0.3. The situation is radically
different by taking the opposite sign of the hopping ampli-
tudes, i.e., t ′/t = +0.3; see Fig. 2 (lower panel). The Mott
transition lowers down to U/t = 6.5 ± 0.5 [see Fig. 3 (lower
panel)], with the insulating state being approximated by the
antiferromagnetic state, with pitch vector Q = ( 2π

3 , 7π

3
√

3
), up

to U/t ≈ 20. For larger values of the electron-electron re-
pulsion, a nonchiral spin-liquid state emerges. Note that the
energies reported for the antiferromagnetic state with collinear
order below the Mott transition correspond to a local mini-
mum with insulating features.

FIG. 4. Static spin-spin structure factor S(q), divided by |q|,
computed for the lowest-energy states at different values of U/t , for
t ′/t = −0.3. Data are shown on a four-leg cylinder with L = 30 × 4,
in the metallic region (green empty diamonds), for the chiral spin
liquid state CSL3 (red full points) and for the large-U spin liquid
(black full squares). The q points are located along the line connect-
ing � = (0, 0) to M ′ = (π,− π√

3
). Error bars are smaller than the

symbol size.

To determine the nature of the chiral spin-liquid state, we
analyze the spin-spin correlations by computing the spin-spin
structure factor of Eq. (13). In Fig. 4, we report calculations
for t ′/t = −0.3 and values of U/t across the Mott transition.
The main result is that the chiral spin liquid, realized close
to the Mott transition, has a spin gap, since S(q) ∝ |q|2 for
small values of the momentum q. This is in agreement with
recent DMRG studies [38,39]. We remark that this feature
is solid, since it is also shared by the other two spin-liquid
states with nearby energies, i.e., the CSL2 and the nonchiral
one parametrized by Eqs. (5) and (6). On the contrary, the
large-U state is gapless. In this regime the optimal parameters
t̃d ≈ 0 and �d ≈ 0 lead to a gapless spectrum in the auxiliary
Hamiltonian (4), thus indicating that the nature of the unpro-
jected state is not changed when including the Jastrow factor.

The optimal chiral spin liquid (close to the Mott transition),
as well as the nonchiral one (in the strong-coupling regime),
are very anisotropic, as shown by computing the nearest-
neighbor spin-spin correlations Dj = 〈Sz

Ri
Sz

Ri+a j
〉, with j =

1, 2, 3. For example, for t ′/t = −0.3 and U/t = 12, the
CSL3 state has D1 = D3 = −0.029(1) and D2 = −0.069(1).
For U/t = 20, the nonchiral spin liquid has D1 = D3 =
−0.101(1) and D2 = +0.041(1). Within the error bar, these
results are the same from L = 18 × 4 to L = 30 × 4. As
discussed in Sec. II, this anisotropy follows directly the
parametrization of the spin-liquid state; see Eqs. (5) and (6)
for the nonchiral Ansatz and Eqs. (5) and (8) for the CSL3.

Then, we show the stability of the chiral spin liquid when
going from N = 4 to 6. Results are shown in Fig. 5, together
with the ones for a truly two-dimensional cluster (with L =
18 × 18 sites), which has already been discussed in our previ-
ous work [48]. On a two-dimensional cluster, the CSL3 state
is a local minimum, with energy higher than the other states.
Instead, on six-leg cylinders, the CSL3 state is not reported,
since, upon optimization, it converges to the nonchiral state.
The most important fact is that no chiral phases are present
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FIG. 5. Energy (per site) in units of J = 4t2/U , as a function of
t/U , for t ′/t = −0.3 on the six-leg cylinder with L = 30 × 6 (upper
panel). The results for the two-dimensional cluster with L = 18 × 18
are also reported for comparison (lower panel). Data are shown for
different trial wave functions: The antiferromagnetic state with 120◦

magnetic order (blue full circles), the state with collinear order (blue
full squares), the spin liquid with hopping in Eq. (5) and pairing in
Eq. (6) (black empty diamonds), the CSL2 with uniform hopping and
pairing given by Eq. (7) (red empty circles), and the CSL3 defined
by Eqs. (5) and (8) (red empty squares). Black arrows denote the
metal-insulator transitions. Error bars are smaller than the symbol
size.

in the insulating region close to the metal-insulator transition
(which, for N = 6, appears between U/t = 11 and 12). Here,
the insulating phase is either an antiferromagnet with collinear
order, in the vicinity of the Mott transition, or a gapless
nonchiral spin liquid, in the strong-coupling regime. Note that,
also in this case, the antiferromagnetic state with collinear
order becomes a local minimum below the Mott transition.
The reason for the stabilization of the chiral state on four-leg
cylinders comes from its remarkable energy gain when going
from N = 6 (or equivalently two dimensions) to N = 4; by
contrast, the variational energies of the antiferromagnetic state
do not change much when varying N . Overall, the resulting
phase diagram for N = 6 is qualitatively similar to the one
obtained in two dimensions. Therefore, within our approach,
the chiral spin liquid exists only for particular values of N ,
like on four-leg cylinders.

Finally, we have also considered cylinders with an odd
number of legs, i.e., with L2 = 5. This is a particularly frus-
trating case, since both 120◦ and stripe collinear magnetic
correlations are not allowed by the quantization of transverse

FIG. 6. Energy (per site) in units of J = 4t2/U , as a function of
t/U , for t ′/t = −0.3 on the five-leg cylinder with L = 30 × 5. Data
are shown for different trial wave functions: The antiferromagnetic
state with Q = ( 2π

3 , 26π

15
√

3
) (blue full circles), the antiferromagnetic

state with Q = (π, 3π

5
√

3
) (blue full squares), the spin liquid with

hopping in Eq. (5) and pairing in Eq. (6) (black empty diamonds),
the CSL2 with uniform hopping and pairing given by Eq. (7) (red
empty circles), and the CSL3 defined by Eqs. (5) and (8) (red empty
squares). The black arrow denotes the metal-insulator transition.
Error bars are smaller than the symbol size.

momenta. Results for the energies of the different variational
states are reported in Fig. 6. The Mott transition is determined
also in this case by looking at the static structure factor of
Eq. (12). In this case, the insulator is always a gapless spin liq-
uid, with no chiral features. Indeed, the best variational state
is the one defined by Eqs. (5) and (6), with optimal variational
parameters �d ≈ 0 and t̃d ≈ 0, which is the same as the large-
U spin liquid reported on the four-leg case. The two magnetic
states are now both disfavored because of the five-leg ge-
ometry and they are approximated by the pitch vectors Q =
(π, 3π

5
√

3
) (for the stripe collinear order) and Q = ( 2π

3 , 26π

15
√

3
)

(for the 120◦ order). The two chiral states (CSL2 and CSL3)
have also higher energies with respect to the nonchiral one.
Our finding is in agreement with that reported by DMRG in
Ref. [38], where no chiral features are observed on the five-leg
cylinder when using periodic boundary conditions.

IV. CONCLUSIONS

In summary, we have studied the Hubbard model on cylin-
ders with a triangular lattice geometry by means of the VMC
approach. Both a NN hopping t and a NNN hopping t ′ are
considered in the model. First, we focused on the four-leg
case, with different values of the ratio t ′/t . For t ′/t < 0, a
spin liquid is stabilized in the vicinity of the Mott transition.
This state is a gapped chiral spin liquid that also breaks
the point-group symmetry. At larger values of U/t , a further
gapless spin liquid appears. For t ′ = 0, the insulating region
is always antiferromagnetic (with approximately 120◦ order),
while for t ′/t > 0 we observe a gapless spin liquid in the
strong-coupling regime. However, the chiral spin liquid disap-
pears on cylinders with five and six legs, as well as in the truly
two-dimensional case. In these cases, a gapless spin liquid
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FIG. 7. Schematic phase diagram of the triangular lattice at
t ′/t = −0.3 as a function of U/t . Four different lattices are con-
sidered, with four, five, and six legs, as well as a two-dimensional
cluster. The symbol “SL” denotes a gapless spin liquid, while the
symbol “CSL” denotes a chiral gapped spin liquid. The antiferromag-
netic collinear order on cylindrical geometries is denoted in quotation
marks, since no true long-range magnetic order can occur.

survives in the large-U region. These results are summarized
in Fig. 7.

Our calculations convey two main messages: On one side,
the spin liquid that we obtain on the four-leg cylinder, close

to the Mott transition, is chiral and spin gapped, in agreement
with recent DMRG calculations [38,39]. In addition, the best
chiral state breaks the reflection symmetry, as also suggested
in the finite-temperature tensor-network method of Ref. [42].
Nevertheless, within variational Monte Carlo, an additional
NNN hopping is necessary to stabilize the chiral state. On the
other side, our results suggest that a chiral spin liquid exists
only in particular geometries (e.g., the four-leg cylinder). In-
stead, on cylinders with five and six legs (as well as in two
dimensions), the chiral spin liquid either is not stable upon
optimization or has a variational energy that is quite higher
than the optimal state. Finally, we observe that chiral flux
phases (defined on the 2 × 1 unit cell) have a variational en-
ergy that is not competitive with other wave functions. As with
all variational calculations, our results suffer from an intrinsic
bias, given by the choice of the variational Ansatz; still, the
Jastrow-Slater state possesses a great deal of flexibility, being
able to describe a wide variety of different phases, including
quantum spin liquids, with or without chiral order. The fact
that we do not observe a chiral spin liquid in five- and six-leg
cylinders and in two-dimensional clusters suggests that either
this state is not present or it cannot be represented by the
Ansätze that have been considered here.
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