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Abstract: Low-cost and fast surveying approaches are increasingly being deployed in several do-
mains, including in the field of built heritage documentation. In parallel with mobile mapping
systems, uncrewed aerial systems, and simultaneous location and mapping systems, 360◦ cameras
and spherical photogrammetry are research topics attracting significant interest for this kind of
application. Although several instruments and techniques can be considered to be consolidated
approaches in the documentation processes, the research presented in this manuscript is focused
on a series of tests and analyses using 360◦ cameras for the 3D metric documentation of a complex
environment, applied to the case study of a XVIII century belltower in Piemonte region (north-west
Italy). Both data acquisition and data processing phases were thoroughly investigated and several
processing strategies were planned, carried out, and evaluated. Data derived from consolidated 3D
mapping approaches were used as a ground reference to validate the results derived from the spheri-
cal photogrammetry approach. The outcomes of this research confirmed, under specific conditions
and with a proper setup, the possibility of using 360◦ images in a Structure from Motion pipeline to
meet the expected accuracies of typical architectural large-scale drawings.

Keywords: built heritage; spherical photogrammetry; 360◦ cameras; SfM; SLAM

1. Introduction

The documentation of built heritage and, in general, of cultural heritage, is a complex
process that poses a series of issues and that has specific rules and requirements [1–3]. Each
heritage asset has its own specific features and, depending on its state of conservation and
the knowledge process status, the documentation project is characterized by a tailored
structure and organization. The documentation of a heritage asset is, or at least should
always be, the first phase of the knowledge process, and thus it is crucial to take into
account several aspects that contribute and influence its survey. The first aspect to consider
relates to the final expected accuracy of the derived metric products and their level of detail,
which also depends on the specific goal of the subsequent analyses carried out by different
research areas with different expertise [4,5].

Furthermore, time and cost are two other factors that highly influence the design of a
documentation project (not only in the built heritage field). Resources and time available
both in the field and in the post-processing, analysis, and interpretation phases have a
significant impact on the overall design of the heritage documentation [6].

Considering the requirements of the multi- and inter-disciplinary approach that is
most often required for a complete knowledge process, the design of the survey output
products should be carefully considered and evaluated a priori, with a two-fold goal: (i) to
maximize the engagement of all of the experts involved in the knowledge process and (ii) to
ensure the required information will be embedded in the survey output products [7,8].

Finally, a crucial step in the documentation process of built heritage is connected with
its dissemination, which can be fostered by highly informative survey products [9,10].
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It is thus crucial to consider the aforementioned aspects when choosing the techniques
and the instruments to be deployed in the field when designing the documentation process
of a heritage asset.

Fast surveying approaches have raised new interest in the operators working in the
field of heritage documentation and their adoption has widely grown in recent years due
to their flexibility, ease of deployment, and low cost.

All of these elements are even more important if the object to be documented is
represented by a complex environment, such as the one used as the case study in this
research. This paper focuses on the experience of documenting a complex architectural her-
itage asset, exploiting experimental approaches together with more consolidated practices
(that serve as a ground reference to validate the proposed methodology), i.e., traditional
topographic techniques, terrestrial laser scanner (TLS), uncrewed aerial systems (UAS),
360◦ cameras, and spherical photogrammetry (SP), and a handheld scanner based on
simultaneous localization and mapping (SLAM) algorithms.

UAS and TLS are currently considered to be consolidated and widespread methods,
and a rich literature is available on their use for heritage documentation. For a review on
the state of the art in the use of UAS for the documentation of archaeological heritage, it is
possible to refer to [11], whereas wider analyses on the use of UAS for cultural heritage
documentation are reported in [12,13] and in [14], where ultra-light UAS are tested for
the documentation of both archaeological and architectural sites. In [15], the combination
of UAS photogrammetry and TLS is tested and evaluated for the documentation of an
heritage site; this is also presented in [16]. Further information concerning the use of TLS
for the documentation of cultural heritage can be found in [17,18].

By comparison, SP and SLAM systems for heritage documentation, despite represent-
ing a research topic of high interest, are two approaches that still present open issues and
need to be further investigated and validated. Experiences on the use of spherical cameras
for the documentation of cultural heritage can be found in [19–21], and tests and analyses
on the deployment of SLAM systems are presented in [22–25]. The advantages and disad-
vantages of these techniques are clearly described in the cited references, highlighting the
possibility of an integrated multi-sensor approach for built heritage surveying.

Among these different sensors and techniques, the focus of the research reported in
the following sections is the use of 360◦ cameras and SP, which can be considered a less
consolidated approach among those currently adopted for cultural heritage documentation.

360◦ Cameras and Spherical Photogrammetry

Two approaches can be followed for the photogrammetric use of spherical images:

1. The one mainly developed by the Università Politecnica delle Marche under the
direction of Prof Gabriele Fangi and commonly defined as multi-image spherical pho-
togrammetry, panoramic spherical photogrammetry, or spherical photogrammetry.

2. The evolution of the first approach due to the developments of Structure from Motion
(SfM) algorithms.

The first approach is well described in the literature [26–29] and the development of
this methodology was mainly related to the idea of exploiting the advantages of spherical
images: low-cost, rapid, and complete coverage of the acquired imagery. This method
can be described as an analytical approach for the processing of spherical images in an
equirectangular projection and its workflow is well described and summarized in [28].

Due to the development of SfM algorithms, 360◦ images gained new popularity
in recent years and became a research topic that has been well exploited by several
authors [30–35], who investigated the different issues associated with using this type
of image in a SfM-based workflow.

In this manuscript, the latter approach is referred to as spherical photogrammetry.
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2. Materials and Methods
2.1. Case Study

The municipality of Montanaro (Figure 1) is located 30 km northwest of Turin (Piemonte
region, Italy) and hosts the Santa Marta belltower, a valuable built heritage asset designed
by Bernardo Antonio Vittone, and built between 1769 and 1772.
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Figure 1. Montanaro location in Italy (OSM basemap, © OpenStreetMap contributors), location of
Santa Marta belltower in Montanaro, and an aerial view of the belltower.

The main peculiarity of these complex of buildings is that they represent a unique
built heritage designed by a single architect, Bernardo Antonio Vittone. These structures
are built around the belltower, the fulcrum of the composition, and are the town hall, the
brotherhood of S. Marta, and the parish church. The project of Vittone well represents the
ideal integration between the secular community and the sacred space in an XVIII century
municipality [36]. The belltower is approximately 48 m high; it becomes slender in the
progression toward the top and has a peculiar internal spiral stairway made of stone.

2.2. Data Acquisition
2.2.1. Topographic Network and Control Points

Following the consolidated operative practice, the first operation in the field was the
creation and measurement of a network of vertices to properly define a reference system
supporting the subsequent phases of data acquisition, processing, and metric control. The
height of the tower, the proximity of surrounding buildings, and the limited availability of
locations that granted good satellite visibility were all elements that influenced the design
and setup of the topographic network. Five vertices were materialized in the square in
front of the tower and three in intermediate floors (also allowing the measurement of
indoor ground control points). Due to the conformation of the urban area near the tower, it
was possible to adopt a Global Navigation Satellite System (GNSS) static technique only
for two vertices in front of the tower, whereas each of the five vertices were measured
with a total station. Nevertheless, to georeference the network to the ETRF2000 UTM Zone
32N cartographic system, the GNSS data measured in the field were combined with the
observations from the network of Continuously Operating Reference Stations (CORS),
allowing a more robust and precise computation of the vertices’ coordinates. To complete
this operation, the data from the CORS of the interregional positioning service SPIN3
of Piemonte, Lombardia, and Valle d’Aosta [37] were used. Specifically, the permanent
stations of Torino, Crescentino, and Cuorgnè were employed.

A representation of the topographic network is shown in Figure 2b, together with the
position of the CORS used to compute the coordinates of the two vertices measured by the
GNSS in the field, Figure 2a.
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Figure 2. Position of three CORS of the SPIN3 GNSS network (a) used to georeference the topographic
network established in Montanaro (b), where two out of the five vertices were also acquired with
GNSS static technique.

The second phase of fieldwork was the positioning/selection and measuring of several
ground control points to be used for the subsequent data processing and data validation
phases. Ground control points were represented both by an artificial paper coded target
positioned directly on the wall’s surface or by readily identifiable natural features. These
were measured on both the exterior and interior part of the belltower to ensure a good
connection between indoor and outdoor, and to grant good metric control of the indoor
data acquisitions.

A total of 99 ground control points with centimetric accuracy were measured with
traditional topographic techniques by means of single side shots from a total station:
67 points outdoor and 32 points indoor (the spatial distribution of ground control points is
shown in Figure 3). For the topographic survey, two Geomax Zenith 35 GNSS receivers
and a Leica Viva MS total station were used.
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2.2.2. Uncrewed Aerial Systems (UAS)

The UAS acquisition performed in Montanaro was previously described and analyzed
in another published work [38]. For the purposes of this research, these data were used
to integrate and partially validate the other datasets, and for the sake of completeness
and easy reference a short description of their acquisition and processing is reported
hereafter. Data derived from the UAS acquisition were crucial to verify the congruence and
accurate connection between the indoor and outdoor datasets, particularly on the belltower
windows.

A DJI Phantom 4 Pro was used for the acquisition [39] (mechanical shutter camera
equipped with a 1” CMOS 20 MP sensor, multi-frequency, and multi-constellation GNSS
receiver) and, due to the urban conformation and the type of acquisitions to be completed,
the flights were manually executed. For each façade, images were acquired starting from
the ground and moving to the top of the tower, and an average object-sensor distance of
5 m was maintained. Both nadiral (optical axis perpendicular with respect to the façade
average plane) and oblique (optical axis at 45◦ with respect to the façade) images were
acquired for each façade. The same acquisition scheme (Figure 4) was replicated for each
of the four edges of the belltower; a total number of 543 images were captured with an
expected GSD of 3 mm.
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2.2.3. Terrestrial Laser Scanner (TLS)

Acquisitions with TLS were used as a ground reference for the other datasets and were
not designed as a complete survey of the belltower, because it would have been highly
time consuming due to the conformation of the environment. A Faro Focus3D X 330 TLS
was used (the main specifications are reported in Table 1), and scans were acquired in two
different fieldwork phases.

Table 1. Faro Focus3D main technical specifications.

Range Measurement
Speed Ranging Error FoV

(Vertical/Horizontal)

Faro Focus3D

X330
0.6–330 m ~976,000

points/s ±2 mm 300◦/360◦
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The first TLS acquisitions covered the exterior part of the belltower, including several
scans of the ground floor, whereas the second acquisition covered the interior of the
belltower.

During the first campaign, eleven scans were acquired (Figure 5a); in the second
campaign, seven scans were acquired (Figure 5b).
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2.2.4. Simultaneously Localization and Mapping (SLAM)

During the fieldwork, other range-based acquisitions were performed with a ZEB Revo
RT [40,41]. Despite representing a relatively new technology and not being as consolidated
as TLS, this system has proven to be suitable for heritage documentation, at least at some
representational scales [22,42,43]. Mobile mapping systems (MMS) and, more specifically,
those based on SLAM algorithms, have been a popular topic in geomatics research in
recent years. Data collected in the field with the ZEB Revo RT were validated in previous
research [38] and were fundamental, together with the UAS data, for the delivery of the
2D architectural drawings supporting the restoration projects of the belltower. They were
used in this work as a fast-surveying approach comparable to the SP methodology in terms
of acquisition time; in this scenario, one of the specific objectives of this research was to
evaluate if they are also comparable in terms of accuracy and completeness of information.

Four acquisitions with this system were thus carried out, following closed paths as
suggested by the SLAM data acquisition best practices [44]. The limited interior size of
the tower and the narrow space available for the operator (limiting the movements) were
particularly challenging, not only for the SLAM acquisitions, but also for those using the
360◦ cameras. The main specifications of the SLAM system are reported in Table 2, and an
example of one of the acquisitions is shown in Figure 6.

Table 2. Geoslam Zeb REVO RT main technical specifications.

Range Measurement
Speed

Relative
Accuracy

FoV
(Vertical/Horizontal)

Zeb REVO RT 30 m ~43,000 points/s 1–3 cm 360◦/270◦
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the survey operations (b).

2.2.5. 360◦ CAMERAS

Two different 360◦ cameras were used for acquiring images of the Montanaro bell-
tower: the GoPro Fusion and the Kandao Qoocam 8k (Figure 7); the main specifications of
the two devices are reported in Table 3.
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Table 3. GoPro Fusion and Kandao Qoocam 8K main technical specifications.

Camera Sensor Dimension Weight Video Res Image Res

GoPro
Fusion

CMOS 1/2.3′′

(6.17 × 4.55 mm) 74 × 75 × 40 mm 220 g 5.2 K (30 fps)
3 K (60 fps)

18 MP
(9 MP ×2)

Kandao
Qoocam 8K

BSI-CMOS 1/1.7′′

(7.6 × 5.7 mm) 145 × 57 × 33 mm 245 g 8 K (30 fps)
4 K (120 fps)

20 MP
(20 MP ×2)

Data acquisition with a 360◦ camera is generally easier compared to traditional CRP
(close range photogrammetry) approaches based on a frame camera; nevertheless, it is also
important to carefully design the acquisition strategy for this kind of sensors As reported
in [45], three main strategies can be adopted to acquire 360◦ images for SP processing:
(i) still images, (ii) time lapse, and (iii) video. In the Montanaro experience it was decided
to adopt the third strategy based on the acquisition of videos. The video strategy was
chosen because it was the fastest approach and the acquisition strategy with the best time–
cost balance. For each of the two cameras, videos were recorded at the highest available
resolutions: 5.2 K (30 fps) for the GoPro Fusion and 8 K (30 fps) for the Kandao Qoocam
8 K. The camera was mounted on a single pole support and held at around 40–50 cm
above the operator’s head; this configuration allowed the presence of the operator in the
FoV (Field of View) of the cameras to be reduced. It was also important that the operator
continuously controlled the overall environment with respect to the camera position during
the acquisition to avoid collisions with other elements; this was particularly critical for the
Montanaro indoor acquisitions. The interior conformation of the tower and the narrow
spaces of the spiral stairway thus posed a series of issues during the acquisitions, especially
in the upper part of the building. In this portion of the structure, which hosts the mechanism
of the four clocks of the belltower and connects the lower part with the bell chamber, the
space for the operator to move is reduced and only a small trapdoor connects the two
sections of the tower. Thus, the distance between the camera and walls was reduced, and
moving across the trapdoor also required the operator to reduce his distance with respect
to the camera. Moreover, this area is characterized by poor lighting due to the lack of
windows. All of these aspects had a strong impact in the acquisition and processing phases,
as discussed further below.

The two videos were acquired following a roundtrip walk starting from the square in
front of the belltower, entering the tower, walking the helicoidal stairway up to the bell
chamber, and then returning via the same path (Figure 8). Each video has a duration of
around 7 min and a file size (after the stitching phase) of 30 GB for the GoPro and 13 GB
for the Kandao.

The difference in terms of file sizes between the videos is due to the different video
formats used by the two video stitching applications. Video of the Qoocam 8 K were saved
using a compressed “.mp4” format and thus, despite having a higher resolution, they were
smaller than the Fusion videos that were saved in a “.mov” format.
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Figure 8. Example of the acquisition scheme adopted with the 360◦ cameras. Red dots indicate the
single camera positions, corresponding to the extracted frames. Camera positions are shown in (a)
and camera position overlayed with the generated point cloud in (b).

3. Data Processing

The information reported in the following paragraphs is mainly dedicated to the
processing of the spherical images adopting SfM approaches, and represents the central
topic of this manuscript. However, for the sake of completeness, some notes on the
processing steps followed for the other datasets involved in the validation of the SP
approach are also reported.

3.1. UAS

Data acquired by means of UAS were processed following the standard SfM pipeline
using the commercial solution Agisoft Metashape (v. 1.7.2). The processing was previously
described in [38] and the main results are reported in Table 4.

Table 4. UAS flight processing main results.

Images N◦ GCPs 3D RMSe
GCPs (m) N◦ CPs 3D RMSe

CPs (m) GSD (m)

543 27 0.009 8 0.008 0.003

The design of the acquisition, which followed the best practices for this kind of survey,
led to high-resolution 3D models (Figure 9). The data derived from the UAS survey were
used, as previously reported, for the construction of 2D architectural drawings (plans,
facades, and sections) useful for documenting all the belltower. Furthermore, they were
exploited to evaluate the metric and geometric quality of the other datasets.
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3.2. TLS

Regarding the TLS dataset, the Faro Scene software was used for the data processing
of the scans. For the purposes of this research, only the indoor scans were considered,
whereas, as previously reported, the UAS dataset was used as a ground reference for the
exterior part of the tower. For six of the seven indoor scans, the processing was divided
in a two-step approach: the scans were preliminary co-registered by performing a rough
manual registration optimized using an Iterative Closest Point algorithm (ICP). In the
second step, the registered scans were georeferenced using the available ground control
points. By comparison, the scan acquired in the bell chamber did not have a sufficient
overlap with the other scans and therefore it was processed with a single step approach
using the ground control points for georeferencing the scans. The quality of the registration
of the indoor dataset is reported in Table 5.

Table 5. Indoor scan processing main results.

Number of Scans Mean Scan2scan Points
Residuals (m) Mean Target Residual (m)

7 0.002 0.023

3.3. SLAM

The first step of the processing dedicated to the data acquired with the Geoslam ZEB
Revo RT consisted of an optimization of the four point clouds, before the second phase
aimed at georeferencing the data in the common reference system. The data processing
phase was carried out using the dedicated software solution (Geoslam Hub), following the
standard workflow with a limited intervention from the operator.

The four scans were first roughly manually aligned and then processed with the merge
function of the Geoslam software. Using this option, it is possible to align all the scans in
the same local reference system, and a second optimization of the scans is also performed.
This function allows correction of gross or drift errors of the raw scans that are not always
visible by means of a qualitative evaluation of the data. Acquiring a redundant number of
scans with a high degree of overlap, particularly in complex environments such as that of
the belltower, represents a good strategy to fully exploit the merge function, optimize each
point cloud, and obtain a complete model of the surveyed object.

The final phase of the SLAM processing is represented by the georeferencing of the
data. This phase was completed using the LiDAR dataset as a ground reference. After a
first coarse registration of the two datasets, an ICP registration was performed using the
CloudCompare software and adopting the LiDAR data as the blocked reference. The RMSe
(root mean square error) achieved after this operation presents a mean value of 0.04 m, in
line with the expected precision of the instrument [22].

3.4. Spherical Cameras

Before moving to the photogrammetric processing of 360◦ images, it is important to
analyze the raw data of the two cameras. The GoPro Fusion is equipped with two micro
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sd cards, one for each sensor, where two different videos for each acquisition are stored
independently. The Kandao Qoocam 8K has an internal memory and can be equipped
only with a single sd card: a single video is recorded for each acquisition embedding two
different tracks, one for each sensor. To work with the single video acquired by the Qoocam,
it is thus necessary to undertake further preprocessing to split the two video tracks into
two separated files. This task was completed with a command line script of the opensource
solution FFmpeg [46].

3.4.1. The Stitching Phase

The first choice when dealing with the photogrammetric processing of data collected
with a spherical camera is whether to proceed with the stitching phase.

Image, or video, stitching is the technique that allows combining multiple singular
images or video frames into a mosaicked virtual image or video. The main revolution
in the processing of image stitching is related to the work of Szeliski and Shum [47] at
the end of the 1990s, which was further developed in the following years [48–51]. The
stitching phase can be automatically performed by adopting several software solutions,
both commercial and open-source. However, in recent years, commercially available 360◦

cameras are provided with their own dedicated software solution for the stitching phase.
This is also the case of GoPro Fusion and Kandao Qoocam 8K, which are provided with,
respectively, GoPro Fusion Studio and Qoocam Studio. It should be noted that, in general,
these dedicated software solutions are limited in terms of customization, and that few
options are available during the stitching. This reduces the possibility to cope with the
most common issues during the stitching, i.e., the parallax effect, different exposure times
among images, and the ghosting effect.

For the purposes of this research, it was decided to test both approaches, i.e., working
with the data derived from the single 360◦ sensors and with the stitched 360◦ videos
(processed in their own dedicated software solution at the maximum available resolution).

3.4.2. Frames Extraction and Processing Strategies

To further proceed with the processing phase, before adopting the standard SfM
approach, it is necessary to extract single frames from the videos (both spherical and not
stitched). This phase clearly has an impact on the data processing [52–54], especially in
terms of number of images and overlapping. The interval adopted for frame extraction,
i.e., the number of frames to be skipped, is linked to several aspects: original video frame-
rate/quality, operator moving speed during the acquisition, illumination, desired overlap
between images, scene conformation, etc.

The videos recorded with both the GoPro and the Kandao had a framerate of 30 fps
and, for the purposes of this research, three different frame extraction intervals were tested
and analyzed, according to previous experience [45,55,56] and taking the characteristics of
the Montanaro belltower into account: FPS = 0.5 (skipping 14 frames), FPS = 1 (skipping
29 frames), and FPS = 2 (skipping 59 frames).

Finally, combining the frame step extraction with the stitching phase, five different
processing strategies were adopted and tested for each of the two 360◦ cameras tested in
this research: three using spherical images after the stitching phase and two using the
data derived from the single sensors. An example of the extracted frames is showed in
Figure 10.
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During the development of the different processing strategies, it was decided to adopt
a self-calibration approach for the estimation of the interior orientation (I.O.) parameters
of the adopted cameras. This choice was based on the experience gained in previous
research works [55,56] and also because it was consistent with the aim of the fast-surveying
approach of this research. Research related to the issues connected with the I.O. phase of
this kind of sensor is under development and will likely lead to an enhancement of the
achieved results.

In more detail, the five approaches for each of the two cameras (GP stands for GoPro
and QC stands for Qoocam) have the following main characteristics:

1. GP1 and QC1. Stitched video, FPS = 1, round-trip acquisition (round trip)
2. GP2 and QC2. Stitched video, FPS = 1, one-way acquisition (1W)
3. GP3 and QC3. Stitched video, FPS = 0.5, round-trip acquisition (round trip)
4. GP4 and QC4. Single video extracted from each camera, FPS = 1, round-trip acquisi-

tion (round trip)
5. GP5 and QC5. Single video extracted from each camera, FPS = 2, round-trip acquisi-

tion (round trip)
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4. Results

The data derived from the different strategies adopted for the processing of the two
spherical datasets was carefully analyzed and validated under different perspectives, and
detailed considerations are reported in the following sections. First, both a qualitative
analysis of the completeness in the reconstruction of the overall belltower and a quantitative
analysis on the metrical accuracy based on the overall RMSe on GCPS and CPs were
carried out.

A second group of analyses is focused on the comparison between distances derived
by total station measurements and the same distances extracted from the different 3D
models generated by the five processing strategies.

Finally, the accuracy of the geometrical reconstruction provided by the different 360
approaches was also evaluated and validated by means of the extraction of planar and
cross sections from the different models and their comparison with the data provided
by the ground reference (UAS, TLS, and SLAM). The different datasets used as ground
reference are characterized by similar positional accuracies (a few centimeters), as de-
tailed in the processing results of each technique: they can therefore be exploited for
validation purposes.

4.1. Completeness, Metric Quality, and Geometric Reconstruction of the SP Approach

A first qualitative analysis was carried out on the completeness of the reconstruction
provided by the different approaches. The completeness of the reconstruction of the
belltower is mainly related to the phases of image matching, tie point (TP) extraction, and
camera position estimation. The most critical point in this phase is represented by the
area that connects the bell chamber with the remainder of the structure by means of a
trapdoor, which is a narrow area with low light conditions, and therefore critical for the
extraction of TPs and image correlation. Figure 11 shows a graphical representation of the
different level of completeness provided by the different tested approaches, and Table 6
shows that the levels of completeness are also linked with the number of points generated
in the densification phase of the SfM processing.
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Figure 11. Qualitative analysis of the completeness of the point cloud derived from the
different approaches.
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Table 6. Completeness of the different 360◦ strategies and number of points after the densification
(high quality).

Aligned
Images FPS Acquisition

Strategy
Dense Cloud

N◦ Points Completeness

GP1 322/325 1 Stitched-round trip 41,000,000 100%
GP2 182/182 1 Stitched-1W 40,000,000 100%
GP3 122/163 0.5 Stitched-round trip 24,000,000 ~70%
GP4 467/636 1 Single-round trip 67,000,000 ~70%
GP5 1229/1296 2 Single-round trip 128,000,000 100%
QC1 393/395 1 Stitched-round trip 102,000,000 100%
QC2 225/226 1 Stitched-1W 90,000,000 100%
QC3 195/198 0.5 Stitched-round trip 78,000,000 100%
QC4 509/787 1 Single-round trip 105,000,000 ~70%
QC5 1570/1570 2 Single-round trip 166,000,000 100%

It should be noted that seven of the ten datasets were able to provide a complete recon-
struction of the belltower. For the GoPro, the two datasets that failed in the reconstruction
were the GP3 (0.5 fps, stitched, round trip) and the GP4 (1 fps, single camera, round trip).
For both of these datasets, the main issue was probably related to an insufficient number of
images in relation to the chosen approach. GP3 used stitched images; however, extracting
one frame every 60 frames is probably not enough to ensure a reasonable overlap between
the images in the upper part of the tower. By comparison, GP4 uses single images extracted
from each of the two sensors embedded in the camera; in this case, the number of frames
extracted is also probably not sufficient to derive a correct correlation between images in
the upper part of the tower. For the Qoocam, the situation was similar; however only the
single camera dataset (QC4) failed in delivering a complete reconstruction of the tower.
The fact that the 360◦ dataset (QC3) in this case performed better than that of the GoPro is
probably simply related to the higher resolution of the camera itself.

Other interesting observations can be made concerning the number of 3D points
generated during the densification phase in the different processing approaches (Table 6).
For the 360◦ strategy, the number of points generated adopting a round trip or stitched
approach in the case of 1 frame every 30 frames is almost the same for both cameras. The
higher resolution of data collected from the Qoocam is also clearly visible in the higher
number of points generated for each approach.

The metric validation of the proposed approaches was carried out in different steps:
on the RMSe achieved for both GCPs and CPs after the processing of the different strategies;
considering some 3D distances between ground control points measured in the field and the
same distances extracted from the 3D models generated adopting the different approaches;
and, finally, in the 2D sections extracted from the different point clouds. The RMSe on both
GCPs and CPs for the different approaches is reported in Table 7. The different number
of GCPs and CPs used in the different projects is related to the completeness of the SfM
process in the reconstruction of the belltower; some of the points used as ground control
points are located in the area that was not reconstructed by some of the tested approaches.
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Table 7. Accuracy validation on RMSe of GCPs and CPs adopting different approaches.

Aligned
Images FPS Acquisition

Strategy GCPs N◦
RMSe
GCPs

(m)
CPs N◦ RMSe CPs

(m)
Reprojection
Error (Pixel)

GP1 325/325 1 Stitched-round trip 20 0.057 7 0.075 3.64
GP2 182/182 1 Stitched-1W 20 0.047 7 0.061 2.65
GP3 122/163 0.5 Stitched-round trip 16 0.051 6 0.061 3.79
GP4 467/636 1 Single-round trip 16 0.037 6 0.044 1.58
GP5 1281/1296 2 Single-round trip 20 0.037 7 0.041 1.61
QC1 393/395 1 Stitched-round trip 20 0.043 7 0.048 4.72
QC2 225/226 1 Stitched-1W 20 0.042 7 0.040 3.35
QC3 195/198 0.5 Stitched-round trip 20 0.038 7 0.043 4.80
QC4 509/787 1 Single-round trip 16 0.035 6 0.042 1.85
QC5 1568/1570 2 Single-round trip 20 0.032 7 0.039 2.06

In general terms, the Qoocam performed better than the GoPro, with an RMSe value
that is lower for each of the different approaches, and particularly for the 0.5 and 1 fps.
As for the image matching phase, this is related to the higher resolution of the Kandao
camera, which produces images having, in general, higher quality in terms of sharpness
and overall quality.

For both the cameras, the single-sensor approaches (4 and 5) were the most successful
if considering the overall RMSe on GCPs and CPs. Almost all the approaches meet the
requirements of a 1:200 nominal map scale and the errors are comparable to those achieved
during the processing of the ZEB REVO RT dataset.

However, considering only the RMSe as a parameter to evaluate the overall metric
accuracy of the processing may be misleading and further analyses were performed.

The second analysis compared 3D distances derived from the 3D coordinates of the
ground control points and the same distances derived from the point clouds achieved by
the different photogrammetric processing approaches, to focus on the relative precision
rather than on the absolute accuracy.

A total of four distances were considered and their position is shown in Figure 12, and
the values are reported in Table 8.

Table 8. Computed values of the 4 distances for the different processing approaches compared to the
related measurements in the field. The difference between the value measured in the field and the
one extracted from the photogrammetric processing is reported in brackets. Missing values are due
to the incomplete reconstruction for some approaches.

D1 (m) D2 (m) D3 (m) D4 (m)

TS 8.760 5.288 17,513 10,074
GP1 8.780 [−0.020] 5.301 [−0.013] 17,571 [−0.058] 10,094 [−0.019]
GP2 8.781 [−0.020] 5.293 [−0.005] 17,552 [−0.039] 10,104 [−0.030]
GP3 8.793 [−0.033] 5.283 [0.004] - 10,105 [−0.031]
GP4 8.768 [−0.008] 5.315 [−0.027] - 10,080 [−0.006]
GP5 8.779 [−0.019] 5.320 [−0.033] 17,541 [−0.029] 10,091 [−0.017]
QC1 8.792 [−0.032] 5.325 [−0.038] 17,573 [−0.061] 10,076 [−0.002]
QC2 8.806 [−0.046] 5.335 [−0.048] 17,573 [−0.060] 10,058 [0.016]
QC3 8.792 [−0.032] 5.340 [−0.053] 17,568 [−0.055] 10,066 [0.008]
QC4 8.773 [−0.014] 5.321 [−0.034] - 10,069 [0.006]
QC5 8.775 [−0.015] 5.322 [−0.035] 17,554 [−0.041] 10,068 [0.006]
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Figure 12. Graphical representation of the four 3D distances considered to evaluate the accuracy of
the photogrammetric processing.

The distance differences are in the range of a few centimeters, in line with the results
achieved for the RMSe.

However, it should be considered that due to the conformation of the belltower and
the organization of the survey, ground control points are not present in every section of
the buildings and not homogenously distributed. This configuration can lead to some
errors in the overall evaluation of the accuracy of the different processing; thus, another
analysis was completed through the extraction of cross and planar sections. The sections
were extracted using the PointCab software by generating a thin section from the different
point clouds derived from the 360◦ dataset. Moreover, three other point clouds were used
as a ground reference: the LiDAR, the UAS, and the SLAM point clouds.

Each of the sections were generated by adopting the same set of parameters and
were then imported into AutoCAD to be transformed into 2D polylines. The different
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polylines were then compared to assess any possible discrepancies that were not evident
from the previous analyses. Furthermore, it was also possible to evaluate the ability of the
different datasets to reconstruct the geometry of the belltower in comparison with the more
consolidated techniques. Three horizontal sections (Appendix A—Figures A1–A3) were
extracted at different heights, covering both areas where GCPs were measured in the field
and where they were not present. Finally, a vertical cross section of the whole belltower
was extracted (Appendix A—Figures A4 and A5). An example of a horizontal section is
shown in Figure 13.
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Figure 13. Examples of sections extracted from the different point clouds. All the sections extracted
are reported in Appendix A.

These sections were crucial to underline some issues in the overall photogrammetric
processing of the 360◦ images that were not evident when analyzing other parameters,
such as the RMSe on ground control points or 3D distances. It is clear that some major
misalignments or drift errors can occur in the areas without ground control points. This is
especially visible in the processing approaches 1, 2, and 3, which were based on the use
of 360◦ stitched images and, also in this case, with a better performance of the Qoocam
thanks to its higher resolution.

In general, approaches 4 and 5, which were based on the use of the single images de-
rived from each sensor, present a lower deviation compared with that of the 360◦ approach.

It can be observed that each of the five approaches leads to a good performance (in
terms of geometrical reconstruction) where ground control points are present to assist the
SfM processing.

4.2. Processing Time

Despite the availability of powerful desktop computer and the enhancements of SfM
algorithms and software, processing time remains a crucial issue in the overall photogram-
metric pipeline. A comparison between the processing time of the different strategies tested
is reported in Table 9.



Remote Sens. 2021, 13, 3633 18 of 27

Table 9. Processing time of the different strategies.

N◦ Images FPS Acquisition
Strategy Alignment Densification

GP1 325 1 Stitched-round trip 12 m 1 h 14 m
GP2 182 1 Stitched-1W 6 m 28 m
GP3 163 0.5 Stitched-round trip 5 m 16 m
GP4 636 1 Single-round trip 26 m 1 h 5 m
GP5 1296 2 Single-round trip 1 h 6 m 4 h 8 m
QC1 395 1 Stitched-round trip 19 m 3 h
QC2 226 1 Stitched-1W 8 m 1 h 14 m
QC3 198 0.5 Stitched-round trip 6 m 50 m
QC4 787 1 Single-round trip 28 m 2 h 5 m
QC5 1570 2 Single-round trip 1 h 15 m 6 h 28 m

In general, processing the Qoocam 8K dataset requires more time due to the higher
resolution of the images extracted from the videos.

By comparison, the behavior of the five different strategies has the same trend both for
the Fusion and the Qoocam. Concerning the three 360◦ approaches (1, 2, and 3), it is possible
to reduce the number of images, and thus the processing time, by adopting two different
solutions: using only the one-way acquisition (2) or doubling the step for frame extraction
(3). The two strategies that use the data of the single cameras (4 and 5) require more time,
in general, compared with the 360◦ approaches. Nevertheless, these considerations were
relatively predictable and need to be related to the other results reported in this section for
a comprehensive assessment.

5. Discussion and Conclusions

The research presented in this manuscript focused on evaluating the possibility of
using the data acquired by two different 360◦ cameras to document a complex heritage
asset, the Santa Marta belltower. Starting from the experience gained in previous research,
different implications connected with the development of an SfM pipeline were considered
and analyzed from different perspectives, including the acquisition phase, the processing
phase, and the generation and use of different added-value products. The same acquisition
scheme was followed for the two 360◦ cameras tested in this research (GoPro Fusion and
Kandao Qoocam), and the different characteristics and performances of the two systems
were carefully evaluated and reviewed. Five different processing strategies were set up and
tested for each 360◦ camera, based on stitched images or raw data, in which video frames
with different time intervals were extracted, and both one-way and roundtrip acquisition
paths were adopted.

The metric accuracy of the proposed approaches was evaluated considering different
features: the RMSe on GCPs and CPs, the comparison of 3D distances, and finally the
extraction of several planar and cross sections by means of 2D polylines. Although anal-
yses of RMSe and 3D distances reported good results, the extraction of planar and cross
sections was crucial to identify biases in the 3D models that were generated by the different
strategies. These biases were not visible in the other analyses and thus the generation of
2D sections was fundamental to assess the performances of the different approaches.

In general terms, approaches based on single cameras (4 and 5) were the best in
terms of 3D metric accuracy and the level of detail of the 3D model. Nevertheless, they
suffered in terms of point cloud completeness and were the most demanding in terms of
processing time.

On the contrary, approaches based on stitched images (1, 2, and 3), in general, per-
formed slightly worse in terms of the 3D positional accuracy, but slightly better in terms of
completeness of the model, and clearly better concerning the processing time.

If only the RMSe values on GCPs and CPs are considered (Table 7), together with
the deviation between the 3D distances calculated from the total station measurements
and those extracted from the models generated with the different processing approaches
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(Table 8), it is possible to state that the data derived following each of the five approaches
for both the cameras met the accuracy requirements of a nominal map scale in the range
from 1:200 to 1:300.

Nevertheless, also considering the information derived from the analyses of 2D sec-
tions extracted from the different 3D models (Appendix A), the impact of the availability
and spatial distribution of GCPs on the accuracy consistency of the 3D models is evident.

In the area covered by GCPs, the deviation between the reference models (UAS,
LiDAR, and SLAM) was in the order of few centimeters, whereas they were not present in
the order of dozens of centimeters. This issue is particularly evident in the z-axis of the
reference system (which corresponds to the development in the height of the tower and
the direction followed during the acquisition), and is probably related to the complexity of
the surveyed environment (narrow spaces with low lighting), which affects the phases of
image matching, camera position estimation, and tie point extraction.

This assessment regarding the fulfilment of the accuracies for a nominal map scale of
1:200/1:300 is thus true only if GCPs are available and if their spatial distribution covers
the whole surveyed area, at least in case of complex assets such as that of the Santa Marta
belltower. Moreover, it must be stressed that local discrepancies are not easily detected
using only standard positional accuracy metrics (such as RMSe on GCPs and CPs).

Therefore, it is possible to state that data acquired from 360◦ cameras (both stitched
and single images) can be successfully used as a fast-surveying technique to derive 3D
models and added-value products fitting the classical architectural representational scales.

These data can not only be used to derive traditional products such as 2D architectural
drawings, but have also an intrinsic added value as 360◦ data: their immersive component
can be used to derive virtual tours or to support the operator in the interpretation phase
after the data processing. They can thus be used in the phases of 2D drawing or as a
support in the generation of HBIM models, enriching the parametric information database.

Finally, a number of issues remain under investigation and will be further examined
in the near future, such as the possibility of combining the 360◦ images/videos with the
generated 3D models in a virtual environment to better manage and share the data collected
in the field. The data processing phases can be further extended and refined, by testing
different GCPs configurations (including different test sites with different characteristics),
and focusing on the estimation of I.O. parameters both for the 360◦ images and the single
images. This issue was partially considered in this research, by adopting strategies derived
from past experiences, particularly for the single camera processing [56], and requires
further research, as recently demonstrated in [57].

Further tests are currently ongoing at the same test site to assess the suitability of
new low-cost devices for fast surveying purposes, i.e., the lidar sensor available on the
Apple iPad Pro and the Apple iPhone Pro 12. The sensors mentioned above and the
related applications exploit both SLAM and photogrammetric algorithms to derive 3D
point clouds. They can therefore be synergistically integrated with 360◦ cameras to enhance
the positional accuracy and the completeness of the 3D models, especially in complex
environments.
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Figure A1. Horizontal section A-A’. This section was extracted in an area of the model where no 

GCPs were present. Sections extracted from the model generated from the GoPro are reported in 

the left column, whereas those extracted from the Qoocam are in the right column. Data from UAV 

and ZEB Revo are used as the ground reference. 

Figure A1. Horizontal section A-A’. This section was extracted in an area of the model where no
GCPs were present. Sections extracted from the model generated from the GoPro are reported in the
left column, whereas those extracted from the Qoocam are in the right column. Data from UAV and
ZEB Revo are used as the ground reference.
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Figure A2. Horizontal section B-B’. This section was extracted in an area of the model where GCPs
were present. Sections extracted from the model generated from the GoPro are reported in the left
column, whereas those extracted from the Qoocam in the right column. Data from UAV and LiDAR
are used as the ground reference.
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Figure A3. Horizontal section C-C’. This section was extracted in an area of the model where GCPs
were present. Sections extracted from the model generated from the GoPro are reported in the left
column, whereas those extracted from the Qoocam in the right column. Data from UAV and LiDAR
are used as the ground reference.
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Figure A4. Vertical section D-D’ extracted from the model generated from the GoPro. This section 

was extracted along the height of the tower, including both areas with and without GCPs. On the 
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Figure A4. Vertical section D-D’ extracted from the model generated from the GoPro. This section
was extracted along the height of the tower, including both areas with and without GCPs. On the
right, magnifications of specific areas of interest. Data from UAV and ZEB Revo are used as the
ground reference.
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Figure A5. Vertical section D-D’ extracted from the model generated from the Qoocam. This section 

was extracted along the height of the tower, including both areas with and without GCPs. On the 

right, magnifications of specific areas of interest. Data from UAV and ZEB Revo are used as the 

ground reference. 
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