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Dispersed populations often need to organise into
groups. Chemical attractants provide one means of
directing individuals into an aggregate, but whether
these structures emerge can depend on various
factors, such as there being a sufficiently large
population or the response to the attractant being
sufficiently sensitive. In an aquatic environment,
fluid flow may heavily impact on population
distribution and many aquatic organisms adopt
a rheotaxis response when exposed to a current,
orienting and swimming according to the flow
field. Consequently, flow-induced transport could be
substantially different for the population members
and any aggregating signal they secrete. With the aim
of investigating how flows and rheotaxis responses
impact on an aquatic population’s ability to form
and maintain an aggregated profile, we develop and
analyse a mathematical model that incorporates these
factors. Through a systematic analysis into the effect
of introducing rheotactic behaviour under various
forms of environmental flow, we demonstrate that
each of flow and rheotaxis can act beneficially or
detrimentally on the ability to form and maintain
a cluster. Synthesising these findings, we test a
hypothesis that density-dependent rheotaxis may be
optimal for group formation and maintenance, in
which individuals increase their rheotactic effort as
they approach an aggregated state.
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1. Introduction
Living in an aquatic environment can expose an organism to strong and turbulent flows and it is
natural to suppose means have evolved to exploit or counter them [1]. One known mechanism
is rheotaxis, a response in which an individual reorients its body axis and swims with respect to
the flow velocity field [2–4]. Positive rheotaxis indicates orientation and swimming against the
current, which could allow an organism to hold its position, while negative rheotaxis implies
swimming downstream, which could allow an organism to exploit the current for faster motion.
Instances of rheotaxis have been recorded in a wide range of organisms, both at the level of single
cells and large multicellular organisms. For example, rheotaxis has been observed for bacteria
[5,6], protozoa [2,7] and mammalian sperm cells [4,8], where in the latter rheotaxis may play
a guidance role that orients sperm towards the egg. Rheotaxis has been widely studied for fish
[3,9–15], where it appears at scales ranging from larval zebrafish [13,15] to whale sharks [16]. More
generally, observations of rheotactic behaviour have been recorded for planktonic species [17],
microscopic worms [18,19], krill [20], jellyfish [21], salamanders [22], and turtles [23]. Much of this
large literature, however, has focussed on individual-level rheotaxis, with relatively few studies
exploring how rheotaxis interacts with and impacts on the movements designed to coordinate the
collective behaviour of a population.

The temporary concentration of a normally dispersed population at some location can be
an essential stage in the life cycle of a species [24,25]. Benefits of aggregating range from
efficient migration to productive hunting and feeding, or from protection against predation to
reproduction. Many aggregations form routinely, as in the gathering of an established population
at historical breeding grounds, but others appear unpredictably and appear to be driven by an
innate self-organising process. One mechanism known to allow self-organisation of a population
involves chemosensitive responses. Chemical communication between organisms is a near
ubiquitous phenomenon, dictating numerous critical behaviours in aquatic populations [26]: both
single cells and multicellular organisms are capable of detecting and responding to chemicals or
odours, chemicals can be transported long distances from the signaller to receiver, and function in
dark or noisy environments. Chemically-mediated self-organisation can occur through members
of the population releasing an aggregating pheromone that attracts conspecifics, with evidence
for this mechanism found in a range of unicellular [27,28] and multicellular [29–35] terrestrial
and aquatic organisms. As one example, the crown-of-thorn starfish (COTS, Acanthaster planci)
releases water-borne factors that act to attract neighbours, subsequently generating an aggregate
that (perhaps) initiates synchronised mass spawning [36]. Determining when, how and why
such aggregates form is crucial for understanding the dynamics of an ecosystem; in the context
of COTS, this specialised coral predator is capable of population outbreaks that subsequently
decimate local reefs [37].

The reinforcing loop in which a population produces its own attractant will intuitively lead
to aggregation of a population. Nevertheless, certain conditions must still be met before this
positive feedback overcomes any negating processes that lead to dispersion, such as decay/loss
of the aggregating signal. First, the population must be present in sufficient numbers for enough
attractant to be produced. Second, population members must be sufficiently sensitive to allow
them to detect and move towards an emerging source of attractant. For populations that reside in
large domains, such as small organisms in a river or ocean environment, it is far from certain that
these requirements will be satisfied when the population is scattered. The respective contributions
of flow and rheotaxis add further uncertainty: while flow transports both the population and
its attractant, rheotaxis counters, but only on the population. With their potential capacity to
dramatically and distinctly alter the distribution of both the population and its attractant, it
is therefore ambiguous whether flow and rheotaxis act beneficially or detrimentally on group
formation and maintenance.

Motivated by this, we use modelling to systematically explore the extent to which flow and
rheotaxis impact on aggregation dynamics in a population, specifically its capacity to (i) form,



3

S
ubm

itted
to

R
oyalS

ociety
Interface

.....................................

Figure 1. Schematic illustrating the principle components of the model. A Under chemotaxis alone, organisms are

directed towards high concentrations of a secreted aggregating cue. B Under positive rheotaxis, organisms are

transported by the flow, but also orient and swim against the current. C Under both rheotaxis and chemotaxis, the

organisms must balance their overall movements according to both the attractant distribution and the flow field.

and (ii) maintain a clustered state. In the next section we describe the model, an adaptation of the
well known Keller-Segel model for chemotaxis. The analysis starts with a simplistic uniform flow
scenario, addressing the conditions under which a population can form aggregates in the absence
and presence of rheotactic behaviour. We subsequently address post-aggregation dynamics,
determining the tendency of clusters to unify and the level of rheotaxis required for a cluster to
hold position. Exploring variable flow environments, we determine whether “favourable” flows
can allow clusters to form under conditions where they would not usually do so, or whether
“unfavourable” flows can destroy previously formed clusters. Noting the capacity of rheotaxis to
maintain cluster integrity, we finally explore whether a density-dependent rheotactic responses
can balance the positive and negative elements of each of rheotaxis and flow. We conclude with a
brief discussion of the key results.

2. Model
We base our modelling on the well-known Keller-Segel system [38], a standard reaction-diffusion-
advection model that has been adapted and applied to a broad spectrum of chemotactic
aggregation processes (see [39] for a review). In particular, we extend it to incorporate flow and
rheotaxis, see Fig. 1. Specifically,

ut = ∇ · [du∇u−wu+ Φ(w, u)u− uχ(u)∇v] + f(u),

vt = ∇ · [dv∇v −wv] + g(u, v).

Here, u(x, t) and v(x, t) denote the population density and chemical attractant, respectively,
defined at position x∈Ω ⊂Rn and time t∈ [0, T ]. For simplicity our study will be to restricted to
simple spatial domains Ω: either a one-dimensional interval of length Lx or a two-dimensional
rectangular region of dimensions Lx × Ly . du and dv denote the population and chemoattractant
diffusion coefficients, respectively. The chemotactic sensitivity χ(u) measures the strength of the
chemotactic response and here we set χ(u) = α (1− u/k1), where α is the chemotactic coefficient
and density-limitation has been included to stop high densities (>k1) from forming: k1 represents
the packing density [40]. We choose f(u) = ru (1− u/k2) and g(u, v) = βu− γv, i.e. logistic
growth of the population and linear secretion/decay of the attractant. These assumptions form a
relatively standard set for describing biological aggregation phenomena, e.g. [39].

Flow is included as a prescribed vector field, w(x, t), that transports both the population and its
attractant. Rheotaxis is modelled as a further directed movement of the population, encoded in
a function Φ(w, u) that depends on the flow field and population density. Here we will consider
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two forms for this function:

(R1) Φ(w, u) = φw , (R2) Φ(w, u) =
φup

kp3 + up
w .

For either choice, rheotactic movement is upstream (downstream) for rheotactic coefficient φ> 0

(φ< 0). (R1) describes a simple linear relationship between rheotaxis effort and the magnitude
flow, while (R2) extends this to incorporate a rheotaxis response that also increases with the (local)
population density; in (R2) k3 defines the point at which rheotaxis behaviour is engaged, with
p the Hill coefficient. Rheotaxis is distinctly interpreted for free-swimming or bottom-dwelling
organisms, where (assuming the linear choice, R1) for the former φ= 1 implies a compensating
response in which upstream swimming balances downstream flow, while for the latter φ=

1 implies fixing to the floor. φ> 0 denotes positive rheotaxis; φ= 1 indicates compensating
rheotaxis; regimes 0<φ< 1 and φ> 1 describe undercompensating and overcompensating
responses, respectively.

At the boundaries of Ω we will impose periodic conditions which, while somewhat artificial,
limit the potential for boundary accumulations while preserving population mass. Note that
the domain itself will be chosen to be large with respect to the characteristic length scale
of clusters. Initially we set u(x, 0) = u0(x) and v(x, 0) = v0(x), further details of which are
provided below. By rescaling (u= k1û, v= βk1v̂/γ, w=

√
γdvŵ, t= t̂/γ, x=

√
dv/γx̂, δ= du/dv ,

α̂= (αβk1)/(dvγ), U = k2/k1, κ= k3/k1 and ρ= r/γ) and dropping the carets, we arrive at the
non-dimensional system of equations

ut = ∇ · [δ∇u+ (Φ−w)u− α (1− u)u∇v] + ρu
(
1− u

U

)
, (2.1)

vt = ∇ · [∇v −wv] + u− v, (2.2)

with either (R1) Φ= φw or (R2) Φ= φup

κp+upw.

Equations (2.1-2.2) have a positive uniform steady state (USS) at (U,U). Note that when
population growth is negligible (ρ= 0) and lossless boundary conditions are assumed, the USS
will be instead determined by the average initial population density, which we also denote by U .
U therefore represents the mean dispersed density and we will define a population as clustered at
position x and time t if u(x, t)≥ 4U , a value compatible with definitions for a marine spawning
aggregation [41]. According to the case under consideration, initial distributions u0(x) and v0(x)
will be formulated in either a dispersed or clustered state. Dispersed initial conditions imply a
population that is initially nonclustered and quasi-uniformly distributed about the steady state
U . Clustered initial conditions describe a population for which there are initially one or more
regions where u(x, 0)> 4U .

The rest of the paper focusses on the dynamics of (2.1-2.2), in particular under variation of:

(i) flow velocity field w(x, t), parametrised by maximum flow speed ω;
(ii) chemotactic coefficient α, a measure of the strength of the aggregation mechanism;

(iii) rheotactic coefficient φ, measuring the rheotactic effort;
(iv) dispersed density U , measuring the overall size of the population.

Flow fields will be described as uniform (nonuniform) if they are independent of (depend on) x
and constant (nonconstant) if independent of (depend on) t. Uniform-constant flows are primarily
selected for analytical convenience, nevertheless they may approximate certain environments
over shorter timescales (such as a steadily flowing stream) or laboratory experiments of rheotactic
behaviour, e.g. [42]. For computational convenience we do not explicitly solve a Navier-Stokes
equation to generate the flow, rather we prescribe w(x, t) functionally or via a dataset (see
Appendix).



5

S
ubm

itted
to

R
oyalS

ociety
Interface

.....................................

3. Results

(a) Autoaggregation in uniform flows
For simplicity we begin with uniform/constant flow in a quasi one-dimensional setting (e.g. the
length of a stream), thus w= ω≥ 0 (left to right flow). Excluding rheotaxis (φ= 0), standard linear
stability analysis (LSA, see Appendix) predicts autoaggregation of the dispersed population into
clusters if the following simple threshold is met:

α>α∗ =
δ + ρ+ 2

√
δρ

U(1− U)
. (3.1)

See Fig. 2A for a representative parameter space. Given condition (3.1) a dispersed population
organises into clusters separated by a characteristic wavelength, as highlighted by representative
simulations in Fig. 2B-C. As noted in the introduction, this well-known instability arises from
positive chemotactic feedback: autoaggregation is only possible if (i) the population lies above a
critical density, (ii) the chemotactic response is sufficiently strong, (iii) the population produces
sufficient attractant. Regimes α>α∗ and α<α∗ are referred to here as strong and weak
chemotaxis scenarios, respectively, according to whether chemical communication is strong
enough to induce clustering. Note that we could also use the dispersed (steady state) density U as
a bifurcation parameter, and instability arises when this density is increased beyond some critical
density. For this paper we focus on α as our measure for the strength of the chemotactic instability
mechanism. Note further that (uniform) flow does not alter condition (3.1), but does result in
downstream movement of clusters (compare Fig. 2B with Fig. 2C). Beyond the downstream
transport, differences in dynamics between Fig. 2B and Fig. 2C arise solely from the randomised
noise in the initial distributions.

(b) Rheotaxis subdues clustering
When rheotaxis (φ 6= 0) is included, condition (3.1) remains necessary for autoaggregation to
occur (see Appendix). This suggests that there is no expansion of the parameter regime in which
clustering can occur (weak chemotaxis remains insufficient to induce aggregation of a dispersed
population). When we exclude population growth (i.e. ρ= 0) condition (3.1) turns out also to
be a sufficient condition, given the assumption of an effectively infinite domain (such as a long
stream): we can observe this via the independence between the size of the autoaggregation
parameter space and the size of φ in Fig. 2Da. While this suggests that adding rheotaxis does not
alter the fundamental ability of a dispersed population to organise into clusters, rheotaxis does
in fact suppress autoaggregation through dramatically restricting the cluster growth rate (see
Appendix for its definition): observe the order of magnitude time difference before dense clusters
are formed in Fig. 2Db (low flow/rheotaxis combination) and Fig. 2Dc (high flow/rheotaxis
combination). Note that here rheotaxis was set at a compensating level, so that while the
secreted attractant forms a downstream plume the population’s rheotaxis response is sufficient
to counteract the flow. Faster flows will transport the attractant more rapidly from the forming
cluster, hence retarding growth. This growth-retarding consequence of rheotaxis could prevent
significant accumulation of a population within biologically or ecologically relevant timescales.

The inclusion of population growth (ρ > 0) leads to an even more obvious impact from rheotaxis,
with clustering now abolished above a critical rheotaxis/flow combination even under strong
chemotaxis. Fig. 2Ea plots a representative autoaggregation parameter space when ρ > 0, where
the strong dependency on the rheotactic effort φ is observed. Selecting parameters from a strong
chemotaxis regime, simulations indicate that a larger level of rheotaxis can abolish clustering,
compare Fig. 2Eb and Fig. 2Ec. Intuitively, population turnover provides a homogenising element
that discourages clustering. The further addition of rheotaxis can therefore be sufficient to tilt the
system away from a regime in which chemotaxis can induce aggregation. Summarising, engaging
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Figure 2. Aggregation in a uniform flow. A Autoaggregation parameter space (α - U ), with parameters for plots in B-C
indicated by dot. Note that here we assume negligible population growth (ρ= 0). B Autoaggregation in a still environment,

ω= 0. Population density u represented as a space-time map (white u(x, t) = 0, black u(x, t)≥ 4U ) and snapshots

in b-e. C As B, but under constant flow (ω= 1). D Autoaggregation parameter space (α - φω, coloured region) under

rheotaxis and flow (zero population growth, ρ= 0). Colour (see inset of Ea) indicates the cluster growth rate predicted by

LSA (deep red = faster growth). Space-time density maps for marked points: Db α= 60, ω= 1, φ= 1; Dc α= 60, ω=

5, φ= 1. E As D but including population growth (ρ= 1). Eb α= 150, ω= 1, φ= 1; Ec α= 150, ω= 5, φ= 1. For

all simulations we have set initial densities as dispersed (u0(x) =U, v0(x) =U + ε(x), for small random (specifically,

random white noise) perturbations ε(x)). Nonspecified parameters are U = 0.05 and δ= 1. Details of the LSA are

provided in the Appendix.

in (simple) rheotaxis within an effectively uniform flow appears to be counterproductive for
forming aggregates through chemotaxis.

(c) Rheotaxis accelerates unification
We next explore the post-aggregation behaviour, i.e. how flow and rheotaxis alter the dynamics of
previously formed clusters. Note that herein we restrict to negligible population growth (ρ= 0),
effectively assuming that growth is negligible on the timescale of aggregation behaviour. In the
absence of rheotaxis, chemotaxis autoaggregation processes are often characterised by a series
of unifying events, where neighbouring clusters attract each other and merge, leading over time
to fewer, but larger aggregates (for example, see [43]); this could be perceived as beneficial for a
population aiming to form very large clusters. Unification time (which we define as the time taken
to evolve to a single cluster) under chemotaxis alone, though, may be unrealistically long, due to
the reliance on diffusion of the attractant through the inter-aggregate space; in the representative
simulation (Fig. 3Aa) we observe that none of the clusters that initially form have merged by
the end of the simulation, an order of magnitude longer than their formation time. In contrast,
when rheotaxis is incorporated we find that unification is emphatically accelerated, with multiple
merging processes resulting in just one or two clusters over the same timespan (Fig. 3Ab-c).
Averaged across multiple simulations, we observe a multiple order of magnitude reduction in the
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Figure 3. A-B Accelerated unification through the action of rheotaxis. A Space-time population density maps

showing cluster evolution under a constant flow (ω= 1) and a negligible (φ= 0), b under-compensating (φ= 0.5), c
compensating rheotaxis (φ= 1). B Boxplot showing the mean time to reach a unified cluster (averaged across 100

randomised initial data). For A-B initial distributions are as in Fig. 2. C Evolving density for a population initialised as

three separated Gaussian shaped clusters of massesm= 0.5, 0.75 and 1, centred at x= 40, 10 and 70 respectively. D
Computed cluster speed, c, as a plot of rheotaxis strength, φ, for isolated clusters of massm; dotted vertical line indicates

compensating rheotaxis and horizontal solid line indicates holding position. E Travelling pulse profile for a cluster of mass

a m= 0.5 and b m= 4 under compensating rheotaxis. Density u(x, t) shown at t= t∗, t∗ + 10, t∗ + 20, with arrow

indicating movement direction. In A-E ρ= 0, δ= 1 and α= 80.

unification time as rheotaxis is increased, Fig. 3B. Summarising, the addition of rheotaxis appears
to have a dramatic capacity on the post-aggregation unification of clusters.

This accelerated unification stems from equivalent rheotaxis (same effort for each member,
regardless of group status) acting distinctly on different sized clusters. Pertinently, a large
cluster will hold position more effectively than a small cluster and, consequently, the latter
drifts into and merges with the former. We demonstrate this phenomenon in Fig. 3C, initially
distributing the population into spatially separated clusters of distinct masses. Despite the setting
of compensating rheotaxis (φ= 1), where each population member’s rheotaxis effort is sufficient
to hold position, smaller-sized clusters remain significantly affected by the flow, medium-sized
ones less so and larger ones are almost stationary. Over time, clusters merge into a single large
group that remains quasi-motionless. Intuitively, this variation with group size stems from the
distribution of the chemoattractant plume with respect to the aggregate: in a small and narrow
group, the discrepancy between a group’s position and its attractant plume is maximised and
the group ends up chasing the attractant downstream. The broad span of a large cluster leads
to significant overlap between the cluster distribution and the attractant plume, minimising
this phenomenon. To investigate this further, we numerically evaluate cluster wavespeed (c) as
a function of rheotaxis strength and cluster mass (m), where c= 0 indicates a cluster holding
position and c > 0 (c < 0) implies transport downstream (upstream). Results (Fig. 3D) consistently
yield c(φ,m1)> c(φ,m2) form1 <m2. A corollary of this is that it is easier for an individual to be
in a larger cluster to maintain position: small clusters may require overcompensating responses
(i.e. φ> 1) for the cluster to hold position. An explicit simulation is shown in Fig.3E, where
for the same rheotaxis the small mass shifts downstream while the large mass holds position.
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Figure 4. Dynamics under nonuniform flow. A The flow field, w. B-E density u (colourscale in Ba). B Excluding

chemotaxis and rheotaxis (α= φ= 0), the population stays unclustered, though nonuniform flow leads to moderate

accumulations. C Under weak chemotaxis and no rheotaxis (α= 10, φ= 0), flow-induced accumulations form into

clusters that are sustained following removal of the vortex flow. D Addition of rheotaxis (α= 10, φ= 1) suppresses the

clusters that formed in C. In A-D the population is initially dispersed, u0(x) =U, v0(x) =U + ε(x). E-G Bifurcation

diagrams of numerically-determined steady states, us(x), represented via û=maxx∈Ω(us)−minx∈Ω(us).

Bifurcation parameter is α. Solid branches indicate numerically stable steady states, dotted lines indicate unstable steady

states. Representative steady states for the locations indicated by a square shown in below panels. E Uniform flow, no

rheotaxis (φ= 0). F Uniform flow, interrupted by a region of slower flow, no rheotaxis (φ= 0). G As F, but with rheotaxis

(φ= 1). Simulations in A-D use Ω = [−20, 20]× [−20, 20] and w(x, y, t) = (1, 0) + 0.005(−x− 10y, 10x−
y)[tanh(t− 100)− tanh(t− 300)][1− tanh(0.1x2 + 0.1y2 − 10)]. Simulations in E-G use Ω = [−50, 50] and

w(x) = 1.0 + ε(1.0− tanh(x) + tanh(x− 10)), where E ε= 0, F-G ε= 0.01. In all simulations, U = 0.05, δ= 1

and ρ= 0.

Summarising, one can perceive a potential benefit of forming a larger group when it comes to
maintaining position against a flow.

(d) Nonuniform flows facilitate clustering
As a controlled nonuniform flow we consider a uniform flow which becomes temporarily
interrupted by a vortex structure, see Fig. 4A. Excluding chemotaxis (α= 0) and rheotaxis (φ= 0),
this flow generates a population that remains, in essence, dispersed: while introduction of the
vortex flow temporarily structures the population through its moderate accumulation inside
sluggish regions, the population density remains significantly below the threshold used to define
clustering (Fig. 4B). When we combine this flow environment with even just weak chemotaxis,
however, we can observe clustering, Fig. 4C: the moderate flow-induced accumulation becomes
amplified through positive chemotaxis feedback and the population rounds into a cluster.
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Moreover, once formed this cluster is able to persist even when the vortex has been removed
and flow returns to uniform.

In other words “advantageous” nonuniform flows permit clusters to form and persist in a
scenario where quasi-uniform (or negligible) flow would not. We attribute this phenomenon to
hysteresis behaviour in the chemotaxis autoaggregation mechanism. To test this we employ a
numerical bifurcation analysis (following the method in [43]) within an idealised one-dimensional
simulation, specifically where a uniform left to right flow is interrupted by a localised region
of slow flow. Under uniform flow the bifurcation structure of the autoaggregation model can
be summarised by two principal solution branches: a lower branch representing the USS and
an upper branch representing a clustered population, see Fig. 4E. Passing from weak to strong
chemotaxis (at α= α∗) destabilises the USS and chemotactic feedback powers accumulation into
a cluster (as predicted by the LSA). The clustered branch is stable either direction about α∗, a
hysteresis phenomenon which implies that once a cluster has formed it maintains structure even
if chemotaxis drops back to a weak level, until collapsing below a lower threshold at α∗∗.

The addition of nonuniform flow to this induces a “wrinkling” of the uniform distribution,
subsequently raising the local density above the threshold needed for chemotaxis to initiate
autoaggregation. As a consequence, the critical threshold at which the lower branch becomes
unstable decreases, Fig. 4F, and emergence of clusters from a dispersed state now occurs for weak
chemotaxis. Once settled on the upper branch, the hysteresis phenomenon means that the cluster
will remain stable even if the nonuniform flow is removed.

How does rheotaxis impact on this? Notably, rheotactic behaviour counteracts flow-induced
accumulations and therefore drives the critical threshold back towards the weak/strong
chemotaxis boundary, even when the flow is highly nonuniform, Fig. 4G. Consequently, while
nonuniform flows encourage dense clustering in populations that do not exhibit rheotaxis,
enabling rheotaxis suppresses this potentially beneficial outcome. This is confirmed numerically
in Fig. 4D, where the addition of compensating rheotaxis prevents the formation of the cluster
observed in Fig. 4C.

(e) Rheotaxis prevents cluster disintegration
The above highlighted a potential benefit of variable flow (nudging local densities beyond a
critical threshold required for autoaggregation) that was negated when individuals engaged in
rheotaxis. Here we show the reverse: a destructive consequence of variable flow neutralised by
rheotaxis. We impose a quasi-realistic nonuniform/nonconstant flowfield w(x, t) (see Appendix
for details), parametrised by a magnitude parameter (ω) that indicates the maximum flow speed
experienced. We initially arrange a population in a clustered form and choose parameters from the
weak chemotaxis regime; note that the weak chemotaxis is sufficient to hold the cluster together
in the absence of flow/rheotaxis, through the above described hysteresis.

We explore cluster evolution, measuring two time-dependent quantities: the proportion
remaining clustered and the proportion remaining at the initial cluster zone (definitions in Fig.
5 caption). Under a weak flow field, Fig. 5A, cohesion of the cluster is maintained despite some
distortion and drift away from the initial clustering zone. For moderate to strong flow fields, Fig.
5BC, we observe more substantial drift, along with splintering of the cluster. Here the varying
flow field starts to pull the cluster in different directions, smaller groups are peeled from the main
group and they either reattach, remain separated, or disintegrate and collapse. We observe rapid
decline in the capacity to remain localised and, for stronger flows, a decrease in the proportion
that remain clustered. Note that similar results are observed under strong chemotaxis scenarios
(data not shown).

Rheotaxis, of course, can act as a counter to flow and we examine the extent to which a
compensating rheotaxis response (φ= 1) impacts on these dynamics. The cluster-destabilising
effects of flow are negated when the population performs rheotaxis: in such scenarios the
aggregate remains clustered and more or less localised to the initial cluster zone, see Fig. 5D. For
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Figure 5. Nonuniform, nonconstant flows disintegrate clusters, but they can be stabilized by rheotaxis. A-C Nonuniform,

nonconstant flow and zero rheotaxis (φ= 0). Each frame shows the instantaneous flowfield (arrows), population density

(colourscale) and initial cluster location (dotted blue circle) under: A weak flow, ω= 1; B moderate flow, ω= 2; C
strong flow, ω= 4. D Nonuniform, nonconstant flow and compensating rheotaxis (φ= 1), under strong flow, ω= 4. E
Nonuniform, nonconstant flow and undercompensating rheotaxis (φ= 0.75), under strong flow, ω= 4. The final column

plots two measures: the proportion clustered (PC) and the proportion localised (PL), both normalised against their values

at t= 0. Solid bar in top left represents a length scale of 10. avg shows densities averaged across time from t= 0 to 80.

Initial circular cluster centred on (0, 0) and given by u0(x, y) = v0(x, y) = 0.5(1− tanh(10(x2 + y2 − 25))) and

we set ρ= 0, δ= 1, α= 15 (weak chemotaxis regime). PC(t) = ∫Ω H(u(x, t)− 4U)u(x, t)dx, where Ω is the full

spatial region and H(·) denotes the Heaviside function. PL(t) = ∫Ωi
u(x, t)dx, where Ωi denotes the region inside

the dotted blue line. Flowfield uses the HYCOM dataset described in methods.

the stronger flow, a degree of cluster stabilisation will also occur under lower levels of rheotaxis,
i.e. from the undercompensating regime, Fig. 5E. However, its effectiveness is reduced and greater
population shift occurs. Overall, the level of rheotaxis needed for a cluster to maintain integrity
depends strongly on factors such as the flow strength and degree of turbulence.

(f) Optimised clustering via density-dependent rheotaxis
In previous sections we have exclusively concentrated on constant rheotaxis responses. In this
section we turn our attention to density-dependent rheotaxis responses. As we have shown, flow
and rheotaxis can be positive and negative when it comes to forming and maintaining clusters.
Benefits of flow were found in forming clusters, with repercussions on cluster maintenance;
for rheotaxis it was the reverse, limiting autoaggregation but unifying and stabilising clustered
populations. This leads us to hypothesise that density-dependent rheotaxis may optimise
aggregation formation and maintenance, specifically a response in which individuals increase
their rheotactic response according to population density.

To test this we consider the density-dependent rheotaxis form Φ= φup/(κp + up), where we
set φ= 1 so that this choice models low to negligible rheotaxis at unclustered densities and a
response that approaches compensating rheotaxis for a clustered population. Note that κ= 0

indicates constant compensating rheotaxis and κ=∞ indicates negligible rheotaxis. We initialise
the population as dispersed, select from the weak chemotaxis regime and choose the strong flow
setting used in Fig. 5.



11

S
ubm

itted
to

R
oyalS

ociety
Interface

.....................................

Figure 6. Dynamics of an initially dispersed populations exhibiting density-dependent rheotaxis. Each panel shows the

instantaneous flow field (arrows) and population density u, (colourscale: top right). Strong flow from Fig. 5. Rheotaxis

coefficient φ= φup/(κp + up), for: A κ= 0 (constant compensating rheotaxis); B κ= 1; C κ= 4; D κ=∞ (zero

rheotaxis). Initial distributions u0(x) =U, v0(x) =U + ε(x) and we use φ= 1, p= 2, ρ= 0, δ= 1, U = 0.05, α= 15

(weak chemotaxis regime). Flowfield uses the HYCOM dataset described in methods.

Under constant compensating rheotaxis, Fig. 6A, any flow-induced inhomogeneities are
suppressed and the population remains unclustered: the density remains below instability
inducing thresholds. Under negligible rheotaxis, on the other hand, flow-induced inhomogeneities
are amplified into clusters through chemical communication, yet flow subsequently distorts
and transports these through space, Fig. 6D. The introduction of density-dependent rheotaxis
responses can permit both the formation of clusters and their subsequent maintenance,
Fig. 6BC. In their dispersed state, individuals barely engage in rheotaxis and subsequently
the population benefits from flow-induced local accumulations that induce clustering. Once
clustered, compensating rheotaxis is engaged that leads to an essentially stable cluster that
maintains its position in space.

4. Discussion
Aggregating may be required at various stages of a population’s life cycle, yet when and how
individuals find their way into groups can be difficult to deduce. Chemical signalling is an
ancient and near-ubiquitous mode of communication [44], which can allow a population to group
through communal secretion of an aggregation pheromone. A requirement is that the dispersed
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density is sufficiently high, so that enough attractant is produced for neighbours to move into and
reinforce a developing cluster. Fully dispersed populations may lie below this threshold, raising
the question of how a critical density is initially achieved. External flow provides a mechanism,
bringing individuals to a number that seeds the aggregation. Similar observations have been
observed in other models for animal grouping, for example [45].

On the other hand, flows can also fragment an aggregate, disadvantageous if the purpose of
the cluster has not been achieved. We have shown that if a clustered population performs
positive rheotaxis then the aggregate remains stable. Further, rheotaxis hastens cluster unification,
beneficial if it is optimal to form the largest possible aggregate, e.g. mass spawning. Studies
of rheotaxis behaviour in jellyfish suggest it may benefit the consolidation and stabilisation of
vast blooms of millions over significant durations [21]. Larger groups also require less rheotaxis
to maintain position within a flow, implying energy expenditure benefits of being in a large
group. Balanced against the group consolidation and stabilisation advantages, though, is that
rheotaxis can potentially slow cluster growth rate and suppress the flow-induced seeding of
aggregations. Of course, these findings are within the context of an intentionally minimal model,
where rheotaxis enters as a straightforward counter-current advection. In real world scenarios,
flows can induce a variety of body reorientations and movements: orientation of microbes in a
flow depends on the flow velocity gradient, body shape, proximity to surfaces etc, and certain
scenarios can induce spatial structuring, e.g. see [46]. A macroscopic model capable of accounting
for some of the subtlety of these reorientation behaviours could be derived through scaling from
an underlying individual-based random walk model, such as in [47].

On the basis of our observations we have tested a hypothesis that density-dependent rheotaxis
responses can optimise aggregate formation and maintenance. Under this conjecture, zero
rheotaxis led to unstable clusters, constant rheotaxis entirely suppressed clustering, but density-
dependent rheotaxis allowed persisting clusters to form from an initially dispersed state. Previous
modelling studies have shown that improved rheotaxis performance may be a natural outcome
of grouping, via close proximity and neighbour alignment reducing uncertainty [48].

A natural application is broadcast spawning, a common reproduction method used by marine
organisms and involving the synchronised release of male and female gametes into the water
column. Aggregation is logical, as higher densities will locally increase gamete concentration
and fertilization rates [49]. Various studies have explored the impact of flow on broadcast
spawning success, e.g. see [50], but at the level of gamete dynamics rather than population
grouping. Natural extensions of our work here could include integrating it with equations for
gamete dynamics, or exploring the impact of distinct chemical responses by distinct sexes [35].
Aggregating for spawning, though, comes at the obvious cost of conspicuousness to predators,
illustrated by the tendency of fisheries to target fish spawning aggregations [51]. A reverse
question to that posed in the present work, therefore, would be to address whether certain
responses could facilitate rapid dispersal of a group once its purpose has been achieved.

Animals use various forms of communication to generate groups, and the focus on chemically-
mediated aggregation here is perhaps particularly relevant to organisms with limited sensory
systems, e.g. certain microorganisms and marine invertebrates. Fish, mammals etc can also rely
on vision, sound and other cues, and a number of models have been constructed that describe
the collective dynamics of such populations, e.g. [25]. Flow and rheotaxis are likely to play a
substantial role on, say, fish shoals and a key question lies in whether rheotaxis and flow can
similarly encourage shoal formation and maintenance. We have also taken a purposefully naive
approach to fluid interactions, restricting fluid dynamics to a transport-only impacting role on the
population and hence neglecting any feedback that results from the group on the flow field. More
sophisticated coupled chemotaxis-flow systems have been developed [52–54], and these could
be extended to account for behaviours such as rheotaxis. Nevertheless, we believe the present
study acts as a starting point for an understanding the complexities between communication,
orientation responses and flow on organism grouping.
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Appendix

(a) Quasi-realistic flow fields
Functions for constant flows are stated in the relevant figure caption. For the quasi-natural
flows used in Figs 5-6 we use a publicly available dataset (global HYCOM, a validated ocean
forecasting model [55]). While HYCOM data is used for ocean scale dynamics, our modelling is
nondimensional and we abstract it to nondimensional space and time scales, parametrised by a
single parameter (ω) that denotes the maximum flow speed. Fundamentally, HYCOM generates
natural flow patterns with typical features including semi-persistent currents and localised
eddies, providing a plausible real world dataset. To limit boundary effects, this nonuniform,
nonconstant flow data is “immersed” within a larger field of uniform and constant flow and
simulations focus on dynamics near the central region, away from boundary-induced artefacts.

(b) Linear stability analysis (LSA)
For simplicity we consider the non-dimensional system (2.1-2.2) on a 1D infinite line, uniform
flow w(x, t) = ω and Φ= ωφ. Standard LSA [56] about the USS at (U,U) yields stability matrix,

S =

(
−δν2 − ω(1− φ)iν − ρ αU(1− U)ν2

1 −ν2 − ωiν − 1

)
.

ν ≥ 0 is the spatial wavenumber (inversely related to the pattern wavelength). When S has (at
least one) eigenvalues (σ) with positive real part for (at least one) valid ν then the USS is unstable
and self-organisation/autoaggregation may occur; note that for the infinite line, all nonnegative
real numbers are valid wavenumbers. We denote by max (Re(σ)) as the largest positive real part
of eigenvalues across all valid wavenumbers, and note that instability therefore occurs when
max (Re(σ))> 0. We note further that the size of max (Re(σ)) can be viewed as a measure of the
cluster growth rate, i.e. how quickly clusters will emerge from an almost uniform distribution. If
φ= 0 then the condition for max (Re(σ))> 0 is simply when (3.1) holds.

An explicit condition is difficult to obtain when φ 6= 0 due to the presence of imaginary
components. Stability is instead analysed through the neutral stability curves (NSCs, the curves
of Re(σ) = 0, e.g. [57]). A bit of algebraic rearrangement determines NSCs as

(ωφ)2 =− (δν4+(δ+ρ−αU(1−U))ν2+ρ)((δ+1)ν2+1+ρ)2

ν2(ν2+1)(δν2+ρ)
.

The right hand side (as a function of ν2) determines whether unstable wavenumbers exist at
a given ωφ, specifically according to whether NSCs bisect the positive quadrant of the |ωφ| −
ν2 plane. When population growth is negligible (ρ= 0) and the domain is infinite, a necessary
condition for this to occur is simply that (3.1) holds, regardless of the size |ωφ|, see Fig. 7A: given
the infinite domain and condition (3.1), autoaggregation therefore remains possible under the
inclusion of rheotaxis. However, it is noted that as the size of |ωφ| increases, the range becomes
increasingly restricted to small ν. Effectively, this restricts emerging clusters to those with long
wavelengths and slow growth.

For ρ > 0, however, NSCs have a bounded absolute maximum in ν2 ≥ 0. This implies a critical
flow-rheotaxis threshold |ωφ|∗ beyond which autoaggregation is not possible, see Fig. 7B. In this
case, inclusion of rheotaxis can act to prevent clustering, even under strong chemotaxis scenarios.

(c) Numerical method
The numerical simulations employ a methods of lines approach, first discretisting in space (on
a uniform mesh) and then integrating the subsequent system of ODEs in time. Spatial terms
are discretised in conservative flux form, with a central difference scheme adopted for diffusion
terms and third-order upwinding for advective terms, the latter augmented by flux limiting to
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Figure 7. Neutral stability curves (NSC), indicating the range of unstable wavenumbers for particular (ω,φ) combinations:

non-zero length ranges indicate the possibility of autoaggregation from the USS. A Zero population growth (ρ= 0), for

three choices of α. B Logistic population growth (ρ= 1), for three choices of α. Under zero population growth a non-zero

length range is found for all (ω,φ) combinations, although of restricting length as these parameters increase. Including

population growth leads to a critical threshold, such that for large flow/rheotaxis autoaggregation is suppressed. Non

specified parameters are δ= 1 and U = 0.05).

preserve positivity of solutions. Numerical validation has included controlling against analytical
predictions (linear stability analysis), refining the uniform mesh and employing different time
integration methods (explicit Euler and ROWMAP stiff systems integrator [58]). The above
method adapts previous numerical schemes developed and applied to advection-diffusion-
reaction systems of Keller-Segel type [59,60].

Data Accessibility. The code used to implement the mathematical framework is available on request.
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