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When did torques and angular velocities become vectors? A historical comedy of 

errors 
Sandro Caparrini 

(Politecnico di Torino, Italy) 

Who discovered the vector properties of moments of forces and angular velocities? Among the many 
scientists who did, there were some of the greatest mathematical physicists at the turn of the 18th and 19th 
centuries, like Euler, Lagrange, Laplace, Poinsot, Poisson and Cauchy. Surprisingly, due to scientific 
rivalries, differences in views and poor communications, it took around three quarters of a century, from 
1759 to 1834, to figure out that moments of forces and angular velocities are best represented by directed 
line segments. The present article relates a cautionary tale about the meanders, the detours and the dead 
ends of the history of science. 

 
 
We shall present this subject more historically than some of the others in order to give some idea 

of the development of a physical theory or physical idea.  
R. P. Feynman, The Feynman Lectures on Physics (1963), v. 1, ch. 26. 

  

1. Introduction 

It is astonishing how poorly we know the history of everyday results in elementary 
physics. This is the more to be regretted on account of the highly interesting stories that 
lie behind many formulas in our textbooks. Sometimes the slow unfolding of a scientific 
theory has more twists and turns than a spy novel. As a case in point, let us look at the 
history of the discovery of the vector properties of moments of forces and angular 
velocities.1 

A note of caution is needed here. Since the word vector was formally adopted into 
mathematical physics by Sir William Rowan Hamilton in 1844 to denote the imaginary 
part of a quaternion, purists may question its use in connection with works published in 
the eighteenth century. However, we note that, as early as the seventeenth century, the 
Latin locution radius vector made its way into astronomy. We can thus feel justified in 
calling vector any quantity which can be represented by directed line segments subject to 
the parallelogram rule. In other words, our vectors are those encountered in high school 
physics textbooks. 

The introduction of vectors in mechanics followed the development of the general 
theory, from single mass points to more complicated systems. In the pseudo-Aristotelian 
Mechanical Problems, a work probably of the fourth century B.C., the parallelogram of 
displacements appeared. The composition of velocities was enunciated in Galileo 
Galilei’s Discourses and Mathematical Demonstrations Relating to Two New Sciences 
(1638). The parallelogram of forces was stated in Simon Stevin’s The Principles of the 
Art of Weighing (1586) and demonstrated by Isaac Newton, Pierre Varignon and Bernard 
Lamy (1686/87). Before the end of the seventeenth century, all of these results were well 
established.2 

As for the vector representation of moments and angular velocities, nothing 
happened before the creation of the dynamics of rigid bodies. The two lines of 
development began independently of each other, but then merged in such a way that it 
becomes difficult to follow the course of each of them separately.3 



 

II. Angular velocities 

In the early 1740s the dynamics of rigid bodies was still essentially limited to two-
dimensional special problems, but things changed with the publication of the Recherches 
sur la précession des équinoxes et sur la nutation de l’axe de la terre (1749) by the 
philosopher, essayist and mathematician Jean le Rond d’Alembert.4 This was an 
extremely difficult book to understand, a common characteristic of all of d’Alembert’s 
scientific works. It contained a number of fundamental results, for example, the discovery 
of the instantaneous axis of rotation,5 but a modern reader would be hard-pressed to find 
them in this complex tapestry of partial theories punctuated by awkward notations and 
semi-geometric demonstrations. Though the Recherches did not become the nearly 
definitive treatment of rigid bodies it was intended to be, it remained a source of 
inspiration for two generations of mathematical physicists. 

Among those who fell under the spell of d’Alembert was Paolo Frisi (1728-1784), 
a Barnabite friar and a professor of mathematics at the University of Pisa. Frisi wrote 
prolifically, chiefly on hydraulics and astronomy, and was prominent in the advancement 
of the Enlightenment in Italy. Yet, for all of his efforts, he can be credited with only one 
first-class discovery: the statement and proof that two angular velocities about concurrent 
axes can be composed according to the parallelogram law.  

Frisi presented his theorem in a memoir on the precession of the equinoxes 
published in 1759.6 The proof was achieved via a sequence of lemmas based on the 
repeated application of the composition and decomposition of velocities to a rigid body 
rotating simultaneously about two concurrent axes. Thus Frisi demonstrated, more simply 
and clearly, the existence of d’Alembert’s instantaneous axis of rotation, also going 
beyond d’Alembert in expressing its position by means of the parallelogram rule: 

In every body two rotations can be composed into one exactly in the same way that 
two forces, represented by the two sides of a parallelogram, are composed into a third force 
represented by the diagonal.7 

There you have it, the first reference in history to angular velocities as vectors. 
Frisi was so convinced of the importance of his theorem that he kept refining its 
demonstration up to the very end of his life. In all he published three proofs, differing 
only in some details.8 

In Italy, the composition of rotations immediately attracted some attention. Upon 
seeing the new theorem, Tommaso Perelli (1704-1783), one of Frisi’s colleagues at the 
University of Pisa, devised his own proof, together with the demonstrations of a number 
of theorems on the maxima and minima of angular velocities. By modern standards of 
scholarship, Perelli was a remarkable man. While he is now remembered primarily as a 
mathematician, he was also an astronomer, a hydraulic engineer, a botanist, a music 
historian and a classical scholar. Unfortunately, his many interests prevented him from 
seriously pursuing mathematics. That is exactly what happened in this case: according to 
Frisi, Perelli wrote an account of his discovery, but never got around to publishing it.9 

Another Italian mathematician who became interested in the parallelogram of 
rotations was Giulio Mozzi (1730-1813). Like Frisi and Perelli, Mozzi was an eclectic 
scholar of unbounded curiosity. He came from a noble family of Lucca, studied literature 



and wrote a couple of didactic poems, then turned to mathematics and became a student 
of Frisi. He published only one scientific work, the Mathematical Discourse on the 
Instantaneous Rotation of Bodies (1763), a slim volume written to alleviate the boredom 
of a prolonged illness. After this single burst of creativity, Mozzi abandoned mathematics 
and spent the rest of his life in politics. His Discourse lay unread for some fifty years.10 

Mozzi was able to pack a lot of content into less than one hundred pages. He 
exposed some crucial errors of Johann Bernoulli and d’Alembert, sketched a general 
theory of the three-dimensional instantaneous motion of a rigid body acted upon by 
impulsive forces, showed that every infinitesimal rigid displacement is a screw motion 
(i.e., a rotation about an axis followed by a translation along the same direction) and 
described some properties of couples of forces. In keeping with his theory, he gave a 
proof of Frisi’s theorem for the case of two impulsive forces acting on a rigid body with 
a fixed point.11 

It might be expected that Frisi’s theorem would receive the same attention outside 
Italy. Oddly enough, the composition of angular velocities went unnoticed abroad. 
D’Alembert, a great innovator with a few weaknesses, in his “Nouvelles recherches sur 
la précession des équinoxes” (1754), wrote that it would be wrong to consider separately 
the diurnal rotation of the Earth and the precession of the terrestrial axis.12 Even Leonhard 
Euler, a mathematician and physicist of the highest standing, in his numerous papers on 
rigid bodies did not make use of the parallelogram of angular velocities.13 This silence is 
difficult to explain. The most likely explanation is that mathematical physicists were then 
focused on a purely analytical approach to mechanics, to the detriment of geometrical 
constructions. 

Ironically, the resurgence of the geometric composition of angular velocities came 
in the wake of the most powerful attack ever on the use of synthetic geometry in 
mathematical physics. Frisi’s theorem reappeared in Joseph Louis Lagrange‘s 
Méchanique analitique, a book that purported “to condense the theory of [mechanics] and 
the method of solving the related problems to general formulas whose simple application 
produces all the necessary equations for the solution of each problem.”14 Once again, the 
(re)discovery did not follow the shortest path. 

In the first edition (1788) Lagrange demonstrated the formulas for the composition 
of infinitesimal rotations: given a system of rectangular axes, three rotations 𝑑𝑑𝑑𝑑 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐λ, 
𝑑𝑑𝑑𝑑 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐µ, 𝑑𝑑𝑑𝑑 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐ν about the x-, y-, and z-axis, respectively, are equivalent to a single 
rotation 𝑑𝑑𝑑𝑑 about the axis 𝑥𝑥

𝑐𝑐𝑐𝑐𝑐𝑐λ
= 𝑦𝑦

𝑐𝑐𝑐𝑐𝑐𝑐µ
= 𝑧𝑧

𝑐𝑐𝑐𝑐𝑐𝑐ν
 , where λ,µ, ν are respectively the angles 

between the axis of total rotation and the x-, y-, and z-axis. It is easy to see how close he 
came to establishing the vectorial character of infinitesimal rotations, yet he failed to do 
so. 

About a quarter of a century after the first appearance of the book, Lagrange 
published a much enlarged second edition (1811-15), now entitled Mécanique analytique, 
which tackled the ideas of the younger generation of mathematical physicists. Perhaps 
inspired by the then new vector theories of moments (see next section), he completed his 
previous analysis by demonstrating that, under a rotation of the axes, partial rotations 
behave like the components of a linear velocity. This is very much in the spirit of modern 
Cartesian tensors: three quantities represent a vector when they transform in a certain way 
under an orthogonal transformation. Thus Lagrange succeeded at last in formulating the 
vectorial composition of infinitesimal rotations: 



It is clear from this development that the composition and resolution of rotational 
motions are entirely analogous to rectilinear motions. Indeed, if on the three axes of rotation 
dψ, dω, dϕ one takes from their point of intersection lines proportional respectively to dψ, 
dω, dϕ, and if one draws on these three lines a rectangular parallelepiped, it is easy to see 
that the diagonal of this parallelepiped will be the axis of composed rotation dθ and will be 
at the same time proportional to this rotation dθ. From this result and because the rotations 
about the same axis can be added or subtracted depending on whether they are in the same 
or opposite directions as the motions which are in the same or opposite directions, in general, 
one must conclude that the composition and resolution of rotational motions is done in the 
same manner and by the same laws that the composition or resolution of rectilinear motions, 
by substituting for rotational motions rectilinear motions along the direction of the axes of 
rotation.15 

 

We do not know if Lagrange had taken his cue from Frisi. It is possible that he 
did, for we know from his correspondence that he had read Frisi’s works, but he might 
also have more fully developed his own theory. However it may be, his contemporaries 
attributed all the merits of the discovery to him. It is through the Mécanique analytique 
that the vectorial theory of angular velocity made its way into modern literature. 

Almost contemporaneously with Lagrange, the angular velocity vector appeared 
in a small book by Jacques-Frédéric Français on the rotation of rigid bodies. Interestingly, 
in those same years Français was also elaborating on Argand’s vectorial interpretation of 
complex numbers. One wonders if there was a connection.16 

 

III. Moments of vectors 

Although the first correct ideas on three-dimensional rigid motion had emerged in 
the work of d’Alembert, it was Euler who brought the general theory to near perfection. 
This is easily verified by spending a couple of hours with the original texts. While today 
d’Alembert’s Recherches is merely a historical relic, even modern physicists and 
engineers have much to learn from Euler’s works on rigid dynamics (provided they read 
Latin). So, we should not be surprised when we find out that the discovery of the vectorial 
representation of moments was made by Euler in 1780.17 

Euler was led to his discovery by a (seemingly to us) trivial problem: given an 
applied force F, to find its moment about a given straight line l. Back then, the moment 
of a force about an axis was defined, in purely geometric fashion, as the product of the 
intensity of the force by the length of the common perpendicular to the axis and the line 
of action of the force. Euler referred the problem to rectangular coordinates and, after 
much algebra, arrived at the simple expression 

 𝑓𝑓𝑓𝑓 + 𝑔𝑔𝑔𝑔 + ℎ𝑅𝑅,  

where P, Q, R are respectively the moments of F about Ox, Oy, Oz, and f, g, h are the 
cosines of the angles formed by l with the coordinate axes.18 Today we recognize in this 
formula a scalar product, and in P, Q, R the components of the moment MO about the 
origin O. Euler did not have the advantage of vector calculus, but knew that this was the 
length of the projection of the segment (P, Q, R) along the direction (f, g, h). In a flash he 
realized that moments of forces are represented by line segments. At the close of the 
paper, in the paragraph immediately following the derivation of his formula, he wrote: 



Therefore, the moments about three orthogonal axes can be composed exactly as the 
simple forces. For if three forces P, Q, R were applied at point a, acting along the directions 
af, ag, ah, they would form a force equal to fP + gQ + hR acting along the direction az. This 
marvelous harmony deserves to be considered with the greatest attention, for in general 
mechanics it can deliver no small development.19 

From the vantage point of 21st-century science, we can fully appreciate the 
significance of this veritable prophecy. Sadly, Euler could not reap what he had sown, for 
he was already past seventy and almost completely blind. 

Euler, however, holds another surprise for us. By searching through his Opera 
omnia (up to now 86 thick volumes, yet still in progress), we can find to our amazement 
that he had already demonstrated this very same formula in 1764 without realizing its 
vectorial interpretation.20 We are thus forced to conclude that even this supreme 
mathematical physicist could not remember all the details of his 866-plus works, and that 
in 1764 he did not yet know the geometrical meaning of the scalar product. 

If history progressed linearly, the discovery of the vector representation of 
moments should have exerted a significant impact on dynamics. Yet the demon of 
perversity intervened again. Euler’s paper appeared as late as 1793 in the Acta of the St. 
Petersburg Academy of Science. By that date, the Revolution had cut off most scientific 
communications between the French school of mathematical physics and the rest of the 
world. This unfortunate chain of events probably delayed the development of mechanics 
by a number of years. 

Unaware of Euler’s result, in 1798 Pierre Simon Laplace stumbled unexpectedly 
on the vector properties of angular momentum. He had set himself the problem of finding 
a “natural” frame of reference for an isolated system of mass points. The solution he 
proposed was the invariable plane, that is, in modern terms, the plane passing through 
the center of mass and orthogonal to what we now call the angular momentum vector. 
This became an instant classic: thoughout the nineteenth century the invariable plane 
figured prominently in every book on mechanics and astronomy.21  

Of course, scientists in those days had no idea of the existence of an angular 
momentum vector. Laplace in effect started from an early formulation of the conservation 
of angular momentum, the principle of the conservation of areas: in the motion of an 
isolated system of mass points, the sum of the projections on a fixed plane of the areas 
described in unit time by the radii vectores drawn from any fixed point to all the points 
of the system, multiplied by their masses, are constant in time.22 By rotating the axes, he 
demonstrated that there is a plane of maximum projection, and that the sum of these 
projections on any plane at right angles to this one is zero. This indicated the existence of 
a privileged direction in space for isolated systems. Regrettably, Laplace buried intuitive 
geometry under rather menacing algebra. If he had employed a symmetric notation, he 
would have realized that mass-areas transform vectorially.23 

In the following year Laplace published a two-page follow-up to this paper, where 
he demonstrated that the axis about which the moment of momentum of the whole system 
is the greatest possible is orthogonal to the invariable plane. Since he employed neither 
geometry nor algebra, resorting instead to a verbal description of the operations with 
vectors, the end result is somewhat difficult to follow.24 



The connection between the theorems of Euler and Laplace was made explicite 
by Gaspard de Prony, one of the leaders of the newly founded Ecole Polytechnique, in 
his lectures to engineers (apparently, amid the turmoil of the Napoleonic wars, Euler’s 
memoir had somehow reached Paris). While Prony seldom added anything new to the 
topic, he had the merit of clarifying and making widely known the first results in the 
vector theory of moments.25 

Once those basic results had been achieved, things progressed rapidly. In 1803 a 
complete vector theory of moments entered mechanics thanks to the young French 
mathematician Louis Poinsot. Geometry was then enjoying a renaissance and Poinsot was 
one of those riding the crest of the new wave. His first publication, a rigorous treatise 
somewhat deceptively entitled Éléments de statique, went head-on against the analytical 
mechanics of Lagrange and Laplace by founding statics on synthetic geometry. The 
Statique was in many ways an innovative book, especially in the section on rigid bodies. 
Since a rigid body can both translate and rotate, Poinsot introduced two independent 
causes of motion, forces and couples of forces. As is well known, a couple is a system of 
two equal, parallel and oppositely directed forces, whose magnitude is measured by the 
product of the intensity of the forces by the distance between their lines of action. Poinsot 
demonstrated that if we represent a couple with a directed segment perpendicular to its 
plane, we can combine couples by the parallelogram rule. Statics was thus reduced to 
vector geometry. In a successive memoir, Poinsot gave vectorial proofs of the 
conservation of momentum and angular momentum in dynamics.26 

A different geometric representation of moments was developed shortly 
afterwards by the mathematical physicist Siméon Denis Poisson. His motivations partly 
lay outside of science: Poisson, a protégé of Laplace, saw with mounting concern the rise 
of Poinsot and tried to undermine his theory of couples. Starting from Laplace’s 
discussion of mass-areas, he remarked that the moment of a force about a point is 
numerically equal to the double of the area of a triangle having the vertex in the centre of 
moments and the force as its base. It was therefore natural to consider the triangle itself 
as the geometrical representation of the moment. These triangle-moments shared many 
properties with forces: they could be added by means of their projections and obeyed the 
familiar parallelogram rule. Just this once, academic politics resulted in something 
productive, for Poisson’s idea marked a significant step towards the definition of the cross 
product of vectors.27 

Yet another geometric representation of moments was proposed by Jacques 
Philippe Marie Binet in 1815. Binet, a professor of analysis, mechanics and astronomy at 
the Ecole Polytechnique and at the Collège de France for about forty years, was an able 
mathematician and an attentive reader, whose forte was the detailed development of 
promising concepts formulated by others. His theory of moments was based on the fact 
that the motion of a rigid body with a fixed point O is completely determined by moments 
alone. Binet substituted every applied force F with a parallel force F' whose line of action 
was at unit distance from O and whose moment about O was the same as that of F; he 
called F' the momens of F about O. This is equivalent, in current terminology, to taking 
the moments F'1, F'2, F'3, … etc. of the forces F1, F2, F3, … etc. and rotating them by 
ninety degrees. If Binet had pursued this line of thought, he could have achieved 
something worthwhile.28 

After 1820 the time was ripe for someone to organize all the different views 
involved in the the theory of moments into a general formulation. As in other branches of 



mathematics and mechanics, the onus fell to Augustin Louis Cauchy to clear up the 
muddle of apparently conflicting ideas. In 1826 he published, in consecutive pages of his 
Exercices de mathématiques, five papers in which he brought the theory almost to its final 
formulation.29 Essentially, Cauchy took the best parts from the theories of moments then 
in existence. His moments linéaires are vectors, like Poinsot’s couples and Binet’s 
momens, which represent Poisson’s triangles. Except for the lack of a proper vector 
notation, this is the modern theory. 

 

IV. Polemics and controversies 

These results were quickly taken up by textbooks and treatises. The parallelogram 
rule for moments and angular velocities was discussed in the second editions of both 
Lagrange’s Mécanique analytique and Poisson’s Traité de mécanique, Poinsot’s Statique 
was reprinted many times and translated into several languages, and Poisson’s vector-
areas appeared in every textbook of analytic geometry up to the end of the century. In a 
few years, early vector mechanics had moved from research to pedagogy. 

The appearance of several different theories of moments obviously led to some 
priority controversies. There were two such polemics, both erupting in 1827. They 
contributed nothing to science, but allow us to understand how scientists viewed vector 
mechanics before the advent of vector calculus. 

The first controversy arose after the appearance of Cauchy’s linear moments. 
Poinsot accused Cauchy of having published results which were merely repetitions of his 
theorems on couples of forces disguised under a different notation. Cauchy replied that 
his theory was more general than Poinsot's, for it could be applied to every physical entity 
that can be represented by a directed line segment. While posterity has accepted Cauchy’s 
judgement, it must be conceded that he should have better acknowledged the 
achievements of Poinsot.30 

A second controversy began when Poisson published a short account of the recent 
history of the theory of moments in which he maintained that Poinsot’s work was entirely 
derived from that of his predecessors. Poinsot replied with a long and detailed assessment 
of the theory of couples. The introduction of couples, he wrote, had entailed a geometrical 
composition of moments, whereas up to then there had only been the algebraic sum of 
certain mathematical expressions. Vector entities had definitively taken their place in 
mechanics.31 

 

V. Angular velocities and moments of vectors 

By 1815 it had become clear to researchers that a number of fundamental entities 
in mechanics could be represented geometrically by means of directed line segments and 
plane surfaces. From then on, it was mainly a question of formulating a unified treatment 
of the whole matter. 

Binet was the earliest to consider the connection between the geometric 
representations of torque and angular velocity. In the previously cited paper on moments, 



he wrote the law of rotational dynamics (i.e. that the external torque is equal to the time-
rate of angular momentum) in the form 

∑ 𝑚𝑚𝑖𝑖 �𝑦𝑦𝑖𝑖
𝑑𝑑2𝑧𝑧𝑖𝑖
𝑑𝑑𝑑𝑑2

− 𝑧𝑧𝑖𝑖
𝑑𝑑2𝑦𝑦𝑖𝑖
𝑑𝑑𝑑𝑑2

�𝑖𝑖 = ∑ 𝑀𝑀𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐λ𝑖𝑖𝑖𝑖 , 

with two other similar equations found by cyclic permutation of the letters, x, y, z and λ, 
µ, ν ; here Mi is the moment acting on the ith particle, λi , µi , νi are respectively the angles 
between the plane of the moment Mi and the yz-, zx-, and xy-plane, and the sums are to be 
taken over the particles. This is not too far from the current vector formulation ∑𝑑𝑑𝑯𝑯𝑂𝑂

𝑑𝑑𝑑𝑑
=

∑𝑴𝑴𝑂𝑂 expressed in rectangular Cartesian components (it is left as an easy exercise for the 
reader to demonstrate that the orthogonal projection 𝑀𝑀𝑐𝑐𝑐𝑐𝑐𝑐λ of the surface 𝑀𝑀 on the yz-
plane is equal to the projection of the normal vector of length 𝑀𝑀 along the x-axis). In a 
second paper, Binet introduced the areal velocity as a vector quantity; he did not supply 
a proof, instead simply remarking that areal velocities are the moments of velocities about 
a fixed point.32 

The definitive unification of the geometric representations of moments and 
angular velocities was achieved by Poinsot in his Théorie nouvelle de la rotation des 
corps, first published in an abridged version in 1834. This is the work in which he 
considered the dynamical effects of couples. Of special interest to us is the first section, 
since here Poinsot provided a study of the vectorial properties of angular velocity which 
closely followed the corresponding study for couples of forces in the Eléments de 
statique. In particular, he introduced the couple of small rotations (which turned out to be 
a pure translation) and the accelerating couple. He remarked that any proposition 
concerning the composition of forces has its counterpart in the composition of small 
rotations; for example, the theory of the central axis is the same as that of the 
instantaneous axis of rotation. By presenting a general overview of vectors in mechanics, 
Poinsot’s Théorie nouvelle paved the way for the invention of vector calculus.33 
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