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Abstract: We consider a problem of self-synchronization in a system of vibro-exciters (rotors)
installed on a common oscillating platform. This problem was studied by I.I. Blekhman and later
by L. Sperling. Extending their approach, we derive the equations for a system of n rotors and
show that, separating the slow and fast motions, the “slow” dynamics of this systems reduces to
a special case of a so-called swing equation that is well studied in theory of power networks. On
the other hand, the system may be considered as “pendulum-like” system with multidimensional
periodic nonlinearities. Using the theory of such systems developed in our previous works, we
derive an analytic criteria for synchronization of two rotors. Unlike synchronization criteria
available in mechanical literature, our criterion ensures global convergence of every trajectory
to the synchronous manifold.
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1. INTRODUCTION

Synchronization is a fundamental principle that explains
many natural phenomena and lies in the heart of numerous
technical designs (Pikovsky et al., 2001; Néda et al., 2000;
Strogatz, 2003). Although general mathematical defini-
tions of synchronous processes in dynamical systems have
appeared quite recently Blekhman et al. (1997, 2002),
special problems of synchronization in ensembles of cou-
pled oscillators date back to the seminal experiment with
clocks reported by Huygens in 1665 (Bennett et al., 2002;
Czolczynski et al., 2011; Pikovsky et al., 2001).

In Huygens’ framework, two clocks suspended on a com-
mon beam self-synchronize in the absence of external
control. Similar phenomena of self-synchronization play
an important role in vibrational mechanics (Blekhman,
2000), in particular, design of automatic dynamic balances
to prevent harmful vibrations (Thearle and Schenectady,
1932; Hedaya and Sharp, 1977; Blekhman, 1988). In this
paper, we address the problem that was pioneered by
Blekhman (Blekhman, 1953) and is concerned with self-
synchronization of two vibro-exciters (eccentric rotors)
installed on a common rigid platform. The analysis of
this phenomenon is important not only to understand
mechanisms of synchronization in natural and technical
systems, but also for engineering applications. On one
hand, self-synchronization between multiple eccentric ro-
tors driving a vibration mill allows to simplify the overall
mill’s construction and get rid of additional synchroniza-
tion controllers (Chen et al., 2016), on the other hand,
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self-synchronizing dynamic balancers can be used to cancel
harmful vibrations (Sperling et al., 2000).

Following the framework introduced in (Sperling, 1994a,b;
Sperling et al., 1997), we consider a system of n rotors
installed on an rigid platform with one degree of freedom.
Using the standard mechanical approach, the phase (an-
gle) and frequency variables of each rotor are decomposed
into a slowly changing and a fast changing components,
and the problem in question is when the slow components
of the rotors’ frequencies are asymptotically synchronous.
It should be noted that this problem is highly non-trivial
even for the case of two rotors. The results published
in mechanical journals are typically confined to analysis
of the conditions under which the synchronous mode is
possible and local stability analysis of the synchronous
motion (Sperling et al., 1997; Chen et al., 2016; Zhang
et al., 2013; Fang et al., 2014, 2019).

The contribution of this paper is threefold. First, we de-
rive the equations for a system of n rotors on a rigid
platforms and show that the model coincides with the
special case of a so-called swing equation that arises in
analysis of synchronization and transient stability of power
networks (Dörfler and Bullo, 2012; Varaiya et al., 1985).
This opens up a perspective of obtaining global stability
criteria elaborated in control theory for power systems.
Second, we show that, on the other hand, the slow dy-
namics of the coupled rotors can be reduced to the class
of systems with periodic nonlinearities examined in our
previous works (Leonov et al., 1992, 1996; Smirnova and
Proskurnikov, 2019b). Although the frequency-domain cri-
terion is difficult to validate in the case of multiple nonlin-
earities, the theory developed in these previous works can
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be applied to derive global stability of the synchronous
motion for two rotors, which is our third contribution.

2. THE SYSTEM OF COUPLED ROTORS

Consider the system of n rotors (Fig. 1) installed on a
rigid platform with one degree of freedom (Blekhman,
2000; Sperling et al., 1997). The rigid platform can move
in the fixed direction Ox and connected to a stationary
support by the elastic element. The axes of the rotors are
orthogonal to the direction Ox. The rotors are brought
into force by the asynchronous electric motors.

Fig. 1. Rotors situated on a rigid platform

2.1 Equations of motion. Synchronization problem.

We exploit here the mathematical model of the system
borrowed from Sperling (1994a,b):

Iiϕ̈i = Li(ϕ̇i) +miεiẍ sinϕi (i = 1, 2, . . . , n), (1)

Mẍ = −cx+
n∑

i=1

miεi(ϕ̇
2
i cosϕi + ϕ̈i sinϕi)

(M = M0 +

n∑
i=1

mi; Ii = Ji +miε
2
i ).

(2)

Here x is the displacement of the platform, ϕi (i =
1, 2, . . . , n) is the angle of the i-th rotor counted from Ox-
axis. The constants Ji,mi, εi stand for, respectively, the
i-th rotor’s moment of inertia, mass and eccentricity, M0

is the mass of the platform and c is the elasticity coefficient
of the spring supporting the platform.

The value of Li(ϕ̇i) is the rotation moment of the motor,
represented as follows

Li = L0
i − kiϕ̇i (L0

i , ki = const). (3)

The system (1)-(3) can be now transformed by the method
of “direct partition” of motion, separating the slow and
fast components. We reproduce the arguments from Sper-
ling et al. (1997). It is supposed that

ϕi(t) = Ωt+ αi(t) + Ψi(t,Ωt) (Ω = const); (4)

1

2π

2π∫

0

Ψi(t,Ωt) dΩt = 0, (5)

where αi and Ψi are, respectively, the slow and the fast
components on the phase ϕi.

It is also assumed that Ψi is small and in the equation (2)

ϕ̇i ≈ Ω, ϕ̈i ≈ 0. (6)

Then (1) transforms into

Iiϕ̈i + kiϕ̇i = L0
i +miεiẍ sinϕi (i = 1, 2, . . . , n), (7)

and (2) takes the form

Mẍ+ cx =
n∑

i=1

fi cos(Ωt+ αi) (fi = miεiΩ
2). (8)

The linear equation (8) has a solution

x = Axx

n∑
i=1

fi cos(Ωt+ αi) (9)

where

Axx =
1

M(ω2 − Ω2)
, ω2 =

c

M
, (10)

whence

ẍ = −AxxΩ
2

n∑
i=1

fi cos(Ωt+ αi). (11)

Using equation (7), we can obtain that

Iiα̈i + kiα̇i = ki(Ωi − Ω) + Vi, (12)

Ωi :=
L0
i

ki
. (13)

Vi := −Axxfi
2π

2π∫

0

n∑
s=1

fs cos(Ωt+ αs) sin(Ωt+ αi) d(Ωt).

(14)

Taking into account that

1

2π

2π∫

0

cos(Ωt+ αs) sin(Ωt+ αi) d(Ωt) =

=
1

2
sin(αi − αs),

(15)

it can be easily seen that

Vi = −Axx

2

n∑
s=1

fsfi sin(αi − αs) (16)

Equation (12) thus shapes into

Iiα̈i + kiα̇i = kiΩ̄i −
Axx

2

n∑
s=1

fsfi sin(αi − αs)

Ω̄i := Ωi − Ω, i = 1, 2, . . . , n.

(17)

Summing up the equation over all i = 1, . . . , n, it can be
seen that the equilibrium αi ≡ const may exist only when

Ω =
k1Ω1 + · · ·+ knΩn

k1 + · · ·+ kn
=

∑n
i=1 L

0
i∑n

i=1 ki
. (18)

Note that (18) is only a necessary condition yet not suf-
ficient. A simple sufficient condition for the equilibrium’s
existence is obtained by noticing that

Ωi − Ω =

∑n
s=1
s�=i

ks(Ωi − Ωs)
∑n

i=1 ki
, (19)

and hence equations (17) can be rewritten as

Iiα̈i + kiα̇i =

n∑
s=1
s�=i

Fis,

Fis(t) =
kiks(Ωi − Ωs)∑n

i=1 ki
− Axx

2
fsfi sin(αi(t)− αs(t)).

(20)
Hence, the equilibrium automatically exists if for each pair
of indices i = 1, . . . , n and s = i + 1, . . . , n the following
equation is solvable

sin(αi − αs) = γis :=
2kiks(Ωi − Ωs)

Axxfsfi
∑n

i=1 ki
, (21)

or, equivalently, |γis| ≤ 1 for all i, s.

The problem of the rotors’ slow dynamics synchronization
is as follows (Blekhman, 2000):

Problem. To find conditions on the parameters Ii, ki, L
0
i

such that every solution of equations (17) (with param-
eters defined in (13) and (18)) converges to one of the
equilibria and, additionally,

α̇i − α̇s −−−−→
t→+∞

0 ∀s, i. (22)

The convergence of all solutions to equilibria is known as
the gradient-like behavior of the system (Leonov et al.,
1992). It should be noted that the convergence is required
for all possible initial conditions and not “locally” (in a
sufficiently small vicinity of the synchronous motion). Such
a property cannot be guaranteed by standard methods
of local stability analysis such as e.g. the Routh-Hurwitz
criterion typically employed in mechanical literature.

2.2 Slow dynamics of rotors and swing equations

One may notice that equations (17) have the same struc-
ture as the swing equations describing the dynamics of
multi-machine power networks in the so-called lossless
(zero transfer conductance) case (Baillieul and Byrnes,
1982; Varaiya et al., 1985; Dörfler and Bullo, 2012). Con-
sidering (17) as equations describing a power network,
Ii, ki stand for the inertia and damping constant of the
ith generator, fi is the internal voltage of the ith oscillator
and Axx/2 stands for the constant transfer susceptance be-
tween each pair of generators. The value Ω̄i is interpreted
as a “natural frequency” or, physically, the effective power
input to generator i (Dörfler and Bullo, 2012).

The parallel with power networks, which has not been
realized in vibrational mechanics literature, opens up the
perspective of employing control-theoretic tools proposed
in the literature on power systems control, in particular,
special energy-based Lyapunov functions (Varaiya et al.,
1985; Bretas and Alberto, 2003) and other methods such
as e.g. singular perturbation theory (Dörfler and Bullo,
2012). It appears, in particular, that in the situation where
Ii � ki equations (17) are efficiently approximated by
the non-uniform Kuramoto network that admits a more
complete analysis (Dörfler and Bullo, 2012, 2014).

2.3 Slow dynamics of rotors as a pendulum-like systems

On the other hand, equations (17) can be written as a feed-
back superposition of stable linear time-invariant (LTI)
systems and a (multidimensional) periodic nonlinearity.
Systems of this type have been thoroughly studied in
the works by Leonov (Gelig et al., 2004; Leonov, 2006;
Leonov et al., 1992, 1996); the most recent progress in
their analysis is reported in our previous work (Smirnova
and Proskurnikov, 2019b). Systems with periodic nonlin-
earities are often referred to as “pendulum-like” (as they
include the classical pendulum as a special case) or “syn-
chronization” systems (because they described dynamics
of phase-locked loops and other circuits providing synchro-
nization of signals).

Equations (20) can be rewritten as

α̇i(t) = α̇i(0)e
− ki

Ii
t
+

1

Ii

t∫

0

e
− ki

Ii
(t−τ)

n∑
s=1
s�=i

Fis(τ) dτ (23)

Introduce three l = (n−1)n
2 – vector-functions

σ = (α1 − α2, . . . , α1 − αn, α2 − α3, . . . , αn−1 − αn)
�,

F (σ) = (Φ12, . . . , Φ1n, Φ23, . . . , Φ(n−1)n)
�

with Φis := γis − sin(αi − αs) (and γis from (21)), and

bT =
(
α̇1(0)e

− k1
I1

t − α̇2(0)e
− k2

I2
t, . . .

. . . , α̇n−1(0)e
−

kn−1
In−1

t − α̇n(0)e
− kn

In
t
)
,

the equations are written as follows

σ̇(t) = b(t)−
t∫

0

Γ(t− τ)F (σ(τ)) dτ. (24)

Here Γ ∈ Rl×l is a matrix function. Its elements are either
zeros or decreasing exponents.

Assuming that |γis| < 1, system (24) has a countable set
of equilibria. In (Leonov et al., 1992, 1996; Smirnova and
Proskurnikov, 2019b), frequency-domain conditions for the
gradient-like behavior have been established.

3. FREQUENCY-ALGEBRAIC CRITERION FOR
GRADIENT-LIKE BEHAVIOR OF
SYNCHRONIZATION SYSTEMS

Consider the synchronization system described by the
system of integro-differential Volterra equations

σ̇(t) = b(t)−
t∫

0

Γ(t− τ)F (σ(τ)) dτ (t > 0) (25)

where b : R+ → Rl , Γ : R+ → Rl×l and F : Rl → Rl.
System (25) may be considered as a feedback superposition
of the LTI system

σ̇(t) = b(t)−
t∫

0

Γ(t− τ)ξ(τ) dτ (26)

and the nonlinear block ξ(τ) = F (σ(τ)).

We suppose that the following assumptions hold.

A1. The function b(t) is continuous for t ≥ 0, the matrix-
function Γ(t) is piece-wise continuous for t ≥ 0 and

|b(t)|+ |Γ(t)| < Ce−rt (C > 0, r > 0) (27)

A2. The map FT = (F1, . . . , Fl) is C1–smooth. Further-
more, Fj = Fj(σj) depends only on σj and is ∆j-periodic

Fj(ζ +∆j) = Fj(ζ) (∆j > 0).

Also, Fj has simple zeros:

F 2
j + (F ′

j)
2 �= 0 (j = 1, . . . , l).

Asymptotic behavior of control systems described by in-
tegral or integro-differential Volterra equations often is
successfully investigated by Popov’s method of a priory
integral indices (Rasvan, 2006; Popov, 1973). Sufficient
conditions for any type of stability are formulated then
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by means of transfer function of the linear part of the
system. They have the form frequency-domain inequalities
with varying parameters. Because of specific character of
synchronization systems, traditional Popov’s functionals
are of no use here. That is why for synchronization systems
the method of a priori integral indices was combined with
special procedure (Bakaev and Guzh, 1965; Leonov et al.,
1996; Smirnova and Proskurnikov, 2019b). As a result
frequency-domain inequalities were supplemented by some
algebraic restrictions on varying parameters, which gave
rise to a number of frequency-algebraic stability crite-
ria. In particular, rather tight estimates for stability do-
mains of phase-locked loops (PLLs) with time delay have
been obtained in (Smirnova and Proskurnikov, 2019a,b;
Proskurnikov and Smirnova, 2020).

The transfer matrix of the linear part (26) from (−ξ) to
(σ̇) is defined as

K(p) =

∫ ∞

0

Γ(t)e−pt dt (p ∈ C). (28)

Further for complex-valued matrices H we shall use the
denotation

ReH =
1

2
(H +H∗),

where (∗) stands for Hermitian conjugation.

Define numbers

µ1j
∆
= inf

ζ∈[0,∆j)
F ′
j(ζ); µ2j

∆
= sup

ζ∈[0,∆j)

F ′
j(ζ) (µ1jµ2j < 0)

(29)
and introduce the l × l – diagonal matrices

M1
∆
= diag{α11, . . . , α1l}, α1j ≤ µ1j , ∀j,

M2
∆
= diag{α21, . . . , α2l}, α2j ≥ µ2j , ∀j.

(30)

Introduce the functions

Φj(ζ)
∆
=

√
(1− α−1

1j F
′
j(ζ))(1− α−1

2j F
′
j(ζ)), (31)

(recall that α1 ≤ µ1 < 0, α2 ≥ µ2 > 0), and the constants

νj =

∫∆j

0
Fj(ζ) dζ∫∆j

0
|Fj(ζ)| dζ

, ν0j =

∫∆j

0
Fj(ζ) dζ∫∆j

0
|Fj(ζ)|Φj(ζ) dζ

. (32)

Theorem 1. (Smirnova and Proskurnikov, 2019b) Sup-
pose that diagonal matrices κ, ε, δ > 0 and numbers
α1j ≤ µ1j , α2j ≥ µ2j (j = 1, . . . , l) and numbers aj ∈
[0, 1] (j = 1, . . . , l) exist such that

1) the frequency-domain inequality holds as follows

Re{κK(iω)−K∗(iω)ε(K(iω)−
−[K(iω) + iωM−1

1 ]∗τ [K(iω) + iωM−1
2 ]− δ ≥ 0;

(33)

2) the quadratic forms

Qj(x, y, z) = εjx
2+δjy

2+τjz
2+κjνjajxy+κjν0j(1−aj)yz

are positive definite. Here κj , εj , δj > 0 denote the jth
diagonal entry of the corresponding matrix.

Then, every solution converges to an equilibrium, i.e.,

σj(t) → qj as t → +∞, Fj(qj) = 0, (34)

σ̇j(t) → 0 as t → +∞. (35)

4. THE APPLICATION OF
FREQUENCY-ALGEBRAIC STABILITY CRITERION

TO THE SYSTEM OF TWO ROTORS

In this section we use the frequency-algebraic criterion in
order to establish the conditions for synchronization of two
rotors (n = 2) in the space of parameters of the system.

In this case system (17) takes the form{
I1α̈1 + k1α̇1 +AF (α1 − α2) = 0,

I2α̈2 + k2α̇2 −AF (α1 − α2) = 0
(36)

where A,F are defined as follows

A =
1

2
f1f2Axx, (37)

F (σ) = sinσ − β

A
, β =

k1k2
k1 + k2

(Ω1 − Ω2). (38)

Without loss of generality, assume that Ω1 ≥ Ω2. Also, it
suffices to consider the case where A > 0, otherwise one
can replace in (36) A by |A| and F (σ) by

F̄ (σ) = − sinσ − β

|A|
.

The system (36) can be reduced to integro-differential
equation

σ̇(t) =
(
α̇1(0)e

− k1
I1

t − α̇2(0)e
− k2

I2
t
)
−

−A

t∫

0

( 1

I1
e−

k1
I1

(t−τ) +
1

I2
e−

k2
I2

(t−τ)
)
F (σ(τ)) dτ.

(39)

It is obvious that Assumptions A1 and A2 are fulfilled
for the equation (39). In this case l = 1. So we need
no changing indices for functions F,Φ, σ and constants
a, µ1, µ2, α1, α2, ν, ν0. Similarly the matricesK(p), ε, δ, τ,κ
become scalar values. Notice that in case β = 0 condition
2) of Theorem 1 is fulfilled automatically. In case β �= 0
this condition can be modified to guarantee the optimal
value of the varying parameter a.

So in this section we use the simplified frequency-algebraic
criterion.

Theorem 2. (Proskurnikov and Smirnova, 2020) Suppose
there exist numbers ε, δ, τ > 0, κ = {−1, 0, 1}, α1 ≤
µ1, α2 ≥ µ2, such that

1)the frequency-domain inequality is valid

Re{κK(iω)− τ(K(iω) + α−1
1 iω)∗·

·(K(iω) + α−1
2 iω)− ε|K(iω)|2 ≥ δ, ∀ω ≥ 0;

(40)

2) and, additionally, the algebraic condition holds

δ > κ2 ν20ν
2

4(εν20 + τν2)
.

Then, every solution of (39) converges to an equilibrium

σ(t) → q as t → +∞, F (q) = 0 (41)

σ̇(t) → 0 as t → +∞, (42)

The transfer function of the linear part of (39) is as follows

K(p) = A

(
1

I1p+ k1
+

1

I2p+ k2

)
(p ∈ C). (43)

Let κ = 1, α2 = −α1 = 1.

Then the frequency-domain inequality (40) has the form:

τω2 +ReK(iω)− (ε+ τ)|K(iω)|2 ≥ δ ∀ω ≥ 0. (44)

For the transfer function (43) the inequality (44) is equiv-
alent to the following

S(y) := (τy − δ)(k21 + I21y)(k
2
2 + I22y)+

+A(y(I21k2 + I22k1) + (k1k
2
2 + k2k

2
1))−

−(ε+ τ)A2((k1 + k2)
2 + (I1 + I2)

2y) ≥ 0 ∀y ≥ 0.

(45)

Notice that

S(y) = S1(y) · y + S2y + S3,

where
S1(y) = τI21I

2
2y

2 + (−δI21I
2
2+

+τ(k22I
2
1 + k21I

2
2 ))y+τk21k

2
2,

S2 = −δ(k22I
2
1 + k21I

2
2 ) +A(I22k1 + I21k2)−

−A2(ε+ τ)(I1 + I2)
2,

S3 = −δk21k
2
2 −A2(ε+ τ)(k1 + k2)

2 +Ak1k2(k1 + k2).

Suppose the following inequalities are true:

ε+ τ ≤ k1k2
2A(k1 + k2)

, (46)

δ ≤ A(k1I
2
2 + k2I

2
1 )

2(k21I
2
2 + k22I

2
1 )

, (47)

δ ≤ τ(I1k2 + I2k1)
2

I21I
2
2

. (48)

Then we have

S3 ≥ −A

2

(k1I
2
2 + k2I

2
1 )k

2
1k

2
2

k21I
2
2 + k22I

2
1

+
A

2
k1k2(k1 + k2) > 0

S2 ≥ A

2
[(I22k1 + I21k2)−

(I1 + I2)
2k1k2

k1 + k2
] >

>
A(I2k1 − I1k2)

2

2(k1 + k2)
≥ 0

S1 ≥ τ(I1I2y − k1k2)
2.

So inequalities (46) (47) (48) guarantee that the frequency-
domain inequality (44) holds.

To guarantee the algebraic condition 2) of Theorem 2 we
calculate the constants ν and ν0:

ν =

∫ 2π

0

(
sinσ − β

A

)
dσ∫ 2π

0
| sinσ − β

A

∣∣ dσ =
−πβ

2
(
β arcsin β

A +
√
A2 − β2

) ;
(49)

ν0 =

∫ 2π

0

(
sinσ − β

A

)
dσ∫ 2π

0
| sin2 σ − β

A sinσ
∣∣ dσ =

=
−Aπβ

A2 π
2 + 2βA− β

√
A2 − β2 −A2 arcsin β

A

.

(50)

Theorem 3. Every solution of (39) converges to an equi-
librium provided that either

A ≤

√
k1k2(k21I

2
2 + k22I

2
1 )

2(k1 + k2)(k1I22 + k2I21 )
· I1k2 + I2k1

I1I2
,

ν20ν
2

(ν20 + ν2)
<

k1k2(k1I
2
2 + k2I

2
1 )

2(k1 + k2)(k21I
2
2 + k22I

2
1 )

(51)

or, alternatively,

A >

√
k1k2(k21I

2
2 + k22I

2
1 )

2(k1 + k2)(k1I22 + k2I21 )
· I1k2 + I2k1

I1I2
,

ν20ν
2

(ν20 + ν2)
<

k21k
2
2(k1I2 + k2I1)

2

4A2I21I
2
2 (k1 + k2)2

.

// (52)

Proof. The proof is immediate from Theorem 2. We
choose

ε = τ =
k1k2

4A(k1 + k2)
.

In the first case, let

δ =
A(k1I

2
2 + k2I

2
1 )

2(k21I
2
2 + k22I

2
1 )

.

Due to (51) the inequality (48) holds, so condition 1) of
Theorem 2 is satisfied. The condition 2) of Theorem 2
takes the form

4εδ = 4τδ >
ν20ν

2

(ν20 + ν2)
(53)

which follows from (51).

In the second case, we choose

δ =
τ(k2I1 + k1I2)

2

I21I
2
2

.

In view of (52), the inequality (47) is valid. Then the
second inequality in (52) is equivalent to the condition
2) of Theorem 2. �

Example. Following (Tomchina, 2020) consider the
model of two rotors with J1 = J2 = J, ε1 = ε2 = ε,
m1 = m2 = m, k1 = k2 = k. In this case all the formulas
can be simplified. It can be seen that

ν20ν
2

(ν20 + ν2)
<

π2β2

A2(4 + π2

4 )
.

So conditions (51), (52) are implied by inequalities

A ≤ k2

I
; β <

A
√
16 + π2

4π
(54)

and

A >
k2

I
; β <

k2
√
16 + π2

4Iπ
(55)

respectively.

Let m = 1.5 kg, M0 = 9.0 kg, ε = 0.04m,
k = 0.05 kg ·m2/sec, c = 1800 kg ·m/sec2,
J = 0.012 kg ·m2, Lo

1 = 1.56 kg ·m2/sec2,
Lo
2 = 1.44 kg · m2/sec2. In this case the condition (54) is

fulfilled and every solution of (39) converges.

5. CONCLUSION

In this paper we consider the problem of synchronization
between several vibro-exciters (eccentric rotors) installed
on a common oscillating platform. We show that this
problem can be solved in the framework of stability theory
for pendulum-like systems (Leonov et al., 1996; Smirnova
and Proskurnikov, 2019b). We use this theory to derive an
analytic criterion for self-synchronization of two rotors.
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Then the frequency-domain inequality (40) has the form:

τω2 +ReK(iω)− (ε+ τ)|K(iω)|2 ≥ δ ∀ω ≥ 0. (44)

For the transfer function (43) the inequality (44) is equiv-
alent to the following

S(y) := (τy − δ)(k21 + I21y)(k
2
2 + I22y)+

+A(y(I21k2 + I22k1) + (k1k
2
2 + k2k

2
1))−

−(ε+ τ)A2((k1 + k2)
2 + (I1 + I2)

2y) ≥ 0 ∀y ≥ 0.

(45)

Notice that

S(y) = S1(y) · y + S2y + S3,

where
S1(y) = τI21I

2
2y

2 + (−δI21I
2
2+

+τ(k22I
2
1 + k21I

2
2 ))y+τk21k

2
2,

S2 = −δ(k22I
2
1 + k21I

2
2 ) +A(I22k1 + I21k2)−

−A2(ε+ τ)(I1 + I2)
2,

S3 = −δk21k
2
2 −A2(ε+ τ)(k1 + k2)

2 +Ak1k2(k1 + k2).

Suppose the following inequalities are true:

ε+ τ ≤ k1k2
2A(k1 + k2)

, (46)

δ ≤ A(k1I
2
2 + k2I

2
1 )

2(k21I
2
2 + k22I

2
1 )

, (47)

δ ≤ τ(I1k2 + I2k1)
2

I21I
2
2

. (48)

Then we have

S3 ≥ −A

2

(k1I
2
2 + k2I

2
1 )k

2
1k

2
2

k21I
2
2 + k22I

2
1

+
A

2
k1k2(k1 + k2) > 0

S2 ≥ A

2
[(I22k1 + I21k2)−

(I1 + I2)
2k1k2

k1 + k2
] >

>
A(I2k1 − I1k2)

2

2(k1 + k2)
≥ 0

S1 ≥ τ(I1I2y − k1k2)
2.

So inequalities (46) (47) (48) guarantee that the frequency-
domain inequality (44) holds.

To guarantee the algebraic condition 2) of Theorem 2 we
calculate the constants ν and ν0:

ν =

∫ 2π

0

(
sinσ − β

A

)
dσ∫ 2π

0
| sinσ − β

A

∣∣ dσ =
−πβ

2
(
β arcsin β

A +
√
A2 − β2

) ;
(49)

ν0 =

∫ 2π

0

(
sinσ − β

A

)
dσ∫ 2π

0
| sin2 σ − β

A sinσ
∣∣ dσ =

=
−Aπβ

A2 π
2 + 2βA− β

√
A2 − β2 −A2 arcsin β

A

.

(50)

Theorem 3. Every solution of (39) converges to an equi-
librium provided that either

A ≤

√
k1k2(k21I

2
2 + k22I

2
1 )

2(k1 + k2)(k1I22 + k2I21 )
· I1k2 + I2k1

I1I2
,

ν20ν
2

(ν20 + ν2)
<

k1k2(k1I
2
2 + k2I

2
1 )

2(k1 + k2)(k21I
2
2 + k22I

2
1 )

(51)

or, alternatively,

A >

√
k1k2(k21I

2
2 + k22I

2
1 )

2(k1 + k2)(k1I22 + k2I21 )
· I1k2 + I2k1

I1I2
,

ν20ν
2

(ν20 + ν2)
<

k21k
2
2(k1I2 + k2I1)

2

4A2I21I
2
2 (k1 + k2)2

.

// (52)

Proof. The proof is immediate from Theorem 2. We
choose

ε = τ =
k1k2

4A(k1 + k2)
.

In the first case, let

δ =
A(k1I

2
2 + k2I

2
1 )

2(k21I
2
2 + k22I

2
1 )

.

Due to (51) the inequality (48) holds, so condition 1) of
Theorem 2 is satisfied. The condition 2) of Theorem 2
takes the form

4εδ = 4τδ >
ν20ν

2

(ν20 + ν2)
(53)

which follows from (51).

In the second case, we choose

δ =
τ(k2I1 + k1I2)

2

I21I
2
2

.

In view of (52), the inequality (47) is valid. Then the
second inequality in (52) is equivalent to the condition
2) of Theorem 2. �

Example. Following (Tomchina, 2020) consider the
model of two rotors with J1 = J2 = J, ε1 = ε2 = ε,
m1 = m2 = m, k1 = k2 = k. In this case all the formulas
can be simplified. It can be seen that

ν20ν
2

(ν20 + ν2)
<

π2β2

A2(4 + π2

4 )
.

So conditions (51), (52) are implied by inequalities

A ≤ k2

I
; β <

A
√
16 + π2

4π
(54)

and

A >
k2

I
; β <

k2
√
16 + π2

4Iπ
(55)

respectively.

Let m = 1.5 kg, M0 = 9.0 kg, ε = 0.04m,
k = 0.05 kg ·m2/sec, c = 1800 kg ·m/sec2,
J = 0.012 kg ·m2, Lo

1 = 1.56 kg ·m2/sec2,
Lo
2 = 1.44 kg · m2/sec2. In this case the condition (54) is

fulfilled and every solution of (39) converges.

5. CONCLUSION

In this paper we consider the problem of synchronization
between several vibro-exciters (eccentric rotors) installed
on a common oscillating platform. We show that this
problem can be solved in the framework of stability theory
for pendulum-like systems (Leonov et al., 1996; Smirnova
and Proskurnikov, 2019b). We use this theory to derive an
analytic criterion for self-synchronization of two rotors.
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