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The broadband noise emitted at the trailing edge of an airfoil represents a significant contribution to
the noise emission of several industrial components, in both energy and aeronautical fields. Several
analytical models focus the attention on some features of the boundary layer close to the trailing edge
and use this information to predict the emissions. However, the prediction capability of these models
is limited since they are based on several simplifying assumptions. Recently, research efforts have
been devoted to the development of machine learning techniques which make it possible to analyze
large amounts of experimental data in order to automatically extract modeling knowledge.
In this work, Artificial Neural Networks (ANNs) are proposed as empirical models to describe the
wall pressure spectrum and the noise directivity. First of all, a study on the choice of the ANN ar-
chitecture is performed. In order to accomplish this task, an artificial database is generated by using
existing semi-empirical models for the prediction of the wall pressure spectrum at different angles of
attack: this makes it possible to identify the minimum complexity that the ANN should have in order
to accurately describe the spectrum. A second ANN is trained on the directivity distribution obtained
by the Amiet analytical theory: both shallow and deep architectures are investigated.
The motivation of the present work lies in the fact that the existing analytical models used for building
the artificial database are fairly good approximations of the physical phenomena: this means that the
chosen ANN architecture is sufficiently complex to accurately describe also a measured noise emis-
sion which should represent a perturbation with respect to the models. In this way it is possible to
improve the prediction ability of the ANN model by enriching the database with experimental data:
this would lead to a general model which is not limited by the simplifying assumptions on which the
analytical theories are based.
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1. Introduction

The broadband noise emitted at the trailing edge of an airfoil represents a significant contribution to
the noise emission of wing and blade profiles. In particular, there is great interest in the study of the
mechanisms which control this phenomenon because they can be exploited to reduce the noise emission
from wind turbines, fans and open-rotor engines. In particular, several studies showed that the broadband
trailing-edge noise represents a significant contribution to the noise emitted by open-rotor engines [1].
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Several research efforts have been devoted to the development of techniques for reducing this noise
contribution. Among them, trailing-edge serrations show promising results for both wings and rotating
blades [2, 3, 4]. The source of the trailing-edge noise is related to the diffraction of turbulence in the
boundary layers and in the near wake by the trailing edge. For this reason, models focus the attention on
some features of the boundary layer close to the trailing edge and use this information to predict the wall
pressure spectrum which determines the magnitude of the emitted noise. In particular, the knowledge of
the wall pressure spectrum allows to define an equivalent point source located at the trailing edge: the
propagation can then be computed by means of the Amiet analytical theory. However, the prediction
capability of the Amiet model is limited since it is based on several simplifying assumptions and so it
does not take into account some features of the airfoil (curvature, thickness,...).

Recently, several research efforts have been devoted to the development of machine-learning tech-
niques which make it possible to analyze large amounts of experimental data in order to automatically
extract modeling knowledge. These techniques, which have been recently developed in the field of turbu-
lence modeling [5, 6, 7], can be used to find correlations hidden in the experimental data and to provide
correction terms which can improve existing models. Tracey et al. [8] performed a study in which an
Artificial Neural Network (ANN) is used to reproduce the source term of the Spalart-Allmaras turbulence
closure. The aim of the work was not to improve the predictive capability of the original model: the goal
was to verify the possibility of describing the source term by an ANN.

In the present work, an approach which follows the same spirit is applied to the modeling of the
broadband trailing-edge noise emission. In particular, an artificial database for the trailing-edge noise
emitted by a NACA0012 airfoil in several working conditions is generated: the database is computed
by using existing semi-empirical models of the wall pressure spectrum and the Amiet theory for the
propagation.

These models are able to predict the trend and the order of magnitude of the emitted noise but there are
several discrepancies between the different models. However, they represent a reasonable representation
of the phenomenon. For this reason, the artificial database is used to choose the architecture of two ANNs
which describe the wall pressure spectrum and the directivity.

This approach is general and can be applied to several problems. The basic idea is that the prediction
of the models used to choose the architecture of the ANN are not too far from the experimental results: if
this condition is satisfied, then the chosen ANN is sufficiently general to capture the correlations hidden
in the experimental data and so can potentially lead to a more general and accurate model.

2. Analytical model for broadband trailing edge noise

When the unsteady vortical structures in the boundary layers, on the pressure and suction side of a
lifting surface, interacts with the sharp corner present at the trailing edge, noise generation occurs.

The noise source is the boundary-layer turbulence convected over the trailing edge, therefore trailing-
edge noise can be described in terms of the Lighthill’s acoustic analogy. A first solution of the Lighthil’s
equation was provided by Ffwocs Williams and Hall [9], for a semi-infinite flat plate, employing a tailored
Green’s function chosen to satisfy the no-slip boundary condition on the plate. Amiet [10] solved the
Curle’s equation and developed an analytical approach to the quantitative prediction of the trailing-edge
noise. Both approaches rely on the thin-airfoil approximation in a uniform flow, assuming a semi-infinite
flat plate in upstream direction.

For a wing of high aspect ratio, the noise perceived by an observer located in the mid span plane is
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described by the power spectral density for a given frequency ω and position x = (y = 0, R, θ)

Spp(x, ω) = 2

(
ωcz

4πc0σ2

)
L |L(ω, θ) |2 `y(ω)Φpp(ω) , (1)

where c is the chord, L the plate span, L(ω, θ) the aeroacoustic transfer function [11], σ2 = x2 +β2(y2 +
z2), β2 = 1 −M2 with M the Mach number of the uniform stream and c0 the speed of sound. `y(ω) is
the spanwise correlation length given by the Corcos model `y(ω) = 1.2Uc/ω, being Uc the convection
velocity. Φpp(ω) is the wall pressure spectrum.

Formula (1) provides the scaling and directivity properties of the trailing-edge noise. A more detailed
description requires an estimate of the wall pressure spectrum describing the turbulent structure of the
boundary layer near the trailing edge. A semi-empirical wall pressure spectrum is represented by the
relation

Φpp =
Φ̃pp

Φ∗ =
aω̃b

(iω̃c + d)e + (fRg
T ω̃)h

. (2)

Where ω̃ = ωδ∗/Ue, RT = δ∗τw/(Ueµ) and Φ∗ = τ 2wδ
∗/Ue. δ∗ is the boundary-layer displacement

thickness and τw the wall shear stress. Defining the Zagarola-Smith parameter ∆ = δ/δ∗, the Clauser’s
equilibrium parameter βc = (θ/τw)(dp/dx) and the Coles’ wake function Π = 0.8(βc + 0.5)3/4, in the
Rozenberg model [12] the parameters are defined as: a = [2.82∆2(6.13 ∗ ∆−0.75 + d)e][4.2Π/∆ + 1],
b = 2.0, c = 0.75, d = 4.76(1.4/∆)0.75(0.375e − 1), e = 3.7 + 1.5βc, f = 8.8, g = −0.57,
h = min(3, 19/

√
RT ) + 7, i = 4.76. In the Kamruzzaman [13] model the parameters are: a =

0.45[1.75(Π/βc)
2m+15],m = 0.5[(δ∗/θ)/1.31]0.3, b = 2.0, c = 1.637, d = 0.27, e = 2.47, f = 1.15−2/7,

g = −2/7, h = 7 and i = 1.
A rectangular wing of span L = 1mwith NACA0012 airfoil of chord c = 0.4m, at Reynolds number

Re = 1.5 · 106, at different angles of attack (α = 0◦, 4◦, 6◦) is considered. The wall pressure spectra
obtained by the models of Rozenberg [12] and Kamruzzaman [13] are compared to the experimental
results of IAG reported in [14]. The boundary-layer properties required by the models are evaluated by
means of the XFoil tool [15]. An example of wall pressure spectrum for the suction side is reported in
Figure 1a. This spectrum determines the magnitude of the noise source that can be propagated by means
of the Amiet expression (1): an example of the far-field noise spectrum evaluated at R = 1m, θ = 90◦

from the trailing edge is reported in Figure 1b.
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Figure 1: NACA0012, chord c = 0.4m, α = 4◦, Re = 1.5 106
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(a) ANN architecture
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Figure 2: Example of ANN

3. ANN-based wall pressure spectrum

First of all, a database of the wall pressure spectrum computed by Rozenberg and Kamruzzaman
models is computed at α = 0◦, 4◦, 6◦. In particular, it is chosen to devote the database to the description
of the pressure side wall pressure spectrum. Since the airfoil is symmetric, the suction side results are
equivalent to the pressure side results for opposite angles of attacks and so the database contains the
results for α = 0◦,±4◦,±6◦.
An ANN with two inputs (angle of attack and frequency) and one output (wall pressure spectrum on the
pressure side) is introduced. An example of such a network is reported in Figure 2a. Sigmoid activation
functions are used of the the neurons in the hidden layers while a linear activation function is used in
the output layer. The training of the ANN network is performed in Matlab with the Levenberg-Marquadt
algorithm: the training is performed by dividing randomly the database in 3 subsets (training, validation
and test) in order to avoid overfitting. An example of training history is reported in Figure 2b. The
ability of the network to fit the data in the training, validation and test data sets is evaluated by means
of regression plots which show the reference value and the predicted value on the two axis, as shown
in Figure 3. The regression coefficient R obtained for the fitting of the different analytical models by
different ANN architectures is reported in Table 1 and 2. Since the functional form of the wall pressure
spectrum is quite simple it is sufficient to introduce a few neurons in the ANN to describe accurately the
database: a network with a hidden layer with just four neurons is chosen. The same architectures are then
used to fit the experimental data from [14] and show a reasonable fitting, as reported in Table 3.

Layers Neurons per layer Regression coeff. R

1 1 0.990
1 2 0.995
1 4 1.000

Table 1: Choice of the ANN architecture for wall pressure spectrum (Rozenberg)
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Layers Neurons per layer Regression coeff. R

1 1 0.975
1 2 0.987
1 4 1.000

Table 2: Choice of the ANN architecture for wall pressure spectrum (Kamruzzaman)
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Figure 3: Regression plot for training, validation, test and full dataset

Layers Neurons per layer Regression coeff. R

1 1 0.929
1 2 0.965
1 4 0.995

Table 3: Choice of the ANN architecture for wall pressure spectrum (Experimental results)

4. ANN-based directivity

The Amiet theory [10] allows to compute the propagation of the noise in the different directions
identified by the angle θ. The directivity pattern is strongly influenced by the noise frequency: this
makes the fitting of the results significantly more challenging. An ANN with two inputs (frequency f
and direction θ) and one output (the sound pressure level normalised with respect to the value at θ = 90◦

is considered. A database is generated by dividing the frequency range 102Hz ≤ f ≤ 104Hz in 20
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intervals with logarithmic scaling. The directivity distribution with respect to the angle θ is discretized
by steps of 1◦. The obtained database is used to investigate the ANN’s architecture requirements. In
Table 4 the regression coefficient R for different networks is reported. A first set of tests is performed by
using shallow networks with just one hidden layer and increasing the number of neurons. A second set
of tests is performed by using deep networks with a different number of hidden layers and 10 neurons
per layer. The results show that the deep networks allow to better fit the database with respect to the
corresponding shallow networks with the same total number of neurons.

Finally, a prediction test is performed by using the ANN to evaluate the directivity pattern at f = 350
Hz and f = 4500 Hz. These tests represent actual predictions since these frequency values are not
included in the training database, the closest values are 316 Hz and 398 Hz for the first, and 3981 Hz
and 5012 Hz for the second. The plots in Figure 4 show a comparison between the reference directivity
pattern, computed by the Amiet theory, and the results obtained by a shallow ANN (1× 160) and a deep
ANN (16 × 10) with the same total number of neurons: the deep network outperforms the shallow one.
A similar trend is observed in the plots of Figure 5 which refer to the prediction at f = 4500 Hz.

Layers Neurons per layer Regression coef. R

1 10 0.891
1 20 0.932
1 40 0.965
1 80 0.984
1 160 0.992
2 10 0.983
4 10 0.997
8 10 0.999

16 10 0.999

Table 4: Choice of the ANN architecture for directivity fitting
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Figure 4: Directiviy prediction for f = 350 Hz
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Figure 5: Directiviy prediction for f = 4500 Hz

5. Conclusions

The use of ANNs for the description of the wall pressure spectrum and the directivity pattern of the
broadband trailing-edge noise was investigated. The tests showed that ANNs can easily describe the wall
pressure spectrum while the approximation of the directivity pattern is significantly more challenging,
due to its strong dependency on frequency. It was found that deep neural networks can outperform shal-
low networks in this kind of application. The results presented in this work were obtained by generating
an artificial database by means of the Kamruzzaman and Rozenberg models for the wall pressure spec-
trum and the Amiet theory for noise propagation. The ability of the ANNs to reproduce the results of
these models paves the way to the development of data-driven models for broadband trailing-edge noise
in which the networks are directly trained on experimental data. In this way it would be potentially pos-
sible to obtain general models which could take into account several features of the airfoil (curvature,
thickness,...) without the need to adopt the simplifying assumptions on which the Amiet theory is based
(flat plate approximation).
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