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Dynamic behaviour and stability analysis of a 
compensated aerostatic pad 

Federico Colombo, Luigi Lentini, Terenziano Raparelli, Andrea Trivella,*,  
Vladimir Viktorov 

Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129, Torino, Italy 

Abstract. Thanks to their low friction, aerostatic pads have important 
applications in precision positioning systems and linear guides. A simple 
and cheap solution to increase the static stiffness of aerostatic pads is to add 
a proper designed pneumatic valve to regulate the air flow supplied to the 
bearing. However, integrating aerostatic pads with additional devices can 
reduce its dynamic performance. This paper presents a numerical study on 
the dynamic behaviour and stability a commercial aerostatic pad controlled 
by a custom-built diaphragm valve. The bearing performance is studied by 
means of a lumped parameters model. Air bearing stiffness and damping are 
analysed in the frequency domain. Subsequently, the lumped model is 
linearized to investigate the stability of the system by means of Routh-
Hurwitz method. The performance of the controlled air pad is compared to 
that of a simple commercial air pad.  

1 Introduction  
Aerostatic bearings are commonly used in applications that require high positioning 

accuracy. Due to their relative low stiffness, various solutions are used to improve the 
performance of these devices [1,2]. The use of multiple orifices [3–5], compound restrictors 
[6], microholes [7] and porous surfaces [8,9] as feeding system are possible solutions to 
increase the stiffness and load capacity of air pads. Moreover, stiffness can be further 
improved by using suitable active or passive compensation systems [10,11]. Active 
compensation systems can lead to significant performance improvement, but, due to the need 
for sensors, actuators and controllers, they represent an expensive solution. Conversely, 
despite their limited performance improvements, passive compensation systems are a cheaper 
alternative solutions than may be employed for industrial applications. Ghodsiyeh et al. [12] 
have proposed a passive compensation method consisting in the integration of an aerostatic 
pad and a diaphragm valve.  

It was found numerically and experimentally that this kind of compensation makes it 
possible to obtain bearings with quasi-infinite and even negative static stiffness. 
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Experimental tests confirmed that a negative stiffness does not imply the presence of 

dynamic instability, but it is due to the overcompensation of the diaphragm valve. However, 
these analyses made not possible to define the stability threshold of the system and how the 
stability is related to the bearing design parameters. 

This paper presents a numerical study of the dynamic behavior of the compensated pad 
using the lumped parameter model. Stiffness and damping are investigated using the 
perturbation method. Additionally, Routh-Hurwitz method is used to study stability of the 
linearized model of the pad. The performance of the here proposed system is compared to a 
commercial air pad used as a benchmark. 

 

2 Aerostatic pad description 

Figure 1a shows the geometry of the compensated air pad. The pad has a rectangular base 
(𝐴𝐴= 60 mm and 𝐵𝐵=30 mm) and four orifices of diameter 𝑑𝑑=1 mm. The orifices are located 
in the middle of the sides of a rectangular groove line of dimensions 𝑎𝑎= 45 mm and 𝑏𝑏=20 
mm. Figure 1b shows the cross-section of the feeding hole. The groove presents a triangular 
cross-section of height ℎ𝑔𝑔= 60 μm and with 𝑤𝑤𝑔𝑔 = 200 μm. The performance of the 
compensated pad is compared to that of a commercial pad of same shape, size and groove 
but with four holes of diameter 0.18mm. Moreover, the commercial pad has conical pockets 
downstream from each supply hole with a depth of 300 μm and a diameter of 0.8 mm. The 
reason of the different supply hole diameter is due to the presence of the regulating valve. To 
make the regulation more effective, it is convenient to reduce the pneumatic resistance of the 
supply holes of the compensated pad compared to that of the supply hole of the valve nozzle.  
 

 

 

Fig. 1a. Compensated air pad.                                           Fig. 1b. Supply hole cross geometry. 
 

3 Diaphragm valve 

Fig. 2 illustrates the scheme of the nozzle of the custom-built diaphragm valve. 
Compressed air is supplied to the valve at the absolute pressure 𝑃𝑃𝑆𝑆, passes through the nozzle 
(1) and it is exhausted from its diameter 𝑑𝑑𝑉𝑉 = 0.5 mm. The diaphragm (2) is a circular steel 
foil of diameter 𝐷𝐷 = 6 mm and stiffness 𝑘𝑘𝑚𝑚 = 180 N/mm. 𝑃𝑃1 is the absolute pressure in the 
control chamber of the valve, 𝑃𝑃𝑎𝑎 is the ambient pressure. When 𝑃𝑃1 = 𝑃𝑃𝑎𝑎, the diaphragm is 
undeformed (dotted line) and the initial distance 𝑥𝑥0 between the nozzle and the diaphragm 
can be manually regulated through a micrometric screw. On this regard, it was experienced 
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3 Diaphragm valve 

Fig. 2 illustrates the scheme of the nozzle of the custom-built diaphragm valve. 
Compressed air is supplied to the valve at the absolute pressure 𝑃𝑃𝑆𝑆, passes through the nozzle 
(1) and it is exhausted from its diameter 𝑑𝑑𝑉𝑉 = 0.5 mm. The diaphragm (2) is a circular steel 
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undeformed (dotted line) and the initial distance 𝑥𝑥0 between the nozzle and the diaphragm 
can be manually regulated through a micrometric screw. On this regard, it was experienced 

that the compensating action of the valve is more efficient when, in the absence of air supply, 
the diaphragm is initially preloaded by the nozzle, i.e., for negative values of 𝑥𝑥0. 

The bending of the diaphragm preloaded by the nozzle causes the passage of a small air 
flow. The nozzle-diaphragm distance corresponding to the minimum flow rate passing 
through the valve has been identified with an equivalent distance 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 = 12 𝑚𝑚. 

 
Fig. 2. Scheme of the control valve: enlargement of diaphragm and nozzle 

 

4 Mathematical lumped model 
The surface of the pad and the counter pad are assumed parallel and perfectly smooth. 

Figure 3 shows the pneumatic scheme of the system. It consists of a series of lumped 
pneumatic resistances and volumes. R1 is the resistance of the nozzle-diaphragm, R2 
corresponds to the resistance of each supply hole of the pad, R3 is the viscous resistance due 
to the air gap height ℎ of the pad. 𝑉𝑉1 corresponds to the volumes of the supply duct of the 
pad, 𝑉𝑉0 is the sum of the air gap volume 𝐴𝐴 𝐵𝐵 ℎ and groove volumes 𝑉𝑉𝑔𝑔 (𝑉𝑉0 = 𝐴𝐴 𝐵𝐵 ℎ + 𝑉𝑉𝑔𝑔).  

 
Fig. 3. Pneumatic scheme of the compensated air pad with the diaphragm pneumatic valve. 

 

The distance x between nozzle and diaphragm is a linear function of the pressure 𝑃𝑃1:  
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𝑥𝑥 = 𝑥𝑥0 + 𝑘𝑘𝑉𝑉 (𝑃𝑃1 − 𝑃𝑃𝑎𝑎) ;  𝑘𝑘𝑉𝑉 =  𝐷𝐷2

4𝑘𝑘𝑚𝑚
   (1) 

  
𝑃𝑃2 is the absolute pressure immediately downstream each pad orifice. The mass flow 

through the first two resistances Ri  (i = 1, 2) is described by the ISO formula 6358: 
 

𝐺𝐺𝑖𝑖 = √𝑇𝑇0/𝑇𝑇 𝐶𝐶𝑖𝑖 𝑃𝑃𝑖𝑖 √1 − 𝜑𝜑𝑖𝑖
2 ; 𝜑𝜑𝑖𝑖 =  

(𝑃𝑃𝑑𝑑/𝑃𝑃𝑢𝑢) − 𝑏𝑏𝑐𝑐

1 − 𝑏𝑏𝑐𝑐
 (2) 

 
where 𝜑𝜑𝑖𝑖 represents subsonic (0 < 𝜑𝜑𝑖𝑖 ≤ 1) or sonic (𝜑𝜑𝑖𝑖 = 0) conditions, 𝑃𝑃𝑢𝑢, 𝑃𝑃𝑑𝑑 are the 

upstream and downstream absolute pressures of each resistance, 𝑏𝑏𝑐𝑐 is the pressure critical 
ratio, assumed equal to 0.528. 𝑇𝑇0 and 𝑇𝑇 are a reference (𝑇𝑇0 = 293 K) and the environmental 
air temperatures. 𝐶𝐶𝑖𝑖 is the conductance of the ith cross-section. The expression of 𝐶𝐶2 takes 
into account the presence of the grooves crossing the pockets:  

 
𝐶𝐶1 =  𝜓𝜓 𝑐𝑐𝑑𝑑𝑎𝑎,1𝜋𝜋 𝑑𝑑𝑉𝑉 𝑥𝑥 ;   𝐶𝐶2 =  𝜓𝜓 𝑐𝑐𝑑𝑑𝑎𝑎,2(𝜋𝜋 𝑑𝑑 ℎ + 𝑤𝑤𝑔𝑔 ℎ𝑔𝑔)  (3) 

 
where ψ =0.686/√𝑅𝑅 𝑇𝑇, R = 287 J kg-1 K, and 𝑐𝑐𝑑𝑑𝑑𝑑,𝑖𝑖 (i = 1, 2) are the discharge 

coefficients at the nozzle and pad holes outlet, which were experimentally obtained in [13]: 
 

𝑐𝑐𝑑𝑑𝑑𝑑,𝑖𝑖 = 1.05 (1 − 0.3 e−0.005 𝑅𝑅𝑅𝑅𝑖𝑖); 
 

 𝑅𝑅𝑅𝑅1 =  𝐺𝐺1
𝜋𝜋𝜋𝜋𝑑𝑑𝑉𝑉

;  𝑅𝑅𝑅𝑅2 =  𝐺𝐺2 ℎ
𝜋𝜋 𝜇𝜇𝜇𝜇ℎ𝑒𝑒𝑒𝑒

 ; ℎ𝑒𝑒𝑒𝑒 =  𝜋𝜋𝜋𝜋 ℎ+𝑤𝑤𝑔𝑔 ℎ𝑔𝑔
𝜋𝜋𝜋𝜋

   
 

(4) 

where 𝑅𝑅𝑅𝑅𝑖𝑖 is the Reynolds number. The pressure distribution was computed on the basis 
of the 2D Reynolds equation under isothermal conditions: 

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 + 12𝑅𝑅𝑅𝑅

𝑔𝑔𝑥𝑥

𝑃𝑃ℎ3 = 0; 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 + 12𝑅𝑅𝑅𝑅

𝑔𝑔𝑦𝑦

𝑃𝑃ℎ3 = 0 (5) 

 
where 𝑔𝑔𝑥𝑥 and 𝑔𝑔𝑦𝑦 are the mass flow rates per unit of width along the 𝑥𝑥 and 𝑦𝑦 directions 

and μ is the air dynamic viscosity. The mass flow rates 𝐺𝐺𝑥𝑥 and 𝐺𝐺𝑦𝑦, outgoing from each side 
of the rectangular groove are obtained by integration of the Reynolds equations. The total air 
consumption 𝐺𝐺 of the pad is obtained as follows:  
 

𝐺𝐺 = 𝐺𝐺3 = 2(𝐺𝐺𝑥𝑥 +  𝐺𝐺𝑦𝑦) =  
1

6𝜇𝜇𝜇𝜇𝜇𝜇 𝜐𝜐 (𝑃𝑃0
2 − 𝑃𝑃𝑎𝑎

2)ℎ3;   

𝜐𝜐 = (
𝑏𝑏

𝐴𝐴 − 𝑎𝑎 +
𝑎𝑎

𝐵𝐵 − 𝑏𝑏) 
(6) 

 
The model assumes a constant pressure 𝑃𝑃0 under the rectangular area surrounded by the 

groove, whereas, outside this area, it decreases linearly up to the ambient pressure 𝑃𝑃𝑎𝑎. The 
pressure 𝑃𝑃0 is identified as a function of 𝑃𝑃2 and h, where h is expressed in [𝑚𝑚]: 

 

𝑃𝑃0 = 𝑓𝑓  (𝑃𝑃2 − 𝑃𝑃𝑎𝑎) + 𝑃𝑃𝑎𝑎 = (1 − 𝑐𝑐1
(𝑐𝑐2

ℎ )) (𝑃𝑃2 − 𝑃𝑃𝑎𝑎) + 𝑃𝑃𝑎𝑎 (7) 
  

A good identification of 𝑃𝑃0 is obtained with c1= 0.14; 𝑐𝑐2= 5 𝑚𝑚. Integrating the pressure 
distribution under the pad, the correspondent pressure force 𝐹𝐹𝑝𝑝 results equal to: 

4

E3S Web of Conferences 312, 05003 (2021)	 https://doi.org/10.1051/e3sconf/202131205003
76° Italian National Congress ATI 



𝑥𝑥 = 𝑥𝑥0 + 𝑘𝑘𝑉𝑉 (𝑃𝑃1 − 𝑃𝑃𝑎𝑎) ;  𝑘𝑘𝑉𝑉 =  𝐷𝐷2

4𝑘𝑘𝑚𝑚
   (1) 

  
𝑃𝑃2 is the absolute pressure immediately downstream each pad orifice. The mass flow 

through the first two resistances Ri  (i = 1, 2) is described by the ISO formula 6358: 
 

𝐺𝐺𝑖𝑖 = √𝑇𝑇0/𝑇𝑇 𝐶𝐶𝑖𝑖 𝑃𝑃𝑖𝑖 √1 − 𝜑𝜑𝑖𝑖
2 ; 𝜑𝜑𝑖𝑖 =  

(𝑃𝑃𝑑𝑑/𝑃𝑃𝑢𝑢) − 𝑏𝑏𝑐𝑐

1 − 𝑏𝑏𝑐𝑐
 (2) 

 
where 𝜑𝜑𝑖𝑖 represents subsonic (0 < 𝜑𝜑𝑖𝑖 ≤ 1) or sonic (𝜑𝜑𝑖𝑖 = 0) conditions, 𝑃𝑃𝑢𝑢, 𝑃𝑃𝑑𝑑 are the 

upstream and downstream absolute pressures of each resistance, 𝑏𝑏𝑐𝑐 is the pressure critical 
ratio, assumed equal to 0.528. 𝑇𝑇0 and 𝑇𝑇 are a reference (𝑇𝑇0 = 293 K) and the environmental 
air temperatures. 𝐶𝐶𝑖𝑖 is the conductance of the ith cross-section. The expression of 𝐶𝐶2 takes 
into account the presence of the grooves crossing the pockets:  

 
𝐶𝐶1 =  𝜓𝜓 𝑐𝑐𝑑𝑑𝑎𝑎,1𝜋𝜋 𝑑𝑑𝑉𝑉 𝑥𝑥 ;   𝐶𝐶2 =  𝜓𝜓 𝑐𝑐𝑑𝑑𝑎𝑎,2(𝜋𝜋 𝑑𝑑 ℎ + 𝑤𝑤𝑔𝑔 ℎ𝑔𝑔)  (3) 

 
where ψ =0.686/√𝑅𝑅 𝑇𝑇, R = 287 J kg-1 K, and 𝑐𝑐𝑑𝑑𝑑𝑑,𝑖𝑖 (i = 1, 2) are the discharge 

coefficients at the nozzle and pad holes outlet, which were experimentally obtained in [13]: 
 

𝑐𝑐𝑑𝑑𝑑𝑑,𝑖𝑖 = 1.05 (1 − 0.3 e−0.005 𝑅𝑅𝑅𝑅𝑖𝑖); 
 

 𝑅𝑅𝑅𝑅1 =  𝐺𝐺1
𝜋𝜋𝜋𝜋𝑑𝑑𝑉𝑉

;  𝑅𝑅𝑅𝑅2 =  𝐺𝐺2 ℎ
𝜋𝜋 𝜇𝜇𝜇𝜇ℎ𝑒𝑒𝑒𝑒

 ; ℎ𝑒𝑒𝑒𝑒 =  𝜋𝜋𝜋𝜋 ℎ+𝑤𝑤𝑔𝑔 ℎ𝑔𝑔
𝜋𝜋𝜋𝜋

   
 

(4) 

where 𝑅𝑅𝑅𝑅𝑖𝑖 is the Reynolds number. The pressure distribution was computed on the basis 
of the 2D Reynolds equation under isothermal conditions: 

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 + 12𝑅𝑅𝑅𝑅

𝑔𝑔𝑥𝑥

𝑃𝑃ℎ3 = 0; 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 + 12𝑅𝑅𝑅𝑅

𝑔𝑔𝑦𝑦

𝑃𝑃ℎ3 = 0 (5) 

 
where 𝑔𝑔𝑥𝑥 and 𝑔𝑔𝑦𝑦 are the mass flow rates per unit of width along the 𝑥𝑥 and 𝑦𝑦 directions 

and μ is the air dynamic viscosity. The mass flow rates 𝐺𝐺𝑥𝑥 and 𝐺𝐺𝑦𝑦, outgoing from each side 
of the rectangular groove are obtained by integration of the Reynolds equations. The total air 
consumption 𝐺𝐺 of the pad is obtained as follows:  
 

𝐺𝐺 = 𝐺𝐺3 = 2(𝐺𝐺𝑥𝑥 +  𝐺𝐺𝑦𝑦) =  
1

6𝜇𝜇𝜇𝜇𝜇𝜇 𝜐𝜐 (𝑃𝑃0
2 − 𝑃𝑃𝑎𝑎

2)ℎ3;   

𝜐𝜐 = (
𝑏𝑏

𝐴𝐴 − 𝑎𝑎 +
𝑎𝑎

𝐵𝐵 − 𝑏𝑏) 
(6) 

 
The model assumes a constant pressure 𝑃𝑃0 under the rectangular area surrounded by the 

groove, whereas, outside this area, it decreases linearly up to the ambient pressure 𝑃𝑃𝑎𝑎. The 
pressure 𝑃𝑃0 is identified as a function of 𝑃𝑃2 and h, where h is expressed in [𝑚𝑚]: 

 

𝑃𝑃0 = 𝑓𝑓  (𝑃𝑃2 − 𝑃𝑃𝑎𝑎) + 𝑃𝑃𝑎𝑎 = (1 − 𝑐𝑐1
(𝑐𝑐2

ℎ )) (𝑃𝑃2 − 𝑃𝑃𝑎𝑎) + 𝑃𝑃𝑎𝑎 (7) 
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distribution under the pad, the correspondent pressure force 𝐹𝐹𝑝𝑝 results equal to: 

   

𝐹𝐹𝑝𝑝 = 𝑆𝑆𝑒𝑒𝑒𝑒 (𝑃𝑃0 − 𝑃𝑃𝑎𝑎); 𝑆𝑆𝑒𝑒𝑒𝑒 =
1
3 [𝑎𝑎𝑎𝑎 + 𝐴𝐴𝐴𝐴 +

(𝐴𝐴𝐴𝐴 + 𝑎𝑎𝑎𝑎)
2 ] (8) 

The dynamic behavior of the pad is studied by linearizing the equations of the model 
through the perturbation method. The expressions of the mass flow rates, continuity 
equations and Equation (4) are linearized around a neighbour of a static equilibrium position 
of the air pad and their variations are expressed in Laplace domain. Also, equations (1), (8) 
are expressed in Laplace domain. 

 
𝐺𝐺1 = 𝑘𝑘1𝑥𝑥 + 𝑘𝑘2𝑃𝑃1; 𝐺𝐺2 = 𝑘𝑘3𝑃𝑃1 + 𝑘𝑘4𝑃𝑃2 + 𝑘𝑘5ℎ; 
𝐺𝐺3 = 𝑘𝑘6𝑃𝑃0 +  𝑘𝑘7ℎ ;  𝐺𝐺1 − 4𝐺𝐺2 = 𝑘𝑘8 𝑠𝑠 𝑃𝑃1 ;  
4𝐺𝐺2 − 𝐺𝐺3 = 𝑘𝑘9 𝑠𝑠 ℎ +  𝑘𝑘10 𝑠𝑠 𝑃𝑃0 ;  
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where: 
 

𝑘𝑘1 = 𝜕𝜕𝐺𝐺1
𝜕𝜕𝜕𝜕

|
0

=   𝜋𝜋𝑑𝑑𝑉𝑉𝑐𝑐𝑑𝑑𝑑𝑑,1 𝑃𝑃𝑆𝑆  √1 − 𝜑𝜑1
2   ; 𝜑𝜑1 = 0    if     𝑃𝑃1 

𝑃𝑃𝑆𝑆 
≤ 𝑏𝑏𝑐𝑐 
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𝜕𝜕𝜕𝜕
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𝜕𝜕𝐺𝐺1
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|
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  𝐶𝐶1
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𝜑𝜑1

√1 − 𝜑𝜑1
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𝑘𝑘3 = 𝜕𝜕𝐺𝐺2
𝜕𝜕𝑃𝑃1

|
0

= 𝐶𝐶2 (√1 − 𝜑𝜑2
2 + 𝑃𝑃2

𝑃𝑃1

1
1−𝑏𝑏

𝜑𝜑2
√1−𝜑𝜑22) ;  𝜑𝜑2 = 0    if     𝑃𝑃2 

𝑃𝑃1 
≤ 𝑏𝑏𝑐𝑐  

𝑘𝑘4 =
𝜕𝜕𝐺𝐺2

𝜕𝜕𝑃𝑃2
|

0
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 𝐶𝐶2

1 − 𝑏𝑏𝑐𝑐

𝜑𝜑2

√1 − 𝜑𝜑2
2

 

𝑘𝑘5 =
𝜕𝜕𝐺𝐺2

𝜕𝜕ℎ |
0

=  𝜓𝜓  𝑑𝑑 𝑐𝑐𝑑𝑑𝑑𝑑,2 𝑃𝑃1√1 − 𝜑𝜑2
2; 

𝑘𝑘6 =
𝜕𝜕𝐺𝐺3

𝜕𝜕𝑃𝑃0
|

0
=

 𝑃𝑃0

3 𝜇𝜇 𝑅𝑅𝑅𝑅 𝜐𝜐ℎ3; 

𝑘𝑘7 =
𝜕𝜕𝐺𝐺3

𝜕𝜕ℎ |
0

=
𝜐𝜐 ℎ2

6 𝜇𝜇 𝑅𝑅𝑅𝑅 [2𝑃𝑃0(𝑃𝑃2 − 𝑃𝑃𝑎𝑎)
𝑑𝑑𝑑𝑑
𝑑𝑑ℎ ℎ + 3(𝑃𝑃0

2 − 𝑃𝑃𝑎𝑎
2) ]  ; 

𝑘𝑘8 = 𝑉𝑉1
𝑅𝑅 𝑇𝑇

;  𝑘𝑘9 =  𝑃𝑃0 𝐴𝐴 𝐵𝐵
𝑅𝑅 𝑇𝑇

  ;   𝑘𝑘10 =  𝑉𝑉0
𝑅𝑅 𝑇𝑇

 ; 𝑘𝑘11 =  𝑓𝑓 ;  

   𝑘𝑘12 =  (𝑃𝑃2 − 𝑃𝑃𝑎𝑎) 𝑑𝑑𝑑𝑑
𝑑𝑑ℎ

   ;    𝑑𝑑𝑑𝑑
𝑑𝑑ℎ

= 𝑐𝑐2
ℎ2 ∙ 𝑐𝑐1

𝑐𝑐2
ℎ ∙ 𝑙𝑙𝑙𝑙 𝑐𝑐1    ;   𝑘𝑘13 = 𝑘𝑘𝑉𝑉  

 

 
(10) 

It is worth noting that, the exponential term of 𝑐𝑐𝑑𝑑𝑑𝑑,2 has been considered constant in 
computing the partial derivative of 𝐺𝐺2 with respect to h. Making use of equations (9), it is 
possible to compute the transfer function FP / h : 

 
 

𝐻𝐻(𝑠𝑠) =
𝐹𝐹𝑃𝑃

ℎ
=

𝑎𝑎0

𝑏𝑏0
 𝑆𝑆𝑒𝑒𝑒𝑒  

1 + (𝑎𝑎1/𝑎𝑎0) 𝑠𝑠 + (𝑎𝑎2/𝑎𝑎0)𝑠𝑠2

1 + (𝑏𝑏1/𝑏𝑏0) 𝑠𝑠 + (𝑏𝑏2/𝑏𝑏0)𝑠𝑠2 = 𝐾𝐾𝑆𝑆  
1 + 1𝑠𝑠 + 2𝑠𝑠2

1 + 1𝑠𝑠 + 2𝑠𝑠2 (11) 

where: 
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𝑎𝑎0 = 16 (𝑘𝑘3𝑘𝑘4𝑘𝑘12 − 𝑘𝑘3𝑘𝑘5𝑘𝑘11) − 𝑘𝑘11(𝑘𝑘1𝑘𝑘13 + 𝑘𝑘2 − 4𝑘𝑘3) (4𝑘𝑘5 − 𝑘𝑘7 −
4𝑘𝑘4𝑘𝑘12

𝑘𝑘11
) ; 

𝑎𝑎1 = 𝑘𝑘9𝑘𝑘11(𝑘𝑘1 𝑘𝑘13 + 𝑘𝑘2 − 4𝑘𝑘3) + 𝑘𝑘8𝑘𝑘11(4𝑘𝑘5 − 𝑘𝑘7 − 4𝑘𝑘4𝑘𝑘12
𝑘𝑘11

); 
𝑎𝑎2 = −k8k9k11; 
𝑏𝑏0 = 16 k3k4 − k11(k1k13 + k2 − 4k3) (k6 − 4k4

k11
); 

𝑏𝑏1 = 𝑘𝑘8𝑘𝑘11 (𝑘𝑘6 −
4𝑘𝑘4

𝑘𝑘11
) − 𝑘𝑘10𝑘𝑘11(𝑘𝑘1𝑘𝑘13 + 𝑘𝑘2 − 4𝑘𝑘3); 

𝑏𝑏2 = 𝑘𝑘8𝑘𝑘10𝑘𝑘11; 
 

𝐾𝐾𝑆𝑆 = 𝑎𝑎0
𝑏𝑏0

 𝑆𝑆𝑒𝑒𝑒𝑒 is the static stiffness of the air pad. By expressing the transfer function 𝐻𝐻(𝑠𝑠) 
in the frequency domain, the theoretical dynamic stiffness 𝐾𝐾 and damping 𝑐𝑐 of the air under 
the pad are computed as:  

 

𝐾𝐾() = − 𝑅𝑅𝑅𝑅𝐻𝐻() = −𝐾𝐾𝑆𝑆
1 + (1 1 − 2 − 2 )

2 + 2 2 
4

(1 − 2
2)2 + (1)2  

𝑐𝑐() = − 
𝐼𝐼𝐼𝐼𝐻𝐻()


= −𝐾𝐾𝑆𝑆

(1 − 1 ) + (2 1 −  1 2 )
2

(1 − 2
2)2 + (1)2   

(12) 

The equilibrium equation of the pad is:  
 

𝐹̅𝐹 − 𝐹𝐹𝑝̅𝑝 + 𝑀𝑀𝑠𝑠2ℎ̅ = 0   (13) 

where F is the vertical external load applied to the pad and M the mass related to the 
supported payload (𝐹𝐹 = 𝑀𝑀𝑀𝑀). By defining  𝐺𝐺(𝑠𝑠) = − 1

𝑀𝑀𝑠𝑠2, it is possible to obtain the closed 
loop block diagram of Figure 4. The equivalent transfer function of the entire system is: 

 

𝐺𝐺𝑒𝑒𝑒𝑒(𝑠𝑠) =
𝐺𝐺(𝑠𝑠)

1 + 𝐺𝐺(𝑠𝑠)𝐻𝐻(𝑠𝑠) =
1

𝐾𝐾𝑆𝑆
 

(1 + 1𝑠𝑠 + 2𝑠𝑠2)
(1 + 1𝑠𝑠 + 2𝑠𝑠2 + 3𝑠𝑠3 + 4𝑠𝑠4) =

ℎ̅
𝐹̅𝐹

 (14) 

1 = 1 ;  2 =  2 − 𝑀𝑀
𝐾𝐾𝑆𝑆

  ;  3 =  − 𝑀𝑀 1
𝐾𝐾𝑆𝑆

  ;  4 =  − 𝑀𝑀 2
𝐾𝐾𝑆𝑆

 

 

 
Fig. 4. Scheme of the feedback system.  
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5 Numerical results 

5.1 Static analysis 

The static load capacities of the compensated air pad with different parameters x0, dv, d, km 
are analysed. Table 1 shows the selected parameters in few different operative cases.  Figure 
5a shows the load capacity versus the air gap height. The comparison of the results for the 
compensated and the commercial air pads is made with the same supply pressure 𝑃𝑃𝑆𝑆 = 0.5 
MPa.  

Table 1. Operative cases for compensated and commercial air pad 

  x0 (m) dv (mm) d (mm) km (N/mm) 

Compensated air pad 

case a -20 0.5 1 180 
case b -20 0.5 0.18 180 
case c -20 0.5 0.18 270 
case d -20 0.5 1 270 
case e -30 0.5 1 180 

Commercial air pad case f - - 0.18 - 
 

Compared to the commercial air pad, the controlled one globally presents a lower load 
capacity but it exhibits a significantly higher stiffness. Moreover, as discussed in [12], due to 
the regulating action of the valve, the characteristic curves of the compensated pad can be 
divided in three different regions (Fig. 5b): a by-pass (A-B), compensation (B-C) and a 
saturation zone (C-D). When the system is lightly loaded (by-pass), the distance between the 
nozzle and the diaphragm is quite small and compensated pad behaves has a lumped 
pneumatic resistance (𝑥𝑥 = 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑥𝑥𝑏𝑏𝑏𝑏−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝). As the load increases, the pressure in the valve 
chamber increases, the valves start regulating when  𝑥𝑥 > 𝑥𝑥𝑏𝑏𝑏𝑏−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (compensation zone). 

 

  

(a) (b) 

Fig. 5. a) Static load vs. air gap height, Ps = 0.5 MPa, commercial and compensated pads; b) A-B: by-
pass zone, B-C: compensation zone, C-D: saturation zone.  

 
Here, the compensating action of the valve makes it possible to compensate the air gap 

variations due to the change of the external load by increasing the air flow supplied to the 
pad. Beyond point C (hC = hB) the compensation is no more able to provide a suitable amount 
of air flow to compensate for air gap height variations. As can be seen, given the pad features, 
the characteristic shape of the load capacity curve is significantly influenced by the design 
parameters of the valve (𝑥𝑥0, 𝑑𝑑𝑣𝑣, and 𝑘𝑘𝑚𝑚). On this regard, Colombo et al. proposed a design 

B 

A 

C 
D 
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methodology to select the values of 𝑥𝑥0, 𝑘𝑘𝑚𝑚 that maximize the stiffness of the system at a 
desired  air gap height [14]. Curve a) of figure 5 corresponds to the design condition of the 
control system.  

 
Fig. 6. Stiffness and damping of the compensated pad in static conditions, for some diameters d: 

𝑃𝑃𝑆𝑆  = 0.5 MPa, 𝑥𝑥0 = − 20 m, 𝑑𝑑𝑣𝑣 = 0.5mm, 𝑘𝑘𝑚𝑚 =1.8 105 N/m. 
 
Figure 6 shows the trends of the air pad stiffness 𝐾𝐾 and the damping coefficient c obtained 

from equation (12) in static conditions ( = 0).  The trends of the static stiffness expressed 
as functions of the external payload 𝐹𝐹 are reported by considering different sizes of the supply 
hole diameters of the compensated pad (d = 0.18, 0.5, 1 mm). It can be seen that, the stiffness 
changes sign in the regulation zone and it locally assumes values that tend to infinity, even c 
tends to infinity when 𝐾𝐾𝑆𝑆  tends to infinity. 

5.2 Dynamic analysis 

The analysis of the dynamic behaviour is aimed at investigating the stiffness and damping 
values of the air gap as the frequency  of the applied load F varies. The results are obtained 
with the design parameters (𝑃𝑃𝑆𝑆  = 0.5 MPa, 𝑥𝑥0 = − 20 m, 𝑑𝑑𝑣𝑣 = 0.5mm, d = 1 mm, 𝑘𝑘𝑚𝑚 =1.8 
105 N/m, 𝑉𝑉1 =1.4 10-6 m3), moreover the investigations regard the air gap height values 
belonging to the compensation region. Figure 7 shows the trends of the dynamic stiffness and 
damping in the presence of different air gap heights within the regulation zone. Figure 7a 
shows the results for frequencies till to 100 Hz, figure 7b shows better the same results in the 
range of frequency from 10 Hz to 50 Hz. These results can be compared to those of  figure 8 
where the frequency response of the commercial pad is shown [15]. As can be seen, the 
stiffness and damping of the compensated pad reduce with the excitation frequency. In 
particular, both stiffness and damping drastically reduces even at low frequencies: at about 2 
Hz, the stiffness halves and the damping reduces by 5 times. Meanwhile, the stiffness and 
damping of the commercial pad present two opposite trends with respect to the excitation 
frequency. The stiffness increases, whereas the damping reduces. Figure 9 shows the effect 
of the volume 𝑉𝑉1 of the connecting ducts between valve and pad. Here, it is possible to see 
that increasing the volume 𝑉𝑉1  makes reduces the compensating action of the valve. 
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Fig. 7a. Compensated pad: dynamic stiffness 
and damping vs. frequency (from 0.1 Hz to 100 
Hz). 𝑃𝑃𝑆𝑆  = 0.5 MPa, 𝑥𝑥0 = − 20 m, 𝑑𝑑𝑣𝑣 = 0.5 mm, 
𝑘𝑘𝑚𝑚 =1.8 105 N/m, 𝑉𝑉1 = 1.4 ∙ 10−6 m3  
 

Fig. 7b. Compensated pad: dynamic stiffness 
and damping vs. frequency (from 10 Hz  to 50 
Hz), 𝑃𝑃𝑆𝑆  = 0.5 MPa, 𝑥𝑥0 = − 20 m, 𝑑𝑑𝑣𝑣 = 0.5 
mm, 𝑘𝑘𝑚𝑚 =1.8 105 N/m, 𝑉𝑉1 = 1.4 ∙ 10−6 m3  
  

 
 

Fig. 8. Dynamic stiffness and damping vs. 
frequency for commercial pad, 𝑃𝑃𝑆𝑆  = 0.5 MPa, 𝑑𝑑 
= 0.18 mm 
 

Fig. 9. Compensated pad. Dynamic stiffness 
and damping vs. frequency, effect of the 
volume 𝑉𝑉1. 𝑃𝑃𝑆𝑆 = 0.5 MPa,  𝑥𝑥0 = − 20 m, 𝑑𝑑𝑣𝑣 
= 0.5 mm, 𝑑𝑑 = 1mm, 𝑘𝑘𝑚𝑚 =1.8 105  N/m, F= 
250 N, h = 9.73 m 

5.3 Stability analysis 

The dynamic results shown are related to the design operative condition of the pad. Both 
experimentation and simulations confirm stable operation in this situation. However, the 
controlled pad may not be stable in other working conditions. The stability is then 
theoretically analyzed by applying the Routh-Hurwitz criterion to the transfer function 𝐺𝐺𝑒𝑒𝑒𝑒 . 
The stability of the controlled air pad requires that all the coefficients 1, 2, 3, 4 must be 
positive. Moreover, the following two conditions (15) must be also satisfied: 

𝑓𝑓1 = 2 −
 1 4
3

> 0  ;   𝑓𝑓2 = 1 −
  3

𝑓𝑓1
> 0 (15) 

The stability of the system is evaluated by modifying the design parameter of the system 
(𝑃𝑃𝑆𝑆, 𝑥𝑥0, 𝑑𝑑𝑣𝑣, 𝑑𝑑, 𝑘𝑘𝑚𝑚, 𝑉𝑉1) with respect to a stable operation selected as reference (case a of Figure 
5). According to the Routh-Hurwitz method, the stability is evaluated by considering the 
signs of the coefficients 1,  2,  3,  4 and the functions 𝑓𝑓1, 𝑓𝑓2. In all the examined cases, 
the coefficients 1,  2,  3,  4 and the function 𝑓𝑓1 are always positive while the function 𝑓𝑓2 
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can assume negative values. Figures 10-14 show the fields of instability (gray areas) 
identified in this study. The stability maps are reported as functions of the load capacity. The 
range of load within which the behavior is observed includes the zone of normal operation 
of the air pad. It was found that, the system can become unstable in several cases: as the 
distance 𝑥𝑥0 increases (or as 𝑑𝑑𝑣𝑣 increases), as 𝑑𝑑 increases, as 𝑘𝑘𝑚𝑚 decreases, as 𝑉𝑉1 decreases, 
as 𝑃𝑃𝑆𝑆 increases. The unstable operating zones enlarge when the variation of the parameters 
increases with respect to the values relating to a stable operating condition. 

  
Fig. 10. Stability map as 𝑥𝑥0 varies: 𝑃𝑃𝑆𝑆  = 0.5 
MPa, 𝑑𝑑𝑣𝑣 = 0.5 mm, 𝑑𝑑 = 1mm, 𝑘𝑘𝑚𝑚 =1.8 105 
N/m, 𝑉𝑉1 =1.4 10-6 m3 
 

Fig. 11: Stability map as 𝑑𝑑 varies: 𝑃𝑃𝑆𝑆 = 0.5 
MPa, 𝑥𝑥0 = −20 m, 𝑑𝑑𝑣𝑣= 0.5 mm, 𝑘𝑘𝑚𝑚 =1.8 
105 N/m,  𝑉𝑉1 =1.4 10-6 m3 

 

  
Fig. 12. Stability map as 𝑘𝑘𝑚𝑚  varies: 𝑃𝑃𝑆𝑆  = 
0.5 MPa, 𝑥𝑥0 = −20 m, 𝑑𝑑𝑣𝑣 = 0.5 mm, 𝑑𝑑 = 
1mm, 𝑉𝑉1 =1.4 10-6 m3 

Fig. 13. Stability map as 𝑉𝑉1 varies: 𝑃𝑃𝑆𝑆  = 0.5 
MPa, 𝑥𝑥0 = −20 m, 𝑑𝑑𝑣𝑣 = 0.5 mm, 𝑑𝑑 = 1mm, 
𝑘𝑘𝑚𝑚 =1.8 105 N/m. 

 

 
Fig. 14. Stability map as 𝑃𝑃𝑆𝑆 varies: 𝑥𝑥0 = −20 m, 𝑑𝑑𝑣𝑣 = 0.5 mm, 𝑑𝑑 = 1mm, 𝑘𝑘𝑚𝑚=1.8 105 N/m,  

        𝑉𝑉1 =1.4 10-6 m3   
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can assume negative values. Figures 10-14 show the fields of instability (gray areas) 
identified in this study. The stability maps are reported as functions of the load capacity. The 
range of load within which the behavior is observed includes the zone of normal operation 
of the air pad. It was found that, the system can become unstable in several cases: as the 
distance 𝑥𝑥0 increases (or as 𝑑𝑑𝑣𝑣 increases), as 𝑑𝑑 increases, as 𝑘𝑘𝑚𝑚 decreases, as 𝑉𝑉1 decreases, 
as 𝑃𝑃𝑆𝑆 increases. The unstable operating zones enlarge when the variation of the parameters 
increases with respect to the values relating to a stable operating condition. 

  
Fig. 10. Stability map as 𝑥𝑥0 varies: 𝑃𝑃𝑆𝑆  = 0.5 
MPa, 𝑑𝑑𝑣𝑣 = 0.5 mm, 𝑑𝑑 = 1mm, 𝑘𝑘𝑚𝑚 =1.8 105 
N/m, 𝑉𝑉1 =1.4 10-6 m3 
 

Fig. 11: Stability map as 𝑑𝑑 varies: 𝑃𝑃𝑆𝑆 = 0.5 
MPa, 𝑥𝑥0 = −20 m, 𝑑𝑑𝑣𝑣= 0.5 mm, 𝑘𝑘𝑚𝑚 =1.8 
105 N/m,  𝑉𝑉1 =1.4 10-6 m3 

 

  
Fig. 12. Stability map as 𝑘𝑘𝑚𝑚  varies: 𝑃𝑃𝑆𝑆  = 
0.5 MPa, 𝑥𝑥0 = −20 m, 𝑑𝑑𝑣𝑣 = 0.5 mm, 𝑑𝑑 = 
1mm, 𝑉𝑉1 =1.4 10-6 m3 

Fig. 13. Stability map as 𝑉𝑉1 varies: 𝑃𝑃𝑆𝑆  = 0.5 
MPa, 𝑥𝑥0 = −20 m, 𝑑𝑑𝑣𝑣 = 0.5 mm, 𝑑𝑑 = 1mm, 
𝑘𝑘𝑚𝑚 =1.8 105 N/m. 

 

 
Fig. 14. Stability map as 𝑃𝑃𝑆𝑆 varies: 𝑥𝑥0 = −20 m, 𝑑𝑑𝑣𝑣 = 0.5 mm, 𝑑𝑑 = 1mm, 𝑘𝑘𝑚𝑚=1.8 105 N/m,  

        𝑉𝑉1 =1.4 10-6 m3   

6 Conclusion 
The present paper presented a numerical analysis of the dynamic behavior and stability 

of an aerostatic pad controlled by a diaphragm valve. The numerical model has been 
linearized to investigate the dynamic stiffness and damping of the compensated air pad. 
Within the regulating zone the static stiffness is significantly greater than that of the 
commercial air pad. Damping and stiffness decrease as the load application frequency 
increases and if the static operating point is very close to the point of infinite stiffness the 
dynamic stiffness is even greater than that of the commercial air pad. However, as the 
frequency varies, the damping remains much higher than that of the commercial pad.  

The linearization of the model has made it possible to evaluate the stability of the system 
through the Routh-Hurwitz criterion. It has been found that the chosen design parameters 
allow a stable operation; the system is more prone to the instability at lower loads (higher air 
gap heights). However also the variation of the pad design parameters may lead to instability. 
In particular, the system can be unstable also at higher loads if the supply pressure increases. 
In fact, as the supply pressure increases, the instability field expands rapidly in almost the 
entire range of air gap heights. Moreover, it has been found that the system stability can be 
improved by increasing the volume of the ducts connecting the air pad to the valve, 
nevertheless, this also produces a significant reduction of the dynamic stiffness and damping. 
Ultimately, compared to the commercial air pad, the compensated one exhibit significantly 
higher performance for quasi-static applications.  

Compared to other stability methods, Routh-Hurwitz criterion can be easily employed to 
verify the stability of dynamical systems and obtaining stability maps by considering 
different operating parameters of the investigated system. However, this method does not 
provide any information about the stability margin of the system. For this reason, feature 
works will be devoted to integrate the information related to the stability maps obtained 
through Routh-Hurwitz criterion with information regarding the stability margin of the 
investigated system, e.g., Nyqvist criterion. Moreover, these theoretical results will be 
verified through experiments.  

References 
1. Q. Gao, W. Chen, L. Lu, D. Huo, and K. Cheng, Tribology International (2019) 
2. L. Lentini, M. Moradi, and F. Colombo, Tribology in Industry 40, 165 (2018). 
3. 3. D. A. Boffey, A. E. Duncan, and J. K. Dearden, Tribology International 14, 287 

(1981). 
4. S. Z. Kassab, E. M. Noureldeen, and M. A. Shawky, Tribology International 30, 

533 (1997). 
5. F. Colombo, L. Lentini, T. Raparelli, A. Trivella, and V. Viktorov, Tribology Letters 

66, (2018). 
6. T. Nakamura and S. Yoshimoto, Tribology International 29, 145 (1996). 
7. A. Charki, K. Diop, S. Champmartin, and A. Ambari, International Journal of 

Mechanical Sciences 72, 28 (2013). 
8. M. Fourka and M. Bonis, Wear 210, 311 (1997). 
9. T. S. Luong, W. Potze, J. B. Post, R. A. J. Van Ostayen, and A. Van Beek, Tribology 

International 37, 825 (2004). 
10. F. Al-Bender, Precision Engineering 33, 117 (2009). 
11. T. Raparelli, V. Viktorov, F. Colombo, and L. Lentini, Precision Engineering 44, 1 

(2016). 
12. D. Ghodsiyeh, F. Colombo, L. Lentini, T. Raparelli, A. Trivella, and V. Viktorov, 

Tribology International 141, (2020). 

11

E3S Web of Conferences 312, 05003 (2021)	 https://doi.org/10.1051/e3sconf/202131205003
76° Italian National Congress ATI



13. G. Belforte, T. Raparelli, V. Viktorov, and A. Trivella, Tribology International 40, 
512 (2007). 

14. F. Colombo, L. Lentini, T. Raparelli, A. Trivella, and V. Viktorov, Lubricants 9, 47 
(2021). 

15. F. Colombo, L. Lentini, T. Raparelli, A. Trivella, and V. Viktorov, in International 
Conference on Robotics in Alpe-Adria Danube Region (Springer, 2018), pp. 678–
686. 

12

E3S Web of Conferences 312, 05003 (2021)	 https://doi.org/10.1051/e3sconf/202131205003
76° Italian National Congress ATI 


