
23 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

MP-RRT#: a Model Predictive Sampling-based motion planning algorithm for Unmanned Aircraft Systems / Primatesta,
Stefano; Osman, OSMAN ABDALLA SIDAHMED; Rizzo, Alessandro. - In: JOURNAL OF INTELLIGENT & ROBOTIC
SYSTEMS. - ISSN 1573-0409. - ELETTRONICO. - 103:(2021), pp. 1-13. [10.1007/s10846-021-01501-3]

Original

MP-RRT#: a Model Predictive Sampling-based motion planning algorithm for Unmanned Aircraft
Systems

Springer postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1007/s10846-021-01501-3

Terms of use:

Publisher copyright

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to
Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements,
or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s10846-021-01501-3

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2933614 since: 2021-11-14T23:13:50Z

Springer



Journal of Intelligent and Robotic Systems manuscript No.
(will be inserted by the editor)

MP-RRT#: a Model Predictive Sampling-based Motion
Planning Algorithm for Unmanned Aircraft Systems

Stefano Primatesta · Abdalla Osman ·
Alessandro Rizzo

Received: date / Accepted: date

Abstract This paper introduces a kinodynamic motion planning algorithm
for Unmanned Aircraft Systems (UAS), called MP-RRT#. MP-RRT# joins the
potentialities of RRT# with a strategy based on Model Predictive Control to
efficiently solve motion planning problems under differential constraints. Simi-
lar to other RRT-based algorithms, MP-RRT# explores the map constructing
an asymptotically optimal graph. In each iteration the graph is extended with
a new vertex in the reference state of the UAS. Then, a forward simulation is
performed using a Model Predictive Control strategy to evaluate the motion
between two adjacent vertices, and a trajectory in the state space is computed.
As a result, the MP-RRT# algorithm eventually generates a feasible trajectory
for the UAS satisfying dynamic constraints.

Simulation results obtained with a simulated drone controlled with the
PX4 autopilot corroborate the validity of the MP-RRT# approach.

Keywords unmanned aerial vehicles · unmanned aircraft · kinodynamic
motion planning · sampling-based motion planning · model predictive control

1 Introduction

The use of Unmanned Aircraft Systems (UAS) has increased progressively
across a wide range of applications such as remote sensing, search and rescue,
security and surveillance, precision agriculture, infrastructure inspection and

S. Primatesta
Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca
degli Abruzzi 24, 10129 Torino, Italy

A. Osman and A. Rizzo
Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli
Abruzzi 24, 10129 Torino, Italy
Corresponding author: A. Rizzo (E-mail: alessandro.rizzo@polito.it)



2 Stefano Primatesta et al.

urban planning, to name a few [35]. Such extensive use of UAS triggered the
rapid growth of various related research topics, of which autonomous flight
has been driving great interest [3]. The great availability of powerful and ef-
ficient computational capabilities has enabled the extensive use of optimal
control strategies and machine learning to address the problem of autonomy.
However, autonomous flight remains a very challenging task [39], whose solu-
tion extends across diverse aspects: perception, localization and mapping, and
motion planning and control [36].

Notably, the motion planning problem is ubiquitous in most of autonomous
robotics applications, beside UAS. In simple words, motion planning is de-
fined as the computation of the control input needed to drive a vehicle from
an initial state to a target state satisfying the vehicle kinematic and dynamic
constraints, while avoiding obstacles and other forbidden zones [21]. Typically,
the motion planning problem is subdivided into two sub-problems: path plan-
ning and path tracking. Much effort has been devoted to deal with both tasks.
The authors in [14] adopted a potential field approach for planning, followed
by a multi-constrained Model Predictive Control (MPC) strategy for track-
ing. The authors in [7] propose a two-stage approach where path planning
is computed by leveraging the Rapidly-exploring Random Tree (RRT) algo-
rithm, associated with a Linear Quadratic Regulator (LQR) controller for the
tracking of the resulting reference trajectory. Similarly, in [26] the planned
reference trajectory provided by the RRT algorithm is post-optimized using
MPC to determine a feasible trajectory plan. However, none of the mentioned
two-stage approaches guarantee the dynamic feasibility of the computed path.

Alternatively, another classical approach for path planning breaks the prob-
lem into two phases: a continuous collision-free path is generated in the first
phase, while in the second phase a low-cost trajectory is computed along the
previously generated path, respecting dynamic constraints. However, this ap-
proach may lead to infeasible or inefficient trajectories, due to the possible
incompatibility of the cost function used by the optimization in the first and
the second phase. For example, minimizing the Euclidean distance in the first
phase may result in a continuous collision-free path that is incompatible with
the dynamic constraints of the second phase. This becomes more evident when
the motion planning is required to avoid obstacles in a time-varying environ-
ment. Hence, a more suitable approach would be to consider both the kine-
matic and dynamic constraints simultaneously, while constructing the tra-
jectory during the planning phase. To address this issue, kinodynamic motion
planning algorithms can be employed in order to satisfy at the same time both
the kinematic and the dynamic constraints of the motion planning model [8].
A considerable number of kinodynamic strategies makes use of various prim-
itive curves to define a path, such as Bezier curves [22], harmonic potential
fields [27], or using learning approaches [25].

Recently, incremental sampling-based planners have been successfully em-
ployed to solve the kinodynamic motion planning problem as a two-point
boundary value problem in the dynamic state space of the robot system.
Sampling-based planners, such as Rapidly-exploring Random Tree (RRT) and



Title Suppressed Due to Excessive Length 3

the Probabilistic Roadmap (PRM), are employed even in high dimensional
spaces to solve motion planning problems [23]. Generally, sampling-based plan-
ners search for the motion planning solution in one of the following spaces: the
state space X , representing the possible states of the vehicle; the control space
U , representing the possible control input configurations applied to drive the
vehicle; and the reference space Y, representing the possible desired vehicle
states. A sampling-based kinodynamic algorithm was proposed for the first
time by LaValle and Kuffner in [24], in which an RRT algorithm samples the
control input of the vehicle and, then, predicts its corresponding motion in or-
der to construct a tree of trajectories in the state space. As a consequence, the
computed trajectory satisfies by design the constraints imposed by the vehicle
dynamics and can be easily executed by the vehicle. Several sampling-based
planners have been developed since then by extending and improving such ap-
proach [10][13]. The authors in [17] proposed the RRT∗ algorithm, one of the
most widely used sampling-based techniques. RRT∗ constitutes an improve-
ment of the original RRT algorithm toward the attainment of a near optimal
solution. Moreover, the RRT∗ algorithm has been further improved for spe-
cialized purposes such as real-time path planning [31], anytime planning [18],
multi-agent planning [6], and others [32].

RRT∗ has improved the path quality of the original RRT through em-
ploying two new major mechanisms: rewiring and best neighbor search. RRT∗

incrementally adds new connections to the existing tree whenever a new sam-
ple is generated. Such a rewiring procedure gives RRT∗ the chance to gradually
improve its path-cost, asymptotically approaching the lowest-cost path as the
number of iterations increases. However, this rewiring is performed on a lo-
cal basis, preventing a global propagation of the changes in the graph and a
consequent optimization at the global level. An improvement is constituted
by RRT#, which generates a guaranteed asymptotically optimal graph that
always contains the lowest-cost path [2].

Another common concern in sampling-based approaches is related to the
random sampling of the control space, instead of the random sampling of the
reference space of the robot [20]. While sampling in the reference space always
generates feasible trajectories, sampling in the control space may often result
in the selection of inputs that can lead to infeasible trajectories, due to the
presence of dynamic constraints. This typically yields longer execution times
and an inefficient management of the algorithm. To address this problem, the
authors in [20] proposed the closed-loop RRT (CL-RRT), in which the samples
are drawn from the reference space instead of the control space. The sampled
reference is then used to compute a trajectory using the closed-loop model of
the robot. A similar approach is also used in [1] with the RRT# algorithm.
Similarly, in [16] a kinodynamic RRT∗ is realized using Dubins curves as a
primitive curve defining the reference path between the new sample and the
existing tree, whereas an LQR controller is used in [33] to compute the cost
of tracking the reference path.

This paper presents a kinodynamic motion planning algorithm called MP-
RRT#, where RRT# [2] is enhanced by the use of Model Predictive Control



4 Stefano Primatesta et al.

(MPC) [5] to compute the cost between vertices evaluated in the rewiring of the
new sample. The proposed sampling-based planner avoids the local rewiring
limitation of RRT∗ by employing RRT# [2], and draws its samples from the
reference space instead of the control space, as proposed in [20]. Then, given
an input sample of the closed-loop system, i.e. a reference r in the reference
space Y, the proposed algorithm uses MPC [5] to perform a forward simulation
obtaining a state trajectory and the optimal control input to track the sampled
reference.

The proposed MP-RRT# concurrently constructs two graphs: (i) a graph
GY ∈ Y to explore the reference space Y, and (ii) a graph GX ∈ X in the state
space X to evaluate the UAS motion between vertices of GY using the MPC
strategy. Practically, GX consists of a graph of trajectories in the state space
of the UAS.

The proposed strategy is more efficient than other kinodynamic RRT-based
approaches [24][10][13], since it guarantees the feasibility of the trajectory for
each sampled reference state passed to the MPC strategy. Obstacle avoidance
is encapsulated in the approach by labeling trajectories containing obstacles
as unfeasible and consequently discarding them, rather than frequently in-
voking a costly trajectory repairing due to the presence of obstacles. Hence,
the proposed strategy requires fewer samples to construct an exploration tree
and, consequently, less effort to compute an optimal trajectory. While the use
of the MPC strategy guarantees that the computed trajectory satisfies input
constraints. Anyway, the feasibility of the resulting trajectory is further exam-
ined later by the algorithm in a verification step to ensure collision avoidance.
In addition, sampling in the reference space Y rather than the state space X
is generally more efficient, especially for the vehicles with complex dynamics
where the reference space has smaller dimension than the state space. For
instance, in the work presented in this paper, the UAS state space had a
dimension of 8 variables, whereas the reference space had a dimension of 3
variables only.

Figure 1 illustrates the proposed strategy to generate a graph of feasible
trajectories using the MP-RRT# algorithm. Given a sample drawn from the
reference space, MP-RRT# incrementally extends the graph GY ∈ Y by adding
a new vertex and an edge. Then, following a primitive curve (i.e., a Dubins
curve in this work) defining the reference path connecting the new vertex to
the existing graph, MPC is used to construct the corresponding trajectory
in the graph GX ∈ X , respecting the vehicle dynamics and control input
constraints. Note that obstacle avoidance is implemented for the computed
trajectory rather than the edges, i.e. even if the edge crosses an obstacle, it
will not be discarded unless its corresponding trajectory enters the obstacle
space.

In the work presented in this paper, the proposed MP-RRT# strategy is
specifically used to solve the motion planning problem of a multicopter to find
a feasible trajectory for the UAS satisfying dynamic constraints. The novelty
of the presented work resides in the use of the MPC in the graph construction
of a RRT-based algorithm, which introduces evident benefits due to its ability



Title Suppressed Due to Excessive Length 5

Fig. 1 Example of graphs constructed with MP-RRT#. The graph GY consists of vertices
(in black) and edges (in blue) in the reference state. Instead, the graph GX consists of
trajectories (in magenta) obtained through evaluating the edges of GY using the MPC
strategy. An edge of GY is labeled as invalid if its corresponding trajectory in GX crosses
an obstacle.

of generating a forward path that is compatible with the vehicle constraints.
In this way, the execution of feasible trajectories with maneuvers that are
compatible with the vehicle constraints is guaranteed.

The rest of the paper is organized as follows. Section 2 defines the optimal
motion planning problem. The proposed algorithm is described in Section
3, with a detailed description of the pseudocode, the UAS model and the
MPC strategy adopted. Section 4 describes the experimental results, while
our conclusions are drawn in Section 5.

2 Problem Formulation

This section defines the motion planning problem studied in this paper. First,
the UAS dynamic model is described as

ẋ(t) = f(x(t),u(t)), (1)

where x(t) ∈ Rnx is the system state with dimension nx, and u(t) ∈ Rnu is
the control input with dimension nu. Both states and control inputs should
respect specific constraints. Specifically, the vehicle state must belong to the
free state space Xfree = X \Xobs, in order to navigate through an obstacle-free
trajectory. This constraint is expressed by

x(t) ∈ Xfree, (2)



6 Stefano Primatesta et al.

where X is the state space and Xobs is the space occupied by obstacles. More-
over, the control input is constrained as

u(t) ∈ U , (3)

where U is the space of the admissible inputs (roll, pitch and thrust commands)
in order to consider the vehicle specifications.

Given the initial state of the UAS x0 = x(0) at time t = 0 and the target
state defined by the goal region Xgoal ⊂ Rnx , the aim of the motion planning
problem is to compute an optimal state trajectory x∗ : [0, tf ] ∈ Xfree and an
optimal control input sequence u∗ : [0, tf ] ∈ U over a finite time horizon from
0 to tf able to drive the vehicle from the initial state x(0) = x0 to a final state
within the goal region x(tf ) ∈ Xgoal. x

∗ and u∗ are computed minimizing a
cost function Cost(·) while satisfying the constraints imposed by Equations (2)
and (3). Hence, the optimal motion is the solution of the following problem

x∗,u∗ = arg min Cost(x(t),u(t))

subject to x(0) = x0

x(tf ) = xgoal ∈ Xgoal

x(t) ∈ Xfree, ∀t ∈ [0, tf ]

u(t) ∈ U , ∀t ∈ [0, tf ] .

(4)

Here, we will solve such a motion planning problem using the proposed
MP-RRT# algorithm. In particular, the proposed algorithm solves the motion
planning problem in Equation (4) by constructing a graph of optimal trajec-
tories GX in the state space and, then, the best complete trajectory in the
graph from the start to the goal state is selected. Specifically, optimal trajec-
tories of the graph GX are computed using a Model Predictive Control strategy
taking into account the UAS dynamic model in Equation (1), satisfying the
constraints imposed by Equations (2) and (3).

3 The MP-RRT# strategy

This section introduces the proposed MP-RRT# algorithm (Model Predictive
Rapidly-exploring Random Tree ”sharp”), which enhances the RRT# algo-
rithm [2] using a MPC strategy to compute a near-optimal trajectory for UAS
respecting the dynamic and kinematic constraints, while avoiding obstacles.

Similar to other kinodynamic RRT-based algorithms, our MP-RRT# algo-
rithm explores the search space by constructing an incremental graph rooted
from the start. Specifically, the MP-RRT# generates two graphs simultane-
ously: (i) GY in the reference space Y, and (ii) GX in the state space X .

The former graph, i.e., GY , consists of vertices and edges in the reference
space Y. It is constructed incrementally by sampling vertices and growing the
graph to uniformly explore the reference space. This is equivalent to any other
graph generated to other algorithms of the RRT family. On the other hand,



Title Suppressed Due to Excessive Length 7

the latter graph, GX , consists of a graph of trajectories computed through
MPC. GX is built concurrently with GY and, practically, it is used to evaluate
the motion between vertices of GY , generating a graph of feasible trajectories
in the state space. Figure 1 shows a simple example of the proposed strategy,
where the graph GY in blue is constructed in the reference state, while the
corresponding graph GX in the state space is colored in magenta.

As can be observed in Figure 1, collisions with obstacles are accounted for
by graph GX . If a trajectory in GX enters the obstacle space, the corresponding
edge in GY will not be included in the resulting graph. On the contrary, as
can be observed in Figure 1, even if an edge in GY crosses an obstacle, it
is not discarded if its corresponding trajectory in GX does not collide with
obstacles. This choice is motivated by the fact that, in general, the reference
state has generally a lower dimension than the dimension of the vehicle state.
As a consequence, it is more efficient to generate a graph in the reference space
than in the state space.

3.1 Algorithm

The proposed algorithm is based on the the RRT# algorithm proposed in [2].
The RRT# is a special variant of the Rapidly-exploring Random Graph (RRG)
that ensures a globally optimal graph in the search space.

The main pseudocode of MP-RRT# is defined in Algorithm 1. The inputs
of the algorithm are the initial state x0, the goal region Xgoal, the reference
space Y and the state space X in which the motion planning searches for a
feasible solution.

First, both graphs GY and GX are initialized (from lines 2 to 4). In partic-
ular, the initial vertex in the reference state is defined using the initial state x0

(line 3). In fact, we assume that the reference space Y is a subset of the state
space X and, as a consequence, an element r ∈ Y can be derived from a state
x ∈ X . Then, the iterative procedure of the construction of the graph starts
and continues until a certain number N of vertices are sampled and added
to the graph (lines 5 to 8). Specifically, a vertex rrand is randomly sampled
(line 6) and both graphs GX and GY are extended by adding the new vertex
(line 7). The Replan() function propagates this update on the graphs (line 8).
Both the Extend() and Replan() functions are detailed in Algorithms 2 and
4, respectively. Finally, the branch T X connecting the initial and the target
states is extracted from the graph GX (line 9) and returned as the solution of
the algorithm.

The Extend procedure is a crucial element for the proposed approach; it
is responsible for the expansion of both graphs by adding a new vertex, after
which the cost of the state trajectory is computed using MPC. This procedure
is detailed in Algorithm 2. Initially, the new vertex r is connected to the nearest
vertex rnearest in the graph GY (line 2). Then, the Nearest() function finds
the vertex with the minimum Euclidean distance from r. Hence, the states
xnearest and x are defined from rnearest and r, respectively (lines 3 and 4).



8 Stefano Primatesta et al.

Algorithm 1: The MP-RRT# algorithm

1 MP-RRT#(x0,Xgoal,Y,X)
2 GX ← {x0};
3 r0 ← x0;

4 GY ← {r0};
5 for i = 0 to N do
6 rrand ← Sample();

7 GX ,GY ← Extend(GX ,GY , rrand);

8 Replan(GX ,GY );

9 T X ← SpanningTree(GX );

10 return T X

The ComputeTrajectory() function (line 5) uses MPC to compute the optimal
state trajectory x moving from xnearest to x. Then, if the computed trajectory
is valid, i.e. it does not collide with obstacles, the cost-to-come of vertex r,
denoted by g(r) is computed by adding the cost at the previous vertex to the
cost of the trajectory x, denoted by c(x) (line 7). In line 8 all the neighbor
vertices of r are added to the neighbor set N and, then, the vertex r is included
in the neighbor set of its neighbors (lines 8 to 10).

The Near() function selects the M-nearest vertices as defined in [17]. Specif-
ically, the number M of neighbors evaluated is defined as

M = e(1 + 1/d) log |V |, (5)

where d is the dimension of the reference space Y, and the notation |V | defines
the cardinality of the set of vertices, i.e. the number of vertices in the graph
GY . According to [17], Equation (5) ensures the asymptotic optimality of the
algorithm.

The FindParent() function searches for the neighbor vertex of r that pro-
vides the minimum cost-to-come g() including the vertex r to the graph GY
and, similarly, the corresponding state x to the graph GX (line 11). Then, the
vertex r is included in the priority queue q (line 12) used in the Replan() to
propagate any updated cost in the graph GY .

The FindParent() procedure is detailed in Algorithm 3. For each near ver-
tex of r, the state trajectory from x and xnear is computed to select the best
parent vertex (from lines 2 to 9). Then, the selected rnear is defined as parent
of r (line 8) and, similarly, xnear is defined as parent of x (line 9).

The priority queue has a crucial role in the RRT# algorithm [2] because it
is a queue of vertices that is evaluated in the Replan() procedure to propagate
any update on the graph. Vertices of the queue are ordered based on their cost
f(r) from the highest to the lowest. Specifically, the cost f(r) is the estimated
cost to reach the goal passing through the vertex r, inspired by the well-known
cost function define in the A∗ algorithm [12]

f(r) = g(r) + ĥ(r). (6)



Title Suppressed Due to Excessive Length 9

Function g(r) represents the cost-to-come at the vertex r, i.e. the cost of

moving between the start vertex r0 and r, with g(r0) = 0. Function ĥ(r) is the

estimated cost-to-go to reach the goal state, with ĥ(rgoal) = 0.

Algorithm 2: The Extend procedure

1 Extend(GX ,GY , r)
2 rnearest ← Nearest(GY , r);
3 xnearest ← rnearest;
4 x← r;
5 x← ComputeTrajectory(xnearest, x);
6 if isTrajectoryValid(x) then
7 g(r)← g(rnearest) + c(x);

8 N (r)← Near(GY , r);
9 foreach rnear ∈ N (r) do

10 N (rnear)← N (rnear) ∪ {r};
11 FindParent(r, x);
12 UpdateQueue(r);

13 return GX ,GY

Algorithm 3: The FindParent procedure

1 FindParent(r, x)
2 foreach rnear ∈ N (r) do
3 xnear ← rnear;
4 x← ComputeTrajectory(xnear, x);
5 if isTrajectoryValid(x) then
6 if g(rnear) + c(x) < g(r) then
7 g(r) = g(r) + c(x);
8 P(r) = rnear;
9 P(x) = xnear;

In particular, the Replan() procedure is detailed in Algorithm 4. This pro-
cedure is based on an iterative loop that updates only promising vertices (lines
2 to 15), i.e., vertices that can improve the current solution in the graph.
Specifically, the set of promising vertices Vprom ⊂ V contains vertices inside
the relevant region Yrel ∈ Y

Yrel = {r ∈ Yfree : f(r) < g(r∗goal)}, (7)

with r∗goal is the vertex in the goal region with the minimum cost-to-come.

Notably, the heuristic cost ĥ(r) used to compute f(r) must be admissible, i.e.,
it should not overestimate the cost-to-go, discarding vertices that would lead to
the optimal solution. The evaluation of promising vertices is essential to avoid
the propagation toward vertices that cannot improve the current solution,



10 Stefano Primatesta et al.

speeding up the algorithm. The first element of the queue is selected (line 3)
and removed from q (line 5). Then, the procedure verifies if the current vertex
can improve the cost-to-come of its neighbors (lines 6 to 15) as a new parent
vertex. This is verified by computing the cost-to-come of the resulting state
trajectory of moving from x to xnbh. Similar to Algorithm 3, line 10 checks if
the neighbor vertex rnbh ∈ N is a promising vertex and, in line 11, if r can
be the new parent vertex of rnbh. If this condition occurs, the vertex rnbh is
included in q to be evaluated in the Replan() procedure. In particular, rnbh

is defined in the reference space, while xnbh is the corresponding state in the
state space.

Algorithm 4: The Replan procedure

1 Replan(GX ,GY)
2 while f(q.top()) ≺ g(r∗goal) do

3 r = q.top();
4 x← r;
5 q.pop();
6 foreach rnbh ∈ N (r) do
7 xnbh ← rnbh;
8 x← ComputeTrajectory(x, xnbh);
9 if isTrajectoryValid(x) then

10 if g(r) + c(x) + ĥ(rnbh) < g(r∗goal) then

11 if g(r) + c(x) < g(rnbh) then
12 g(rnbh) = g(r) + r(x);
13 P(rnbh) = r;
14 P(xnbh) = x;
15 UpdateQueue(rnbh);

3.2 UAS model

We adopt a multicopter, with a dynamic motion model linearized around its
hovering condition [15], in which small variations of the attitude angle are
assumed and the vehicle heading is aligned with the x-axis of the multicopter
inertial frame. Hence, the linear model of the UAS is defined as

ẋ(t) = Acx(t) +Bcu(t), (8)



Title Suppressed Due to Excessive Length 11

where Ac is the state matrix in continuous time

Ac =



0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 −ax 0 0 g 0
0 0 0 0 −ay 0 0 −g
0 0 0 0 0 −az 0 0
0 0 0 0 0 0 − 1

τφ
0

0 0 0 0 0 0 0 − 1
τθ


, (9)

Bc is the input matrix in continuous time

Bc =



0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 1
kφ
τφ

0 0

0 kθ
τθ

0


, (10)

and where ax, ay and az are the drag coefficients, g is the gravity acceleration,
τφ is the roll time constant, τθ is the pitch time constant, kφ is the roll gain

and kθ is the pitch gain. The state vector is x =
[
pT vT Wφ Wθ

]T
, where p is

the position vector of the UAS in the three-dimensional space, v is the velocity
vector, Wφ and Wθ are the roll and pitch angles in the inertial frame W. The

input vector is u =
[Wφd Wθd T

]T
, where Wφd and Wθd are the roll and pitch

control commands in the inertial frame and T is the thrust control command.
Since we will use a controller implemented in the discrete time, the UAS

model is discretized as

A = eAcTs , (11)

B =

∫ Ts

0

eAcdτdτBc, (12)

where Ts is the sampling time.

3.3 Model Predictive Control

In order to construct the trajectory graph GX ∈ X incrementally, the MP-
RRT# algorithm uses MPC to compute the optimal state trajectory between
every newly added vertex and its adjacent vertices and, then, to evaluate the
cost of such a trajectory.

Based on the UAS model previously defined, in this work we implement a
Linear Model Predictive Control inspired by [15].



12 Stefano Primatesta et al.

Specifically, the MPC searches for an optimal trajectory by optimizing the
cost function

J(x, u) =(Hp−1∑
k=0

(xk − xref,k)TQx(xk − xref,k)

+ (uk − uk−1)TR∆(uk − uk−1)
)

+ (xHp
− xref,Hp

)TQfinal(xHp
− xref,Hp

),

(13)

where Hp is the prediction horizon. The input vector is u =
[
u0 u1 . . . uHp

]T
,

with uk ∈ R3, for k = 0, . . . ,Hp− 1. The state vector is x =
[
x0 x1 . . . xHp

]T
,

with xk ∈ R8, for k = 0, . . . ,Hp. The vector reference state is xref =
[
xref,0 xref,1 . . . xref,Hp

]T
,

with xref,k ∈ R8, for k = 0, . . . ,Hp. Matrices Qx, R∆ and Qfinal are positive
semidefinite matrices indicating the penalty matrix on the state error, the
penalty matrix on the variation of the control input, and the terminal cost
matrix on the last state error. The computation of Qfinal is carried out by
iteratively solving a suitable Algebraic Riccati Equation [4].

Hence, the following convex optimization problem is solved

x∗, u∗ = min
U,X

J(x, u) (14)

subject to xk+1 = Axk +Buk (15)

uk ∈ U (16)

x0 = x(t0) (17)

The optimization problem of Equation (14) requires a reference trajectory
xref . In this work, the reference trajectory is defined using Dubins curves [9].
Compared to other primitive curves used to find the shortest path between
two configurations, and for our purposes of building the graph iteratively from
curve segments extending the existing path with a new vertex, Dubins curves
are a suitable solution to achieve flyable paths, since they are forward-only
curves, whereas other curves like Reeds-Shepp require backward-motion [23].
The Dubins curvature radius generally affects motion planning, whereby differ-
ent curvature radii yield different planned paths. As a fundamental requisite,
the curvature radius should reflect the minimum curvature that the vehicle can
execute, compatible with kinodynamic constraints. Here, we are considering
a multicopter that, theoretically, has zero curvature radius (i.e., it can rotate
around its axis in place). However, since we are assuming a constant nonzero
cruise velocity in the motion planning, a lower bound for the curvature radius
needs to be set.

Dubins curves refer to the shortest path between two poses in the two-
dimensional space considering a constant radius curvature. This solution fits
perfectly with our work, since the algorithm is implemented in the two-dimensional
space. However, Dubins curves are also extended to the three-dimensional



Title Suppressed Due to Excessive Length 13

Fig. 2 Example of reference trajectory computed using Dubins curves and connecting two
adjacent vertices. The green line is the reference trajectory, whereas magenta arrows are the
state trajectory computed using MPC.

space [29] and with a variable radius curvature [11] being able to be used also
in more complex scenarios.

Given the two-dimensional pose of the aircraft
[
px py pβ

]
and assuming a

constant speed, the differential equation of Dubins curves are

ṗx = cos(pβ), (18)

ṗy = sin(pβ), (19)

ṗβ = uc, (20)

where uc is normalized in the range between −1 and 1 with respect to the
maximum curvature radius of the aircraft. The shortest path between two
poses can be expressed as a combination of no more than three motion primi-
tives [9]. Hence, only three values of uc are defined uc ∈ {−1, 0, 1}. The value
uc = 0 describes a straight motion (S), uc = −1 describes a right (R) turn,
and uc = 1 describes a left (L) turn, thus obtaining six possible curves

{LRL,RLR,LSL,LSR,RSL,RSR} (21)

The optimization problem of Equation (14) is solved following the refer-
ence trajectory. Then, in accordance with the MPC philosophy, only the first
control input is applied and the optimization is solved iteratively. Figure 2
shows an example of reference trajectory generated using Dubins curves and
followed through MPC. Figure 3 illustrates the roll and pitch control com-
mands computed to follow the trajectory.



14 Stefano Primatesta et al.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

Time (s)

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

C
o
n
tr

o
l 
C

o
m

m
a
n
d
 (

ra
d
)

Roll
Pitch

Fig. 3 The roll and pitch control inputs computed by MPC to follow the trajectory of
Figure 2.

4 Results

4.1 Implementation

The proposed strategy is implemented in C++ using the Robot Operating
System (ROS) [34] framework and using the Open Motion Planning Library
(OMPL) [38], which provides many state-of-the-art sampling-based algorithms
and many additional functionalities to facilitate the development of new algo-
rithms.

The MP-RRT# algorithm is implemented considering a two-dimensional
space, i.e., flying at a fixed altitude. Specifically, the Special Euclidean Group
SE(2) is used, in which each admissible configuration is a pose in the two-
dimensional space free to translate and rotate. Hence, each reference sampled
by the algorithm in the reference space Y consists of three parameters, i.e.,
two defining the position of the UAS and a third defining its orientation, corre-
sponding to the flight direction. Each time the MP-RRT# algorithm evaluates
the motion between two states, a reference trajectory is computed using Du-
bins curves and the MPC computes the optimal state trajectory and control
input to track it.

The motion-cost of the trajectory is computed considering the path length
of the resulting trajectory

c(x, u) =

M∑
i=1

‖xi − xi−1‖2, (22)

with xi ∈ x, and M is the size of the trajectory. On the other hand, the cost-
to-go ĥ(r) is computed as the distance of the Dubins curve between the vertex
r and the goal region Xref .



Title Suppressed Due to Excessive Length 15

(a) (b)

(c) (d)

Fig. 4 The construction of the exploration tree using the MP-RRT# algorithm. The start
and target positions are in green and in red, respectively. The graph GY in the reference
space is colored in blue, while the computed path obtained from the graph GX in the state
space is colored in magenta. In (a), the graph consists of 10 vertices rooted from the start
pose finding an initial solution in the map with a cost (i.e. the path length) of 66.44 m. In
(b), the graph with 20 vertices, in which the solution is improved with a cost of 45.09 m.
In (c), the graph consists of 60 vertices, but the solution is not improved. In (d), the graph
has 100 vertices obtaining a solution with cost 38.70 m.

The optimization problem of the MPC is solved using CVXGEN [28], a tool
for code generation for convex optimization. CVXGEN can be used to generate
fast custom code for small, QP-representable convex optimization problems.
The mathematical problem is translated into a high speed solver that is twelve-
to thousand-times faster than other popular optimizers [28]. Hence, the linear



16 Stefano Primatesta et al.

Parameter Value
ax 0.01
ay 0.01
az 0
kφ 0.9
kθ 0.9
τφ 0.250 s
τθ 0.255 s

Table 1 Parameters used for the UAS model.

model of the UAS and the Linear MPC problem of Equations (13) and (14)
are included and solved with CVXGEN.

Experimental tests are performed considering the multicopter Asctec Fire-
fly and using the parameters listed in Table 1.

The MP-RRT# is executed considering a maximum cruise velocity of 2.5 m/s
and the reference trajectory is computed with Dubins curves with a curvature
radius of 2 m. The admissible control input is defined through the following
constraints:

−0.436 rad ≤Wφd ≤ 0.436 rad (23)

−0.436 rad ≤Wθd ≤ 0.436 rad (24)

−4.80 N ≤ T ≤ 10.19 N (25)

The MPC is manually tuned by setting matrices Qx and R∆ through trial-
and-error to attain a satisfactory behavior in tracking the reference trajectory.
Hence, Qx, and R∆ are defined as follows

Qx =



40 0 0 0 0 0 0 0
0 40 0 0 0 0 0 0
0 0 60 0 0 0 0 0
0 0 0 20 0 0 0 0
0 0 0 0 20 0 0 0
0 0 0 0 0 25 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


, (26)

R∆ =

0.3 0 0
0 0.3 0
0 0 0.0025

 . (27)

Moreover, Qfinal is computed by iteratively solving the Algebraic Riccati Equa-
tion [4].

Figure 2 illustrates an example of reference trajectory computed with Du-
bins curves and connecting two vertices. The trajectory is followed by the MPC
that reaches the target vertex computing the roll and pitch control commands
plotted in Figure 3.



Title Suppressed Due to Excessive Length 17

0 20 40 60 80 100

Number of Vertices

40

45

50

55

60

65

70

75

A
v
e
ra

g
e
 C

o
st

Fig. 5 The average cost of the solution path against the number of vertices in the MP-
RRT# algorithm. The average cost is computed running the algorithm 50 times in the same
scenario of Figure 4.

4.2 Simulation results

The proposed MP-RRT# algorithm is tested in different scenarios to evaluate
its behavior in computing UAS trajectories.

Figure 4 shows the evolution of the graph during the exploration of the
reference space (i.e., the map). Specifically, in Figure 4(a), the algorithm com-
putes a graph with 10 vertices finding an initial solution that is far from the
optimal one. In Figure 4(b), the graph consists of 20 vertices, improving the
solution path. On the contrary, the solution is not improved in Figure 4(c),
with a graph with 60 vertices. Finally, in Figure 4(d), a better solution is found
with a graph with 100 vertices. The previously described test highlights the
ability of the proposed algorithm to explore the map and to compute a feasible
trajectory for the UAS. The quality of the computed trajectory increases with
the number of vertices in the graph, converging toward the optimal solution.
In order to demonstrate the above mentioned pattern, we performed 50 tests
using the same scenario of Figure 4. The average cost of the resulting solution
path against the number of iterations of the MP-RRT# algorithm is shown in
Figure 5.

Considering the same scenario of Figure 4, we evaluate the ability of the
MPC in tracking the reference trajectory defined using Dubins curves. Table 2
reports the average trajectory tracking error in 20 tests. The average tracking
error is the average Euclidean distance between the setpoints of the reference
trajectory defined using Dubins curves and their corresponding states in the
actual state trajectory computed using the MPC and satisfying dynamic con-
straints. The average tracking error along the whole path was found to be
reasonably small, being always smaller than 0.05 m along trajectories with a
length ranging between 43 and 51 m. Figure 6 illustrates the average tracking
error for each of the 20 tests.



18 Stefano Primatesta et al.

Trajectory Length [m] Vertices Avg Tracking Error [m]

1 47.178677 17 0.04951
2 43.488594 17 0.04924
3 49.000358 16 0.04934
4 48.921484 16 0.04940
5 48.720384 18 0.04930
6 47.986777 19 0.05003
7 46.894054 16 0.04931
8 44.604293 15 0.04949
9 51.149531 16 0.04875
10 45.98843 15 0.04938
11 48.523593 18 0.04869
12 47.661833 15 0.05003
13 43.958282 16 0.04825
14 43.825664 14 0.04939
15 49.610042 16 0.04799
16 48.843731 15 0.04838
17 49.636594 17 0.04898
18 45.822011 15 0.04950
19 45.370298 16 0.04885
20 45.527057 16 0.05007

Table 2 Trajectory tracking performance indices collected over 20 trajectories.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Experiment

0.0475

0.048

0.0485

0.049

0.0495

0.05

0.0505

A
v
g
 T

ra
ck

in
g
E
rr

o
r 

[m
]

Fig. 6 The average tracking error for 20 trajectories running the same scenario of Figure 4.

Other tests in more complex maps are shown in Figures 7 and 8. In par-
ticular, Figure 7 shows an interesting scenario, in which Figures 7(a) and 7(b)
present the target in similar positions but with opposite directions. As a conse-
quence, the algorithm computes different solutions in order to reach the target
with the desired flight direction.

Similarly, in Figure 9(a), the MP-RRT# algorithm explores a map with
a graph of 100 vertices computing a solution. The trajectory computed in
Figure 9(a) is also executed in a realistic simulation performed using Gazebo
and SITL frameworks. Gazebo is an open-source multi-robot simulator fully
compatible with ROS [19] able to simulate robots, sensors, and rigid body



Title Suppressed Due to Excessive Length 19

(a) (b)

Fig. 7 Trajectories computed with the MP-RRT# by constructing a graph with 400 ver-
tices. The start and target positions are in green and in red, respectively. In blue, the graph
GY in the reference space, while in magenta, the computed path obtained from the graph
GX in the state space. In (a) and (b) the target is in a similar position, but with opposite
orientation. As a consequence, the solution is completely different, yielding different paths.

Fig. 8 Example of trajectory computed with the MP-RRT# by constructing a graph with
400 vertices. The start and target positions are in green and in red, respectively. In blue the
graph GY in the reference space, while in magenta the computed path obtained from the
graph GX in the state space.

dynamics. SITL (Software In The Loop) [37] is a software to execute an au-
topilot on a computer, without using a specific and dedicated hardware. In
this work, the simulation uses the PX4 autopilot [30], an open-source flight
control software for drones and other autonomous vehicles.



20 Stefano Primatesta et al.

(a)

(b)

Fig. 9 In (a), the trajectory computed with the MP-RRT# algorithm by constructing a
graph of 100 vertices. In (b) the computed trajectory is executed by the PX4 autopilot in a
simulation.

In particular, the state trajectory computed with MP-RRT# is uploaded
on the PX4 autopilot and, then, executed as shown in Figure 9(b). Although
the environment of Figure 9(b) does not correspond to the map of Figure 9(a),
the executed trajectory in Figure 9(b) is the same generated in Figure 9(b).



Title Suppressed Due to Excessive Length 21

5 Conclusions

In this paper, we have introduced a novel kinodynamic sampling-based mo-
tion planning algorithm called MP-RRT#, which enhances the RRT# using a
Model Predictive Control strategy to compute an optimal trajectory for UAS.

Similar to RRT#, the proposed algorithm explores the map constructing
an asymptotically optimal graph. Specifically, two graphs are concurrently
constructed: GY and GX . First, the graph GY explores the reference space of
the UAS. Then, the MPC strategy is used to iteratively evaluate the feasibility
of each newly added vertex and to compute the cost of its corresponding
edge constructing a graph GX of feasible trajectories in the state space. The
resulting trajectory computed by the proposed MP-RRT# algorithm is a near-
optimal trajectory that respects both the kinematic and dynamic constraints
of the UAS.

The proposed MP-RRT# algorithm differs from other kinodynamic RRT-
based algorithms in sampling the input reference of the closed loop system
instead of directly sampling the control input. This gives rise to consider-
able advantages, especially when dealing with vehicles with complex dynamics
where the reference space dimension is considerably smaller than the control
space and state space of the vehicle.

The simulation results obtained from the implementation of the proposed
MP-RRT# algorithm demonstrate good trajectory quality even for complex
maps. Moreover, the computed trajectory is executable by a UAS equipped
with a professional autopilot.

Although the proposed algorithm is tested in a simplified scenario, i.e., in
a two-dimensional space using a linearized model of the UAS, the proposed
MP-RRT# algorithm can be extended to more complex scenarios by increasing
the complexity of the algorithm. Moreover, although the work presented here
focuses on UAS, the proposed motion planning strategy has a general validity,
and can be easily adapted to other kinds of robots, such as ground robots,
autonomous cars, and underwater vehicles.

Future works will extend the current algorithm to solve a three-dimensional
motion planning problem. The proposed MP-RRT# strategy will be adapted
for real-time motion planning problems like the one described in [20][1]. In
addition to that, experimental tests will be conducted on a physical robotic
platform to evaluate the performance under realistic conditions.

Declarations

Funding: this work is partially supported by Compagnia di San Paolo and
by an Amazon Research Award granted to Dr. A. Rizzo.
Conflict of interest/Competing interests: the authors declare neither
conflict of interest, nor competing interests.
Availability of data: not applicable, as no real data have been used to real-
ize this work.



22 Stefano Primatesta et al.

Code availability: the code will be made available upon request.
Authors’ contributions: SP conceived the research and designed a first ver-
sion of the algorithm, AO collaborated to the development of the algorithm,
implemented the Model Predictive Control Strategy, performed the simula-
tions, and evaluated the results. SP and AO drafted a first version of the
manuscript. AR supervised the research and produced a revised version of the
manuscript. All the authors finally revised and agreed on the final version of
the manuscript.
Ethics Approval: Not applicable. (This study does not involve human par-
ticipants, their data or biological material).
Consent to participate and for publication: the manuscript is approved
by all authors for publication.

References

1. Arslan, O., Berntorp, K., Tsiotras, P.: Sampling-based algorithms for optimal mo-
tion planning using closed-loop prediction. In: 2017 IEEE International Conference
on Robotics and Automation (ICRA), pp. 4991–4996. IEEE (2017)

2. Arslan, O., Tsiotras, P.: Use of relaxation methods in sampling-based algorithms for
optimal motion planning. In: 2013 IEEE International Conference on Robotics and
Automation (ICRA), pp. 2421–2428. IEEE (2013)

3. Bloise, N., Primatesta, S., Antonini, R., Fici, G.P., Gaspardone, M., Guglieri, G., Rizzo,
A.: A survey of unmanned aircraft system technologies to enable safe operations in urban
areas. In: 2019 International Conference on Unmanned Aircraft Systems (ICUAS), pp.
433–442. IEEE (2019)

4. Borrelli, F., Bemporad, A., Morari, M.: Predictive control for linear and hybrid systems.
Cambridge University Press (2017)

5. Camacho, E.F., Alba, C.B.: Model predictive control. Springer Science & Business
Media (2013)

6. Čáp, M., Novák, P., Vokř́ınek, J., Pěchouček, M.: Multi-agent RRT*: Sampling-based
cooperative pathfinding. arXiv:1302.2828 (2013)

7. Chen, Y., Peng, H., Grizzle, J.W.: Fast trajectory planning and robust trajectory track-
ing for pedestrian avoidance. IEEE Access 5, 9304–9317 (2017)

8. Donald, B., Xavier, P., Canny, J., Reif, J.: Kinodynamic motion planning. J. ACM
(JACM) 40(5), 1048–1066 (1993)

9. Dubins, L.E.: On curves of minimal length with a constraint on average curvature, and
with prescribed initial and terminal positions and tangents. Amer. J. Math. 79(3),
497–516 (1957)

10. Frazzoli, E., Dahleh, M.A., Feron, E.: Real-time motion planning for agile autonomous
vehicles. J. Guid. Control Dyn. 25(1), 116–129 (2002)

11. Hansen, K.D., la Cour-Harbo, A.: Waypoint planning with Dubins curves using genetic
algorithms. In: 2016 European Control Conference (ECC), pp. 2240–2246. IEEE (2016)

12. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of
minimum cost paths. IEEE Trans. Syst. Sci. and Cybern 4(2), 100–107 (1968)

13. Howard, T.M., Kelly, A.: Optimal rough terrain trajectory generation for wheeled mobile
robots. Int. J. Robot. Res. 26(2), 141–166 (2007)

14. Ji, J., Khajepour, A., Melek, W.W., Huang, Y.: Path planning and tracking for vehi-
cle collision avoidance based on model predictive control with multiconstraints. IEEE
Trans. Veh. Technol. 66(2), 952–964 (2016)

15. Kamel, M., Burri, M., Siegwart, R.: Linear vs nonlinear MPC for trajectory tracking
applied to rotary wing micro aerial vehicles. IFAC-PapersOnLine 50(1), 3463–3469
(2017)

https://arxiv.org/abs/1302.2828


Title Suppressed Due to Excessive Length 23

16. Karaman, S., Frazzoli, E.: Optimal kinodynamic motion planning using incremental
sampling-based methods. In: 49th IEEE Conference on Decision and Control (CDC),
pp. 7681–7687. IEEE (2010)

17. Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning. Int.
J. Robot. Res. 30(7), 846–894 (2011)

18. Karaman, S., Walter, M.R., Perez, A., Frazzoli, E., Teller, S.: Anytime motion planning
using the RRT. In: 2011 IEEE International Conference on Robotics and Automation
(ICRA), pp. 1478–1483. IEEE (2011)

19. Koenig, N.P., Howard, A.: Design and use paradigms for gazebo, an open-source multi-
robot simulator. In: 2004 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), vol. 4, pp. 2149–2154 (2004)

20. Kuwata, Y., Teo, J., Fiore, G., Karaman, S., Frazzoli, E., How, J.P.: Real-time motion
planning with applications to autonomous urban driving. IEEE Trans. Control Syst.
Technol. 17(5), 1105–1118 (2009)

21. Latombe, J.C.: Robot motion planning, vol. 124. Springer Science & Business Media
(2012)

22. Lau, B., Sprunk, C., Burgard, W.: Kinodynamic motion planning for mobile robots
using splines. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 2427–2433. IEEE (2009)

23. LaValle, S.M.: Planning algorithms. Cambridge University Press (2006)
24. LaValle, S.M., Kuffner Jr, J.J.: Randomized kinodynamic planning. Int. J. Robot. Res.

20(5), 378–400 (2001)
25. Li, L., Miao, Y., Qureshi, A.H., Yip, M.C.: MPC-MPNet: Model-Predictive Motion

Planning Networks for Fast, Near-Optimal Planning under Kinodynamic Constraints.
arXiv:2101.06798 (2021)

26. Lin, P., Chen, S., Liu, C.: Model predictive control-based trajectory planning for quadro-
tors with state and input constraints. In: 2016 16th International Conference on Control,
Automation and Systems (ICCAS), pp. 1618–1623. IEEE (2016)

27. Masoud, A.A.: Kinodynamic motion planning. IEEE Robot. Autom. Mag. 17(1), 85–99
(2010)

28. Mattingley, J., Boyd, S.: CVXGEN: A code generator for embedded convex optimiza-
tion. Optim. Eng. 13(1), 1–27 (2012)

29. McLain, T., Beard, R.W., Owen, M.: Implementing Dubins airplane paths on fixed-wing
UAVs (2014)

30. Meier, L., Honegger, D., Pollefeys, M.: PX4: A node-based multithreaded open source
robotics framework for deeply embedded platforms. In: 2015 IEEE International Con-
ference on Robotics and Automation (ICRA), pp. 6235–6240. IEEE (2015)

31. Naderi, K., Rajamäki, J., Hämäläinen, P.: RT-RRT* a real-time path planning algorithm
based on RRT. In: 2015 8th ACM SIGGRAPH Conference on Motion in Games (MIG),
pp. 113–118 (2015)

32. Noreen, I., Khan, A., Habib, Z., et al.: Optimal path planning using RRT* based ap-
proaches: a survey and future directions. Int. J. Adv. Comput. Sci. Appl 7(11), 97–107
(2016)

33. Perez, A., Platt, R., Konidaris, G., Kaelbling, L., Lozano-Perez, T.: LQR-RRT*: Op-
timal sampling-based motion planning with automatically derived extension heuristics.
In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 2537–
2542. IEEE (2012)

34. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng,
A.Y.: ROS: an open-source Robot Operating System. In: ICRA workshop on open
source software, vol. 3, p. 5 (2009)

35. Shakhatreh, H., Sawalmeh, A.H., Al-Fuqaha, A., Dou, Z., Almaita, E., Khalil, I., Oth-
man, N.S., Khreishah, A., Guizani, M.: Unmanned aerial vehicles (UAVs): A survey on
civil applications and key research challenges. IEEE Access 7, 48572–48634 (2019)

36. Siegwart, R., Nourbakhsh, I.R., Scaramuzza, D.: Introduction to autonomous mobile
robots. MIT press (2011)

37. SITL contributors: SITL guide. http://ardupilot.org/dev/docs/sitl-simulator-

software-in-the-loop.html (2020)

https://arxiv.org/abs/2101.06798
http://ardupilot.org/dev/docs/sitl-simulator-software-in-the-loop.html
http://ardupilot.org/dev/docs/sitl-simulator-software-in-the-loop.html


24 Stefano Primatesta et al.

38. Şucan, I.A., Moll, M., Kavraki, L.E.: The Open Motion Planning Library. IEEE
Robot. Autom. Mag. 19(4), 72–82 (2012). doi:10.1109/MRA.2012.2205651. http:

//ompl.kavrakilab.org

39. Tang, S., Kumar, V.: Autonomous flight. Annu. Rev. Control Robot. Auton. Syst. 1,
29–52 (2018)

Stefano Primatesta is a post-Ph.D. Assistant Researcher with the De-
partment of Mechanical and Aerospace Engineering. He received his Ph.D. in
Computer and Control Engineering from Politecnico di Torino in 2019, and his
B.S in Electronic Engineering and the M.S. in Mechatronic Engineering from
Politecnico di Torino in 2011 and 2014, respectively. His field of research is the
use of Remotely Piloted Aircraft Systems in urban environments including
virtual modeling and multi-dimensional risk analysis. His research interests
include also autonomous navigation and service robotics, with applications on
unmanned aerial vehicles and unmanned ground vehicles.

Osman Abdalla is a Ph.D. student in the Department of Electrical, Elec-
tronics and Communications Engineering at Politecnico di Torino, Italy. He
received his M.Sc. in Mechatronics Engineering for Politecnico di Torino in
2016. In 2017 he started his PhD with the Complex Systems Laboratory, di-
rected by Prof. Alessandro Rizzo, and the PIC4SeR (Interdipartimental center
for service robotics), directed by Prof. Marcello Chiaberge, researching on com-
puter vision and control systems for robotic applications.

Alessandro Rizzo received the Laurea degree (summa cum laude) in
computer engineering and the Ph.D. degree in automation and electronics en-
gineering from the University of Catania, Italy, in 1996 and 2000, respectively.
In 1998, he worked as a EURATOM Research Fellow with JET Joint Under-
taking, Abingdon, U.K., researching on sensor validation and fault diagnosis
for nuclear fusion experiments. In 2000 and 2001, he has worked as a Research
Consultant at ST Microelectronics, Catania Site, Italy, and as an Industry
Professor of robotics with the University of Messina, Italy. From 2002 to 2015,
he was a tenured Assistant Professor with the Politecnico di Bari, Italy. Since
2012, he has been a Visiting Professor with the New York University Tandon
School of Engineering, Brooklyn, NY, USA.

In November 2015, he joined Politecnico di Torino, where he is an Asso-
ciate Professor in the Department of Electronics and Telecommunications and
established the Complex Systems Laboratory. Dr. Rizzo is engaged in con-
ducting and supervising research on complex networks and systems, modeling
and control of nonlinear systems, and cooperative robotics. He is the author of
two books, two international patents, and about 180 papers on international
journals and conference proceedings. He has been a recipient of the Award for
the Best Application Paper at the IFAC world triennial conference in 2002
and of the Award for the Most Read Papers in Mathematics and Computers
in Simulation (Elsevier) in 2009. He has also been a Distinguished Lecturer of
the IEEE Nuclear and Plasma Science Society and one of the recipients of the
2019 Amazon Research Awards.

https://doi.org/10.1109/MRA.2012.2205651
http://ompl.kavrakilab.org
http://ompl.kavrakilab.org

	Introduction
	Problem Formulation
	The MP-RRT# strategy
	Results
	Conclusions

