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Abstract

This paper presents advanced kinematic beam models to compute the dis-
persion characteristics of one-dimensional guides. High-order functions are
used to interpolate the primary variables above the waveguide cross-section
and along its axis. Taylor- and Lagrange-type bi-dimensional expansions
are employed to describe the section deformation, while Lagrangian shape
functions approximate the displacement field along the propagating direc-
tion. According to the Wave Finite Element Method, the stiffness and mass
matrices corresponding to various structural theories are post-processed to
build the transfer matrix of a representative waveguide portion. The Carrera
Unified Formulation is exploited to calculate these matrices.

keywords : dispersion analyses; periodic structures; waveguide; WFEM;
advanced finite beam element; Floquet-Bloch theory
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1. Introduction

The wave propagation problem is of great interest in several engineer-
ing fields. The knowledge of energy transfer mechanisms through structural
components enables one to predict the level of acoustic emissions and vibra-
tions and, whenever possible, conceive strategies to reduce them. The related
literature is vast and includes studies based on analytical, semi-analytical,
and numerical approaches. Analytical solutions, which are often referred to
as exact solutions, are available only for simple waveguide geometries such
as thin rods, beams with compact cross-sections, membranes, thin plates,
and shells [1]. Such relations rely on simplified stress and strain fields that
are not (in general) representative for complex structures. Thus, arbitrary-
shaped waveguides must be examined by utilizing either semi-analytical or
numerical techniques. The adjective semi-analytical implies that the wave-
field is somehow described exactly, by assuming harmonic displacement vari-
ations along the propagating direction. Among others, the Dynamic Stiffness
(DS) method allows one to derive exact elemental dynamic stiffness matri-
ces that can be assembled to analyze complicated geometries, similarly to
the Finite Element (FE) method. Wave modes, namely the deformation
modes of the waveguide, can be calculated with different kinematic fields.
One- and two-dimensional DS formulations were developed by adopting the
Euler-Bernoulli, Timoshenko, Mindlin, and Reddy’s models [2, 3, 4, 5], and
arbitrary-order structural theories [6]. The problem deriving from the DS
formulation is nonlinear, and its solution requires iterative algorithms to cal-
culate natural frequencies and eigenmodes. Other semi-analytical approaches
exploit the FE method advantages by conceiving specific approximating func-
tions. For example, Doyle [7] introduced the concept of dynamic shape func-

tion to simulate the harmonic variations of primary variables between two or
more nodes. These functions are defined in the Fourier domain, therefore they
are frequency-dependent and complex-valued. This finite element formula-
tion, also referred to as the Fast Fourier Transform (FFT)-based Spectral
Finite Element (SFE) method, allows one to predict the dynamic structural
response at high frequencies with few elements [8] since the inertial effect is
being described exactly. However, the FFT-SFE method has been mainly
utilized to develop low-order finite elements due to the difficult derivation of
dynamic shape functions for arbitrary kinematic theories [9, 8, 10]. An alter-
native FE-based technique uses orthogonal polynomials, such as Lagrange,
Chebyshev, and Legendre expansions, to derive p-version elements whose or-
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der can be selected according to the considered frequency range. Such an
approach was employed to develop solid [11, 12], plate [13], and advanced
beam [14] elements. Other spectral solutions conceptually different from the
above methodologies were obtained by meshing the section waveguide with
finite elements and adopting analytic solutions along the propagation direc-
tions. The FE discretization performed with both conventional [15, 16] and
spectral formulations [17, 18] enables the detection of many mode shapes and
the analysis of complex waveguides.
The Wave Finite Element (WFE) method is undoubtedly one of the most
powerful techniques to analyze periodic waveguides. The methodology en-
ables calculating a structural member’s dispersion characteristics by only
discretizing a small part of its domain. Bloch periodic conditions are applied
by postprocessing the representative segment’s dynamic stiffness matrix. The
WFE method offers two prominent advantages with respect to other spectral
techniques, namely the possibility of using standard FE packages and the
reduction of the mathematical domain to be discretized. This approach was
applied to investigate free and forced vibrations of one- and two-dimensional
waveguides with prismatic sections such as thin-walled structures [19, 20, 21],
fluid-filled pipes [22], laminates, and sandwich configurations [23, 24, 25, 26].
Furthermore, other applications studied multi-section waveguides to obtain
either dispersion characteristics of stiffened structures [27] or metastructures
pass/stop bands [28, 29, 30, 31]. The literature review reveals that periodic
segments with complex and highly deformable sections are usually modeled
with either plates or brick elements to capture as many wave modes as pos-
sible. In contrast, beam elements are adopted when the waveguide section
experiences rigid bending, longitudinal and torsional deformations.
This paper aims at employing advanced finite beam elements within the WFE
framework to investigate the propagation mechanisms of one-dimensional
guides. The Carrera Unified Formulation (CUF) is utilized to derive the dy-
namic stiffness matrices of the waveguide portion related to arbitrary kine-
matic theories. The finite element mesh is placed along the propagation
direction of waves, while the displacement field above the guide cross-section
is approximated with Taylor- and Lagrange-type bi-dimensional polynomi-
als. The FE shape functions are one-dimensional Lagrangian functions of
the axial coordinate, whose orders depend on the number of element nodes.
Linear, quadratic, and cubic approximations are obtained by utilizing beam
elements with two, three, and four nodes, respectively. With the Taylor
expansions, the displacement field can be enriched in a spectral sense by
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merely raising the polynomial degree. The Lagrange approach enables one
to refine the kinematic description by increasing either the polynomial order
or the number of subdomains utilized to model the waveguide section. The
CUF-based beam elements were quite extensively adopted for the analysis
of composite structures [32, 33], aerospace constructions [34, 35], and many
other applications, including rotor-dynamics [36, 37] and multifield problems
[38, 39]. Comparisons with analytical and standard FE solutions reported
in the mentioned works demonstrate the computational efficiency and the
significant level of accuracy that can be achieved with CUF elements. The
next section briefly reviews the WFE method and the unified formulation
and then dispersion diagrams of three one-dimensional waveguides obtained
with different kinematic theories are reported and discussed.

2. Theoretical section

The WFE method makes use of standard FE matrices for modeling the
wave propagation mechanisms throughout one or more spatial directions and
its implementation is rather straightforward. Figure 1 schematically shows
the modelization of a waveguide portion, whose lenght is assumed to be equal
to ∆.

According to the unified formulation, the displacement field uT = (ux uy uz)
T ,

which is function of the three spatial coordinates (x, y, z) and time (t), is
written as

u(x, y, z, t) = Fτ (x, z)Ni(y)qiτ (t) 1 ≤ i ≤ ne 1 ≤ τ ≤ M (1)

where Fτ (x, z) and Ni(y) are functions defined above the waveguide sec-
tion and along its perpendicular direction, respectively. The vector qiτ (t)
collects the nodal generalized coordinates for each pair of τ and i indexes.
Terms Ni(y) are the Lagrangian shape functions [40] defined along each finite
beam element used to discretize the segment. The polynomial degree depends
on the number of structural nodes (ne) belonging to the beam element. Lin-
ear, quadratic, and cubic elements are obtained with two (B2), three (B3),
and four (B4) nodes, respectively. The mathematical model can consist of
several elements with different approximating degrees. On the other hand,
the structural theory is developed by utilizing an arbitrary number (M) of
functions Fτ (x, z). In this work, two polynomial bases are adopted to ap-
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proximate the kinematic field, namely the Taylor and Lagrange expansion
classes (denoted to as TE and LE). A generic N -order TE model (TEN)

includes M= (N+1)(N+2)
2

power functions of the entire waveguide section co-
ordinates. According to the LE approach, the section geometry is divided
into a number of subdomains on which two-dimensional Lagrange functions
are defined. The LE polynomial degree is determined by the number of nodes
used to delimit each subdomain. Thus, bi-linear, bi-quadratic, and bi-cubic
Lagrange functions are obtained with four (LE4), nine (LE9), and sixteen
(LE16) nodes, respectively. The number of terms included in the kinematic
field, M , is the total number of nodes belonging to the cross-section. The gen-
eralized coordinates of LE-based elements are only displacements, while TE
models also encompass rotations and higher-order quantities. It should be
highlighted that the FE discretization is not related to the sectional approxi-
mation; therefore, the segment length, ∆, can be selected arbitrarily. Instead,
solid and plate FE models must fulfill the aspect-ratio condition of elements
to perform reliably. Hence the discretizations along the three (or two) direc-
tions are mutually correlated. The use of Eq. 1 into a variational statement
such as the Principle of Virtual Displacements or Hamilton’s Principle leads
to the so-called fundamental nuclei (FN) of FE matrices and vectors. Such
operators are, for purely mechanical problems, 3-by-3 matrices and 3-by-1
vectors, whose components depend on neither the number of terms included
in the kinematic expansion nor the class of approximating functions. Thanks
to the indicial CUF formalism, motion equations corresponding to arbitrary
kinematic fields of the waveguide segment can be derived with ease. The
equations are

(K + jωC− ω2M)q = F ; D̃(ω)q = F (2)

where K, C, and M are, respectively, the stiffness, damping, and mass
matrices, F is the vector of the nodal forces, and q is the vector of the degrees
of freedom. The matrix D̃ = (K + jωC − ω2M) is, instead, the dynamic
stiffness. It should be highlighted that Eq. 2 relies on the assumption that
both forces and displacements are harmonic in time. It is possible to associate
each term of matrices and vector in Eq. 2 to the left (L), right (R), and
interior (I) nodes of the one-dimensional finite element model (see Fig. 1)
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



D̃LL D̃LI D̃LR

D̃IL D̃II D̃IR

D̃RL D̃RI D̃RR









qL

qI

qR



 =





FL

FI

FR



 (3)

If FI = 0, the system dimension can be reduced by expressing the interior
degrees of freedom qI in terms of qL and qR. Thus, Eq. 2 becomes

(

DLL DLR

DRL DRR

) (

qL

qR

)

=

(

FL

FR

)

(4)

Expressions of matrices DLL, DLR, DRL, and DRR can be found in Ref.
[24]. According to Bloch’s theorem, the relation between the displacements
and forces at the left and right sides of the periodic structure is

(

qR

FR

)

= λy

(

qL

−FL

)

with λy = e−jk∆ (5)

where k is the wavenumber, and the product (-jk∆) is the complex prop-
agation constant. The periodic and equilibrium conditions for displacements
and forces between two adjacent sections (denoted as s1 and s2) are

(

qs1
R

Fs1
R

)

=

(

qs2
L

−Fs2
L

)

(6)

By using Eqs. 4, 5, and 6, the dispersion problem becomes

T

(

qL

−FL

)

= λy

(

qL

−FL

)

; T =

(

−D−1
LRDLL D−1

RL

−DRL + DRRD
−1
LRDLL −DRRD

−1
LR

)

(7)

where T is the transfer matrix. Equation 7 is solved for different propaga-
tion frequencies in order to calculate the eigenvalues λy, which are functions
of the wavenumber k. Real eigenvalues correspond to propagating waves,
imaginary ones to evanescent waves, while the complex values are related to
attenuating waves. Eigenvectors collect coefficients to be used in the kine-
matic expansion for the computation of mode shapes and force distributions
above the cross-section. If the left beam node has DOFL degrees of freedom,
the procedure requires the solution of a (2 DOFL) system.
Alternatively, the dispersion problem can be posed by expressing the un-
knowns vector as follows
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



qL

qI

qR



 = ΛR

(

qL

qI

)

; ΛR =





I 0
0 I

λyI 0



 (8)

where the identity sub-matrices can have different dimensions. If no exter-
nal forces are exerted on the waveguide segment, the equilibrium conditions
become

ΛL





FL

FI

FR



 = 0 ; ΛL =

(

I 0 0
0 I λ−1

y I

)

(9)

Substituting Eqs. 8 and 9 in Eq. 2, equations of motion are as follow

(ΛLKΛR + jωΛLCΛR − ω2ΛLMΛR)q̄ = 0 (10)

where q̄ = (qL qI)
T. Equation 10 provides propagation frequencies at

which wave modes propagate for given wavenumbers. Since inputs for the
analysis are purely real propagation constants, the resulting dispersion char-
acteristics are related to propagating waves only. The system dimension is,
in this case, (DOFL+DOFI) where DOFI refers to the internal degrees of
freedom.

3. Numerical results

The following section presents the dispersion diagrams on the ω (f) −
k plane of different one-dimensional waveguides. The mixed interpolation
of tensorial component formulation has been adopted to mitigate potential
shear locking issues due to the finite element approximation.

3.1. Dispersion curves of compact rectangular cross-sections: isotropic and

sandwich cases

The first numerical applications concerned a rectangular cross-section,
which was 0.116 mm wide and 0.055 mm thick. For the isotropic case, the
Young modulus, Poisson’s ratio, and density were assumed equal to 9.8 Gpa,
0.3, and 1580 kg m−1. This simple configuration was considered to investigate
the effects of the kinematics and the finite beam element order on dispersion
characteristics’ computation. Figure 2 shows the frequency spectra of two
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waveguides obtained with different FE discretizations and the same kine-
matic theory, namely the first-order Taylor-type expansion (TE1). For ∆ =
0.02 m and wavenumbers larger than 40 rad m−1, the propagation curves
predicted by the model consisting of a single finite linear element (1-B2)
differ from those obtained with higher-order formulations (1-B3 and 1-B4).
Although the mesh refinement with two (2-B2) and three 2-node (3-B2) ele-
ments lessened such discrepancies, the use of higher-order FE is advantageous
from the computational perspective since the 2-B2 and 3-B2 models have the
same numbers of degrees of freedom of the 1-B3 and 1-B4 discretizations, re-
spectively. For the shortest segment (∆ = 0.002 m), the various FE models
provided the same results within the considered wavenumber interval.

On the other hand, Fig. 3 compares the frequency spectra calculated
with the second-, third-, and fifth-order Taylor-like expansions by utilizing
1-B2 along the waveguide axis. Differently to what was observed for the
TE1 theory, which only detected propagating and evanescence waves, ad-
vanced kinematics enabled attenuating waves (red dots in the graphs) to be
characterized.

Apart from detecting new wave modes, the rising of the theory order led
to shifts of curves related to propagating waves toward lower frequencies.
Figure 4 aims at showing such an effect by comparing results obtained with
the second- and fifth-order Taylor-type theories. The section deformations
corresponding to these dispersion curves are shown in Fig. 5.

As far as the sandwich configuration is concerned, the waveguide was
assumed to be made up of a soft-core 50 mm thick embedded between two
stiff layers with a thickness equal to 2.5 mm each. Material properties of the
skin layers were E = 9.8 GPa, ν = 0.3 and ρ = 1580 kg m−3 while those of
the core were assumed equal to E = 0.094 GPa, ν = 0.3 and ρ = 101 kg m−3.
The waveguide portion was 2 mm long, and one linear finite beam element
was utilized along the propagation direction. Figure 6 shows the dispersion
curves of two propagating wave modes computed with various Taylor-like
models and a Lagrange-type solution. The LE kinematics was obtained by
discretizing the cross-section with ten 9-node Lagrange elements (10-LE9);
Two and three LE elements were utilized along the thickness direction for
the skin layers and the core, while two elements were used along the width.

For comparison purposes, the graph reports the 3D finite element solution
presented in Ref. [41]. The significant transversal anisotropy of the section
required refined kinematics to describe the wave propagation mechanisms ad-
equately. From the zoom-in picture, it is possible to observe how the order
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increasing allowed the 3D solution to be approximated more and more ac-
curately. Moreover, it is interesting to note that the third- and fourth-order
TE theories predicted negative group velocities (dω /dk) of the compres-
sional wave for 4000 < frequency < 5000 Hz, while the remaining CUF
theories and the reference solution provided positive values. Figures 7 shows
dispersion curves corresponding to high-order wave modes computed with
the LE model. Apart from mode shapes dominated by flexural, axial, and
torsional displacements, the CUF solution allowed one to capture thickness
deformations, as illustrated in Fig. 8.

3.2. Dispersion curves of a box beam

The structure had outer dimensions, and the wall thickness equal to 102,
52, and 2 mm, respectively. The material was an aluminum with E = 71
GPa, ν = 0.33, and ρ = 2700 kg m−1. The portion considered for numer-
ical simulations (1 mm long) was discretized by utilizing one linear beam
element (1-B2), while the cross-section was modeled with the Lagrange-type
solutions, schematically depicted in Fig. 9.

Curves related to flexural, torsional, axial, and shell-type mode shapes
are shown in Fig. 10. Moreover, results obtained with a two-dimensional FE
model consisting of five CQUAD4 elements per edge [19] are reported for
comparison purposes.

CUF solutions provided comparable results for flexural modes about the
z-axis (curves (b) and (h)), the axial (curve (d)), and torsional (curve (c))
wave modes. Branch variations related to other waves, instead, differ sig-
nificantly. Shell-type/torsional (S/T), pumping (P) and shell-type/flexural
(S/Fx and S/Fz) distortions are illustrated in Fig. 11 together with the
corresponding cut-on frequencies.

The refined mesh determined cut-on frequencies reductions of roughly 7,
11, and 40% for the S/T, P, and S/Fx deformations. For the flexural wave
mode about the x-axis (curve (a)), the two models significantly differ for
wavenumbers larger than 10 rad s−1. Dispersion curves obtained with the
present approach generally have higher slopes (wavenumbers increase more
rapidly with the frequency) than those proposed in the reference paper. Such
a discrepancy could be ascribed to two factors: 1) the different edge kine-
matics descriptions of the two approaches, and 2) the 2D mesh convergence.
As far as the first aspect is concerned, the structure contour is moderately
thick; therefore, a linear kinematic assumption along the thickness could not
be enough to detect in- and out-of-plane warpings of edges, especially for
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short wavelengths. The second observation can be justified by merely com-
paring the cut-on frequencies obtained with the plate and 1D-CUF solutions.
Figure 12 illustrates real and imaginary wave modes at different wavenumbers
corresponding to curves (a) and (b) of Fig. 10.

For wavenumbers lower than approximately 10 rad s−1, flexural waves
are dominated by section rigid transverse motions, while edge deformations
become more and more detectable as the propagating frequency increases.
From Fig. 10, it is possible to observe that branches (a) and (b) veer and
rapidly diverge away within the interval 10< k <20, namely, when they ap-
proach the curves (f) and (g). For larger wavenumbers (k > 20), the real wave
modes have similarities with the coupled shell/flexural deformations of Fig.
11, while imaginary eigenmodes exhibit significant out-of-plane warpings.

4. Conclusion

This paper assessed the capabilities of high-order beam elements in calcu-
lating the dispersion characteristics of various one-dimensional waveguides.
Stiffness and mass matrices of a finite waveguide portion were computed with
a unified formalism and used to build the transfer matrices according to the
WFE method. Simulations were performed on compact isotropic and sand-
wich waveguides and a metallic box beam with a moderately-thick contour.
The finite element discretization was exploited along the wave propagation
direction, while expansions based on Taylor- and Lagrange-like polynomials
were adopted to approximate the displacement field above the waveguide
section. Results revealed that higher-order functions along the propagation
direction provided convergent results for wider wavenumber intervals than
models with the same degrees of freedom consisting of linear elements. More-
over, the use of advanced theories allowed one to detect higher-order wave
modes, which involved in- and out-of-plane warpings of the cross-section. The
finite beam element dimension does not influence the cross-section kinematic
model; therefore, arbitrary lengths of waveguide segment can be modeled
with roughly the same number of degrees of freedom. The 3D-FE approach
does not present such a feature since the elements aspect-ratio constraint
must be fulfilled along the three spatial directions to provide reliable results.
The 1D-CUF approach can be considered a reliable and viable alternative to
2D and 3D finite element solutions for computing dispersion characteristics
of complex waveguides.
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Figure 2: Curves related to propagating and evanescence waves of the isotropic rectangular
section. Continuous black curves: 1-B2; continuous red curves: 2-B2; continuous blue
curves: 3-B2; Dashed curves: 1-B3; Line-dot curves: 1-B4. Used kinematic theory: TE1.
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Figure 3: Curves related to propagating, evanescence and attenuating waves of the
isotropic rectangular section. Continuous black curves: propagating and evanescence
waves; red dots: attenuating waves. ∆ = 0.002 m; FE discretization: 1-B2.

19



0 20 40 60

Wavenumber [rad/m]

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

F
re

q
u

e
n

c
y
 [

H
z
]

Mode (a)

(b)

(c)

(d)

(e)

(f)

TE5

TE2

Figure 4: Disperison curves related to propagating waves of the isotropic rectangular
section. ∆ = 0.002 m; FE discretization: 1-B2.
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Figure 7: Disperison curves related to the first ten propagating waves of the sandwich
rectangular section. ∆ = 0.002 m; FE discretization: 1-B2, kinematic model: 10-LE9.
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Figure 9: LE models of the box beam: (a) 12-LE9 (432 DOF); (b) 16-LE9 (576 DOF).
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Figure 10: Dispersion curves of a box metallic beam computed with 12-LE9 (solid curves)
and 16-LE9 (dashed curves) models. Wave modes: (a) flexural - x; (b) flexural - z; (c)
torsional; (d) axial; (e) pumping; (f) shell-type/torsional; (g) shell-type/flexural-x; (h)
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Figure 11: Wave modes of the box beam and related cut-on frequencies. I) Shell-
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IV) Shell-like/flexural about the z-axis z.
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parts are adimensionalized with respect to the maximum wavevector module.
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