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Abstract—Classical design of Analog-to-Information convert-
ers based on Compressive Sensing uses random projection
matrices made of independent and identically distributed entries.
Leveraging on previous work, we define a complete and extremely
simple design flow that quantifies the statistical dependencies in
projection matrices allowing the exploitation of non-uniformities
in the distribution of the energy of the input signal. The energy-
driven reconstruction concept and the effect of this design tech-
nique are justified and demonstrated by simulations reporting
conspicuous savings in the number of measurements needed for
signal reconstruction that approach 50%.

I. INTRODUCTION

Analog-to-Information (A2I) converters aim at working on
an amount of resources (hardware, time, energy, etc.) that
depends on the rate of information contained in the signals to
acquire, rather than their physical features (e.g. their overall
bandwidth). Their design and implementation has attracted
increasing interest as a way, for example, of deploying ex-
tremely economical interfaces between the real world and
digital processing devices that, under suitable assumptions,
are able to work below classical resource limits such as the
Nyquist rate [1].

The core idea derives from Compressive Sensing (CS) [2, 3]
in which the information content of a signal is identified with
the number K of non-null coefficients needed to express it in
a suitably defined signal basis, and the acquisition amounts
to projecting the signal itself on a number M of testing
waveforms.

The architecture of the most straightforward Analog-to-
Information converter is equivalent to Figure 1, in which
the signal is sampled N times in a given time window,
the samples are multiplied by suitably generated coefficients,
and the products are accumulated to yield the projections
y0, . . . , yM−1. Projection y0 is obtained by using coeffi-
cients Φ0,0, . . . ,Φ0,N−1, projection y1 by using coefficients
Φ1,0, . . . ,Φ1,N−1, and so on. The measurements are then
ready to be possibly converted into digital words at the end
of the sampling window.

In a given time window, the signal x(t) is naturally rep-
resented by a set of N samples contained in the vector x,
thus can be expressed as a linear combination of vectors in an
N -dimensional basis. Yet, if it is known that the number of
non-null coefficients in that linear combination is K � N for
any interesting instance, one may prove that the whole x can

Fig. 1. Block scheme of an Analog-to-Information converter based on
Compressive Sensing.

be recovered from a number of projections M that is much
smaller than N and depends on K.

To formalize this concept align the basis vectors as columns
of an N × N matrix Ψ, so that x = Ψα for a certain N -
dimensional vector of coefficients α, of which only K are
known to be non-null for every realization of x.

Projection is a linear operation, thus we define an M ×N
matrix Φ such that the vector y of M measurements is y =
Φx = ΦΨα = Θα, where Θ is implicitly defined. Since Θ is
an M ×N matrix and M < N , recovering α from y is only
possible by leveraging on the a priori assumption that only K
of N components α are non-null, i.e. that α is K-sparse.

There is a flourishing literature on algorithms that perform
sparse signal recovery [4, 5]; for the sake of simplicity we
will adopt here the most classical solution, i.e. recovering α
by minimizing

∑N−1
j=0 |αj | subject to the constraint y = Θα,

which is a linear programming (LP) problem [6, 7].
Such a method is formally guaranteed to work if the matrix

Θ obeys some conditions, the most widely employed being
the Restricted Isometry Property (RIP) [8]. Since it turns out
that many classes of random matrices are such that almost all
the corresponding instances satisfy the RIP, the architecture
in Figure 1 is commonly implemented to deliver M random
projections of the signal x.

This common design method can be improved when, in
addition to the sparsity assumption, we know that (as it is
almost always the case) the energy of the signal to acquire
is not evenly distributed along all directions, i.e., x is not the
realization of a white process. We call such signals localized.

This has been shown in [9–11] where a criterion was
introduced to statistically design the matrix Φ so that the Φj,k
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are not independent and identically distributed (i.i.d.) random
variables but are tuned to rake as much average energy as
possible from the process to sense.

Brought to its extreme consequences, this would imply
projecting only along a single direction, thus preventing the de-
tection of signals in all other orthogonal directions. To prevent
this overtuning, the second-order statistics of the projection
waveforms appearing as the rows of Φ are chosen by solving
an optimization problem maximizing the average energy of
the measurements, while simultaneously guaranteeing that the
projections are still random enough to capture energy even
from less probable instances.

With this, the trade-off between the specialization needed to
increase the measurement energy and the randomness needed
to statistically span the whole signal space is administered by
empirically setting a single real parameter r whose value is
established by numerical and application-specific optimization.

The method described in [11] also lacked a formal definition
of the localization concept on which rakeness-based design
hinges, of its consequences on the measurement energy, as
well as a clear connection between measurement energy and
quality of the reconstruction.

This paper aims at taking a few steps forward in the
complete definition of a rakeness-based design flow based
on a clearer understanding of the link between localization,
measurement energy and reconstruction quality, so that no
trial-and-error tuning on r is needed to outperform blind i.i.d.
design.

II. ENERGY-DRIVEN RECONSTRUCTION

One of the most useful features of CS by linear projections
is the so called “phase transition” [12, 13], i.e., the fact that
for a fixed K and N , there is a critical M̄ for the number
of measurements in y such that M > M̄ measurements are
almost always enough to successfully reconstruct the input
signal x from y, while M < M̄ measurements are almost
always insufficient.

Clearly, the exact M̄ depends on the definition of recon-
struction quality and on the threshold deciding when it is
satisfactory, and its quantification is a key step in CS theory.

RIP-based guarantees on M̄ [8] intrinsically consider
isotropic projections since the main requirement on which they
rely is that the matrix Θ is approximately an isometry when
it is applied to any K-sparse vector.

On the contrary, rakeness-based design exploits non-
uniformities in the statistics of the K-sparse vectors to design
Θ and thus cannot exploit RIP-related results but at the price
of a worst-case analysis that loosens performance guarantees.

Regrettably, RIP-based guarantees themselves may substan-
tially underestimate phase transitions [14] and this makes the
RIP analysis of the matrices implied by rakeness-based design
useless for performance optimization.

For this reason, what we explore here is energy-driven
reconstruction and, in preparation for a further theoretical step,
we do so by numerically analyzing a toy system.

In particular, we consider unit-energy, K-sparse vectors α
whose nonzero entries are i.i.d. Gaussian random variables
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Fig. 2. Probability of successful reconstruction (PSR) for maximum energy
projections (solid lines) versus i.i.d. projections (dotted lines) at different
sparsity levels

with zero mean and variance 1
K , and express x = Ψα along

the discrete Fourier basis Ψ, whose entries

Ψj,k =
1√
N





1 if j = 0

2 cos
(

2π jkN

)
if j = 1, . . . , N/2− 1

(−1)k if j = N/2

2 sin
(

2π jkN

)
if j = N/2 + 1, . . . , N − 1

A 104 × N matrix Φ′ of i.i.d. Gaussian entries with zero-
mean and variance 1

N is used as a linear random projection
operator to obtain a vector of candidate measurements y′ =
Φ′x.

Two reconstructions of α are performed by solving the
standard LP problem: one uses the first M components of
y′ (thus reproducing the simplest, classical CS setting); the
other uses the M largest-modulus components of y′.

The results are reported in Figure 2 for N = 256 and
K = 4, 8, 16, 32 by reporting the fraction of instances of x
that are successfully reconstructed against the number M of
measurements used. Since we do not consider additional noise
in the system, assessing a successful reconstruction α̂ of the
sparse vector α boils down to computing the relative error
‖α̂−α‖2/‖α‖2 and matching it against a −120 dB threshold,
which discriminates between successes up to machine preci-
sion (at about −320 dB) and failures (at about 0 dB).

It is clear that, even in a noiseless configuration, choosing
the M measurements with the largest energy improves sparse
signal reconstruction w.r.t. the classical setting, since it moves
the phase transition to lower values of M̄ .

Though this is not a proof, though we are dealing with a
toy system that has no practical advantage since it relies on
choosing the best M of 104 projections, and though numerical
evidence is useless for what concerns system optimization,
we still derive the clear indication that increasing the average
energy of the projections is beneficial.

III. LOCALIZATION

Assuming that the overall signal energy is normalized to 1,
the most natural way to collect more energy is to identify the
directions with which x preferentially aligns and concentrate
the projections along them.
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Signal
Original

Sampling Rate N L(µ)

ECG [15] 720 Hz 360 0.187
Speech [16] 20 KHz 200 0.069
EMG [15] 400 Hz 200 0.021

B&W printed letters [11] 24× 24 pixels 576 0.016

TABLE I
VALUES OF L(µ) FOR REAL-WORLD SIGNAL CLASSES

To explore how the energy of x distributes in the signal
space, consider the correlation matrix Cx = E[xx>] together
with its eigenvalues µ0 ≥ µ1 ≥ · · · ≥ µN−1 ≥ 0 and
corresponding orthonormal eigenvectors u0, . . . , uN−1.

To formally define localization, normalize the average en-
ergy of x as E[x2] = tr (Cx) = 1 so that

∑N−1
l=0 µl = 1, and

quantify the localization of x as

L(µ) =

N−1∑

l=0

(
µl −

1

N

)2

that is null when all the eigenvalues are equal and increases
up to 1−1/N when µ0 = 1 and µl = 0 for l = 1, . . . , N −1,
i.e., when there is only one direction (u0) along which all the
energy of x is concentrated.

Almost all signals are localized since only perfectly uni-
form energy distributions yield L(µ) = 0. Table I reports
localization values for some real-world signal classes that
may undergo A2I conversion, namely, ElectroCardioGrams,
ElectroMyoGrams, images of black-and-white isolated printed
letters, 10 ms-long speech segments.

IV. RAKENESS-BASED DESIGN

Rakeness-based design (for a thorough discussion and
derivation see [11]) implies a matrix Φ whose rows are i.i.d.
vectors and their correlation matrix CΦ = E[Φj,·Φ>j,·] =∑N−1
l=0 λlulu

>
l is decided by the eigenvalues λ0 ≥ λ1 ≥ · · · ≥

λN−1 ≥ 0. The expression of these new eigenvalues is derived

in [11] and can be rearranged into λl = 1
N +

(
µl − 1

N

)√ r− 1
N

L(µ) ,
to highlight the newly defined localization L(µ) and a positive
real parameter r that must be empirically set to administer the
trade-off between focusing on the most energetic directions
and providing a random span of the whole signal space.

To avoid the hand-tuning of r, let us begin by defin-
ing r = 1

N + τ2L(µ)/(1 − NµN−1)2 for some τ ≥ 0
so that λl = 1

N + τ
(
µl − 1

N

)
/ (1−NµN−1). With this,

straightforward calculations give the average energy raked by
projecting along the rows of Φ as E[y2

j ] =
∑N−1
l=0 λlµl =

1
N + τL(µ)/ (1−NµN−1) that increases with L(µ). The
localization of the process generating the rows of Φ is

L(λ) =

N−1∑

l=0

(
λl −

1

N

)2

=

(
τ

1−NµN−1

)2

L(µ)

The trade-off between the exploitation of preferred direc-
tions and random spanning of the whole signal space can be
recast into a localization inequality. In fact, L(λ) ≤ L(µ)
is the mathematical equivalent of the natural requirement
that sensing waveforms are not more “specialized” than the

waveforms they have to sense. In terms of the design parameter
τ , this translates into 0 ≤ τ ≤ 1−NµN−1. It is observed that
when τ is chosen in this interval, performances do not vary
significantly; it is therefore sensible to choose τ in mid-range,
i.e., τ = (1−NµN−1)/2 that implies λl =

(
1
N + µl

)
/2.

Note that the smallest eigenvalue of CΦ is surely positive
thus ensuring that CΦ is nonsingular and that no direction is
neglected by random projections.

The overall design flow is therefore completely defined,
requires no fine-tuning of r, and consists of these few steps:

1) Obtain the correlation matrix Cx of the signal to acquire
and compute its eigenvalues µl end eigenvectors ul;

2) Set CΦ = 1
2

∑N−1
l=0

(
1
N + µl

)
ulu
>
l ;

3) Generate every row of Φ as an independent random
vector with correlation CΦ.

Step 3) is straightforward when the rows of Φ are jointly
Gaussian vectors, since we may start from a classical pro-
jection matrix Φ′ containing i.i.d. Gaussian entries with zero
mean and unit variance, and multiply it by the matrix

√
CΦ =∑N−1

l=0

√
1
2

(
1
N + µl

)
ulu
>
l to obtain Φ = Φ′

√
CΦ.

V. PERFORMANCE EVALUATION

To demonstrate the effectiveness of this design flow we test
it on synthetic signals that are K-sparse in the same Fourier
basis Ψ used in Section II.

We modulate the localization of the input signal x by
drawing the K indexes at which its sparse coefficients α
are non-null at random, with the same non-flat probability
assignment p : {0, . . . , N − 1} → [0, 1] and ensuring that
they are all different. If we indicate with k0 < k1 < · · · <
kK−1 the indexes identifying the support of α, the signal is
x =

∑K−1
l=0 αklΨ·,kl . In our cases, the αkl are i.i.d. Gaussian

random variables with zero mean and variance 1/K.
With these assumptions, the joint probability of the support

of α is p(k0, . . . , kK−1) =
∏K−1
s=0 p(ks)

[∑N−K+s
t=ks+1 p(t)

]−1

when k0 < k1 < · · · < kN−1 and zero otherwise. From this
we may derive the marginal probabilities ql(k) = Pr{kl = k}
and, exploiting the independence between the αkl and the
fact that they have unit variance, the correlation matrix of x,
Cx =

∑K−1
l=0

∑N−1
k=0 ql(k)Ψ·,kΨ>·,k. By exchanging the order

of summation we have Cx =
∑N−1
k=0

[∑K−1
l=0 ql(k)

]
Ψ·,kΨ>·,k,

from which we get that the very same columns of Ψ are the
eigenvectors corresponding to eigenvalues λk =

∑K−1
l=0 ql(k)

that are needed to trigger the rakeness-based design flow,
yielding the random projection operator Φ.

In our case, the initial probability assignment p is taken
with a doubly triangular profile with maxima in N/4− 1 and
3N/4− 1 and varying widths for the corresponding triangles,
thus producing different values for L(µ). This choice allows
the generation of K-sparse test signals with a given amount of
localization. For each value of K and L(µ), we generate 2000
realizations of α and evaluate the probability of successful
reconstruction from y = Φx.

Figure 3 plots the minimum number of measurements
needed to ensure that at least 90% of the K-sparse in-
stances are correctly reconstructed as a function of L(µ) when
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Fig. 3. The minimum number of measurements needed by rakeness-based
design to have 90% probability of successful reconstruction as a function of
localization when (a) no noise is superimposed to the signal and (b) additive
Gaussian noise is superimposed to the signal with an SNR of 30dB.

rakeness-based design of Φ is used. Note that i.i.d. design
disregards localization, thus behaving as if L(µ) = 0 and
needing a number of measurements corresponding to the value
of the curves at that abscissa.

Results are reported in the noiseless case with a quality
requirement of 120 dB and when the input signal is perturbed
by an additive white Gaussian noise with an SNR of 30 dB and
reconstruction is considered successful when the relative error
is below −20 dB. Note how, in both cases, even relatively
small localization values (in agreement with those reported
in Table I) can be exploited to substantially decrease the
number of measurements needed for correct reconstruction of
the signal and that the benefit increases as K increases.

As a final measure of performance, Figure 4 reports a
comparison of the phase transition boundaries resulting from
rakeness-based design and from i.i.d. design. Boundaries are
reported in the (δ, ρ) plane [12] with δ = M/N and ρ = K/M
and correspond to system configurations in which 90% of the
reconstructions of a noiseless signal (under the same condi-
tions of Figure 3(a)) are successful. Note how the rakeness-
based design largely dominates the i.i.d. design since the same
number of measurements M allows the recovery of more
informative signals with a significantly larger K.

VI. CONCLUSION

If the energy of the signal being acquired is not uniformly
distributed in the signal space, we suggest the adoption of
a rakeness-based design of the sampling waveforms entailed
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Fig. 4. Phase transition boundaries for rakeness-based (triangles) and i.i.d.
(circles) random matrix designs.

by an RMPI-A2I system. The corresponding, very simple
design flow yields a substantial reduction in the number of
measurements needed to reach a prescribed performance level.
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