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Abstract
The majority of the most common physical phenomena can be described using partial
differential equations (PDEs). However, they are very often characterized by strong
nonlinearities. Such features lead to the coexistence of multiple solutions studied
by the bifurcation theory. Unfortunately, in practical scenarios, one has to exploit
numerical methods to compute the solutions of systems of PDEs, even if the clas-
sical techniques are usually able to compute only a single solution for any value of
a parameter when more branches exist. In this work, we implemented an elaborated
deflated continuation method that relies on the spectral element method (SEM) and
on the reduced basis (RB) one to efficiently compute bifurcation diagrams with more
parameters and more bifurcation points. The deflated continuation method can be
obtained combining the classical continuation method and the deflation one: the for-
mer is used to entirely track each known branch of the diagram, while the latter is
exploited to discover the new ones. Finally, when more than one parameter is con-
sidered, the efficiency of the computation is ensured by the fact that the diagrams
can be computed during the online phase while, during the offline one, one only has
to compute one-dimensional diagrams. In this work, after a more detailed descrip-
tion of the method, we will show the results that can be obtained using it to compute
a bifurcation diagram associated with a problem governed by the Navier-Stokes
equations.
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1 Introduction andmotivation

Usually, when one wants to numerically compute a bifurcation diagram, one has to
combine many numerical methods in order to obtain it. In fact, a suitable discretiza-
tion method coupled with a nonlinear solver is required to compute any solution
of the nonlinear problem of interest, while at least a continuation method and an
additional technique to discover new branches are necessary to generate an entire dia-
gram [45]. However, since numerous solutions have to be computed and the involved
system has to be solved several times, the computational cost of the task may be
prohibitive in practical scenarios. Note that the computational cost is often further
increased because the unknown branches are frequently sought simply initializing the
iterative solver with different guesses, trying to converge to new solutions. In order
to decrease such a cost, we decided to implement a technique based on an efficient
combination of four different methods.

Firstly, we rely on the reduced basis method [25]. This is important because, after
a very expensive offline phase, the computation of a solution in the online one is, in
a repetitive computational environment, very efficient. In fact, the former is used to
generate a low-dimensional space V rb defined as a combination of some of the most
important solutions obtained during such a phase (these solutions are called snap-
shots or full-order solutions). Subsequently, during the online phase, the solutions
are sought in V rb and the affine decomposition of the operators can be exploited to
further speed up the computation [33]. This way it is possible to efficiently compute
any solution and to discretize the entire bifurcation diagram only in the online phase,
significantly reducing its associated computational cost.

Secondly, we decided to use the spectral element method (SEM) [28] to compute
the snapshots in the offline phase. This is important because numerous solutions have
to be computed to obtain a reduced space able to capture all the branches in the online
phase. The offline phase is thus very expensive, but its cost is reduced exploiting the
fact that the solutions obtained with the SEM are characterized by a lower number of
degrees of freedom when compared to their counterpart computed with the standard
finite element method (FEM). Moreover, the computational cost of the offline phase
can be further decreased using the static condensation method (also known as Schur
complement [19]) to efficiently solve the resulting linear system [38].

Finally, we implemented an elaborated deflated continuation method to compute
the snapshots in the offline phase and the complete bifurcation diagram in the online
one. Such a technique is composed of two different parts: the continuation method
[15] and the deflation one [17]. The former is used to follow a known branch of
the diagram, while we used the latter to compute the first solutions on unknown
branches. Note that the first solutions on unknown branches are the ones that cannot
be computed with the continuation method because they do not belong to the branch
of any of the previously computed solutions. Moreover, since they can be used to
compute other solutions on their branches via the continuation method, they are the
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first ones belonging to such branches. The main idea behind the continuation method
is to exploit the iterative solver and the continuity of each branch to obtain a solution
very similar to the previous one and, therefore, belonging to the same branch of the
latter. On the other hand, the deflation prevents the iterative solver from converging to
known solutions and, this way, if it converges, it will converge to yet unknown fields.

In this work, we only focus on the incompressible Navier-Stokes equations,
although the SEM, the RB, the continuation, and the deflation methods are numerical
techniques that are not related to a particular class of equations and can thus be used
in different frameworks. For instance, in [41] and in [40], the authors analyzed the
effectiveness of similar techniques (with the SEM substituted by the FEM and with-
out the deflation) to compute bifurcation diagrams for the Gross-Pitaevskii and the
Von Kármán equations. In particular, the present work is strongly related to [22–24]
and [21]. In fact, a possible future application of this work could be the mitral valve
regurgitation [43]. This is a cardiac disease characterized by an inverse blood flux
from the left ventricle to the left atrium. The main tool to detect and analyze such a
disease is echocardiography. However, when the blood flow undergoes the Coanda
effect [51], it is very complex to quantify the flow rate. Therefore, it can be useful
to use the direct simulation of the flow to properly analyze the images obtained via
echocardiography.

We thus considered a two-dimensional channel with a narrow inlet that repre-
sented, in a very simplified way, the mitral valve and the left atrium. Such a domain
Ω is shown, with the mesh used in the offline phase, in Fig. 1. Here, the left vertical
wall is the inlet, the right one is the outlet, and the remaining ones represent the heart
walls. It can easily be noted that the mesh is very coarse, in fact only 19 elements
are involved. However, thanks to the SEM, it is possible to compute very accurate
solutions even with meshes similar to this one. Indeed, it relies on high-order ansatz
functions inside each element that allow an exponential decay of the error [9]. On
the contrary, if one had computed the same solutions with the FEM, a much finer
mesh would have been required because of the algebraic convergence that character-
izes such a method [2]. Moreover, since the convergence is much faster, it is possible
to reach the same level of accuracy with a significantly lower number of degrees of
freedom, thus further increasing the efficiency of the method, both in the assembly
of the matrices and when the associated systems is solved.

It is important to remark that the results presented in Section 6 could be obtained
using the deflated continuation method without the reduced basis approach and with
an arbitrary discretization technique. However, the computational cost of such a pro-
cess would be prohibitive because numerous solutions have to be computed to build a
bifurcation diagram. In fact, it is important to highlight that the computational cost of

Fig. 1 Domain Ω and mesh used in the offline phase to compute the full-order solutions
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the process exponentially increases with the parameter space dimension. Exploiting
the described approach, instead, its cost is significantly reduced when several param-
eters are involved. In fact, it is possible to compute few one-dimensional bifurcation
diagrams during the offline phase and to reconstruct the other dimensions only in the
online one, when each solution can be computed much more efficiently.

Finally, we highlight that there exist other techniques to compute bifurcation
diagrams based on continuation methods (see [15] or [29]) or expensive direct
techniques as the branching system method [45]. The advantage of the proposed tech-
nique over the previous ones is that it allows to efficiently and automatically detect
new branches to compute an entire diagram. Moreover, we show, for the first time,
that such a technique is stable also when combined with the RB method. Note that
different approaches, mainly based on the analysis of the eigenvalues and the eigen-
vectors of the linearized equations, can be used exploiting an offline–online splitting
as described, for instance, in [41] and [40]. Such papers, though, are more related
to the stability analysis of the found solutions, while our approach aims at obtain-
ing an entire diagram. Therefore, these two techniques could be mixed to efficiently
compute an entire bifurcation diagram while checking its stability properties.

The paper is organized as follows: in Section 2, we will focus on the formulation of
the problem of interest, deriving the weak formulation from the strong equations and
presenting the two linearization techniques [10] that will be used. Then, in Section 3,
the SEM will be described, with a particular focus on the static condensation method.
The latter is a technique that can be used to significantly speed up the computation
of the solution of the involved linear system exploiting the fact that two kinds of
modes are present. In Section 4, we will describe the RB method, the proper orthog-
onal decomposition (POD) [52] used to construct the reduced space, and the affine
decomposition [25] exploited to ensure the efficiency of the method. Subsequently,
in Section 5, the continuation method and the deflation one will be discussed with
a particular focus on their implementation. The results obtained with the described
methods will be presented in Section 6, that will be divided as follows: in the first
part, we will focus on a bifurcation diagram with a single parameter to prove that it
can be computed during the online phase, whereas, in the second part, we will high-
light the efficiency of the method considering additional parameters. Finally, we will
talk about some of the future perspectives of this work in Section 7.

We thus highlight that the advantages of the proposed method are strongly related
to the way in which the four techniques are connected. In fact, even if the continu-
ation and the deflation techniques allow one to compute a bifurcation diagram, they
are very expensive and, without a reduced-order model, the computational cost of the
process may be prohibitive. Therefore, we decided to rely on the SEM and on the
computation of a limited number of snapshots to perform the offline phase as effi-
ciently as possible and to exploit the deflated continuation both in the offline and
in the online phases. This way we could effectively obtain all the required solutions
without exploiting any prior knowledge about the structure of the solution manifold.

We remark that the SEM is based on the open-source software Nektar++ version
4.4.0 (see [46]), while the reduced-order model and the deflated continuation method
described in this work have been implemented in ITHACA-SEM (https://github.com/
mathLab/ITHACA-SEM).
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2 Problem formulation

Let us consider the steady and incompressible Navier-Stokes equations [14] in the
open bounded domain Ω ⊂ R

2 with a suitably regular boundary ∂Ω:{
(u · ∇)u − νΔu + ∇p = 0 in Ω,

∇ · u = 0 in Ω,
(1)

where u is the velocity, p the pressure normalized over a constant density, and ν

the kinematic viscosity assumed constant. In order to better characterize the flow
regime, it is important to observe that its main features can be summarized in a non-
dimensional quantity named Reynolds number [51] and defined as follows:

Re = UL

ν
,

where U is a characteristic velocity of the flow and L is a characteristic length of the
domain. System (1) can be obtained assuming that the Reynolds number is moderate
and that the flow is steady.

It is important to observe that, when the equations in system (1) are normalized,
they can be written in terms of non-dimensional quantities as:{

(u · ∇)u − 1
Re

Δu + ∇p = 0 in Ω,

∇ · u = 0 in Ω .
(2)

Since the structure of the mass balance equation does not change, while the only non-
dimensional parameter in the momentum balance equation is the Reynolds number,
one can conclude that it is the only meaningful one. Therefore, all the features present
in the bifurcation diagrams that will be shown can be discussed in terms of Re. How-
ever, we decided to use as parameters the viscosity ν and a multiplicative factor on
the Dirichlet inlet boundary condition, which we will denote by s. It will be possible,
in Section 6, to observe that the strict relation between the involved parameters and
the Reynolds number allows one to explain the fact that the bifurcation points can be
grouped, according to their nature, in specific and predictable curves.

To consider a well-posed problem, we supplemented system (1) with proper
boundary conditions: a stress-free boundary condition on the velocity at the out-
let, a no-slip Dirichlet boundary condition on the physical walls, and the following
Dirichlet boundary conditions at the inlet:

u =
[
u

v

]
=

[
20s(5 − y)(y − 2.5)

0

]
, x = 0, y ∈ (2.5, 5), (3)

where s is the second parameter that we included in the model and a parabolic profile
has been imposed to consider a more realistic condition. It should be observed that
the dimension of the domain, described in Fig. 1, and the constant in front of the
parabolic profile in the inlet boundary condition are used to obtain values of Re

approximately in (60, 260) when ν ∈ [0.3, 1] and s ∈ [0.8, 1]. We selected this range
because, with the described geometry, it contains two bifurcations. Note that small
changes in the geometry can influence the critical points positions, as observed in
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Fig. 13 or in [24], thus it is important to find the bifurcation points associated with
the exact geometric setting in order to apply the technique to real scenarios.

Furthermore, we introduce the variational formulation [44], required by the spec-
tral element method (SEM) to obtain a discrete solution of the Navier-Stokes system.
This will also be fundamental for the applicability of the reduced basis (RB) method.
When deriving the weak formulation, one has to set appropriate functional spaces:(

H 1
0,∂ΩD

(Ω)
)2 =

{
w ∈

(
H 1(Ω)

)2 | w = 0 on ∂ΩD

}
,

L2
0(Ω) =

{
q ∈ L2(Ω) |

∫
Ω

qdx = 0

}
,

where ∂ΩD is the portion of the boundary where Dirichlet boundary conditions are
imposed.

Moreover, one multiplies the equations in system (1) by the appropriate test
functions, integrates over the entire domain, and integrates by parts the integrals
associated with Δu and ∇p obtaining the following weak formulation: find u ∈
uD + (H 1

0,∂ΩD
(Ω))2 and p ∈ L2

0(Ω) such that:⎧⎪⎪⎨
⎪⎪⎩

ν

∫
Ω

∇u · ∇v +
∫

Ω

((u · ∇)u) · v −
∫

Ω

p∇ · v = 0 ∀v ∈
(
H 1

0,∂ΩD
(Ω)

)2
,∫

Ω

q∇ · u = 0 ∀q ∈ L2
0(Ω),

(4)
where uD ∈ H 1(Ω) is a lifting function used to impose the non-homogeneous
Dirichlet boundary conditions. Denoting (H 1

0,∂ΩD
(Ω))2 as V and L2

0(Ω) as Q, and
introducing the following bilinear and trilinear forms:

a(v,w) = ν

∫
Ω

∇v · ∇w ∀v,w ∈ V,

b(w, q) = −
∫

Ω

(∇ · w)q ∀w ∈ V, ∀q ∈ Q,

c(u, v,w) =
∫

Ω

((u · ∇)v) · w ∀u, v,w ∈ V,

problem (4) can be expressed, in a more compact way, as follows: find u ∈ uD + V

and p ∈ Q such that{
a(u, v) + c(u,u, v) + b(v, p) = 0 ∀v ∈ V,

b(u, q) = 0 ∀q ∈ Q.
(5)

Such a notation will be useful in Section 3.1 to describe the static condensation
method and we are going to exploit it to easily describe the two most common
linearization techniques [10]. See [13] for a more in-depth analysis of system (5).

The first one, named Oseen iteration, relies on the fact that, when the iterative
solver is converging, two subsequent approximations are very similar. Therefore, the
nonlinear term c(u,u, v) can be approximated as follows:

c(uk+1,uk+1, v) ≈ c(uk,uk+1, v),
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where uk is the approximation obtained in the last iteration, while uk+1 is the
unknown one. Such a linearization technique is very common because it can be eas-
ily implemented and the associated iterative solver is very stable, but the convergence
is only linear. On the other hand, one can exploit the Newton method to obtain a
quadratic convergence, although a more accurate initial guess is required. To derive
the latter, one expresses the unknown approximation as:

uk+1 = uk + δu,

where δu is the variation between the unknown solution uk+1 and the last com-
puted one uk . This way it is possible to approximate the nonlinear term c(u,u, v) as
follows:

c(uk+1,uk+1, v) ≈ c(uk+1,uk, v) + c(uk,uk+1, v) − c(uk,uk, v).

In this work, we exploited both techniques in order to increase the effectiveness of
the deflation method (see Section 5.2). In fact, the Oseen iteration ensures a too slow
convergence but, using only the Newton method, the iterative solver often diverges
when solving the deflated problem.

3 The spectral element method

In this section, the main features of the SEM [13] will be described; since we are
interested in the efficiency of the method, the main focus will be on the static con-
densation method. This is a technique that can be used to significantly reduce the
computational cost to get the solution of the obtained linear system.

Let us consider the following Galerkin formulation [12], derived from problem
(5): find u ∈ uD

SEM + V δ and p ∈ Qδ such that:{
a(u, v) + c(u,u, v) + b(v, p) = 0 ∀v ∈ V δ,

b(u, q) = 0 ∀q ∈ Qδ,
(6)

where uD
SEM is a suitable discretization of uD and V δ and Qδ are, respectively,

two finite dimensional subspaces of V and Q. It is thus possible to consider the
bases {φu,i}Nu

i=1 and {φv,i}Nv

i=1 associated with the two components of the velocity and

{φp,i}Np

i=1 associated with the pressure. Therefore, discrete velocity and pressure can
be expressed as follows:

u =
Nu∑
i=1

uiφui
, v =

Nv∑
i=1

viφvi
, p =

Np∑
i=1

piφpi
,

where ui , vi , and pi are scalar coefficients that characterize the velocity and pressure
fields. Moreover, in the SEM, the basis functions φ·,i are high-order polynomials
inside the associated elements [49]. In particular, in this work, we decided to use the
stable pair PP (Ωe)/PP−2(Ω

e), i.e., the velocity is represented by a polynomial of
order P while the pressure by one of order P − 2 inside each element Ωe (see [36]
and [35] for a more detailed explanation of the approach). To compute the numerical
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results of Section 6, even though this choice does not significantly influence them,
we used P = 8 when only 1 or 3 branches are involved and P = 12 when the entire
diagram is obtained. These values are chosen in order to balance the efficiency of the
solver (the lower the order, the lower the computational cost) and its accuracy and
the effectiveness of the deflation. In fact, we observed that if the full-order solver
was more accurate, then the asymmetrical branches could be found more easily and
earlier both in the offline and in the online phases.

The high order of the polynomials implies two main consequences: firstly, since
several degrees of freedom are associated with each element, it is possible to obtain
accurate solutions even with very coarse meshes like the one showed in Fig. 1. In
general, comparing the SEM with the FEM, this approach is convenient because
assembling and solving the linear system is expensive, but the computational cost of
such operations is reduced if the solution is represented with fewer degrees of free-
dom, as in the SEM. Moreover, even if to compute bifurcation diagrams the mesh
generation cost is negligible because one computes numerous solutions on the same
mesh, generating fine meshes as the ones required by the FEM is an expensive oper-
ation [47]. Secondly, this way it is possible to ensure the exponential convergence
of the method instead of the algebraic one that characterizes the FEM [11] when the
solution is smooth enough. This is important because the same level of accuracy can
be obtained with a significantly lower number of degrees of freedom; therefore, the
assembly of the linear system and the computation of the solution are much more
efficient. Furthermore, exploiting the high-order polynomials, it is possible to rely on
more accurate differentiation and integration formulas [37].

3.1 The static condensationmethod

The static condensation method is a technique that allows one to solve a linear sys-
tem much more efficiently, exploiting a specific structure of the associated matrix.
It should be noted that, even if such a technique may be used to exploit a domain
decomposition approach in a reduced basis framework [27], in this work we used it
only in the offline phase to increase the efficiency of the SEM and, therefore, we
did not link it with the RB method. Moreover, we remark that we will outline the
method as described in [38] (we are interested in the description of the method “void
Nektar::CoupledLinearNS::SetUpCoupledMatrix”).

To obtain the required structure, while solving the Navier-Stokes equations with
the SEM, one has to split the velocity degrees of freedom into different groups.
The first one contains the interior modes, i.e., all the basis functions with support
inside a single element, while the second one contains all the remaining basis func-
tions, that will be denoted as boundary modes [28]. It is crucial to observe that two
interior modes associated with two different elements are orthogonal to each other
because the measure of the intersection of their supports is 0. Such a property can be
exploited to properly sort all the degrees of freedom to obtain block matrices with
very small blocks associated with the elements. Denoting as uint the vector of the
velocity degrees of freedom associated with the interior modes, as ubnd the vector
associated with the element boundary ones, and as p the one associated with the pres-
sure modes, it is possible to expand the linear system associated with problem (6) as
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follows: ⎡
⎣ A −DT

bnd B

−Dbnd 0 −Dint

B̃T −DT
int C

⎤
⎦

⎡
⎣ubnd

p

uint

⎤
⎦ =

⎡
⎣fbnd

0
fint

⎤
⎦ . (7)

It can be observed that the elements of the submatrix A represent the relations
between pairs of boundary modes, while the ones of the submatrices B and C are,
respectively, associated with boundary-interior and interior-interior pairs. Finally, the
interaction between the pressure and the velocity is summarized in Dbnd and Dint .
The elements of such matrices can be computed, ∀i, j = 1, . . . , Nbnd, ∀n, m =
1, . . . , Nint and ∀l = 1, . . . , Np as follows:

A[i][j ] = c(φ
j
bnd,uk, φi

bnd) + c(uk, φ
j
bnd , φi

bnd) + a(φ
j
bnd , φi

bnd),

B[i][n] = c(φn
int ,u

k, φi
bnd) + c(uk, φn

int , φ
i
bnd) + a(φn

bnd, φi
int ),

B̃T [n][i] = c(φi
bnd ,uk, φn

int ) + c(uk, φi
bnd , φn

int ) + a(φi
bnd , φn

int ),

C[n][m] = c(φm
int ,u

k, φn
int ) + c(uk, φm

int , φ
n
int ) + a(φm

int , φ
n
int ),

Dbnd [l][i] = b(φi
bnd , φl

p),

Dint [l][n] = b(φn
int , φ

l
p),

fbnd [i] = f (φi
bnd) + c(uk,uk, φi

bnd),

fint [n] = f (φn
int ) + c(uk,uk, φn

int ),

where Nbnd , Nint , and Np are, respectively, the number degrees of freedom asso-
ciated with the velocity boundary modes, to the velocity interior ones, and to the
pressure ones. Moreover, the terms f (φi

bnd) and f (φi
int ) are associated with the

external forces that act on the system. However, since we assumed their absence,
these two terms can be neglected.

It should be observed that such expressions hold when the Newton method is
employed; however, when using the Oseen one, the first terms in the expansions of
A[i][j ], B[i][n], B̃T [n][j ], and C[n][m] and the last ones in fbnd [i] and fint [n] have
to be discarded. Moreover, it should be noted that the submatrix C is block diagonal;
therefore, it is easy to invert. Denoting I as the identity matrix, we can premultiply
the previous system by the matrix:

K =
⎡
⎣I 0 −BC−1

0 I DintC
−1

0 0 I

⎤
⎦ ,

obtaining the following one:⎡
⎢⎢⎣

A − BC−1B̃T −DT
bnd + BC−1DT

int 0
−Dbnd + DintC

−1B̃T −DintC
−1DT

int 0
B̃T −DT

int C

⎤
⎥⎥⎦

⎡
⎢⎢⎣
ubnd

p

uint

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

fbnd − BC−1fint

DintC
−1fint

fint

⎤
⎥⎥⎦.

(8)
It is important to observe that, this way, the third equation has been decoupled from
the other ones and the associated unknowns can be easily obtained after having solved
the remaining 2 × 2 block. Let us focus on the first 2 × 2 block system involving
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ubnd and p, that can be written, simplifying the notation and considering a new set
of matrices, as: [

Â B̂

Ĉ D̂

] [
b
p̂

]
=

[
f̂bnd

f̂p

]
, (9)

where b = [ubnd, p0] is a vector that contains both ubnd and the mean pressure
p0 (or a degree of freedom associated with it) while p̂ accounts for the remaining
pressure coefficients. A second level of static condensation can be obtained repeating
the previous steps with the matrix:

K̂ =
[
I −B̂D̂−1

0 I

]
,

in order to modify equation (9) into the following one:[
Â − B̂D̂−1Ĉ 0

Ĉ D̂

] [
b
p̂

]
=

[
f̂bnd − B̂D̂−1f̂p

f̂p

]
. (10)

This way one can solve the first row of equation (10) to obtain b, then one can sub-
stitute it into its second row to obtain p̂ and, finally, these quantities can be used with
the third row of problem (8) to compute uint . The computational cost of such a pro-
cess is significantly lower than the direct computation of the solution of problem (7),
in fact b is the only unknown vector that has to be computed solving a linear system.

4 The reduced basis method

In this section, the RB method [25] will be briefly described. Such a technique can
be used to efficiently compute the solution of a system of PDEs; therefore, it is
often used in optimization, real-time queries, optimal control, design, and uncertainty
quantification. In this work, since we are interested in the discretization of bifur-
cation diagrams with many parameters, it has been used to compute the numerous
required solutions. It should be observed that the same result could be obtained with-
out exploiting the RB method, but the computational cost would be prohibitive in this
case. Let us consider the following abstract parametric problem: given μ ∈ P , find
u(μ) ∈ Ṽ such that

a(u(μ), v; μ) = f (v; μ) ∀v ∈ Ṽ , (11)

where Ṽ is a suitable Hilbert space, μ ∈ P ⊂ R
N is a vector of scalar parameters,

a(·, ·; μ) : Ṽ × Ṽ → R is a symmetric, coercive, bilinear, and continuous operator
for any parameter μ in the parameter space P . Analogously, f (·; μ) : Ṽ → R is
a linear and continuous operator for any μ ∈ P . It is then possible to consider the
discrete version of problem (11) that reads as follows: given μ ∈ P , find uδ(μ) ∈ Ṽ δ

such that
a(uδ(μ), v; μ) = f (v; μ) ∀v ∈ Ṽ δ, (12)

where Ṽ δ is a finite-dimensional subspace of Ṽ that depends on the chosen dis-
cretization method. We remark that similar discrete and parametric problems have
been deeply investigated; we thus refer to [6, 7] and [8] for a more detailed analysis.
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In this work, the employed discretization method is the SEM; we can thus obtain
accurate solutions with a space Ṽ δ smaller than the one used in the FEM. How-
ever, in order to significantly increase the efficiency of the solver, one would like
to use spaces described by only few basis functions. Defining as Ṽ rb ⊂ Ṽ δ the
finite-dimensional space used in the online phase of the reduced basis method, and
assuming that Nrb = dim(Ṽ rb) � dim(Ṽ δ) = Nδ , one can exploit the same for-
mulation of problem (12) to define a reduced problem that can be solved much more
efficiently: given μ ∈ P , find urb(μ) ∈ Ṽ rb:

a(uδ(μ), v; μ) = f (v; μ) ∀v ∈ Ṽ rb. (13)

It is thus necessary to be able to generate a small space Ṽ rb capable of accurately
discretizing the continuous solutions of problem (11). To do so, one can exploit prob-
lem (12) and different numerical techniques. In this work, we only used the proper
orthogonal decomposition (POD) [25] to construct such a reduced space because its
downsides are balanced by the advantages of the deflated continuation method [18]
that will be described in Section 5. In fact, two of the main disadvantages of the POD
method are related to the high computational cost of the offline phase (indeed many
solutions have to be computed) and to the fact that the parameter space has to be
properly sampled. On the other hand, the deflated continuation method allows one
to efficiently compute the required solutions and to automatically select only proper
values of the parameter.

Finally, to link this section with the previous one, it is possible to consider
a(uδ(μ), v; μ) and f (v; μ) as the left-hand side and the right-hand side of both equa-
tions of problem (5), where uD is substituted by a suitable lifting function uδ,D and
Ṽ and Ṽ δ can be identified with V ×Q and V δ ×Qδ respectively. This way the oper-
ator on the left-hand side is only a continuous tri-linear operator and the equation
is stable if the inf-sup condition is satisfied. Even though it is convenient to enrich
the reduced space with suitable functions named supremizers [33] to ensure such a
stability condition, we observed that for moderate Reynolds numbers the described
approach was already stable. Therefore, we did not enrich Ṽ rb with the supremizers.

4.1 The proper orthogonal decomposition

The POD can be used to generate a reduced space Ṽ rb that is optimal in the Euclidean
norm over the space spanned by the snapshots. We are thus interested in the �2 norm
of the vectors containing the degrees of freedom with respect to the SEM basis, such
a norm will be denoted as ‖ · ‖ in this section.

Let PM be a finite sampling of P of dimension M , i.e., PM = {μ1, ..., μM}. In
order to construct Ṽ rb, one considers a symmetric and linear operator C : ṼM →
ṼM defined as follows:

C(vδ) = 1

M

M∑
i=1

(
vδ, ψi

)
Ṽ

ψi, v
δ ∈ ṼM,

where ψi = uδ(μi) and ṼM = span{uδ(μ) : μ ∈ PM }.

Adv Comput Math (2021 )47: 1 1



Then, one computes the eigenvalue-eigenvector pairs (λi, ξi) ∈ R×ṼM, such that
‖ξi‖ = 1 for any i = 1, ..., M , that satisfy C (ξi) = λiξi . Finally, it is possible to sort
the eigenvalues in descending order and the associated eigenvectors accordingly, and
generate the reduced space with the first Nrb eigenvectors. This way, it is possible
to prove that the error obtained approximating the solutions of ṼM with the ones in
Ṽ rb is given by:

1

M

M∑
i=1

‖ψi − PNrb (ψi) ‖2 =
M∑

i=Nrb+1

λi, (14)

where PNrb : ṼM → Ṽ rb is a projection operator over Ṽ rb defined as

PNrb (v) =
Nrb∑
i=1

(v, ξi)Ṽ ξi .

Furthermore, it is important to observe that V rb is the only Nrb-dimensional space
that minimizes the following quantity (see [31] or [52]):

inf
vrb∈Ṽ rb⊂ṼM

dim(Ṽ rb)=Nrb

M∑
i=1

‖ψi − vrb‖2,

and that, to obtain a numerically stable online solver, it is convenient to orthonormal-
ize the eigenvectors.

Therefore, from the implementation point of view, in order to generate a reduced
space with the desired properties, one has to compute the eigenvalues and the
orthonormalized eigenvectors of the correlation matrix of the snapshots and has to
express the latter as linear combinations of full order basis functions. One of the
most efficient method to perform such a task is the singular value decomposition
(SVD) [26]. It is additionally important to note that, when interested in generating
a space that is optimal with respect to a different norm, one has to premultiply the
involved correlation matrix with the Cholesky factor of the matrix associated with
the corresponding inner product before performing the described operations [16].

4.2 The affine decomposition

In order to efficiently solve problem (13), it is important to seek the solution in a
lower dimensional space, as the one that can be obtained through the POD method,
whose accuracy is ensured thanks to property (14). However, in order to benefit of
this low dimensionality, by splitting the computation in the two phases, the model has
to fulfill some additional hypothesis. In particular, in order to have an online phase
which is independent of the number of degrees of freedom of the approximation,
namely Nδ , one can exploit the so-called affine decomposition [3].

The main idea is to precompute several matrices and vectors in the offline phase
that will be used for every instance of a new parameter, during the online one, to
rapidly assemble the linear system. This is important because, this way, such an
assembly does not scale with the dimension of Ṽ δ and all the operations of the online
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phase only depend on Nrb. Let us denote the linear system that has to be solved in
the online phase as:

Arb(μ)urb = frb(μ).

Using this notation, the affine decomposition assumption reads as:

Arb(μ) =
Qa∑
q=1

θ
q
a (μ)Arb

q ,

frb(μ) =
Qf∑
q=1

θ
q
f (μ)frbq .

It is important to observe that Arb(μ) and frb(μ) are expressed as linear combina-
tions of matrices or vectors that do not depend on the parameter and, therefore, its
contribution is entirely included in the coefficients. This way it is possible to precom-
pute Arb

q for any q = 1, . . . , Qa and frbq for any q = 1, . . . , Qf in the offline phase

and, subsequently, assemble Arb(μ) and frb(μ) computing only the scalar coeffi-
cients. However, it should be noted that it is not always possible to directly exploit
such a structure but, when required, it can be approximated with the so-called empir-
ical interpolation method (EIM) [4]. We remark that we did not use the EIM because
we projected the linearized operators onto the reduced space to directly exploit the
affine decomposition.

5 Numerical computation of bifurcation diagrams

Let us consider the following nonlinear parametric equation:

L(u; μ) = 0, (15)

where the function u belongs to a suitable functional space V , the parameter μ

belongs to R
N , and L is a nonlinear operator. Note that, in this paper, we can con-

sider V = V × Q because we are interested in computing a diagram associated with
problem (5).

Since, due to the nonlinearity, several solutions can exist for the same value of the
parameter, it is important to summarize them in a single diagram in order to highlight
the main properties of the solutions manifold associated with the parameter space.
Such diagrams are called bifurcation diagrams [30], and the information is often
summarized by means of a scalar output function, while the parameter is represented
on the other axis. It should be noted that, if n > 1, more than one axis is required
to properly represent the parameter and it could be useful to rely on more advanced
visualization techniques to show the diagram [50].

In this work, we decided to compute the bifurcation diagrams with a combina-
tion of the continuation method and the deflation method. The main idea behind
the coupling of this two techniques is that, on the one hand, one can entirely dis-
cretize a specific branch of the diagram given a solution belonging to it while, on
the other hand, the deflation method is used to compute the first solutions of the new
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branches that are required by the continuation method. Such an approach, where the
two described techniques are alternated in order to discover and follow each branch
of the diagram, is called deflated continuation and is described in [18]. However, we
implemented a more elaborated version of it; in fact, we decided to use two different
versions of the continuation method and to pair a novel approach to the deflation one
in order to increase the efficiency and the effectiveness of the deflated continuation
method. Such modifications will be better explained in the following sections.

5.1 Continuationmethod

In order to simplify the notation in the discussion, let us assume that, in problem
(15), there exists a solution u for any value of the parameter μ and that μ ∈ R. The
assumption μ ∈ R is useful to simplify the description of the method and it is not
restrictive, indeed one can consider μ ∈ R

N and let vary only one component at a
time. This way the discussed approach can be extended to problems characterized by
more parameters.

Since problem (15) is nonlinear, an iterative solver is required to compute a solu-
tion. However, in order to ensure its convergence, it needs an initial guess close
enough to the sought solution. Such a guess can be obtained with the continuation
method. The aim of the technique, in fact, is to compute a proper initial guess in
order to allow the solver to converge to a solution on the same branch of the last one.
This way any arbitrary branch can be entirely reconstructed repeating several times
the following procedure [45].

Initially, one assumes to know m solutions (u1, . . . ,um) on a branch of the dia-
gram, they are associated with the parameter values μ1, . . . , μm, and one wants
to compute the solution um+1 associated with the value μm+1. Given the input
{(u1, μ1), . . . , (um, μm)}, the output of the continuation method is a function ũm+1
close to the unknown solution um+1. Using ũm+1 as an initial guess, the iterative
solver can efficiently converge to um+1. Then, the process can be repeated to compute
um+2 exploiting um+1 and the previous solutions, and so on.

In this work, we implemented two different versions of the continuation method.
The first one, that we will denote as simple continuation, is the simplest way to
exploit the already computed information to obtain an initial guess and is character-
ized by m = 1. On the other hand, the pseudo-arc length continuation [29] is a more
advanced technique and exploits the last two solutions to compute the subsequent
initial guess.

Let us first consider the simple continuation. Exploiting the continuity of each
branch, one can assume that, if the step size Δμi+1 = μi+1 − μi is very small, the
solutions ui and ui+1 will be very similar to each other. This way ui can be considered
a good approximation of ui+1 and used as initial guess to compute it. The advantages
of such an approach are that it is inexpensive and requires a single solution. However,
properly setting the quantity Δμi+1 is complex, even if it is possible to rely on prior
knowledge or heuristics.

Unfortunately, such a choice is very important, in fact a too wide step may make
the solver diverge or converge to solutions on other branches, because of the signifi-
cant difference between ui and ui+1. On the other hand, a too short step would ensure
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the convergence to the correct solution but the computational cost would dramatically
increase [1].

In order to properly set the step size Δμi+1 and to improve the accuracy of the
obtained initial guess, one can choose to rely on the pseudo-arc length continuation
method. In such a technique, the next value of the parameter μi+1 is considered an
unknown and an alternative parametrization of the branch, characterized by the curve
arc length S, is taken into account. To derive the system that has to be solved, as
explained in [29], let us consider the following normalization equation:

N(u, μ; ΔSi)
.= u̇T

i (u − ui ) + μ̇i(μ − μi) − ΔSi = 0, (16)

where (ui , μi) is a point on a regular portion of the branch C and (u̇i , μ̇i) is the unit
tangent to the curve in such a point. Equation (16) characterizes the plane orthogonal
to the vector (u̇i , μ̇i) such that the distance between (ui , μi) and its projection on
the plane is ΔSi . Moreover, if the line described by (u̇i , μ̇i) is a good approximation
of C, the orthogonal projection of (ui , μi) on the plane is very similar to the sought
solution (ui+1, μi+1). A representation of such a process is outlined in Fig. 2. Con-
sequently, this projection can be used as a good initial guess. In order to compute it,
one can solve the linear system:[

Li
u Li

μ

u̇i μ̇i

] [
Δui

Δμi

]
=

[
Li

ΔSi

]
, (17)

where the subscripts are associated with the derivation operation, the superscripts
represent the point where the function is evaluated, i.e., Li

u = Lu(ui; μi) and Li
μ =

Lμ(ui; μi), and the following notation has been used:

Δui = ũi+1 − ui , Δμi = μi+1 − μi .

Fig. 2 Visualization of the pseudo-arc length continuation method
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This system can be obtained by linearizing the following one, obtained combining
(15) with (16), with the Newton method:

{
L(u; μ) = 0,

u̇T
i (u − ui ) + μ̇i(μ − μi) − ΔSi = 0.

(18)

Furthermore, since the quantities u̇ and μ̇ are, in general, not available, they have to
be approximated. We decided to use the following approximations:

u̇ 
 ui − ui−1

ΔSi−1
, μ̇ 
 μi − μi−1

ΔSi−1
,

even if several alternatives exist.
The main advantage of such a version of the continuation method is that the sub-

sequent value of the parameter is automatically chosen. This way, the steps are wider
in very smooth regions, while they can be much shorter near the singularities. This
is important because, when one wants to compute a bifurcation diagram, there are
regions where the solution varies very rapidly, and regions where two solutions are
very similar even if they are associated with two values of the parameters very far
from each other.

We also decided to iteratively modify ΔSi to further improve the effectiveness of
the method, even though good results can be obtained by also fixing it after some
experimental observations. We chose to increase ΔSi each time the solver converged
in less than 6 iterations and to decrease it otherwise as suggested in [45] for a similar
setting. In fact, small values of ΔSi imply that the plane described in (16) is very
close to ui and that the solver can easily converge to ui+1 because it is very similar to
ui . However, with such a choice, the computational cost of the diagram computation
increases because of the excessive number of computed solutions. On the other hand,
if ΔSi is too large, ũi+1 is a poor approximation of ui+1 because the plane is very
too far from ui ; therefore, the solver may converge in several iterations or may not
converge.

In general, it is possible to observe that such regions are, respectively, close to and
far from a bifurcation point. Moreover, the pseudo-arc length continuation is more
accurate than the simple one because it relies on a branch linearization. However,
sometimes such a technique cannot be used. This issue can arise in two different sce-
narios. Firstly, when one wants to compute the second solution, only a single solution
is available; therefore, the technique cannot be applied. Secondly, right after a bifur-
cation point, the number of solutions varies from one iteration to the next one. This
implies that it is not possible to exploit two solutions on the same branch to compute
the initial guess. In such scenarios, we decided to use the simple continuation with
a step size proportional to the last value of Δμi after a bifurcation point and with a
very short step after the computation of the first solution.

Finally, we highlight that, since the structure of the matrix associated with problem
(17) is different from the one of problem (7), we decided to implement a bordering
algorithm [29] to solve the former with the static condensation method.
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5.2 Deflationmethod

As discussed in the previous section, the continuation method allows one to follow
each branch of the diagram; however, it requires a first solution on the branch to prop-
erly work. In this work, such solutions have been computed in two different ways.
We decided to compute the very first solution using the zero initial guess because of
the lack of prior knowledge, while we used the deflation method to obtain the first
solutions on unknown branches. Such a technique has been initially developed to
compute multiple roots of a polynomial and, in order to explain it, it is convenient to
discuss, as in [17], a simplified scenario first. Let us consider the scalar polynomial:

p(x) = c0

m−1∏
j=0

(x − xj ), (19)

where c0 ∈ R is a scaling factor and x0, . . . , xm−1 are m distinct roots. Moreover, let
us assume to be able to numerically compute just a single solution for any arbitrary
polynomial with a numerical method. This way, one can easily compute root xi but
one cannot obtain the other ones. However, to overcome such an issue, it is possible
to consider the deflated polynomial:

p1(x) = c0
1

(x − xi)

m−1∏
j=0

(x − xj ). (20)

It should be observed that the polynomial in (20) is characterized by the same roots
of the one in (19) except for the ith one. It is therefore possible to exploit the avail-
able algorithm to obtain a root of p1(x), consequently obtaining the second one of
p(x). Such a process can be repeated in order to obtain all the existing roots of p(x).
However, it should be remembered that, when such roots are computed with a numer-
ical method, the obtained results are approximations of the exact ones; therefore, the
deflated polynomial is still characterized by all the roots of the previous one. Any-
way, if the approximation is accurate enough, the numerically deflated polynomial
is very similar to the analytical deflated one and the difference is significant only in
a very small neighborhood of the deflated root. It is thus possible to exploit such a
technique to compute distinct roots that are far from each other.

The described approach can be then generalized to be applied to systems of PDEs;
however, before discussing the generalized method, it is convenient to introduce the
concept of deflation operator. In (20), the function 1/(x−xi) is called deflation oper-
ator and it is responsible for removing a root from the polynomial; such an operator
can be generalized in the following way (see [17]).

Definition 1 Let us denote by W and Z two Banach spaces and by U an open subset
of the additional Banach space V̂ . Moreover, let L : U ⊂ V̂ → W be a Fréchet
differentiable operator and L′ be its Fréchet derivative. Then, let M(u;w) : W → Z

be an invertible linear operator for each w ∈ U and for each u ∈ U\{w}. If, for any
Fréchet differentiable operator L for which the following properties hold:

L(w) = 0, L′(w) is nonsingular,
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and for any arbitrary sequence {ui} ⊂ U\{w} such that ui → w, the following
inequality holds

lim inf
i→∞ ‖M(ui;w)L(ui )‖Z > 0, (21)

then M is a deflation operator.

In order to generalize (20), one considers the deflation operator M(u;w) and the
following deflated system:

G(u; μ)
.= M(u;w)L(u; μ) = 0, (22)

that is characterized by the same solutions of L(u; μ) = 0 except for w.
Denoting by I the identity operator, it is possible to consider the most straightfor-

ward generalization of the deflation operator introduced in (20):

M(u;w) = I

‖u − w‖U

.

It can be observed that, since such an operator tends to 0 when u is very far from w,
the iterative solver may converge to unphysical solutions if it is directly employed
because the exact residual is multiplied by a factor that tends to 0. Even if several
alternatives exist, we preferred to implement a very simple deflation operator, that
can be expressed as:

M(u;w) = I + I

‖u − w‖p
U

,

with p = 1 in the offline phase and p = 2 in the online; such quantities have
been fixed via experimental observations. Note that, when p increases, the region of
attraction of w is wider; therefore, it is not possible to converge to fields very close
to it. We observed that, if a solver is less stable (as the used online solver without the
supremizer stabilization), it is convenient to use a higher value of p in order to avoid
computing solutions on the same branch more than once.

The main advantage of the deflation method consists in the ability to discover
unknown branches without any prior knowledge; however, if other branches exist,
one cannot be sure that they will be found with such a technique. In fact, if a branch
C is too far from any known solution, the solver may diverge before reaching the
region of attraction of any solution in C. Therefore, it is advisable to fix a meaningful
maximum number of iterations for the iterative solver when the deflated system is
solved. Such a threshold should be high enough in order to let enough time to the
iterative solver; however, if too many iterations are available, a lot of computational
resources will be wasted when new branches cannot be found.

We decided to fix such a quantity equal to 150 in the offline phase and to 300 in
the online one (because each iteration is significantly less expensive). Consequently,
the deflation method is the bottleneck of the deflated continuation when applied at
each step because the linear system has to be assembled and solved many times.
Therefore, if one knows the position of the bifurcation points, it is advisable to use
the deflation only in those regions.

Moreover, as described in [18], it is possible to increase the efficiency of the
deflation observing that one does not need to assemble and solve the linear systems
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associated with the deflated problem. In order to describe a more efficient approach,
let us assume that one wants to solve system (22) with the Newton method, that is
characterized by the following iteration:

JGΔuG = −G,

where JG is the associated Jacobian. In the same way, we will refer to the
corresponding iteration on the undeflated system as:

JLΔuL = −L. (23)

Assuming that M(u;w) ∈ R and exploiting the Sherman-Morrison formula [19], one
can derive the following relation:

ΔuG = −J−1
G G

= −
(
MJL + LM ′T )−1

(ML)

= −
(

M−1J−1
L − M−1J−1

L LM ′T M−1J−1
L

1 + M ′T M−1J−1
L L

)
(ML)

=
(

1 − M−1M ′T J−1
L L

1 + M−1M ′T J−1
L L

) (
−J−1

L L
)

.

One can observe that the quantity that multiplies the term
(
−J−1

L L
)

is a scalar

quantity; therefore, we will refer to it as:

τ
.= 1 − M−1M ′T J−1

L L

1 + M−1M ′T J−1
L L

= 1

1 + M−1M ′T J−1
L L

.

Finally, if one is able to efficiently compute a solution of the undeflated system, it
is possible to exploit the same algorithm to obtain a solution of the deflated one. In
fact, one simply has to multiply each Newton iteration for τ , that can be computed,
after having solved system (23), very efficiently with a scalar product and scalar
operations. Its cost is thus linear with the number of degrees of freedom. On the
other hand, if one wants to directly solve the deflated system, one has to explicitly
construct the matrix JG, that is full, and solve the associated linear system without
exploiting the sparsity of the original matrix JL.

5.2.1 An approach to improve the deflation method

In the previous section, we explained how to efficiently deflate a system modifying
the residual of the iterative solver associated with the undeflated problem instead of
constructing and solving the deflated one. However, we analyzed the values assumed
by the new scalar factor τ and we observed that they were always very low (very
often its absolute value was lower than 10−7

)
. This phenomenon implied serious

consequences because, using the formula

ΔuG = τΔuL,
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one observes that ‖ΔuG‖ ≈ 0 when τ ≈ 0. Consequently, the iterative solver
would have required too many iterations and the computational cost would have been
prohibitive. We thus analyzed the behavior of τ and its relation with the solutions
exploiting the fact that, since τ ∈ R, it cannot change the direction of the unde-
flated residual. However, even if the direction cannot differ between ΔuG and ΔuL,
their orientation can because τ can be positive or negative. Therefore, we decided
to modify the values of τ while maintaining its sign to avoid losing changes in the
orientation.

Firstly, we decided to fix two lower bounds in order to prevent |τ | to assume values
too close to 0 through the following formula:

τ =

⎧⎪⎨
⎪⎩

τ−
t if τ > τ−

t ,

τ+
t if τ < τ+

t ,

τ otherwise .

(24)

In this work, we decided to use τ−
t = −0.4 and τ+

t = 0.6; however, such values are
very problem dependent. Secondly, we multiplied τ by a scaling factor c in order to
avoid using the thresholds too often. It is important to observe that we initially fixed
c = 1 and then we multiplied it with a suitable scaling factor sc each time τ switched
from negative to positive. In fact, this change of sign implies that the deflation was
preventing the solver to converge to a solution u0 (τ < 0) but, when the current
iteration was too far from it, the solver was attracted again by u0 (τ > 0). Instead,
we observed that bigger values of c could help the solver to better escape from the
region of attraction of a solution; therefore, we slightly increased it each time such
an escape failed.

τ =

⎧⎪⎨
⎪⎩

τ−
t if cτ > τ−

t ,

τ+
t if cτ < τ+

t ,

cτ otherwise .

Finally, we decided to use the Newton iteration when the current iteration was close to
known solutions, while we exploited the Oseen one otherwise to improve the stability
of the solver.

In this work, we used τ−
t = −0.4, τ+

t = 0.6, and sc = 1.75. These values have
been chosen in order to obtain the best possible convergence velocity for the problem
of interest; nevertheless, different choices would lead to the same results at the cost
of a slower convergence. Therefore, if prior knowledge is available, it is convenient
to use it to optimally set these three quantities, otherwise one could use a relatively
small value of τ−

t and τ+
t (for instance −0.1 and 0.1) and a scaling factor sc slightly

greater than 1 (for example 1.1). This non-optimal choice may lead to a less effective
deflation because it would be harder to escape from the region of attraction of the
known solution, but the new branches could still be obtained by simply increasing the
number of available iterations. On the other hand, if the used values are significantly
greater than necessary, the position of the bifurcation points would be computed less
accurately but the new branches could still be continued to generate the entire dia-
gram. We thus suggest to use very small values if the goal is to accurately localize the
bifurcation points, or relatively large values when one wants to find all the branches.
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6 Numerical results

In this section, we will discuss the results that can be obtained using a combination
of the described techniques. Let us remember that, in order to obtain a bifurcation
diagram during the online phase, we performed the following steps. Firstly, the SEM
(see Section 3) has been used to compute the snapshots involved in the reduced space
generation. In order to choose the proper values of the parameter μ and obtain multi-
ple solutions for any μ, we respectively exploited the continuation and the deflation
methods (see Section 5). Subsequently, all the snapshots are grouped together to
construct a global reduced space with the POD (see Section 4) and, finally, the con-
tinuation and the deflation are used again in the online phase to efficiently reconstruct
the diagram. Such steps are summarized in Algorithm 1.

Algorithm 1: Main steps to efficiently compute a bifurcation diagram. Si is, for
any i = 2, ..., N , a small set of values used to compute the snapshots, while P−μ1

represents the parameter space for the parameters μ2, ..., μN .
Offline phase
snapshots set = ∅;
for (μ2, ..., μN) ∈ S2 × ... × SN do

// Compute a one-dimensional diagram with the function
// “offline deflated continuation()”
new snapshots = offline deflated continuation();
snapshots set = snapshots set ∪ new snapshots;

end
// Generate the reduced space with the POD
Reduced space = POD(snapshots set);
Online phase
solutions set = ∅;
for (μ2, ..., μN) ∈ P−μ1 do

// Compute a one-dimensional diagram with the function
//“online deflated continuation()”
new solutions = online deflated continuation();
solutions set = solutions set ∪ new solutions;

end

Since one of the hypothesis of the reduced basis method is the presence of a
smooth solution manifold with just a single solution associated with each parameter
value that, in this work, does not hold because of the pitchfork bifurcation points,
we will first prove that such an approach is able to accurately discretize a bifurca-
tion diagram with a single parameter. For instance, in Fig. 3, a bifurcation diagram
where such hypothesis does not hold is shown. Subsequently, we will move on to the
description of a bifurcation diagram with two parameters, where we will be able to
appreciate the efficiency of the computation. We also remark that all the shown errors
are computed in the L2 norm.
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Fig. 3 Bifurcation diagram with
multiple solutions associated
with the same parameter value

In order to better understand the different existing solutions, it is convenient to
analyze the ones in Fig. 4, where the horizontal velocity is highlighted by the color
gradient. It is important to observe that more than one solution is associated with the
values 0.6 and 0.3 of the viscosity. Moreover, some of them are axisymmetric while
others are not. However, due to the symmetry of the domain and of the boundary
conditions, it is always possible to reflect a solution over the horizontal axis of sym-
metry to obtain another solution. Such a phenomenon can be observed, for instance,
in Fig. 4d and e. This is important because the function that will be used to compute

Fig. 4 Nine of the most representative solutions that have been obtained in this work. The color gradient
is associated with the streamwise velocity. Solutions a, b, and c belong to branch 1 of Fig. 6, d and i to
branch 2, e and h to branch 3, f to branch 4, and, finally, g to branch 5
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the bifurcation diagram is, as suggested in [17], the following one:

f (u)
.= ±

∫
Ω

‖u − R(u)‖2,

where u is the velocity, R(·) is an operator that reflects a solution over the horizontal
symmetry axis, and the sign is positive one if the jet hugs the upper wall or negative
one otherwise. Therefore, f (u) will be equal to 0 if a solution is perfectly symmet-
rical, while its absolute value will increase with the asymmetry of the velocity field.
Exploiting such an interpretation, one can immediately conclude that the bifurca-
tion diagrams will be symmetrical because each solution u0 can be mirrored over the
symmetry axis obtaining another solution u1 such that f (u0) = −f (u1). Note that
in the shown diagram the norm used to compute f (u) is the L2 norm, even though
any norm could be used because we are only interested in obtaining different values
of f (u) for solutions on different branches.

6.1 Results with a single varying parameter

As previously written, in this section, we will discuss the results that can be obtained
with only a single parameter. Therefore, we will not consider the efficiency of the
computation but we will focus on the application of the described techniques to accu-
rately discretize a bifurcation diagram. In fact, the bifurcation diagrams computed
offline and online (that will be described later and are shown in Figs. 6 and 7) rep-
resent almost the same information. Then, when interested in such a diagram, one
could simply use the one obtained offline without performing the POD and the online
phase. We thus only prove, in this section, that the proposed method is stable and
that the deflated continuation method can be used also in a reduced framework with-
out major changes. On the other hand, in Section 6.2, we will construct bifurcation
diagrams with more parameters to show how to exploit the RB method to ensure the
efficiency.

The first diagrams that we want to show represent the decay of the eigenvalues
of the correlation matrix obtained in the POD method. In Fig. 5a, one can observe
the decay associated with 24 snapshots distributed on three different branches near a
bifurcation point, while the entire diagram that contains such branches can be seen
in Fig. 6. Such snapshots have been computed with ν ∈ [0.85, 1], s = 1, and with
the additional constraint |νi+1 − νi | = Δνi < Δνmax = 0.02 · ν to ensure that the
approximations obtained with the continuation method are accurate enough. In the
following, we will refer to this particular choice for the number of snapshots, the vis-
cosity range, the value of s, and this particular constraint on ν as the reference setting.
It can be observed that the decay is exponential even if there is a singular point (for
instance, similar behaviors have been proved in [20] and in [39] without considering
singular points). Moreover, it should be noted that the decay is very similar when the
continuation steps are smaller; therefore, all the snapshots are closer to the bifurcation
point (see Fig. 5b, obtained with ν ∈ [0.91, 1] and Δνmax = 0.01 · ν). On the other
hand, the decay remains exponential but it is faster or slightly different if, respec-
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(a) Reference setting (b) Reference setting computed with
max = 0 .01 ·

(c) Reference setting with all the snapshots
belonging to the same branch

(d) Reference setting with 100 snapshots

Fig. 5 Decays of the eigenvalues of the correlation matrix used in the POD method. The reference setting
consists in 24 snapshots belonging to the first three branches of the diagram in Fig. 6 (higher values of ν)
computed with ν ∈ [0.85, 1], s = 1, and Δνi < Δνmax = 0.02 · ν

tively, the snapshots belong to the same branch or if we increase their number from
24 to 100. Note that discarding two branches or increasing the number of snapshots
implies that, with the same step sizes, the viscosity varies in a wider range, approxi-
mately [0.5,1] in both cases. Such results are important because an exponential decay
of the eigenvalues implies, thanks to relation (14), that the approximation error of the
reduced spaces exponentially decreases with respect to its own dimension.

The next figure shows the entire one-dimensional bifurcation diagram which we
will discuss (Fig. 6). It is computed during the offline phase and each point corre-
sponds to a snapshot. It can be observed that it includes two bifurcation points and
five different branches. In order to compute it, we decided to use as first solution the
one obtained for ν = 1 and, then, we decreased the viscosity computing the solutions
with the deflated continuation method. Note that the pseudo-arc length continuation
automatically selects the best Δνi values for each branch, but we imposed the addi-
tional constraint that the solutions on different branches have to be associated with
the same viscosities to make the deflation more effective and that, in order to avoid
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Fig. 6 Bifurcation diagram computed during the offline phase, each point is associated with a snapshot
and each branch is characterized by a different color and a different marker

too wide steps, Δνi < Δνmax = 0.02 · ν. We also highlight that, if one is not inter-
ested in the entire diagram but only in the position of the bifurcation points, it is
convenient to perform an eigenvalues analysis as discussed in [40] and in [42].

Since, as discussed in the introduction of this section, the output functional f (·)
can be considered a measure of the asymmetry of the solutions, one can observe that
the solutions in Fig. 4a, b, and c are associated with the middle branch. Moreover,
the ones in Fig. 4d and i are two characteristic velocity fields of the first and of the
second parts of the upper branch that is born from the first bifurcation point (the one
on the right, since we decrease the viscosity).

Consequently, the solutions in Fig. 4e and h are associated with the lower branch
because they are the mirrored solutions of the latter and, finally, the fields in Fig. 4f
and g are representative of the solutions on the last two branches. Obtaining such
a diagram is very expensive because many different solutions have to be computed
with the full-order solver. In fact, it has been obtained using 224 snapshots with Nδ =
7372 degrees of freedom and, to obtain them, each step of the iterative solver spent
almost 0.67 s. We remark that with 7372 degrees of freedom we were able to com-
pute accurate solutions thanks to the SEM. However, if one uses other discretization
techniques or requires a very high accuracy, the computational cost can significantly
increase. For instance, in [22], a very similar model has been computed with the FEM
(in particular with the Taylor-Hood elements) exploiting 90,876 degrees of freedom
to obtain the desired accuracy. Note that the 7372 degrees of freedom are associ-
ated with the mesh shown in Fig. 1 and with ansatz functions of order 12. Therefore,
the L2 error is of order O(hp) where p = 12 and h can be computed as the ratio
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between the diameter of the biggest element and the domain diameter, such a ratio is
approximately 0.05.

It is important to note that, even if the computation of this diagram is very expen-
sive, such a result can be obtained during the online phase much more efficiently. The
obtained diagram is shown in Fig. 7: it can be seen that it is possible to reconstruct
both the bifurcation points and all the branches. Such a figure has been obtained
using the simple continuation and dividing by 20 the step sizes used during the offline
phase. Moreover, since in this simulation the solutions were associated with Nrb =
37 degrees of freedom, the iterative solver approximately spent only 10−5 s for every
iteration with a speedup of about 4 orders of magnitude. The statistics in Table 1 can
be used to observe that if a bifurcation diagram is discretized with at least 770 solu-
tions, then the described approach is more efficient than the direct computation of a
diagram without the RB method. Finally, we remark that these quantities have been
obtained exploiting a prior knowledge obtained from previous experiments about the
position of the bifurcation points to use the deflation only when new branches can be
found. However, without such a knowledge, one should use the deflation at each step
of the continuation, extremely increasing the computational cost of the process and
making the described approach even more convenient.

Unfortunately, because of the data structures used in Nektar++ to perform static
condensation, at the moment some of the computations of the online phase depended
on Nδ and, therefore, the time required to compute, on average, a solution given
the previous ones significantly increased ruining the speedup obtained in a single
iteration. In fact, the online solver could generally converge in 4 iterations, but the
average time obtained dividing the total required time needed to get the complete
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Fig. 7 Bifurcation diagram efficiently reconstructed during the online phase
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Table 1 Computational costs of the offline and online phases when a single parameter is involved

Td Nd T1s TPOD TdN (N) T1i

Offline 1292 s 224 5.77 s 2995 s (5.77 · N) s 0.67 s

Online 293.85 s 1492 0.20 s / (4287 + 0.20 · N) s 3.21 · 10−5 s

These quantities have been obtained exploiting a previous knowledge on the position of the bifurcation
points. Td is the time required to compute the entire diagram (with Nd solutions), and T1s and T1i are the
average times required to compute a single solution and to perform a single iteration of the iterative solver,
while TPOD is the time required by the POD and TdN (N) the one needed to compute an arbitrary diagram
with N solutions. In the online phase, TdN (N) is computed summing the time required to compute the
snapshots, to perform the POD and to compute N reduced solutions. The described approach, with this
offline phase, is more efficient than the classical one when the bifurcation diagram is discretized with
N ≥ 770 solutions because N = 770 is the first value such that TdN (N) of the offline phase is higher than
its online counterpart

diagram by the number of computed solutions is much higher than 4 times the time
required to perform a single step of the iterative solver. Approaches to obtain a full
decoupling from Nδ , exploiting a reduced change of basis matrix, will be analyzed
in future works.

In order to quantify the accuracy of the obtained result, we decided to perform an
empirical error analysis. Thus, we reprojected the reduced solutions on the full-order
space and used them as initial guesses for the iterative solver. This way we compared
the obtained full-order solutions with the reduced ones and we computed the associ-
ated relative error that is shown in Fig. 8. In order to properly interpret the diagram,
it is important to remark that the tolerance used by the offline iterative solver was
10−6; therefore, the relative error is almost always very close to such a quantity. How-
ever, coherently with the fact that one of the hypothesis of the reduced basis method
regards the presence of a smooth solution manifold, the error increases in the neigh-
borhoods of the bifurcation points. This phenomenon is in accordance with the fact
that it is more complex to converge to solutions very close to singular points without

(a) Uniform scale (b) Logarithmic scale

Fig. 8 Relative error between reduced and full-order solutions of Figs. 6 and 7
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good initial guesses (that are never available when one wants to discover unknown
branches). It can also be observed in Fig. 7, where the asymmetrical branches were
not always immediately found.

Moreover, it is possible to observe the behaviours of the average and maximum
relative errors in Table 2. The first column is associated with a neighbourhood of
the bifurcation point near ν ≈ 0.4, the second one to the portion of the domain
between the singular points, the third to a neighbourhood of the other bifurcation
point and, finally, the fourth to the entire diagram. It can be noted that, even if the
bifurcation points strongly affect the accuracy, the global average error is only one
order of magnitude above the solver threshold.

It is interesting to note that the error exponentially decreases with respect to the
dimension of the reduced space, both in smooth regions and close to the singular
points. This phenomenon can be observed in Fig. 9, where the error is associated with
solutions in a small neighbourhood of the first bifurcation point, i.e. a region where
the hypothesis of smooth solution manifold required by the RB method does not
hold. To obtain such a decay, we computed 30 snapshots with ν ∈ [0.825, 1], s = 1,
and Δνmax = 0.02 · ν; we then generated 30 different reduced spaces and compared
the online solutions with the corresponding full-order ones. It is also important to
observe that the error, computed over 300 reduced solutions, stops decreasing when it
is close to 10−10 because such a quantity has been used as the tolerance in the offline
and online iterative solvers. The fact that the maximum error decreases almost as the
average one implies that the accuracy of the less accurate solution (the closest one to
the singular point) exhibits the same behavior as the other ones.

6.2 Results withmultiple parameters

Finally, in this section, we will address the problem of efficiency. In the previous
section, we showed that the eigenvalues decay of the POD matrix is the expected
one and that, exploiting the continuation and the deflation method, it is possible to
construct a bifurcation diagram in the offline phase and to reconstruct it accurately
and efficiently during the online one.

In Section 6.1, the diagram discretized during the online phase loses part of its
importance because the same branches have to be discretized also in the offline one.
Otherwise, if one wants to obtain it only in the online one without exploiting the
continuation and the deflation offline, the reduced space would be too small and the

Table 2 Average and maximum relative errors of the solutions of diagram Fig. 7 with respect to the
corresponding full-order solutions

Quantity ν ∈ Ων
0 ν ∈ Ων

1 ν ∈ Ων
2 ν ∈ P

Average error 1.53 · 10−5 3.56 · 10−6 5.45 · 10−5 1.24 · 10−5

Maximum error 3.24 · 10−4 1.67 · 10−5 1.10 · 10−3 1.10 · 10−3

The following notation has been used: Ων
0 = [0.3, 0.45], Ων

1 = (0.45, 0.9], Ων
2 = (0.9, 1], P = Ων

0 ∪
Ων

1 ∪ Ων
2 = [0.3, 1]
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Fig. 9 Relative errors over the dimension of the reduced space

secondary branches could not be found online. For instance, let us assume that during
the offline phase one computes all the symmetric solutions, i.e., the ones such that
f (u) = 0, then the reduced space is able to generate only symmetric solutions and,
therefore, the other branches can not be discovered.

Furthermore, if one is interested in computing bifurcation diagrams with more
than one parameter, the number of solutions required to discretize it would sig-
nificantly increase and the computational cost of the high-order simulation would
become prohibitive. We remark that the coupling of the aforementioned techniques
allows us to efficiently reconstruct a representation of the N-dimensional manifold
induced by the solutions that would be infeasible without reduction strategies. There-
fore, in order to compute a diagram letting more parameters vary, we decided to
slightly change the described approach, computing only few one-dimensional bifur-
cation diagrams during the offline phase (in this work, we computed only Noff diag =
2 or Noff diag = 3 offline diagrams), and refining the grid associated with the second
parameter only in the online phase. Such an approach can be generalized, when even
more parameters are involved, by computing a small set of one-dimensional diagrams
during the offline phase and generating all the other dimensions of the complete
diagram only online.

As previously written, the second parameter in this work is a scaling s of the
inlet Dirichlet boundary condition. The bifurcation diagram that can be obtained with
the described approach is shown in Fig. 10. It can be observed that it is possible to
entirely reconstruct the two-dimensionality of the diagram with both the bifurcation
points, whose position changes according to the value of s. The obtained diagram is
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Fig. 10 Bifurcation diagram efficiently obtained in the online phase with two parameters and two bifurca-
tions. The color gradient remarks the value f (u) in each point in order to allow the reader to more easily
interpret the diagram

coherent with the one in Figs. 6 and 7 and with the nature of the two involved param-
eters. In fact, the inlet boundary condition is strongly related to the Reynolds number
(Re = UL/ν) and, since such a non-dimensional quantity is the one responsible for
the bifurcation, one could expect that the bifurcation points are moved along straight
lines in the s-direction because multiplying ν by a scalar c is equivalent, in terms of
Re, to dividing s by c. Moreover, this property explains the fact that, when s increases
from 0.8 to 1, the bifurcation phenomena are anticipated, i.e., the bifurcation points
are associated with higher viscosities.

We wanted to consider a second parameter that could add new information to the
one-dimensional diagram but, since these two parameters are so deeply related to Re,
we decided to analyze the POD eigenvalues decay to observe if a behavior different
from the one observed in the one-dimensional case could be found. A significantly
stronger decay would have meant that ν and s contained the same information and,
therefore, the same solutions that can be obtained varying the viscosity could be
obtained by properly rescaling the ones obtained varying s.

We analyzed three different scenarios. Firstly, we considered snapshots belonging
to a diagram with 2 values of s and 15 of ν, that is very similar to the actual offline
phase and it is reported in Fig. 11a. In such a setting, the observed decay follows the
behavior of the reference one-dimensional setting. Secondly, in Fig. 11b, we used
only 1 value of ν and 30 of s obtaining 30 solutions on the same branch. Conse-
quently, this decay agrees to the one in Fig. 5c. Finally, in Fig. 11c, we decided to use
a mixed approach considering 5 values of s and 6 of ν; the obtained decay is slightly
faster than the first one because of the relation between the parameters, but it is still
exponential.

As remarked in the previous section, the online solver is much more efficient. In
fact, even if a single step during the offline phase lasted for 0.67 s on average, each
single step could be performed in approximately 10−5 s during the online one. It is
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(a) 2 values of s, 15 values of (b) 30 values of s, 1 value of

(c) 5 values of s, 6 values of

Fig. 11 Eigenvalues decay obtained with different settings of the model obtained using the scaling as a
parameter with different sampling for the snapshots

important to observe that there are about four orders of magnitude of difference but
this quantity does not depend on the number of involved parameters. Subsequently,
the described approach is more and more convenient when the number of parameters
increases because much more solutions are required to properly discretize the entire
bifurcation diagram. For instance, let us consider the diagram in Fig. 6 that is gener-
ated by 224 snapshots, while its central branch only contains 64 different solutions.
If one wants to compute a two-dimensional bifurcation diagram with approximately
the same discretization level on both the dimensions, the required solutions will be
about 224 × 64; therefore, 14,336 solutions are needed. Moreover, if one considers n

parameters, the number of required solutions increases to 224×64n−1. The cost asso-
ciated with such a computation is prohibitive even for n = 2 if a reduced-order model
is not taken into account. However, it can be drastically reduced with the described
approach, in fact, if one considers only two points in each dimension apart from the
first one, the number of snapshots decreases to 224 × Nn−1

off diag, while the remaining
solutions are computed during the online phase. We claim that the computational cost
is significantly reduced because the number of required full-order solutions is much
smaller than the one required to generate a complete n-dimensional diagram because
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Noff diag is very small. On the other hand, in Fig. 10, we decided to refine the grid
associated with the viscosity, while fixing only 6 nodes for the scaling in order to
properly visualize the diagram, obtaining 16,970 different solutions.

Once more, in Table 3, one can observe that, after a very expensive offline phase,
the computation of each solution is very efficient during the online one. However,
in order to improve the stability of the online solver, we decided to use shorter con-
tinuation steps during the offline phase obtaining more solutions (with the same step
sizes we would have approximately obtained 2·224 snapshots because we considered
Noff diag = 2), significantly increasing the computational cost of such a phase. Never-
theless, we can observe that the method is efficient if a diagram is discretized with at
least 2365 solutions but, in two-dimensional diagrams, this quantity is very low and,
therefore, the entire process is very efficient in most cases. Similar considerations as
the ones associated with Table 1 hold also for the statistics in Table 3.

It is also important to remark that the obtained diagram is still very accurate.
To prove it, we performed the same error analysis of the one-dimensional diagram
obtaining the result in Fig. 12. Such a figure has been obtained computing the rela-
tive error of the reduced solutions with respect to their full-order counterpart obtained
with the SEM. The average error is higher because following the online branches in a
multi-dimensional space is much more complex. However, the same behavior shown
in Fig. 8 is present; the error is characterized by two groups of peaks near the bifur-
cation points and by an oscillatory behavior elsewhere. We decided to use only 3
values of s to obtain a more clear visualization: such a choice does not influence the
analysis since the most important parameter in diagram Fig. 10 is ν.

Once more, we summarized in Table 4 the average and maximum relative errors
according to the different regions of the diagram. The columns represent the same
regions as in Table 2 but the key parameter is the ratio between the viscosity and
the scaling. Such a choice is justified by the fact that, with a fixed domain, this
ratio determines the Reynolds number and, therefore, can be used to divide the dif-
ferent regions. It can be noted that, again, the error significantly increases near the
bifurcation points, but that the entire diagram is, on average, still very accurate.

Finally, we are interested in understanding the effect of a geometrical variation
on the bifurcation diagram. The corresponding parameter will be called cH and will
represent a multiplicative factor of the inlet height used in Fig. 1 and in the previous
numerical results. When cH = 1, the domain used to compute the previous diagrams

Table 3 Computational costs of the offline and online phases when two parameters are involved

Td Nd T1s TPOD TdN (N) T1i

Offline 5429 s 937 5.79 s 7764 s (5.79 · N) s 0.67 s

Online 3564 s 16970 0.21 s / (13193 + 0.21 · N) s 5.43 · 10−5 s

The notation of Table 1 has been used. The described approach is more efficient than the classical one
when the bifurcation diagram is discretized with N ≥ 2365 solutions. These quantities have been obtained
exploiting a previous knowledge on the position of the bifurcation points. Note that, if one computes less
snapshots during the offline phase or use a worse discretization, it is very complex to obtain the diagram
online; therefore, 2365 is a reliable number in the considered scenario
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(a) Uniform scale

(b) Logarithmic scale

Fig. 12 Relative error with respect to full-order solutions

Table 4 Average and maximum relative errors of the solutions of diagram Fig. 10 with respect to the
corresponding full-order solutions

Quantity ν
s

∈ Ω
ν,s
0

ν
s

∈ Ω
ν,s
1

ν
s

∈ Ω
ν,s
2

ν
s

∈ Ων,s

Average error 5.08 · 10−4 1.02 · 10−4 9.69 · 10−4 2.64 · 10−4

Maximum error 1.86 · 10−2 3.40 · 10−3 9.49 · 10−3 1.86 · 10−2

The following notation has been used: Ω
ν,s
0 = [0.3, 0.45], Ων,s

1 = (0.45, 0.9]∪ (1, 1.25], Ων,s
2 = (0.9, 1],

Ων,s = Ω
ν,s
0 ∪ Ω

ν,s
1 ∪ Ω

ν,s
2 = [0.3, 1.25]
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is considered and the inlet height is 2.5. To be consistent with the velocity scaling
factor s, cH will belong to the interval [0.8, 1]. Therefore, the inlet height varies
in [2, 2.5] and the inlet Dirichlet boundary condition in (3) has to be modified as
follows:

u =
[
u

v

]
=

[
20s(y

cH

1 − y)(y − y
cH

0 )

0

]
, x = 0, y ∈ (y

cH

0 , y
cH

1 ),

where y
cH

0 and y
cH

1 can be computed as:

y
cH

0 = 5 + 2.5

2
− 5 − 2.5

2
hC, y

cH

1 = 5 + 2.5

2
+ 5 − 2.5

2
hC .

As in the previous case, we computed, during the offline phase, a set of snapshots
belonging to a small set of one-dimensional bifurcation diagrams. In particular, we
computed them letting vary only ν and with (s, cH ) ∈ {0.8, 1} × {0.8, 0.9, 1} (i.e.,
only 6 one-dimensional diagrams are obtained in the offline phase). Then, all the
snapshots are used to construct a global reduced space by means of the POD and such
a space is finally used to generate the corresponding three-dimensional diagram. In
order to better visualize and compare the obtained diagram, we decided to compute
six one-dimensional diagrams (in the ν-direction) corresponding to parameter values
(s, cH ) /∈ {0.8, 1} × {0.8, 0.9, 1} and show them together, with different colors, in
Fig. 13.

In particular, the red curves are obtained with cH = 0.95 and the blue ones with
cH = 0.85. It can be observed that the bifurcation diagrams are similar but that the
critical points are anticipated as cH increases. Once more, we analyzed the accu-
racy of the involved solutions with respect to the corresponding full-order ones. The
obtained error diagram is shown in Fig. 14; it can be noted that it is consistent with
the ones in Figs. 8 and 12.

Fig. 13 Bifurcation diagram with three parameters efficiently obtained in the online phase. The green dots
represent the snapshots, while the red and blue curves the bifurcation diagrams obtained with cH = 0.95
and cH = 0.85, respectively
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Fig. 14 Relative error with respect to full-order solutions

7 Conclusions and perspectives

In this work, we described an approach to efficiently compute bifurcation diagrams
with more than one parameter. The diagrams are discretized exploiting an elabo-
rated deflated continuation method characterized by two versions of the continuation
method and a deflation one to which associated steps can be adaptively modified to
improve its efficiency and effectiveness. Moreover, we decided to use the reduced
basis method to drastically reduce the computational cost of the process and, in
order to increase the efficiency of its offline phase, we adopted the spectral element
method.

The main advantages of the described method are the following ones:

– The bifurcation diagram is automatically computed, a priori knowledge of the
phenomenon is not required;

– When more than one parameter is involved, the computational cost of the entire
process is drastically reduced thanks to the reduced basis method. In fact, it
allows one to compute any solution at a cost independent of Nδ and to compute
offline only few full-order solutions;

– The offline phase can be further improved exploiting high-order methods as the
SEM because they require a lower number of degrees of freedom than low-order
methods and, since the supports of the bases are wider, they are more similar to
the ones used in the online phase;

– With the continuation method and the deflation one, it is possible to com-
pute bifurcation diagrams with an arbitrary number of bifurcation points, whose
nature is not known a priori.

However, it is important to recognize that the stability of the online solver should
be improved before applying such a technique in real scenarios. In fact, in order
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to obtain the convergence during the online phase, we had to increase the order of
the polynomials in the offline one and to properly select some parameters. A more
sophisticated approach could involve the supremizers [33] to directly improve the
stability or the localized reduced basis method [22], that can reduce the noise in
each basis. Moreover, we expect that such an issue can worsen when other parame-
ters, mainly the geometrical ones, are involved; therefore, the described method has
to be tested on three-dimensional and realistic geometries before being applied in
real scenarios. It should be noted that the fact that the SEM relies on coarse meshes
is not restrictive: in fact, a complex geometry can be accurately approximated by
means of curved elements [24]. Moreover, to further increase the efficiency and the
stability of the proposed technique, one can generalize it with the reduced basis
element method [34]. In such a method, the wide supports of the SEM basis func-
tions are exploited to generate a reduced space associated with each element or with
groups of elements. We remark that combining complex three-dimensional simula-
tions as the ones in [43] with the described advanced numerical techniques is still very
challenging. Therefore, the proposed method cannot be immediately used to under-
stand the flow features and detect whether there are anomalies related to the blood
flow.

Finally, we have only studied steady bifurcations where a finite number of solu-
tions existed; however, more advanced studies and tools are required to capture
unsteady bifurcations (as the Hopf bifurcations [32], obtained, for instance, in [48]
for slightly higher Reynolds numbers in a similar geometry) or phenomena charac-
terized by infinite solutions. For instance, in [5], a different deflation operator has
been implemented to deflate entire groups of solutions, characterized by their sym-
metry, at the same time. Moreover, we highlight that if one is interested in the nature
of the bifurcation points, it is convenient to analyze the behaviors of the eigenvalues
that lead to the bifurcations (see [41]).
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