
23 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A FPGA-based control-flow integrity solution for securing bare-metal embedded systems / Maunero, N.; Prinetto, P.;
Roascio, G.; Varriale, A.. - ELETTRONICO. - (2020), pp. 1-10. (Intervento presentato al convegno 15th IEEE
International Conference on Design and Technology of Integrated Systems in Nanoscale Era, DTIS 2020 tenutosi a
Marrakech (MA) nel 2020) [10.1109/DTIS48698.2020.9081314].

Original

A FPGA-based control-flow integrity solution for securing bare-metal embedded systems

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/DTIS48698.2020.9081314

Terms of use:

Publisher copyright

©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2838933 since: 2021-11-12T10:45:08Z

Institute of Electrical and Electronics Engineers Inc.

A FPGA-based Control-Flow Integrity Solution for
Securing Bare-Metal Embedded Systems

Nicolò Maunero⇤, Paolo Prinetto⇤, Gianluca Roascio⇤, Antonio Varriale†
⇤Dipartimento di Automatica e Informatica, Politecnico di Torino, Turin, Italy

Cybersecurity National Laboratory, Consorzio Interuniversitario Nazionale per l’Informatica (CINI)
{nicolo.maunero, paolo.prinetto, gianluca.roascio}@polito.it

†Blu5 Labs Ltd., Malta
av@blu5labs.eu

Abstract—Memory corruption vulnerabilities, mainly present
in C and C++ applications, may enable attackers to maliciously
take control over the program running on a target machine
by forcing it to execute an unintended sequence of instructions
present in memory. This is the principle of modern Code-Reuse
Attacks (CRAs) and of famous attack paradigms as Return-
Oriented Programming (ROP) and Jump-Oriented Programming
(JOP). Control-Flow Integrity (CFI) is a promising approach to
protect against such runtime attacks. Recently, many CFI-based
solutions have been proposed, resorting to both hardware and
software implementations. However, many of these solutions are
hardly applicable to microcontroller systems, often very resource-
limited. The paper presents a generic, portable, and lightweight
CFI solution for bare-metal embedded systems, i.e., systems that
execute firmware directly from their Flash memory, without
any Operating System. The proposed defense mixes software
and hardware instrumentation and is based on monitoring the
Control-Flow Graph (CFG) with an FPGA connected to the
CPU. The solution, applicable in principle to any architecture
which disposes of an FPGA, forces all control-flow transfers to
be compliant with the CFG, and preserves the execution context
from possible corruption when entering unpredictable code such
as Interrupt Services Routines (ISR).

Index Terms—security, code-reuse attacks, return-oriented
programming, ROP, JOP, embedded systems, microcontrollers,
firmware, bare-metal, backward edges, forward edges, interrupt

I. INTRODUCTION

Embedded devices are nowadays playing a central role in
our lives, as they control most of the objects surrounding us.
In addition, such systems create a network of connections that
goes far beyond simple isolated LANs and links up devices
all over the world. A huge amount of sensitive data is thus
exchanged, and related security and privacy issues must be
addressed.

In addition to communication security, a relevant aspect is
the protection of devices themselves and their resilience to
unauthorised intrusions. Physical security is certainly a first
step, but not enough, since vulnerabilities may be contained
in the code that the systems execute. Many of these vul-
nerabilities derive from the widespread use of very powerful
languages such as C and C++. These languages guarantee a
high degree of low-level control, but at the same time they
allow programmers to freely manipulate memory pointers,

so that common weaknesses such as buffer overflow [1] or
dangling pointers [3] come out.

These vulnerabilities open the door to a family of exploits
commonly known as Code-Reuse Attacks (CRA), in which the
flow of the program is redirected to portions of code already
present in memory but not intended to be executed in that
order. Return-Oriented Programming (ROP) [44] [13] [40]
and Jump-Oriented Programming (JOP) [10] [18] are attack
paradigms belonging to this category. In a paper of 2005 by
Abadi et al. [7], Control-Flow Integrity (CFI) was suggested
as a basic defence approach. CFI states that every control-
flow transfer occurring during the execution of a program
must target a valid destination, as stated in its Control-Flow
Graph (CFG) computed ahead of time. Basically, the program
behaviour is observed by an online monitor (software or
hardware), which is able to ensure that no transfer happens
out of those established in its CFG.

In literature, several implementations of CFI have been
presented. Purely software solutions are mostly based on
code instrumentation [9] [17], with additional checks on
the destination of the control-flow transfers. These methods
can however result in a considerable overhead in terms of
added instructions, allocated data structures and/or execution
times, often not acceptable for real-time systems with limited
resources. In other cases, solutions based on multitasking have
been proposed [22] [31] [54], very modular but inapplicable
when the code is directly executed by the processor without the
intervention of an Operating System (bare-metal machines).

Hardware-based CFI solutions [50] [23] [20] try to over-
come these limits by proposing CFI monitors directly installed
at hardware level. The program executes without spending
time for checks, which are performed almost transparently in a
parallel and much faster way. Moreover, sensitive information
are not even visible by the main execution, which cannot
access it in any way.

If hardware-based CFI is advantageous for these reasons,
on the other hand, providing support for a hardware unit that
directly accesses pipeline registers [25] or the bus between
the core and the instruction cache [21] becomes unaffordable,
as it is necessary to modify the internal design of the micro-
controllers. This can be avoided if the hardware is equipped
with a reconfigurable component, e.g., an FPGA, which can be

used to implement a CFI monitor without touching the internal
architecture of the processors.

The goal of the present work is therefore to propose a
solution for bare-metal microcontroller systems that exploits
the presence of a FPGA onto which the CFI monitor can
be synthesised. The solution lies halfway between software
techniques and hardware techniques, with a minimal binary
instrumentation based on single write machine instructions:
these are used to communicate to the external reprogrammable
device the information about the status of the CFG. The
monitor validates the information received and stops the
processor activity when a deviation is detected, via a security
violation hard fault. The solution is in principle applicable to
any architecture provided with an FPGA, and does not involve
modifications to internal structure of the processors.

Outline. In the following of this Section, we offer a brief
digression on what is the CPU-FPGA cooperation trend, to
better contextualize our work; Section II provides some techni-
cal background on Control-Flow Hijacking attacks; Section III
presents main state-of-the-art hardware-based CFI solutions;
Section IV motivates our work and lists the challenges that
are addressed; Section V presents our FPGA-based solution;
Section VI lists the experimental results obtained from a
preliminary implementation; Section VII finally concludes the
paper.

A. The CPU-FPGA cooperation
According to latest Gartner research about the future of

Infrastructure and Operations [6], FPGA will be part of the
top 10 technologies to drive innovation through 2024.

The most recent strategies depict a primary interest of using
FPGA in server-side hybrid chips. Nevertheless, the rise of 5G
technology, the consequently spread of IoT and OT infrastruc-
tures, and the need for real time insights and localised actions,
are forcing to deploy edge-computing solutions to process data
closer to the source of generation. It is expected that, over
the next few years, hardware vendors will focus on delivering
computing hardware to execute complex, compute-intensive
functions at the edge. In this context, hybrid chips based on
CPU and FPGA components, will be the easiest and most
power/cost-effective way to meet the new edge computing
hardware requirements. Although there are still a few examples
on the market, mostly provided by FPGA vendors who embed
ARM or NIOS cores in their devices, hybrid CPU+FPGA
chips are expected to become increasingly popular in the next
years.

FPGA and CPU devices are already employed in many
projects as separate components interconnected through a
parallel bus and mounted on the same electronic board. In
most of the cases, the FPGA is mapped as a memory device
whereas the CPU acts as a master of the system. However, the
mobile terminals market is driving a new trend, which aims
to replacing the parallel bus with serial differential lines in
order to reduce the final device size and, at the same time, to
increase the data transfer rate. In the past decade, this process
already happened in the PC world, when the PCI parallel bus

was replaced by the PCIe differential lanes based bus. In terms
of architectural access, we are talking of a migration from
memory-mapped devices to port-mapped devices.

In any case, since the new serial buses affect the memory
components, it is expected that the CPU will adapt the
instruction set to atomically manage the memory access with a
single-instruction paradigm, either mapping the LOAD/STORE
instructions to the new serial buses or introducing IN/OUT
instructions to manage the serial memory access.

II. BACKGROUND

The IEEE Spectrum ranking of top programming languages
[4] reports C and C++ as respectively 2nd and 3rd most used
languages in the embedded system domain still in 2019. The
reasons may be many, but there is no doubt that one of the
great advantages in their use is the availability of low-level
control structure that allows a deep optimisation in resource
usage without losing the advantages of high-level statements.
Although, the direct management of data structures in memory
and the free manipulation of pointers originate a large number
of vulnerabilities. The lack of memory safety capabilities (such
as a strong typization, present in other modern languages)
enables attackers to exploit these bugs by maliciously altering
the program’s behaviour.

One of the most famous vulnerabilities of this kind is buffer
overflow [1], which is caused by incrementing or decrementing
a pointer without proper boundary checks. This may result
in out-of-bounds writes which corrupt adjacent data on stack,
heap or other zones. Similar problems may rise when indexing
bugs are present in the code, i.e., when boundary checks over
an index for a given data structure are missing or incomplete.
Indexing bugs derive from programming errors collectively
known as integer-related errors, such as integer overflow [2],
incorrect signedness or wrong pointer casting.

Famous are also use-after-free vulnerabilities [3], for which
a pointer is mistakenly used after the area it points has been
freed and released to the memory management system. After
the free, the pointer still points to the deallocated region, which
in the meanwhile can have been written with other data. The
consequence is that newly allocated data in the heap may be
corrupted by accessing it by these dangling pointers.

Memory vulnerabilities described above may enable attack-
ers to maliciously take control over the program by forcing
it to execute an unintended sequence of instructions. This
exploit is generally called Arbitrary Code Execution (ACE).
To achieve ACE, attackers tamper with the instruction pointer,
which in most architectures is referred to as Program Counter
(PC). The PC stores the address of the next instruction to be
executed: being able to control its content means being able
to decide the next instruction to be executed.

The control over the instruction pointer can be taken, for
instance, by corrupting the memory operand of an instruction
that copies that value into the PC (indirect control-flow transfer
instructions). RET and some formats of CALL and JMP are
example of such instructions, but, in general, any instruction

that treats the PC register as a destination register for a
computing operation can be exploited.

The PC value is corrupted to point to the attacker’s payload.
This was traditionally injected together with the corrupted
instruction pointer into the program memory program (Code
Injection) thank to stack memory vulnerabilities [38]. Such
exploits were made practically impossible after the wide
adoption of main architectural countermeasures like Data Ex-
ecution Prevention (DEP) [47] and Write XOR Execute policy
[48], for which a memory location cannot be both writable (W)
and executable (X) at runtime. Attackers then devised a new
attack paradigm, in which the payload is composed of snippets
of code already present in the program memory, but not meant
to be executed in that order. This was how Code Reuse Attacks
(CRA) were born. In a paper of 2007 by Shacham et al. [44],
the authors theorized that “in any sufficiently large body of
executable code there will exist sufficiently many useful code
sequences that an attacker who controls the stack will be able
[...] to cause the exploited program to undertake arbitrary
computation”. The control flow can be diverted to execute a
series of small sequences of instructions, each ending with an
indirect control-flow transfer instruction, known as gadgets. In
large codebases present in every C application, such as libc,
the amount of gadgets that can be extracted is high, and the
attackers achieve the maximum of expressiveness [49].

This is the basic idea behind a famous attack paradigm
known as Return-Oriented Programming (ROP) [40]. In ROP,
the attackers write their malicious code using, instead of
instructions, the gadgets found in the code of the system to
be attacked as basic “bricks”. These gadgets may perform
any kind of general-purpose action, as copying values from
registers to others, loading values from memory, or performing
arithmetic and/or logic operations. The common property they
must have is that their last instruction must always be a RET
instruction. Once identified the set of gadgets, attackers fill the
stack with a list of fake return addresses exploiting a memory
vulnerability (Figure 1). Each of the injected addresses points
to the beginning of each of the identified gadgets.

The attack starts when the function that contains the vul-
nerability returns: by executing the RET, the processor copies
the first corrupted value into the PC, and the program flow is
redirected to the first gadget of the sequence. Once the first
gadget is finished, another RET is executed, that carries the
flow to the second gadget, then to the third, and so on (Figure
2).

ROP was demonstrated to be effective over many different
architectures [13] [27] [16] [15] [33], and then the concept
was extended to non-RET-ended gadgets. Indirect formats of
JMP and CALL can be used as well to reach instructions at
will. Concepts like Jump-Oriented Programming (JOP) [10]
[18], Call-Oriented Programming (COP) [42], and others [43]
[30] were introduced.

III. RELATED WORK

Literature has been enriched with a considerable amount of
CFI solutions, ranging from purely software implementations

Fig. 1: A ROP attack starts filling the stack with a list of fake
return addresses.

Fig. 2: An example of a ROP attack.

[7] [9] [17], to techniques that take advantage of features
made available by Operating Systems [22] [31] [32] [54],
to hardware-based solutions. Since this last is the field of
our proposed technique, an overview of the most significant
examples is here listed. The various techniques offered can be
classified into families.

Branch target or instruction protection. One way to
prevent code-redirection attacks is to make indirect branches
operations protected by a key, which the external attacker does
not know. The authors of [39] propose to insert a module in
the architecture that automatically encrypts the routine return
address before pushing it onto the stack at the call time, and
that decrypts it when the RET is executed. Such an on-the-fly
pointer encryption/decryption mechanism is also presented in
[35]. In [36], a slightly different approach is instead adopted,
which involves the encryption not of the addresses but of the
indirect jump target instructions. This encryption is done at
load-time, when the code is loaded in memory. At runtime,
every time an indirect branch is performed, the processor

automatically decrypts the target instruction, and if an in-
valid instruction results from the decryption (i.e., the attacker
redirected the branch elsewhere), the execution stops. The
encryption is done using a key extracted from a processor PUF
[29], so that it does not have to be stored but it is generated
every time). Others present solution to protect code pointers
at higher level of abstraction, e.g., marking code memory
pointers as compile-time-generated or run-time-generated [19],
or saving them in a separate stack through dedicate instructions
to isolate them from memory errors [28] [41].

Shadow Call Stack (SCS). In [8], [12] and [24], the authors
augment RISC-V soft cores with a shadow stack, i.e., a hidden
and duplicated stack with respect to the one used by the
program, that stores routine return addresses. At return time,
the content of the shadow stack is authentic, so if a mismatch
with the original stack is found, the attack is discovered and
made ineffective.

Basic Block hashing. This technique is based on the
progressive computation at runtime of the hash of the executed
instructions, to check whether they are compliant to what
has been pre-computed before execution. In [50], this task is
performed by a module tightly connected to the processor that
has direct access to the program counter and the instruction
register. In [25], the checking modules are directly inserted
into the pipeline stages. The authors of [21] and [14] instead
propose validation modules placed halfway between the in-
struction cache and the processor, to sniff the instruction flow
on the bus.

Modification of Branch Predition circuitry. Branch
buffering and branch prediction modules, present in modern
processors, can be enabled to perform security tasks, as
presented in [45], [53] or [34].

Insertion of security features in the Instruction Set
Architecture (ISA). The instruction set of a processor archi-
tecture is expanded to support instructions to check for CFI,
which can be inserted by the programmer to protect branches.
The core is therefore augmented with internal data structures
as label stacks to protect backward edges and label registers
to protect forward edges. As a matter of example, the works
in [23], [20] and [46] presented an implementation of this
paradigm on soft processors of the SPARC family.

IV. CHALLENGES

All the defense mechanisms presented above are certainly
getting the point, i.e., going down to the lowest possible
level to set up the defense, which makes the system more
resilient to whatever happens on top of it. However, these
solutions are highly invasive from an architectural point of
view, since they require the internal design of the processors
to support these security features. Such an approach leads to
higher costs (to produce custom chips), low modularity and
low upgradeability, features which are instead achieved if the
defense is implemented on a piece of reconfigurable hardware
connected or included in the processor.

In light of the above, from our point of view it is important
to page a solution that:

• aims at protecting microcontroller-based systems even
when they directly execute a firmware stored in the Flash
memory without the support of an Operating System
(bare-metal), being thus independent of the facilities
offered by OS’s, such as multitasking or privileged exe-
cution levels;

• exploits the advantages of a hardware-based defense
applicable without designing custom microcontrollers to
have a protection, by mixing binary instrumentation
techniques and low-level runtime monitoring based on
reprogrammable hardware (FPGA);

• sets up an efficient defense mechanism that does not
rely on secrets of any kind (e.g., encryption keys or
secure identifiers) to be hidden by memory protection
mechanisms or similar;

• cares about the strict requirements that these systems
have in terms of resource occupation and execution times,
and therefore aims at minimally impacting the system
configuration and behavior, by properly selecting the
edges to be protected;

• takes into consideration the problem of hardware inter-
rupts, as explained in [37]: if not properly protected, the
context of the program, including sensitive elements from
the CFI point of view, can be corrupted with consequent
loss of effectiveness of the solution.

V. OUR APPROACH

The proposed solution aims at ensuring that (i) all branches
target a valid location, (ii) the program context be not
corrupted during sudden calls to Interrupt Service Routines
(ISRs). The implemented CFI monitor is a module synthesised
on a FPGA connected to the CPU it via a serial or parallel
interface. An instrumented version of the program runs on
the CPU and awakes the monitor by sending sensitive data
about branches and context. In parallel, without stopping
the processor activity, the monitor processes these data and
interrupts the CPU only if they are not compliant with the
expected ones. The CFI monitor is the only IP present on
the reconfigurable hardware device. The cooperation system
between CPU and FPGA is depicted in Figure 3.

Fig. 3: The CPU-FPGA cooperation system for protection.

The program is instrumented so that single OUT/STORE
instructions (called hereinafter write instructions for sim-
plicity) are added in specific points of the code to communicate
to the monitor two kinds of data:

• labels to uniquely identify a position within the code (for
edge protection);

• values contained in specific registers (for context protec-
tion).

Together with data, the CPU must also communicate an
opcode, that distinghuishes the kind of the provided data and
instruct the monitor on the the right operation to be performed.

The sequel of this Section is organised as follows: we first
introduce a classification of the CFG edges to define those
needing protection. Then, the problem of context corruption
and why context protection is needed are explained. The two
phases of the protection (online and offline) are eventually
presented, followed by some remarks about the architecture
and the actual implementation of the proposed solution.

Classification and Identification of Edges
As already mentioned, the CFG is the set of connections

between the basic blocks (BB) of the program through edges
that correspond to control-flow transfers. Edges can be classi-
fied depending on the transfer instruction that generates them.
They can be first distinguished in forward edges and backward
edges, where the latter are edges connecting a BB to another
which immediately follows (in terms of static position within
the code) a block visited previously. These are typically the
return edges from a routine. “Forward edges” refers to all the
other edges that connect a BB to another elsewhere in the
code. In most cases, these are the calling edges of a routine,
but they can also be jumping edges within a same routine.

We refer as target of an edge to the BB pointed by that edge.
From this definition, we can define direct edges and indirect
edges. Direct edges are edges whose target is expressed as a
label encoded within the instruction itself, while indirect edges
are edges whose target is expressed by the value of a program
data.

An origin tree of an edge target is a tree whose root is
the location (register or memory address) used as argument of
the instruction generating the edge, and which traces all the
locations used to compose the value of the target up to the
origin. Figure 4 shows a snippet of code in ARM-Assembly-
like language ending with the edge-generating instruction
BX R3 (indirect jump to address stored in R3), with the
relative origin tree for R3. For direct edges, the origin tree

(a) (b)

Fig. 4: Snippet of code in ARM-Assembly-like language: (a)
Code (b) The “origin tree” for R3.

is a trivial tree composed of a root node, only. For indirect
edges, since the target is a program data, the tree can instead
be complex at will. However, in bare-metal embedded systems,

we can assume the entire code is already available in a single
binary stored in Flash, and there are no modules linked at
runtime. We can also assume that the code remains constant
during activity. The result is that the construction of the
origin tree is always possible, no matter the complexity in
constructing it. This represents a key point for the proposed
protection mechanism.

If the origin tree is always entirely reconstructable, then it
is possible to list it all, from the root to the leaves. The leaves
of this tree will be values that cannot further derive from other
locations, i.e., they are either constant values or inputs taken
from the outside. Assuming that an external input can never
be used to compose a code pointer (because even in the case
of a switch-case statement over an input, there is always a
translation in a readable or predictable constant value, which
then becomes the leaf), or in alternative we impose it as a
design rule, then the set of targets of an edge is always finite
and enumerable, and that set is a strict subset of all possible
code locations. In direct edge case, the cardinality of this set
will be 1, while it will be greater than or equal to 1 in indirect
edge case. It follows (and this is the point) that under these
assumptions it is always possible to list all the destinations
of all the edges of a CFG, and thus, it is always possible to
completely protect the integrity of the control flow.

Introduced all these definitions, it is possible finally to
divide edges into insecure edges and secure edges, i.e., edges
that need protection against control-flow hijacking and edges
that need not. This is mainly important to reduce the number
of code areas to be protected, primary target for embedded
systems with limited potential.

We assume as insecure an edge whose target has an origin
tree that contains at least one node in an area at risk of
corruption, i.e., the data memory (if we consider the code
memory incorruptible). In other words, no matter which are
the leaves of the origin tree of its target, an edge is insecure
when its target is even partially composed with data coming
from data memory. This immediately implies that all direct
edges are secure, but also all indirect edges composed with
values that never exit the code (intended as union of code
memory and processor registers) to go in the data memory.

This approach can be considered as conservative (think of
the case in which a value is saved in memory and retrieved few
instructions later). To prevent the creation of this kind of false
positives, it would be necessary to go further in the analysis of
the code, to investigate about the actual possibility of corrup-
tion between the store and the load instructions. However, this
would mean taking into consideration a memory vulnerability
database, and even looking only for the vulnerabilities known
so far, this would be not trivial, and moreover, the unknown
vulnerabilities would not be taken into account.

In conclusion, if the edge is insecure, then it must be
instrumented so that a CFI monitor, at runtime, is able to
decide whether it is actually pointing to one of its valid targets.
In the case of an insecure forward edge, there is no way to say
which of these points is the right one, because this depends
on the execution, so the monitor can do nothing but ensuring

that all valid target can be reached. In the case of an insecure
backward edge, the monitor can instead enforce a single target,
because in addition to store all the possible destinations, it is
also possible to store in the monitor the identifier of the BB
to be executed at return time, and so the execution is forced
to go back there.

Interrupt Service Routines

The assumptions made so far are valid only if one does
not consider that the processor, in undefined moments of the
execution, can jump to execute special routines to serve inter-
rupt requests (Interrupt Service Routines, ISRs). As explained
in [37], there is no static analysis that can forecast in which
order or where in the code these routines will be called, so
they can never be part of a predefined CFG. Yet, the ISRs
are full-fledged routines, which operate on data and registers
and which preserve the current program status moving it
into memory. The result is that the origin tree that can be
constructed from a static analysis as we have seen so far
become invalid.

To preserve what has been assumed up to now, it must be
therefore ensured that the execution context when entering into
an ISR will be equal to the one when resuming the main pro-
gram. To achieve this, an additional specific instrumentation is
needed, based on the validation of the registers’ content, with
a double check before and after the execution of the service
routine.

Protection Mechanism

As any other, our CFI solution resorts to an offline phase
and an online phase as well.

In the offline phase, the firmware to be protected is first
compiled, then a static analysis identifies different categories
of critical points in the Assembly code. Critical points are
locations within the code that require the monitor intervention
for control-flow verification in the online phase. In correspon-
dence of such points, some data must therefore be sent to
the FPGA, i.e., a write instruction must be inserted. For
each BB that contains a critical point, a unique identifier is
produced and inserted into the code as a constant. The inserted
write will therefore send the identifier of the BB, using as
address a code to instruct the monitor. For edge protection,
seven categories of critical points are identified:

1) Forward insecure edges with single target: the ID of the
source BB is sent to the monitor before the transfer,
and the ID of the target BB is sent after the transfer.
Internally, the monitor combines the two IDs, and if the
edge is valid, the execution can proceed, otherwise the
CPU activity is immediately interrupted via a security
fault using the interrupt line;

2) Backward insecure edges with single target: same as
above;

3) Forward insecure edges with multiple targets: same as
the case of single target, but here all target locations are
instrumented;

4) Forward secure edge to a routine ending with a back-
ward insecure edge with multiple targets: this transfer is
not to be protected, but the ID of the BB to which the
called routine must return is sent. In the monitor, the ID
is pushed on top of a stack structure;

5) Backward insecure edges with multiple targets: same as
2), but the ID of the target BB must correspond to the
ID sent as described in 4). In this regard, the top of the
stack is popped and compared to the ID of the target. If
a mismatch is found, the violation fault is triggered;

6) Forward insecure edge to a routine ending with a
backward insecure edge with single target: again, as in
4), the return BB ID is sent, but also the ID of the target
BB is sent after the transfer (to verify both caller identity
at return time and validity of destination of the present
call);

7) Forward insecure edge to a routine ending with a
backward insecure edge with multiple targets: same as
above, but here all possible return sites are instrumented;

For context protection, two categories of critical points are
identified:

1) Entry point of an Interrupt Service Routine (ISR): a
given number of consecutive writes are inserted as first
instructions of the ISR, storing the content of registers
which, upon entering an ISR, are automatically pushed
by the processor architecture (e.g., in case of ARM, R0,
R1, R2, R3, R12, LR, PC and the status register xPSR),
plus the registers which are additionally used by that
ISR. Internally, the monitor saves all these values on
top of a dedicated stack structure;

2) Exit point of an Interrupt Service Routine (ISR): before
leaving, the same number of writes performed at the
entry point for the same registers, are performed in
reverse order. The program transfers from the top of
its stack to the monitor, which compares the received
values with the ones on top of its own dedicated stack.
If a mismatch is found, a violation is notified through
the interrupt line.

After the instrumentation process described above, two items
are available:

1) the instrumented executable binary;
2) a table containing all the instrumented edges, intended

as a set of ID pairs (source BB, target BB).

The edge table is converted into a memory initialisation file
(.mif) which is then used to produce a read-only memory
(ROM) block to be placed inside the monitor architecture.
The RT-level description of the monitor is synthesised into a
bitstream used to program the FPGA.

Once all the sources are ready, as last step of the offline
phase, the programming part takes place: a secure boot loader
both loads the instrumented version of the firmware and
programs the FPGA, correctly setting the CPU-FPGA interface
in order to allow the runtime interaction. The online phase
now starts, with the FPGA acting as a monitor in response

Fig. 5: The workflow of the analysis and instrumentation process.

to control-flow information received by the instrumented pro-
gram.

In their communication, CPU and FPGA do not need to
establish synchronization, as they share the same oscillator for
clock signal. Possibly, they may run at different frequencies,
multiplying or dividing the oscillator frequency. Anyway, this
is decided once for all during configuration, and both actors
are aware of the relative speed they have.

The workflow of the analysis and instrumentation process
is presented in Figure 5.

Monitor Internal Structure

In summary, the monitor relies on three different data
structures:

• an edge table which encodes the information about all
consented control-flow transfers, as pairs of source BB
ID and target BB ID;

• a secure ID stack, where it pushes the identifiers received
to protect backward insecure edges with multiple desti-
nations;

• a secure register stack, where it pushes the context of
the program upon entering an ISR and checks whether
this has remained the same or has been corrupted upon
exiting the ISR.

A central control and check unit decodes the commands
coming from the CPU to generate consequent reads and writes
on these three storage blocks, as well as it verifies, through
a set of comparators, that the received data are the expected
ones. As an output, the unit controls the interrupt line, which
notifies the CPU that an attempt to redirect the control flow
is in progress.

The unit also contains a timer, crucial for security. In fact,
when protecting an edge, a very stringent timeout must be
triggered as soon as the source ID is received. To jump to
any gadget in memory, the attacker must pass through one of
the instrumented zones, because there is no trampoline which
remains unprotected after the instrumentation. When it succeed
in tampering with the branch target and jumps to his payload,
there is no instrumentation in that position, unless the jump
is compliant with the CFG (but when an attack is performed,
this is not the case). Therefore, the monitor assumes an attack
when, at timeout, the ID has not yet been received. Since

CPU and FPGA share the same clock source, the length of
the timeout is just the time for the execution of a branch,
plus the time required to complete the OUT/STORE instruction,
possibly multiplied or divided according to the relative CPU-
FPGA frequency.

The impossibility to access the FPGA in the normal execu-
tion is set as a design rule to guarantee protection: the FPGA
is considered as a private resource unusable by the program,
so any possible read or write from/to the FPGA is removed
during the offline phase, in such a way that no accesses other
than those provided by the protection are consented.

The overall block diagram of the CFI monitor is depicted
in Figure 6.

Fig. 6: CFI monitor block diagram.

Involved Overhead

As shown, in terms of code equipment, the defense is
implemented simply by performing write instructions into
the external device. Thus, the need to allocate memory to
store CFG information is overcome, as well as it is eliminated

the computational overhead necessary for validity checks.
Conceptually, the write instructions required are:

• just 1 for each instrumented location for edge protection;
• n for each instrumented location for context protection,

where n is the number of registers pushed by default by
the architecture upon entering an ISR, plus the registers
pushed because used by the routine.

The term conceptually is here a keyword, because to reach
exactly 1 and n write in each case, the architecture has to
support specific features. In particular, additional machine in-
structions are needed when (i) the ISA does not support writing
immediate values to immediate addresses, (ii) mismatches are
present in the width of the involved buses.

Concerning the hardware part of the defense, the overhead
can be evaluated in terms of the amount of occupied area on
the reprogrammable device. The proposed solution requires
the CFI monitor be the only module in the FPGA. Required
resources are mostly memory resources, for the edge ROM
and the two stacks for IDs and registers. These blocks must
be properly dimensioned to accommodate all the edges and
the maximum amount of forecasted stackable IDs and regis-
ters. The additional logic, including the state machine, some
comparator and some registers for intermediate data storage,
occupies a marginal area, as shown in next Section.

In terms of timing, the FPGA computation needs to be
completed in the shortest time possible, in order to inform the
processor about an attack as soon as possible. To achieve this,
an intelligent encoding for the consented edges is adopted,
which allows to access the table with an O(1) complexity
(implementing it as a hash table) after a fast and lightweigth
combination of source and target IDs.

Trading off Security and Complexity

The features which may limit the feasibility of our solution
are:

1) a too large execution time overhead due to the added
instructions, so that it is no longer possible to meet some
real-time constraints;

2) too much latency between the write of the sensitive
data and the attack detection, so that the attacker can
jump to dangerous code and perform destructive actions
in that time window.

Both problems can be faced by trading off security and
performances. In particular, the former problem can be tackled
by the system designer, who could resort to a “partial”
protection: insecure edges belonging to paths proven to be
“critical” from the performance point of view could be left
“unprotected”. This could be justified with a deeper analysis
of code vulnerabilities or simply by assuming the risk of such
a choice.

To address the latter problem, the designer should identify
the code sections that, within the response time window of
the monitor, may cause irreparable damage to the system
functioning. These depend not only on the code, but also on
the time the adopted architecture takes for executing it. If these

dangerous sections are found, either the code is rewritten, so
that it become harmless, or the relative frequency between
CPU and FPGA should be properly tuned, so that the monitor
is faster than an attacker.

VI. EXPERIMENTAL RESULTS

In this Section, some preliminary experimental results de-
riving from the implementation and testing of our solution on
a real device are presented. For the evaluation, the SEcube™
Chip [5] by Blu5 Group® has been used. SEcube™ is an open
security-oriented platform, implemented as a 3D SiP (System-
in-Package) integrating three components:

• A STM32F4 microcontroller by STMicroelectronics™ ,
embedding a ARM Cortex-M4 core, 2 MB of Flash and
256 KB of SRAM;

• A MachX02 FPGA by Lattice Semiconductor™ , hosting
7000 4-bit look-up tables and 240 Kbits of embedded
SRAM;

• An EAL5+ certified Smart Card;
The chip was designed as a secure processor that acts as a
slave to offer a master (which can be the main processor of
a smartphone or of a PC) cryptographic and secure storage
functionalities. In this regard, it was designed to resist the
most common physical attacks [26] [11]. SEcube™ was not
chosen only for the presence of the ST microcontroller and
the FPGA, but also because this type of embedded processors,
given the uses that are usually made of it, can be the victim
of code redirection attacks, as shown in [51] and [52].

Our solution has been tested on some specific benchmarks
for embedded devices, made available by the MiBench plat-
form1. On the website, there are several archives containing the
source code to be compiled on ARM platforms. We chose a set
of 5 applications, and once obtained the binary, we performed
the offline analysis and instrumentation process described in
the previous Section. As a wrapper around the actual code, we
implemented functions to start and stop the hardware timer
present in the microcontroller, for measuring the execution
times before and after the instrumentation.

The physical implementation of the SEcube™ platform and
the STM32F4 architecture required increasing the number of
machine instructions for each write. As an example, the
external parallel interface has a 16-bit data bus, so two ac-
cesses are required to send 32-bit values. In addition, the STR
machine instruction does not support an immediate address,
so this must be first copied into a register.

On the FPGA side, we were able to implement a version
of the monitor with 1024 entries for each of the two stacks
and 8192 entries for the ROM edge table. These dimensions
were decided statically before the benchmarking process, and
anyway they are much more than needed for hosting critical
information for each of the analyzed applications. As expected,
we got an occupancy of 156 Kbits for the embedded FPGA
memory (⇠69% of the total), which is to be attributed to the
implementation of the three data structures. For the logic of our

1http://vhosts.eecs.umich.edu/mibench//

TABLE I: Preliminary Experimental Results

Benchmark Inputs Time (no prot.) Time (prot.) Overhead # instr. (no prot.) # instr. (prot.) Overhead
SHA Message of 100 KB 368449 µs 368457 µs < 0.01% 20453 21194 3.62%
RIJNDAEL Message of 100 KB 1083568 µs 1083694 µs 0.01% 25471 26029 2.19%
DIJKSTRA Matrix of 100x100 int 2880724 µs 2894391 µs 0.47% 20166 20912 3.70%
STRING 1331 strings (var. length) 178616 µs 180028 µs 0.79% 20060 20791 3.64%
BITCOUNT 12800 int 419545 µs 1233227 µs 193% 20192 20944 3.72%

monitor, we got 185 LUTs occupied (⇠3% of the total), which
is perfectly expected for the simplicity of the implemented
functionalities.

In Table I, we list data collected from the analysis of the
benchmarks, in the form of execution times and number of
instructions before and after the instrumentation process, and
the involved overheads. We also list the dimension of the
inputs given to each benchmark. In all experiments, the CPU
was running at 180 MHz, while the FPGA at 90 MHz. On
SEcube™ , CPU and FPGA share the same clock oscillator,
so their synchronization is natural.

Looking at the Table, it is possible to notice the very low
amount of additional code (always less than 4%). Results are
instead conflicting as regards the execution times, with the
first four examples at less than 1% overhead, while the last
one at a very high overhead. This seems to contrast with the
percentage of instructions added, which remains low as for
the others. Actually, the discrepancy is generated because in
the code there are very frequent indirect calls to functions
consisting of a few instructions. The impact of the added code
is therefore much greater than in other cases. This is also
useful to show how the execution impact actually depends on
how the code is architected. No solution that includes even a
minimum of instrumentation can limit this, even if our solution
greatly limits the percentage of total instructions added.

VII. CONCLUSIONS

In this paper, we presented a solution to guarantee the
Control-Flow Integrity (CFI) of firmware running on bare-
metal microcontrollers, which constitute a relevant part in
the embedded domain. The work was mainly aimed at mit-
igating the drawbacks present in the previous state-of-the-
art solutions. Using a mixture of binary instrumentation and
hardware-based supervision, the solution entrusts the binary
enforcement with the sole task of informing a CFI monitor
present on an FPGA about the status of the CFG through
simple additional write instructions at critical points. The
hardware monitor is encharged of storing the information
about the CFG and performing the needed computation for
the validation. As demonstrated by experimental results, this
technique greatly reduces the overhead of code necessary for
protection. No multitasking is required, and the protection can
be implemented on very simple systems and with minimal
resources. In addition, the monitor is implemented on a
reconfigurable hardware device, which frees the solution from
need of designing custom CPU architectures to support the
defense. The only constraint is the presence of a reconfigurable

hardware, but as explained in Subsection I-A, this is a diffused
market trend.

VIII. ACKNOWLEDGMENTS

This paper is supported in part by European Union’s Hori-
zon 2020 research and innovation programme under grant
agreement No. 830892, project SPARTA.

REFERENCES

[1] CWE-119: Improper Restriction of Operations within the Bounds of a
Memory Buffer. https://cwe.mitre.org/data/definitions/119.html, 2019.
[Online; accessed 28-October-2019].

[2] CWE-190: Integer Overflow or Wraparound. https://cwe.mitre.org/data/
definitions/190.html, 2019. [Online; accessed 28-October-2019].

[3] CWE-416: Use After Free. https://cwe.mitre.org/data/definitions/416.
html, 2019. [Online; accessed 28-October-2019].

[4] Interactive The Top Programming Languages 2019
- IEEE Spectrum. https://spectrum.ieee.org/static/
interactive-the-top-programming-languages-2019, 2019. [Online;
accessed 28-October-2019].

[5] Multiple reconfigurable silicon in a single package. https://www.secube.
eu, 2019. [Online; accessed 07-November-2019].

[6] Top 10 Technologies That Will Drive the Future of Infrastruc-
ture and Operations. https://www.gartner.com/en/documents/3970841/
top-10-technologies-that-will-drive-the-future-of-infras, 2019. [Online;
accessed 29-November-2019].

[7] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti. Control-flow
integrity. In Proceedings of the 12th ACM conference on Computer
and communications security, pages 340–353. ACM, 2005.

[8] M. Alam, D. Roy, S. Bhattacharya, V. Govindan, R.S. Chakraborty, and
D. Mukhopadhyay. Smashclean: A hardware level mitigation to stack
smashing attacks in openrisc. In 2016 ACM/IEEE International Confer-
ence on Formal Methods and Models for System Design (MEMOCODE),
pages 1–4. IEEE, 2016.

[9] T. Bletsch, X. Jiang, and V. Freeh. Mitigating code-reuse attacks with
control-flow locking. In Proceedings of the 27th Annual Computer
Security Applications Conference, pages 353–362. ACM, 2011.

[10] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang. Jump-oriented
programming: a new class of code-reuse attack. In Proceedings of the
6th ACM Symposium on Information, Computer and Communications
Security, pages 30–40. ACM, 2011.

[11] M. Bollo, A. Carelli, S. Di Carlo, and P. Prinetto. Side-channel analysis
of secube™ platform. In 2017 IEEE East-West Design Test Symposium
(EWDTS), pages 1–5, Sep. 2017.

[12] C. Bresch, A. Michelet, L. Amato, T. Meyer, and D. Hely. A red team
blue team approach towards a secure processor design with hardware
shadow stack. In 2017 IEEE 2nd International Verification and Security
Workshop (IVSW), pages 57–62, July 2017.

[13] E. Buchanan, R. Roemer, H. Shacham, and S. Savage. When good
instructions go bad: Generalizing return-oriented programming to risc.
In Proceedings of the 15th ACM conference on Computer and commu-
nications security, pages 27–38. ACM, 2008.

[14] A. Chaudhari and J. A. Abraham. Effective control flow integrity checks
for intrusion detection. In 2018 IEEE 24th International Symposium on
On-Line Testing And Robust System Design (IOLTS), pages 1–6, July
2018.

[15] S. Checkoway, L. Davi, A. Dmitrienko, A.R. Sadeghi, H. Shacham, and
M. Winandy. Return-oriented programming without returns. In Pro-
ceedings of the 17th ACM conference on Computer and communications
security, pages 559–572. ACM, 2010.

[16] S. Checkoway, A. J. Feldman, B. Kantor, J.A. Halderman, E. W. Felten,
and H. Shacham. Can dres provide long-lasting security? the case of
return-oriented programming and the avc advantage. EVT/WOTE, 2009,
2009.

[17] L. Chen, J. Jiang, and D. Zhang. Code reuse prevention through
control flow lazily check. In 2012 IEEE 18th Pacific Rim International
Symposium on Dependable Computing, pages 51–60, Nov 2012.

[18] P. Chen, X. Xing, B. Mao, L. Xie, X. Shen, and X. Yin. Automatic
construction of jump-oriented programming shellcode (on the x86). In
Proceedings of the 6th ACM Symposium on Information, Computer and
Communications Security, pages 20–29. ACM, 2011.

[19] S. Chen, J. Xu, N. Nakka, Z. Kalbarczyk, and R. K. Iyer. Defeating
memory corruption attacks via pointer taintedness detection. In 2005 In-
ternational Conference on Dependable Systems and Networks (DSN’05),
pages 378–387, June 2005.

[20] N. Christoulakis, G. Christou, E. Athanasopoulos, and S. Ioannidis. Hcfi:
Hardware-enforced control-flow integrity. In Proceedings of the Sixth
ACM Conference on Data and Application Security and Privacy, pages
38–49. ACM, 2016.

[21] J. Danger, A. Facon, S. Guilley, K. Heydemann, U. Kühne, A. Si
Merabet, and M. Timbert. Ccfi-cache: A transparent and flexible
hardware protection for code and control-flow integrity. In 2018 21st
Euromicro Conference on Digital System Design (DSD), pages 529–536,
Aug 2018.

[22] L. Davi, A. Dmitrienko, M. Egele, T. Fischer, T. Holz, R. Hund,
S. Nürnberger, and A.R. Sadeghi. Mocfi: A framework to mitigate
control-flow attacks on smartphones. In NDSS, volume 26, pages 27–40,
2012.

[23] L. Davi, M. Hanreich, D. Paul, A.R. Sadeghi, P. Koeberl, D. Sullivan,
O. Arias, and Y. Jin. Hafix: hardware-assisted flow integrity extension.
In Proceedings of the 52nd Annual Design Automation Conference,
page 74. ACM, 2015.

[24] A. De, A. Basu, S. Ghosh, and T. Jaeger. Fixer: Flow integrity extensions
for embedded risc-v. In 2019 Design, Automation Test in Europe
Conference Exhibition (DATE), pages 348–353, March 2019.

[25] G. Dessouky, S. Zeitouni, T. Nyman, A. Paverd, L. Davi, P. Koeberl,
N. Asokan, and A. Sadeghi. Lo-fat: Low-overhead control flow attes-
tation in hardware. In 2017 54th ACM/EDAC/IEEE Design Automation
Conference (DAC), pages 1–6, June 2017.

[26] G. A. Farulla, A. J. Pane, P. Prinetto, and A. Varriale. An object-oriented
open software architecture for security applications. In 2017 IEEE East-
West Design Test Symposium (EWDTS), pages 1–6, Sep. 2017.

[27] A. Francillon and C. Castelluccia. Code injection attacks on harvard-
architecture devices. In Proceedings of the 15th ACM conference on
Computer and communications security, pages 15–26. ACM, 2008.

[28] A. Francillon, D. Perito, and Claude C. Castelluccia. Defending
embedded systems against control flow attacks. In Proceedings of the
first ACM workshop on Secure execution of untrusted code, pages 19–26.
ACM, 2009.

[29] B. Gassend, D. Clarke, M. Van Dijk, and S. Devadas. Silicon physical
random functions. In Proceedings of the 9th ACM conference on
Computer and communications security, pages 148–160. ACM, 2002.

[30] Y. Guo, L. Chen, and G. Shi. Function-oriented programming: A new
class of code reuse attack in c applications. In 2018 IEEE Conference
on Communications and Network Security (CNS), pages 1–9, May 2018.

[31] Z. Huang, T. Zheng, Y. Shi, and A. Li. A dynamic detection method
against rop and jop. In 2012 International Conference on Systems and
Informatics (ICSAI2012), pages 1072–1077, May 2012.

[32] Z. J. Huang, T. Zheng, and J. Liu. A dynamic detective method against
rop attack on arm platform. In 2012 Second International Workshop
on Software Engineering for Embedded Systems (SEES), pages 51–57,
June 2012.

[33] T. Kornau et al. Return oriented programming for the ARM architecture.
PhD thesis, Master’s thesis, Ruhr-Universität Bochum, 2010.

[34] Y. Lee and G. Lee. Detecting code reuse attacks with branch prediction.
Computer, 51(4):40–47, April 2018.

[35] Y. Lee and G. Lee. Hw-cdi: Hard-wired control data integrity. IEEE
Access, 7:10811–10822, 2019.

[36] Y. Li, Z. Dai, and J. Li. A control flow integrity checking technique
based on hardware support. In 2018 IEEE 3rd Advanced Information
Technology, Electronic and Automation Control Conference (IAEAC),
pages 2617–2621, Oct 2018.

[37] N. Maunero, P. Prinetto, and G. Roascio. Cfi: Control flow integrity
or control flow interruption? In 2019 IEEE East-West Design Test
Symposium (EWDTS), pages 1–6, Sep. 2019.

[38] A. One. Smashing the stack for fun and profit. Phrack magazine,
7(49):14–16, 1996.

[39] P. Qiu, Y. Lyu, J. Zhang, D. Wang, and G. Qu. Control flow integrity
based on lightweight encryption architecture. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 37(7):1358–
1369, July 2018.

[40] R. Roemer, E. Buchanan, H. Shacham, and S. Savage. Return-oriented
programming: Systems, languages, and applications. ACM Transactions
on Information and System Security (TISSEC), 15(1):2, 2012.

[41] N. Roessler and A. DeHon. Protecting the stack with metadata policies
and tagged hardware. In 2018 IEEE Symposium on Security and Privacy
(SP), pages 478–495, May 2018.

[42] AliAkbar Sadeghi, Salman Niksefat, and Maryam Rostamipour. Pure-
call oriented programming (pcop): chaining the gadgets using call
instructions. Journal of Computer Virology and Hacking Techniques,
14(2):139–156, May 2018.

[43] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A. Sadeghi, and T. Holz.
Counterfeit object-oriented programming: On the difficulty of preventing
code reuse attacks in c++ applications. In 2015 IEEE Symposium on
Security and Privacy, pages 745–762, May 2015.

[44] H. Shacham et al. The geometry of innocent flesh on the bone: return-
into-libc without function calls (on the x86). In ACM conference on
Computer and communications security, pages 552–561. New York,,
2007.

[45] Y. Shi and G. Lee. Augmenting branch predictor to secure program
execution. In 37th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN’07), pages 10–19, June 2007.

[46] D. Sullivan, O. Arias, L. Davi, P. Larsen, A. Sadeghi, and Y. Jin.
Strategy without tactics: Policy-agnostic hardware-enhanced control-
flow integrity. In 2016 53nd ACM/EDAC/IEEE Design Automation
Conference (DAC), pages 1–6, June 2016.

[47] Microsoft Support. A detailed description of the Data Execution
Prevention (DEP). https://support.microsoft.com/en-us/help/875352/
a-detailed-description-of-the-data-execution-prevention-dep-feature-in.
[Online; accessed 28-October-2019].

[48] PaX Team. PaX Non-Executable Pages Design and Implementation.
https://pax.grsecurity.net/docs/noexec.txt, 2003. [Online; accessed 28-
October-2019].

[49] M. Tran, M. Etheridge, T. Bletsch, X. Jiang, V. Freeh, and P. Ning. On
the expressiveness of return-into-libc attacks. In International Workshop
on Recent Advances in Intrusion Detection, pages 121–141. Springer,
2011.

[50] W. Wang, M. Liu, P. Du, Z. Zhao, Y. Tian, Q. Hao, and X. Wang.
An architectural-enhanced secure embedded system with a novel hybrid
search scheme. In 2017 International Conference on Software Security
and Assurance (ICSSA), pages 116–120, July 2017.

[51] N. R. Weidler, D. Brown, S. A. Mitchel, J. Anderson, J. R. Williams,
A. Costley, C. Kunz, C. Wilkinson, R. Wehbe, and R. Gerdes. Return-
oriented programming on a cortex-m processor. In 2017 IEEE Trust-
com/BigDataSE/ICESS, pages 823–832, Aug 2017.

[52] N. R. Weidler, D. Brown, S. Mitchell, J. A. Anderson, J. R. Williams,
A. Costley, C. Kunz, C. Wilkinson, R. Wehbe, and R. Gerdes. Return-
oriented programming on a resource constrained device. Sustainable
Computing: Informatics and Systems, 22:244–256, 2019.

[53] Wenjian He, S. Das, W. Zhang, and Y. Liu. No-jump-into-basic-block:
Enforce basic block cfi on the fly for real-world binaries. In 2017 54th
ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–6,
June 2017.

[54] Y. Xia, Y. Liu, H. Chen, and B. Zang. Cfimon: Detecting violation
of control flow integrity using performance counters. In IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN
2012), pages 1–12, June 2012.

