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Abstract 

The present investigation examines how the properties of the double concave friction pendu-

lum (DCFP) devices influence the seismic performance of isolated multi-span continuous 

deck bridges. The numerical simulations are carried out using an eight-degree-of-freedom 

model to reproduce the elastic behavior of the pier, associated to the assumption of both rigid 

abutment and rigid deck, and the non-linear velocity-dependent behavior of the two surfaces 

of the double concave friction pendulum isolators, under a set of natural records with differ-

ent characteristics. The results in terms of the statistics related to the relevant response pa-

rameters are computed in non-dimensional form with respect to the seismic intensity 

considering different properties of both DCFP isolators and bridge.  

 

 

Keywords: Seismic isolation, Double concave friction pendulum isolators, Multi-span con-

tinuous deck bridges, Performance-based engineering, Non-dimensional form. 

 

 



Paolo Castaldo and Guglielmo Amendola 

1 INTRODUCTION 

 

The seismic isolation is one of the most used and efficient techniques able to improve 

seismic performance of both new or existing buildings [1]-[2] and infrastructures [3]. With 

reference to bridges, the seismic isolation allows to uncouple the super-structure represented 

by the deck and the sub-structure represented by the system piers/abutments/foundations. The 

main benefit to the structural system relates to significant reduction of forces transmitted from 

the deck to the piers under seismic event.  

In particular, the quantification of safety level of structures [5] and road infrastructures [6]-

[8] is a relevant topic for research with special reference to areas subjected to high seismicity. 

In such areas, the non-linear behaviour of RC members [9]-[11] has a significant influence on 

structural response when structures are not provided of appropriate isolation systems. For in-

stance, different investigations focused on the analysis of seismic response of bridges 

equipped with isolator devices have been performed over the years [12].  

In literature, several studies have been carried out concerning seismic isolation of bridges 

trough friction pendulum devices (FPS) [13]-[15]. The FPS bearings are able to make the nat-

ural period of the isolated bridge independent from the mass of the deck and allows signifi-

cant energy dissipation under seismic motion thanks to friction on sliding surfaces [16]. The 

FPS bearings can be realized with single (SCFP) or multiple concave sliding surfaces [17]-

[18]. In particular, the use of double concave sliding surface friction pendulum devices 

(DCFP) have positive influence on the seismic response of isolated bridges as demonstrated 

by [19]. 

The present study investigates the effectiveness of the use of DCFP to improve the seismic 

response of multi-span continuous bridges considering the interaction between piers, abut-

ments and deck [20]. The structural response of the system under seismic excitation is ana-

lysed by means of an eight-degree-of-freedom (8-dof) model accounting for the reinforced 

concrete (RC) pier stiffness, the DCFP behaviour and the rigid RC abutment. 

The seismic action and related uncertainties are reproduced adopting a set of natural rec-

ords having different spectral characteristics. In detail, a non-dimensional parametric study is 

developed for several geometric configurations of the pier and of the DCFP isolators. The re-

sponses of the deck, of the pier and of each surface of the DCFP isolators are monitored to 

determine effectiveness of the isolation system.  

2 DESCRIPTION OF DYNAMIC BEHAVIOUR OF DECK-ABUTMENT-PIER 

STRUCTURAL SYSTEM 

The structural behavior of the multi-span continuous deck bridge (e.g., isolated three-span 

continuous deck bridge) isolated with DPCF is reproduced by means of an 8-degree-of-

freedom (8-dof) system as shown by Figure 1.  

In detail, 5 degrees of freedom relate to the lumped masses associated to the RC bridge 

pier (supposed to be elastic), 2 degrees of freedom correspond to the two sliders of the DPCF 

bearings and, finally, 1 degree of freedom concerns the mass of the rigid RC deck [14].  

The governing equations of motion of the system can be expressed in terms of relative hor-

izontal displacements with respect to the ground (Figure 1(a)) along the longitudinal direction 

as follows: 
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where du  denotes the displacement of the deck relative to the ground; spu is the displacement 

of the slider of the DCFP device located on the pier with respect to the ground; sau  is the dis-

placement of the slider of the DCFP device located on the abutment with respect to the 

ground, piu  (i=1,..,4,5) is the displacement relative to the ground of pier i-th mass; dm , spm  

and sam  are the masses of the deck and of the two DCFP devices installed on the pier and on 

the abutment; pim  (i=1,..,4,5) is the i-th lumped mass of the pier segment; pik  and pic     

(i=1,..,5) are the stiffness and associated viscous damping constant for each dof associated to 

the pier segments; t is the time instant;  jaF t  and  jpF t  denote the reaction forces of the 

DCFP bearings on the abutment and on the pier, respectively, for the upper (j = 1) and lower 

sliding surface (j = 2). With reference to the modelling of behavior of the DCFP, the device 

can be modelled as a serial combination of two single FPS isolators. Then, according to [17]-

[18], the reaction forces at the upper (j = 1) and lower (j = 2) surface (i.e., F1 and F2) are iden-

tical and can be obtained according to the following expression: 

        1 1 1 1 2 2 2 2

1 2

1 2 1 2

sgn sgn
( )

dd
m g R u u R u um g

F F F u
R R R R

 
   

 
                 (2) 

where u is the global horizontal displacement of the DCFP isolator; 1u represents the horizon-

tal displacement of the upper surface  (j = 1); 2u is the horizontal displacement of the lower 

surface (j = 2). The first part of Eq. (2) represents the equivalent restoring stiffness ( combk ) of 

the DCFP device expressed as:  

1 2

d

comb

m g
k

R R



 (3) 

from which the restoring natural period can be derived as follows: 

 1 22 / 2 /d dT R R g    
 (4) 

where g  is the gravity constant; R1 and R2 denote the upper and lower radius of curvature of 

the DCFP bearing. In Eq.(2),   j ju t  (with j=1,2) represents the sliding friction coefficient, 

which depends on the slider slip velocity  ju t  along one of the two sliding surfaces and on its 

sign,  sgn ju  (for j=1,2). The second part of Eq.(2) represents the equivalent friction coeffi-

cient of the DCFP device [17]: 
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 (5) 

Eq.(5) is valid under the assumption that the sliding occurs on the both surfaces of the de-

vice and in the same direction. 
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Figure 1: Representation of the 8-dof model of the bridge. Relative displacements with respect to the ground (a) 

and drifts between the different lumped masses (b). 

 

The experimental investigations of [21]-[23] demonstrate that, the coefficient of friction on 

sliding surfaces of DCFP can be estimated according to the following expression: 

      ,max ,max ,min exp 1,2j j j j j ju u for j           (6) 

where, ,maxj  denotes the maximum value of friction coefficient at high sliding velocities; 

,minj  represents the value at near-zero sliding velocity. In the present investigation, it is as-

sumed that ,max ,min3j j   and 30   according to the researches of [21]-[23].  

3 NON-DIMENSIONAL SYSTEM OF EQUATIONS 

The analysis of the seismic behavior of the bridge under seismic action is performed ac-

cording to non-dimensional form of the system of equations of motion, in line with previous 

applications [24]. In order to obtain the response of the DCFP devices along each sliding sur-

face, Eq.(1) can be expressed in terms of drifts between the lumped masses of the structural 

system (Fig.1(b)), according to the following relationships: 
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where, in line to Eq.s(2)-(6), the reactions of the DCFP bearings on the sliding surfaces are: 
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introducing the mass ratios; the circular frequency of vibration of the isolated deck and of the 

i-th dof of the pier; the damping coefficient of the i-th dof of the pier, as expressed in the fol-

lowing: 

, , , , ,
2

pi sp pi pisa comb

pi sa sp d pi pi

d d d d pi pi pi

m m k cm k

m m m m m m
     


       (10 a,b,c,d,e,f) 

In line to [24], the time scale dt  can be introduced together with the seismic intensity 

scale factor 0a , expressed as 0( ) ( )gu t a  . The function ( )  is a non-dimensional function of 
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time describing the time history of the seismic input. Finally, the non-dimensional system 

equations can be expressed as follows: 

                 
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with the following non-dimensional parameters:  
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The non-dimensional parameters 1 1 2 2, , ,a p a p       depend from the velocities and are 

used as follows:  

1,max,p 2,max,p1,max,a 2,max,a* * * *

1 1 2 2

0 0 0 0

, , ,a p a p

g gg g

a a a a
   

  
         (13 a,b,c,d) 

With reference to Figure 1, it can be recognized that the peak response in terms of nondi-

mensional parameters can be expressed as:  

 

5
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2 2 2 2
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0 0 0 0 0
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d d p
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id d d d d p d

u x u

x
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   

  


 
 
 

  
   


(14 a,b,c)

 4 PARAMETRIC INVESTIGATION OF STRUCTURAL RESPONSE UNDER 

SEISMIC ACTIONS 

Next, the results of parametric analysis of the bridge system isolated with DCFP bearings 

of Figure 1 are reported in non-dimensional terms. Firstly, the criteria for selection of earth-

quake events and the response parameters adopted to monitor the seismic performance are 

described.  

4.1 Selection of the seismic inputs 

In line with the approach of performance-based earthquake engineering (PBEE) [25], the 

present investigation accounts for the uncertainties related to the seismic input intensity sepa-

rately from the ones related to the characteristics of the record (i.e., record-to-record variabil-

ity). This is possible to the introduction of an intensity measure (IM) that corresponds to the 

seismic intensity scale factor 0a . According to the criteria of efficiency, sufficiency and haz-

ard compatibility [26], this study assumes that the spectral pseudo-acceleration, AS , at the 

isolated period of the system, 2 /d dT    (Eq.(4)), represents the adopted intensity measure 

IM. In the parametric analyses, d  is taken equal to zero, in line to [24]. Then, the related 

IM= 0a  is hereinafter denoted to as  A dS T . The record-to-record variability is described 

through a set of 30 ground motion records with details in [27]-[30].  

4.2 Evaluation of the seismic response 

In the present investigation, the peak response parameters considered are the following: 

- the peak deck response ,peakdu , that corresponds to the peak isolator global response on 

the abutment; 

- the peak isolator global response on the pier, ,peakdx ; 

- the peak displacement at the top of the pier ,peakpu with respect to the ground. 

According to the nondimensionalization previously introduced, the solution of Eq. (11) for 

the ground motions records allows to determine a set of samples of the mentioned above out-

put variables. Next, the non-dimensional response parameters are assumed consistent with a 

lognormal probabilistic model as widely employed in PBEE [31] and in other studies [32]-

[39]. The statistical parameters for lognormal distribution can be derived from generic re-

sponse parameter D (i.e., the extreme values of 
du , 

px  and 
pu  of Eq.s (11) and (14)) by 

estimating the mean value  GM D  and the coefficient of variation  D of the observed sam-

ples as follows:  
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  1 ...N
NGM D d d     (15) 
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         




Nd GM D d GM D
D

N
  (16) 

 

where dh represents the h-th sample value of D associated to the h-th accelerogram and N is 

the total number of samples equal to the total number of accelerograms herein adopted 

(h=1,…,N). According to the lognormal distribution assumption, the k-th percentile of the ge-

neric response parameter D can be derived as follows: 

 
exp[ ( ) () )( ]kd f kGM D D   (17) 

 

where ( )f k  assume the values of (50) 0f   for 50-th percentile and (84) 1f   for 84-percentile, 

respectively [40].  

4.3 Outcomes from non-dimensional analyses 

This section reports the results of the parametric investigation developed in line to the pro-

posed criteria for nondimensionalization of the equations of motion. The influence of the 

properties of the DCFP isolators and bridge geometry on the seismic performance of the 

structural system under the ground motion records has been investigated. The following par-

ametric analysis has been carried out: 

- the parameters 
d d    and 

p p    are assumed equal to 0% and 5%; 

- the isolated bridge period Td has been assumed as 2s, 2.5s, 3s, 3.5s and 4s; 

- the RC pier period Tp equal to 0.2s [19];  

- the five pier lumped masses p    has been considered equal to 0.1, 0.15 and 0.2 [19]; 

- the two DCFP devices on the abutment and on the pier have identical properties (i.e., fol-

lows that * * *

1 1 1a p        as well as sa sp s       ) and the mass ratio s  is set equal 

to 0.005; 
1 2/R R  equal to 2,  

1,max 2,max/   equal to 4,  
,max ,min/j j   (with 1, 2j  ) equal to 3;  

- the parameter *

1  is assumed to vary in the range between 0 (no friction) and 2 (very 

high friction) (specifically, 95 values are considered). 

Then, the non-dimensional parametric investigations have been carried out on 1425 differ-

ent systems, defined by varying the main structural properties within the two bearing cases, 

assuming 30 different ground motions. For each value of the parameters of interest in the 

parametric study, the differential equations of motion, (i.e., Eq. (11)), have been solved for 

the 30 different ground motions. The Bogacki-Shampine integration algorithm available in 

Matlab-Simulink [41] has been adopted.  

Fig.s 2-4 show the statistics (GM and  values) of the non-dimensional peak response pa-

rameters considered, obtained for different values of the system properties varying in the 

range of interest. Each figure contains three surface plots, corresponding to the different val-

ues of  .  

Fig. 2 plots the results concerning the peak normalized displacement of pier top 
pu  with 

respect to the ground. It is noteworthy that for very low *

1  values,  
puGM   decreases by 

increasing *

1 , whereas it increases for high *

1  values. Thus, there exists an optimal value 
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of *

1  such that the peak displacement of pier top is minimized. This optimal value varies 

between 0 and 0.5 depending on the values of dT  and  . In addition,  
puGM   decreases 

significantly with increasing  . The parameter dT  has an influence on  
puGM   leading to a 

general decrease for an its increase thanks to the effectiveness of the seismic isolation. The 

dispersion  
pu   shows a maximum value approximatively at the same value of *

1  that 

gives the minimum  
puGM  . The response dispersion increases with increasing the mass ra-

tio  . From low to high values of dT ,  
pu   also increases.  

 

a) 

 


  

b) 

 


 
Figure 2: Normalized displacement of pier top vs. 

and Td: median value and dispersion for Tp= 0.2s and for 

different values of . The arrow denotes the increasing direction of . 

 

 

a) 

 


  

b) 

 


 
Figure 3. Normalized deck displacement vs. 

and Td: median value and dispersion for Tp= 0.2s and for dif-

ferent values of . The arrow denotes the increasing direction of . 

 

Fig. 3 shows the response statistics of the peak normalized deck displacement 
du , which 

also corresponds to the peak global response of the bearing placed on the abutment. Obvious-

ly,  
duGM   decreases significantly as *

1  increases. In general, the values of  
duGM   

slightly increase for increasing values of both dT  and  . The values of the dispersion 

 
du  , plotted in Fig. 3 (b), are very low for low *

1  values due to the high efficiency of the 

IM, and attain their maximum for high values of *

1 . The other system properties have a re-

duced influence on  
du   compared to the influence of *

1 . 

Fig. 4 shows the variation of the peak global response with regard to the bearing placed on 

the pier 
dx . As already observed for  

duGM  , also  
dxGM   tends to show a decrease 
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against increasing *

1  values. The dispersion is low in correspondence of low *

1  values due 

to the high efficiency of the IM, attaining its peak for high *

1  values. Note that the influence 

of   is slightly more marked for  
dxGM   with respect to  

duGM   leading to lower values 

due to the flexibility of the pier. 

 

 

a) 

 


  

b) 

 


 
Figure 4. Normalized pier bearing global displacement vs. 

and Td: median value and dispersion for Tp= 

0.2s and for different values of . The arrow denotes the increasing direction of . 

 

The existence of an optimal value of the normalised friction coefficient of the upper sur-

face *

1  for the both DCFP devices able to minimize the displacement of pier top (Fig. 2) is 

the result of counteracting effects that occur for increasing values of the friction coefficient. 

5 CONCLUSIONS 

This paper analyzes the seismic performance of multi-span continuous deck bridges isolat-

ed with DCFP devices considering the pier-abutment-deck interaction. The results of an ex-

tensive non-dimensional parametric study encompassing a wide range of isolator and bridge 

properties have been illustrated monitoring various response parameters of interest related to 

both the isolators and the pier. Specifically, the RC pier is considered elastic, whereas the RC 

deck and RC abutment are assumed rigid. The results in terms of geometric mean and disper-

sion for each peak normalised response parameter are summarized as follows. 

Regarding the pier performance, there exists an optimal value of sliding friction coefficient 

for each surface of the DCFP device able to minimize the pier response. This optimal value 

depends on the bridge and isolator properties.  

Regarding the deck performance, which also corresponds to the peak global response of 

the bearing placed on the abutment, the response decreases significantly as the sliding friction 

coefficient increases. Slightly lower results are achieved for the global response of the bear-

ing placed on the pier.  
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