
03 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

RAYGO: Reserve As You GO / Galantino, Stefano; Iorio, Marco; Risso, FULVIO GIOVANNI OTTAVIO; Manzalini,
Antonio. - ELETTRONICO. - (2021), pp. 269-275. (Intervento presentato al convegno 7th IEEE International Conference
on Cloud and Big Data Computing (CBDCom 2021) tenutosi a Virtual Conference nel Oct. 25-28, 2021) [10.1109/DASC-
PICom-CBDCom-CyberSciTech52372.2021.00055].

Original

RAYGO: Reserve As You GO

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/DASC-PICom-CBDCom-CyberSciTech52372.2021.00055

Terms of use:

Publisher copyright

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2926954 since: 2022-03-21T17:38:14Z

Institute of Electrical and Electronics Engineers

RAYGO: Reserve As You GO

Stefano Galantino, Marco Iorio, Fulvio Risso
Dept. of Computer and Control Engineering

Politecnico di Torino
Torino, Italy

{name.surname}@polito.it

Antonio Manzalini
Innovation Labs

Telecom Italia Mobile
Torino, Italy

antonio.manzalini@telecomitalia.it

Abstract—The capability to predict the precise resource
requirements of a microservice-based application is a very
important problem for cloud services. In fact, the allocation
of abundant resources guarantees an excellent quality of
experience (QoE) for the hosted services, but it can translate
into unnecessary costs for the cloud customer due to the
reserved (but unused) resources. On the other side, poor
resource provisioning may turn out in scarce performance
when experiencing an unexpected peak of demand. This paper
proposes RAYGO, a novel approach for dynamic resource
provisioning to microservices in Kubernetes that (i) reliefs
the customers from the definition of appropriate execution
boundaries, (ii) ensures the right amount of resources at any
time, according to the past and the predicted usage, and (iii)
operates at the application level, acknowledging the dependency
between multiple correlated microservices.

Keywords-Resource management, Cloud, container, auto-
scaling, vertical scaling

I. INTRODUCTION

Many companies massively leverage cloud computing
services for their IT businesses, possibly benefiting from the
pay-as-you-go paradigm (also referred to as the serverless
approach), using and paying only the resources needed at
any given time. This can bring significant cost savings to
customers and allow them to concentrate in their higher-level
business logic, leaving infrastructure-level tasks (e.g., hard-
ware provisioning and maintenance) to the cloud provider.

However, in order to share the infrastructure among
the above customers, the cloud provider usually requires
each tenant to define precise resource boundaries for their
workloads. According to the Kubernetes terminology, this
involves two parameters: Requests and Limits. A Request is
what the microservice is guaranteed to get (e.g., 0.5 virtual
CPUs), while the Limit determines the maximum amount
of resources that can be consumed (e.g., 1 virtual CPUs),
which can be provided in a best-effort fashion. In any case,
the workload is never allowed to consume resources beyond
limits. Finally, Requests and Limits could also be used by
the cloud provider to charge the customer, either directly or
through cluster autoscaling, which therefore has to carefully
balance the trade-off between resource abundance and costs.

Still, developers may not know in advance how to quantify
properly these execution boundaries, ending up in two

common errors: (i) over-commitment, asking for an amount
of resources that is way higher than the actual needs of
the application, in order to guarantee the best QoE in every
circumstance; (ii) under-commitment, defining boundaries
lower than the actual needs, due to imprecise estimations
or unexpected spikes of requests. In the first case (over-
commitment), the customer will be charged also for unused
resources, resulting in unnecessary expenses. In the second
case (under-commitment), the customer will experience poor
QoE for the deployed application. Interesting, the first
scenario is the most likely: Google estimates an actual
resource usage for application requests of no more than
50 % [1].

These issues trace back to the immutability of the resources
assigned to an application throughout its execution, missing
the possibility to update them at run-time. Yet, it is hard to
assess in advance how many resources a job needs to run
optimally. Load tests can help finding an initial estimate,
but these recommendations become soon stale as workload
needs change over time. Indeed, many end-user serving jobs
have daily or weekly load patterns, and traffic changes across
longer time scales as a service becomes more or less popular.

A common solution to the above problem is horizontal
autoscaling, which is largely available in public cloud
providers as well as in vanilla Kubernetes. This technique
(e.g., Kubernetes Horizontal Pod Autoscaler — HPA [2])
leverages the dynamicity of the microservice paradigm by
adding or removing replicas in response to changes in
the metric under observation, such as the end-user traffic,
the average CPU utilization, and more. However, despite
its popularity, horizontal autoscaling may be difficult to
configure properly and in many cases its effectiveness is
subordinated to a significant waste of resources. In fact,
the creation of new replicas implies a step increase of all
reservations; furthermore this technique is sub-optimal in
case only one type of resource (e.g. CPU) should be adjusted
to address the current demands, as horizontal autoscaling
implies adjusting resources of all types (e.g., CPU and RAM).

A less frequent approach involves vertical autoscaling (e.g.,
Kubernetes Vertical Pod Autoscaler — VPA [3]) to tune at
run-time the amount of resources available to each replica
by configuring the Requests of each container based on its

usage. Although apparently less popular, vertical autoscaling
is adopted as a valuable solution for container management
in Google data centers [1], providing a more accurate and
fine grained control of resource provisioning. It ensures
better performance especially for those applications that
rely on specific network protocols for inter-microservice
communication, such as gRPC, which suffer from poor load-
balancing if the number of back-ends varies dynamically. In
fact, gRPC massively relies on long-lived TCP persistent
connections, which can hardly be split or redirected to
other replicas, hence hindering the basic assumption under
horizontal autoscaling. However, classical vertical autoscaling
operates at the single microservice level, hence possibly
neglecting the correlations between the multiple components
of a single application. Additionally, it was designed with
slowly-variable workloads in mind, hence failing to achieve
good performance if the load changes abruptly.

The main contribution of this paper is RAYGO, a
prediction algorithm for vertical resource provisioning in
Kubernetes. RAYGO handles the execution of a microservice-
based application through two components. First, a proactive
engine, which estimates the future microservice resource
demands based on its past history. Second, a reactive engine,
which dynamically refines the profiling decision according
to the overall behavior of the entire application, ensuring
fast reactions and preventing performance drops during load
spikes.

The rest of the paper is organized as follows. Section II
details the RAYGO algorithm, as well as its experimental
evaluation in Section III. Finally, Section IV summarizes the
related work and Section V concludes the paper.

II. RAYGO

Given the complexity and the heterogeneity of microser-
vices behavior, we designed RAYGO as composed of two
different components. Specifically, (i) a proactive engine
(Historical Data Profiler — HDP), which aims to predict the
future behavior of a microservice based on its past executions
and (ii) a reactive engine (Execution Data Predictor — EDP),
which constantly monitors the entire application execution
(i.e., the combination of multiple related microservices) and
refines the profiling decision based on the information about
its current behavior.

The combination of the above two components is required
since a purely proactive approach may not be suitable for
heavily variable workloads characterized by sudden spikes of
requests and unexpected load changes. On the other hand, a
purely reactive one, following strictly the current needs of the
jobs, may be able to identify load changes much quicker, but
it can result in continuous updates of the resources assigned
to each microservice. Yet, as of today and in the context of
Kubernetes clusters, this is a highly disruptive process, given
it requires to restart the application. Although compliant with
the stateless approach, too frequent updates could result in

poor QoE, as well as overall higher resource consumption
during the transient. Conversely, a purely reactive approach
might be feasible if the resources assigned could be varied
at run-time, with no service disruption. Overall, the role of
the proactive component is to mitigate the update rate of the
reactive one, hence limiting the application downtime.

A. Historical Data Profiler (HDP)

One of the results emerging from major cloud provider
reports [4] is that many hosted applications experience quite
stable resource usage patterns in relatively small periods of
time. Hence, we can expect the future behavior of a given
microservice to be similar to the one observed in the past.
Specifically, this component (i) collects the information about
the previous executions of a given microservice, (ii) processes
the historical data to extract the relevant key features and (iii)
leverages the outcome to compute the final profiling value.

Focusing on the feature extraction phase, let consider as
input, at a specific instant in time t0, the set of the n past
measurements ξµ,x referred to a given resource quantity x
(e.g. CPU usage) of microservice µ and collected every δ s:

Ξµ,x(n) = {ξµ,x[t0 − δi] : i ∈ [0, n)}. (1)

First, the measurements are weighted by the function
w[i] = 2−δi/τ , to smooth the response to load spikes and
give increased relevance to the samples closer in time:

Ξ̂µ,x(n) = Ξµ,x(n)·w[i] = {ξµ,x[t0−δi]·2−
δi
τ : i ∈ [0, n)},

(2)
where τ is defined as the half life, that is the time after
which the weight drops by half. In other words, the larger τ ,
the slower the system reacts, due to the increased relevance
associated with the older samples. Conversely, a small τ value
corresponds to more rapid reactions, quickly neglecting past
measurements.

At this point, the final HDP prediction ΦHDP
µ,x is computed

as the rth percentile (Pr) of the last n weighted samples:

ΦHDP
µ,x = Pr

i
(Ξ̂µ,x(n)), i ∈ [0, n). (3)

The selection of the appropriate r value needs to necessarily
take into account the specific characteristics of the monitored
feature (e.g., its volatility), as well as the orchestrator
behavior. For instance, an under-sized CPU limit could simply
lead to reduced performance, as an orchestrator can enforce
throttling periods to satisfy the CPU limits. This does not raise
any concern for sufficiently short intervals as computations
can complete correctly, just slightly slower. Instead, an under-
sized RAM limit could lead to service disruption, as a
microservice exceeding its limits causes the orchestrator
to react with an out-of-memory (OOM) event, effectively
terminating the microservice and causing the restart of the
application. The following details the approach selected for
CPU and RAM predictions, although similar considerations

apply in case other resource types (e.g. ephemeral storage)
are considered.

CPU usage: Given the possible high volatility of this
metric due to the alternations between short-term load spikes
and idle periods, it is fundamental to balance between QoE
and excessive resource demands triggered by load peaks.
For this reason, based on our experience, we suggest to
select r ∈ [90, 100], with lower values resulting in more
aggressive resource estimations, and higher ones being more
conservative, reducing the probability of throttling periods:

ΦHDP
µ,CPU = Pr

i
(Ξ̂µ,x(n)), i ∈ [0, n), r ∈ [90, 100]. (4)

RAM usage: Given the service disruption possibly experi-
mented with a poor RAM estimation and considering that
the RAM usage typically varies slowly over time due to
allocation and caching policies, we conservatively suggest to
select r = 100. Hence, the HDP module computes ΦHDP

µ,RAM
as the maximum of the last n weighted samples:

ΦHDP
µ,RAM = max

i
Ξ̂µ,x(n), i ∈ [0, n). (5)

B. Execution Data Predictor (EDP)

The second concept which emerges from public reports [4]
regards the impossibility to correctly infer the future re-
source consumption based on historical data only for certain
categories of microservices. In these cases, it is clear that
the proactive approach adopted by the HDP, alone, is not
sufficient.

For this reason, we introduce the Execution Data Predictor
(EDP) engine, which continuously adapts the HDP prediction
based on the current application demands. Specifically, it (i)
constantly monitors a different set of metrics (as detailed in
the following) with respect to the HDP, to characterize the
current microservice execution; (ii) uses the gathered informa-
tion to identify load spikes; (iii) generates a corrective factor
to adapt ΦHDP

µ,x based on the specific resource demands. The
EDP operates considering the complete set of microservices
composing a single application, rather than assessing each one
independently. Indeed, preliminary evaluations have shown a
reduction in the number of application resource updates with
such approach and consequently significant improvements in
application performance (thanks to the downtime reduction).
Indeed, without the contextualized view of the application
RAYGO struggles to identify resource predictions, alternately
updating the microservices as the workload pressure moves
constantly from the front-end to the back-end, and viceversa.

As for the metrics considered, the EDP focuses specifically
on the indicators highlighting that a given set of microservices
is struggling to achieve good performance. In detail, as for
CPU usage, we consider the amount of throttling periods
imposed by the orchestrator, which points out the presence of
too strict limits with respect to the current workload demands.
Similarly, considering RAM usage, the EDP evaluates the
number (and type) of memory failure events (ranging from

page faults to OOM) sent to the microservice, as we
experimentally observed they tend to grow when reaching
the configured boundaries.

Let Ξ′µ,x(m) represent again the set of the past m mea-
surements, considering in this case the number of throttling
periods (CPU prediction) and memory failure events (RAM
prediction) as metrics of interest (ξ′µ,x). Considering suffi-
ciently short time intervals, we can assume these indicators
to follow a linear trend. Hence, we adopt a linear regression
model to predict the evolution of the values. Leveraging
the least square method, the predicted value ξ′µ,x[tp], where
tp = t0 + pδ and p > 0, can be estimated from the previous
m observations as:

ξ′µ,x[tp] = 2

α
m−1∑
i=0

ξ′µ,x[t0 − δi]− β
m−1∑
i=0

iξ′µ,x[t0 − δi]

m(m2 − 1)
,

(6)
where:

α = 2m2− 3m+ 3mp− 3p+ 1 and β = 3(m+ 2p− 1).
(7)

Next, for each metric considered, we derive the application-
wide baseline value ΥA,x, to capture the behavior of the
entire set of related microservices µ ∈ A. Specifically, ΥA,x

is computed as the average of the last m measurements, over
all microservices composing the application of interest:

ΥA,x = avg
µ,i

Ξ′µ,x(m), i ∈ [0,m), µ ∈ A. (8)

Given the outcome of the prediction ξ′µ,x[tp] and the base-
line ΥA,x, we derive, for each microservice µ, an intermediate
factor Ψµ,x obtained computing the ratio between the two
resulting values, in a way that the result is always a number
≥ 1.

Ψµ,x =

ξ′µ,x[tp]

ΥA,x
, if ξ′µ,x[tp] ≥ ΥA,x

ΥA,x
ξ′µ,x[tp] , if ξ′µ,x[tp] < ΥA,x

(9)

In the end, the outcome of the EDP engine (ΦEDP
µ,x) is:

ΦEDP
µ,x =

+λeσ|Ψµ,x|, if ξ′µ,x[tp] ≥ ΥA,x

−λeσ|Ψµ,x|, if ξ′µ,x[tp] < ΥA,x

(10)

where λ and σ are two positive scaling constants. The sign of
ΦEDP
µ,x reflects the predicted additional demands of the current

microservice compared to the entire application. Intuitively,
focusing on CPU usage, above-average throttling periods
indicate a struggling microservice (i.e., demanding for more
resources), while below-average ones typically follow the
end of a load spike, thus allowing for stricter quotas.

C. Final Resource Prediction
Given ΦHDP

µ,x and ΦEDP
µ,x , the final resource prediction Φµ,x

for the microservice µ and resource quantity x is derived as:

Φµ,x = ΦHDP
µ,x · (1 + ΦEDP

µ,x). (11)

Table I
THE RAYGO PARAMETERS CONFIGURATION.

Prediction evaluation period (∆): 2 min
Measurements sampling period (δ): 1 s
Resource Requests increase factor (ρ): 0.1
Resource Limits increase factor (ν): 0.7

HDP measurements rolling window size (n): 900
HDP measurements rolling window duration (nδ): 15 min
HDP measurements half life (τ): 15 min
HDP CPU prediction percentile (r): 97th

HDP RAM prediction percentile (r): 100th

EDP measurements rolling window size (m): 120
EDP measurements rolling window duration (mδ): 2 min
EDP forward prediction samples (p): 15
EDP scaling constant (σ): 0.5
EDP scaling constant (λ): 0.1

Overall, the final result is composed of two parts: a baseline,
represented by the ΦHDP

µ,x value, and a corrective factor (either
positive or negative) predicted by the EDP engine.

The entire process is repeated every ∆ s, hence periodically
recomputing new Φµ,x predictions values based on the
updated information and possibly varying the microservices
configuration depending on the outcome. Hence, a known
microservice is started with the latest Φµ,x values, while its
resource quota is periodically updated according to the most
recent (application-wide) predictions in order to match the
actual necessities of the application.

III. EXPERIMENTAL VALIDATION

This section validates the above approach through a
prototype implementation of RAYGO, publicly available
at [5]. It manages the microservices execution within a
Kubernetes cluster by dynamically adjusting the amount
of resources assigned to each single workload according to
the outcome of (11). Specifically, Requests are configured
to the Φµ,x value, possibly incremented by a small, user-
configurable safety margin ρ ≥ 0 (i.e., Rµ,x = Φµ,x ·(1+ρ)).
Then, Limits are obtained enlarging Rµ,x by a configurable
factor ν ≥ 0 (i.e., Lµ,x = Rµ,x · (1 + ν)), to account for
sudden and temporary load spikes without waiting for the
reaction of RAYGO, which may be slower (and possibly
unnecessary). TABLE I details the values of the complete
RAYGO parameters adopted for the evaluation.

In Kubernetes, one of the most adopted abstractions to
execute microservices is the Deployment. Deployments define
the template of the microservice, including the Docker image,
its associated execution environment and, most importantly
in this context, the amount of resources (in terms of Requests
and Limits) that are enforced by the orchestrator. Additionally,
they ensure the desired number of replicas is correctly in
execution, and transparently manage rolling updates (i.e.,
starting a new parallel instance of the microservice and
tearing down the old one only once the former is correctly

Figure 1. A representation of the microservices composing the Online
Boutique, and their interconnections.

running) to limit the application downtime in case the
template is varied.

Our implementation leverages standard Kubernetes labels
to identify the set of microservices composing a single
application, and relies on Prometheus1 to gather the execution
metrics used by the algorithm. This prototype could be easily
extended to properly manage other Kubernetes abstractions
(e.g. StatefulSets), as well as to directly gather the metrics
from the metric-server2 if Prometheus was not available.

A. Testbed setup

In the validation process, we leveraged the cloud-native
demo application Online Boutique3, which consists of ten
microservices (graphically represented in Fig. 1) interacting
among them through gRPC interfaces. The application is a
web-based e-commerce allowing users to browse and pur-
chase items, while featuring recommendations and currency
exchange. Locust4, an open-source load testing tool, was used
to replicate end-user interactions with the platform. It allows
to define a custom application workload, in terms of number
of fake clients and target endpoints, and then generates the
suitable requests according to the configuration.

For the sake of comparison, we first evaluated the per-
formance of the application running unsupervised, without
restrictions in resource usage. Then, we assessed the outcome
when managed by the Vertical Pod Autoscaler (VPA), v0.9.2,
as well as the Horizontal Pod Autoscaler (HPA), as of Ku-
bernetes 1.19, configured to increase the number of replicas
when the CPU load reaches 80 %. Finally, we tested RAYGO,
considering the case with only HDP and the combination
of the two engines. In the latter case, we evaluated both
a degraded version of the EDP module, assessing each
microservice independently (HDP+EDP single), as well as
the full, application-aware one (HDP+EDP app). Across all
tests, the amount of resources available on the nodes was
more than enough to accommodate all the microservices,
hence posing no constraints on the different approaches.

1https://prometheus.io/
2https://github.com/kubernetes-sigs/metrics-server
3https://github.com/GoogleCloudPlatform/microservices-demo
4https://locust.io/

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 400 800 1200 1600

C
P

U
 (

c
o
re

s
)

Time (seconds)

RAYGO
usage

(a)

 0

 200

 400

 600

 800

 1000

 0 400 800 1200 1600

R
A

M
 (

M
B

)

Time (seconds)

RAYGO
usage

(b)

Figure 2. Actual CPU and RAM usage, along with values tracked by
RAYGO, during the initial warm-up phase.

B. Workload Pattern

Using Locust, we generated a custom workload charac-
terized by two main phases. In a first warm-up phase, the
number of simulated users is gradually increased up to 1000,
and then kept constant. This allows all solutions to adapt
the amount of resources (and possibly replicas) based on the
application demands. At that point, the actual test phase starts,
which simulates an unforeseen spike of users to assess how
the different application supervisioning approaches behave
in this scenario. Specifically, it is characterized by four
intervals: first, the number of simulated users grows linearly
(one new user every second) up to 2000 users, and then
is maintained constant. In the third phase, the users start
decreasing (one user removed every second) until reaching
again 1000, followed once more by a stationary phase. Hence,
assessing both the behaviour, in terms of QoE and resources,
during and after a load spike.

Fig. 2 shows the adaptation process performed by RAYGO
during the warm-up phase, regarding CPU and RAM usage
(represented as the total across all microservices), with
the predictions closely tracking the actual values while the
number of users (and hence the load) increases. Being the
given application CPU intensive, the following evaluation
focuses specifically on this metric. However, similar results
have been obtained regarding memory usage.

C. Resource usage

Figs. 3 and 4 show respectively the sum of the CPU
requests and limits assigned to the set of microservices by
the different approaches. Results are aggregated by test phase,
with the bar graph showing the average, and the vertical
segment representing the minimum and maximum values.
Overall, RAYGO achieved significant resource savings com-
pared to the other approaches. Indeed, the HPA suffered
from the suboptimal step increases caused by the creation of
new replicas, while the VPA struggled to precisely track the
application load, keeping the resource demands high even
after the spike of requests terminated.

In this context, the additional usage of the application-
aware EDP engine, thanks to its ability to detect unexpected
load changes, resulted in more resources assigned to the
microservices during the workload growing phase, and in

 0

 1

 2

 3

 4

 5

 6

 0

 500

 1000

 1500

 2000

 2500

C
P

U
 c

o
re

s

U
s
e
rs

Time

VPA
HPA

 RAYGO (HDP)

 RAYGO (HDP+EDP single)
 RAYGO (HDP+EDP app)

workload

Figure 3. The sum of CPU requests assigned by each solution to the set
of microservices, grouped by test phase.

 0

 2

 4

 6

 8

 10

 12

 0

 500

 1000

 1500

 2000

 2500

C
P

U
 c

o
re

s

U
s
e
rs

Time

VPA
HPA

 RAYGO (HDP)

 RAYGO (HDP+EDP single)
 RAYGO (HDP+EDP app)

workload

Figure 4. The sum of CPU limits assigned by each solution to the set of
microservices, grouped by test phase.

slight resource savings when the number of generated users
decreased, ensuring better performance for the application,
as detailed in the following.

D. Quality of Experience

Previous results could raise the question whether the
smallest limits requested by RAYGO are enough to sustain
the application workload. In this section we evaluate the QoE
provided by the application when supervised by the different
solutions. First, we assessed the number of requests correctly
processed (i.e., with a successful 2XX response), and the
outcome is presented in Fig. 5. The unconstrained values
represent a reference measured with no resource constraints,
hence reflecting the maximum achievable in the specific test
conditions. Given the behavior of Locust, with each client
issuing a new request only after the previous response is
received (or a timeout expired), a lower result can derive
from both errors (e.g. a microservice is being restarted), as
well as increased application response times.

During the entire evaluation, RAYGO executed with the
combination of HDP and EDP resulted the solution ensuring
the performance closest to the reference, despite the overall
lower resource demands (cf. Fig. 3). Furthermore the contex-
tualized decisions of the EDP, working with the complete set
of microservices, has shown significant improvements in the
QoE. Indeed, during the initial phases, the VPA, RAYGO
(HDP only) and RAYGO (HDP+EDP single) struggled to
adapt the configuration to the workload demands, recovering
only when the number of users decreased. While requiring
the highest amount of resources, the application supervised
by the HPA displayed a 5 % – 10 % gap behind the reference.
Although unexpected, this result is caused by the usage of
the gRPC protocol for the interaction between microservices.

 200

 250

 300

 350

 400

 450

 0

 500

 1000

 1500

 2000

 2500

S
u
c
c
e
s
s
fu

l
re

s
p
o
n
s
e
s

U
s
e
rs

Time

UNCONSTRAINED
VPA
HPA

 RAYGO (HDP)

 RAYGO (HDP+EDP single)
 RAYGO (HDP+EDP app)

workload

Figure 5. Number of responses correctly served by the application either
unsupervised or managed by the different approaches.

 90

 92

 94

 96

 98

 100

 0

 500

 1000

 1500

 2000

 2500

S
u
c
c
e
s
s
 R

a
te

 (
%

)

U
s
e
rs

Time

VPA
HPA

 RAYGO (HDP)

 RAYGO (HDP+EDP single)
 RAYGO (HDP+EDP app)

workload

Figure 6. Responses success rate.

Indeed, leveraging persistent connections, it fails to properly
load balance the requests when new back-end replicas are
created at run-time by the HPA. This problem could be
addressed by service mesh techniques, though at the cost of
increased complexity and resource consumption.

Additionally, Fig. 6 depicts the success rate of the
application managed by the three different solutions, that is
the number of 2XX responses out of the total received ones.
Errors may be returned both in case one of the microservices
was temporarily unavailable (e.g., while being restarted) or
the request exceeded the 5 s timeout, hence preventing the
completion of the transaction. In a nutshell, the vertical
autoscaling-based approaches suffered the most, due to
the microservice restarts required to adapt the resources.
Still, RAYGO strongly limited the disruption, thanks to its
application-aware approach. Conversely, much lower success
rate was displayed by the VPA, due to uncoordinated updates.

To assess the overall trade-off between QoE and resource
demands, Fig. 7 presents the ratio between the number
of successful responses achieved by each solution and
the resource requests configured (although the outcome is
consistent if limits are considered). Overall, RAYGO stands
out as the algorithm characterized by the best results during
each phase of the test. Yet, the results of RAYGO (HDP only)
and RAYGO (HDP+EDP single) are partially misleading,
especially in the first test phase, where they show the highest
efficiency. However, the limited amount of assigned resources
(Fig. 3) comes at the expense of a poor QoE, as shown by
the bad result in terms of successful responses (Fig. 5).

E. Response time

Finally, we analyzed the responsiveness of the application
when responding to user requests. Fig. 8 presents through
a box-plot the distribution of the 95th percentile (P95) of

 0

 50

 100

 150

 200

 0

 500

 1000

 1500

 2000

 2500

R
e
q
u
e
s
ts

 p
e
r

c
o
re

U
s
e
rs

Time

VPA
HPA

 RAYGO (HDP)

 RAYGO (HDP+EDP single)
 RAYGO (HDP+EDP app)

workload

Figure 7. Ratio between the number of successful application responses
and the resource requests configured by each solution.

 10

 100

 1000

 0

 500

 1000

 1500

 2000

 2500

R
e
s
p
o
n
s
e
 t
im

e

U
s
e
rs

Time

VPA
HPA

 RAYGO (HDP)

 RAYGO (HDP+EDP single)
 RAYGO (HDP+EDP app)

workload

Figure 8. Distribution of the P95 of the response times, considering
one-second long intervals, over time.

the response times, considering one-second long intervals.
In other words, every 1 s the P95 value is extracted from
all responses received, and the resulting samples, grouped
by test phase, constitute the box-plot. In this case, the
HPA is the solution suffering the most, once more due to
the inefficient load-balancing of gRPC traffic. Indeed, new
requests continued to be issued to the overloaded replicas,
although new available instances had been created by the
HPA. Differently, both VPA and RAYGO (HDP+EDP app)
were able to guarantee significantly faster response times
(i.e. � 1 s for RAYGO) with the median value of the P95

distribution never exceeding 100 ms in case of RAYGO.
Furthermore, the application-aware EDP engine showed its
effectiveness in reducing the overall response time, especially
during load spikes.

IV. RELATED WORK

Many papers and reports already analyzed the most
common workloads in public data centers, aiming at iden-
tifying recurrent patterns in resource usage [4], [6], [7]
and enabling researchers to explore how scheduling works
in large-scale production compute clusters on a long time
scale. In this scenario the problem of resource autoscaling
for microservices is definitely one of the most relevant
topics: indeed, the most adopted solutions for container
orchestration (i.e., Kubernetes, Borg [8] and YARN [9])
require users to specify the amount of resources assigned
to each job. Once properly defined these values, despite
the multi tenancy property of the cloud environment and
the underlying shared infrastructure, the orchestrator can
guarantee to each application its reserved slice of resources.

Besides widespread open-source solutions such as the
Kubernetes HPA and VPA already mentioned in Section I,

autoscaling is a well-developed research area. Many papers
addressed the problem of horizontal scaling of resources: [10]
introduces a modularized platform for resource provisioning,
while [11] defines probabilistic performance models of
horizontal autoscalers both in AWS and Azure and [12]
exploits an absolute CPU utilization correlation model
to accurately predict the number of replicas. Moving to
vertical autoscaling, a key enabler is represented by resource
usage prediction models. To this end, different approaches
have been proposed, including time-series forecasting based
on a second order autoregressive moving average method
(ARMA) [13], the computation of the median of resource
usage observations [14], neural networks [15] and rein-
forcement learning techniques [16]. Yet, in many scenarios,
the computational overhead, as well as the additional time
required in training the reinforcement learning network and
the extreme variability of microservices behaviour, make
those solutions not completely appropriate.

V. CONCLUSIONS AND FUTURE WORK

The automatic prediction of the resource requirements of
microservice-based applications is of fundamental importance
to achieve the best trade-off between the amount of resources
reserved (and hence charged) for their execution and the
offered QoE. RAYGO is an algorithm tracking the resource
demands of a set of applications and dynamically adapting
their configuration according to the foreseen requirements.
It combines a proactive approach, predicting future resource
demands based on past executions, and a reactive component,
which continuously refines the profiling decisions based on
the current behavior of the entire application. We compared
a RAYGO prototype with two common autoscaling mecha-
nisms leveraged in Kubernetes, namely HPA and VPA, for the
management of a realistic ten-tier microservices application.
Overall, the results are promising, with RAYGO achieving
both stricter resource boundaries and better QoE, in terms
of successful responses and response time.

As future work, RAYGO could consider bandwidth de-
mands in addition to CPU and RAM, hence recognising the
communication patterns between closely-related microser-
vices. Additionally, we can explore its integration with a job
scheduler optimised for distributed edge scenarios.

ACKNOWLEDGMENT

The authors warmly thank prof. Guido Marchetto for his
precious help in modelling the system described in this paper.

REFERENCES

[1] K. Rzadca et al., “Autopilot: Workload autoscaling at Google,”
in Proc. 15th Eur. Conf. on Computer Systems, Apr. 2020, pp.
1–16.

[2] G. Saenger and G. Rodrigues, “Kubernetes horizontal
pod autoscaler (HPA): design proposal,” https:
//github.com/kubernetes/community/blob/master/contributors/
design-proposals/autoscaling/horizontal-pod-autoscaler.md.

[3] K. Grygiel and M. Wielgus, “Kubernetes vertical
pod autoscaler (VPA): design proposal,” https:
//github.com/kubernetes/community/blob/master/contributors/
design-proposals/autoscaling/vertical-pod-autoscaler.md.

[4] M. Tirmazi et al., “Borg: The next generation,” in Proc. 15th
European Conf. on Computer Systems, Apr. 2020, pp. 1–14.

[5] S. Galantino, “RAYGO: Reserve as you go,” https://github.
com/SteGala/RAYGO.

[6] C. Lu, K. Ye, G. Xu, C.-Z. Xu, and T. Bai, “Imbalance in the
cloud: An analysis on Alibaba cluster trace,” in Proc. 2017
IEEE Int. Conf. on Big Data, Dec. 2017, pp. 2884–2892.

[7] C. Curino et al., “Hydra: a federated resource manager for
data-center scale analytics,” in Proc. 16th USENIX Symp. on
Networked Systems Design and Implementation (NSDI 19),
Feb. 2019, pp. 177–192.

[8] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes,
“Borg, omega, and kubernetes: Lessons learned from three
container-management systems over a decade,” ACM Queue,
vol. 14, no. 1, p. 70–93, Jan. 2016.

[9] V. K. Vavilapalli et al., “Apache hadoop YARN: Yet another
resource negotiator,” in Proc. 4th Annu. Symp. on Cloud
Computing, Oct. 2013, p. 1–16.

[10] C.-C. Chang, S.-R. Yang, E.-H. Yeh, P. Lin, and J.-Y. Jeng,
“A kubernetes-based monitoring platform for dynamic cloud
resource provisioning,” in Proc. IEEE Global Commun. Conf.
(GLOBECOM), Dec. 2017, pp. 1–6.

[11] A. Evangelidis, D. Parker, and R. Bahsoon, “Performance
modelling and verification of cloud-based auto-scaling poli-
cies,” in Proc. 17th IEEE/ACM Int. Symp. on Cluster, Cloud
and Grid Computing (CCGRID), May 2017, pp. 355–364.

[12] E. Casalicchio, “A study on performance measures for auto-
scaling cpu-intensive containerized applications,” Cluster
Computing, vol. 22, no. 3, pp. 995–1006, Jan. 2019.

[13] N. Roy, A. Dubey, and A. Gokhale, “Efficient autoscaling in
the cloud using predictive models for workload forecasting,”
in Proc. IEEE 4th Int. Conf. on Cloud Computing, Jul. 2011,
pp. 500–507.

[14] G. Rattihalli, M. Govindaraju, H. Lu, and D. Tiwari, “Ex-
ploring potential for non-disruptive vertical auto scaling and
resource estimation in kubernetes,” in Proc. IEEE 12th Inter.
Conf. on Cloud Computing, Jul. 2019, pp. 33–40.

[15] S. Islam, J. Keung, K. Lee, and A. Liu, “Empirical prediction
models for adaptive resource provisioning in the cloud,” Future
Generation Computer Systems, vol. 28, no. 1, pp. 155–162,
Jan. 2012.

[16] F. Rossi, M. Nardelli, and V. Cardellini, “Horizontal and verti-
cal scaling of container-based applications using reinforcement
learning,” in Proc. IEEE 12th Int. Conf. on Cloud Computing,
Jul. 2019, pp. 329–338.

