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Abstract—We elaborate on the possibility of exploiting the
(pseudo)random projection operator, which is at the heart of the
most common architecture for compressed sensing, to prevent
access to the acquired information by unauthorized receivers.
In low-resource applications, this approach may make dedicated
cryptographic layers unnecessary when the security requirement
is not particularly high. Beyond proving that the proposed
system is at least asymptotically immune to straightforward
statistical attacks, we also exploit the sensitivity of compressed
sensing recovery algorithms to the complete knowledge of the
projection matrix to introduce two-class protection. The encoding
is such that first-class decoders can retrieve the signal to its full
resolution while second-class decoders are able to retrieve only
a degraded version of the same signal. Examples are given with
reference to ECG signal acquisition.

I. INTRODUCTION

Multi-class information broadcasting policies are found in
many technologies such as navigation systems, digital video
broadcasting of restricted access content and software radio.
In these applications the ability to distinguish between user
classes is an advisable feature. As an example, in the Global
Positioning System (GPS) two different user classes share
the same physical layer infrastructure: the Precise Positioning
Service [1] transmits high precision data restricted for military
use, while Standard Positioning [2] is open for civilian use but
operates with significantly lower accuracy.

The key to differentiating information content between mul-
tiple user classes commonly entails the use of pseudorandom
number generators (PRNG) as the base of more advanced
cryptographic algorithms. In these terms, low-cost concealing
of analog signal sources may take advantage of Analog-to-
Information (A2I) conversion by Compressed Sensing (CS),
which is based on generating projections of the analog signal
along (pseudo)random directions [3].

Compressed Sensing [4, 5] is a signal processing paradigm
that has recently gained interest due to the possibility of ac-
quiring a signal from significantly less measurements than its
Nyquist rate samples. The main prior condition to efficiently
perform CS of a signal is that it has a sparse representation,
i.e., it may be expressed as a linear combination of some
known basis waveforms with very few nonzero/non-negligible
coefficients. It is the number of nonzero coefficients rather
than the apparent dimensionality of the signal that controls
the number of measurements required to encode it and perform
reconstruction at the decoder side [6, 7].

The intrinsic exploitation of randomness in A2I converters
makes them appealing for simultaneous information acqui-
sition, compression, and concealing directly at the physical
interface between the analog and the digital world.

In this paper we propose a CS system based on the parallel
Random Modulation Pre-Integration (RMPI) converter [3] that
is able to distinguish first-class and second-class decoders;
the former completely know the pseudorandom vectors used
in the encoding and are capable of reconstructing the signal
at maximum resolution (minimum reconstruction noise); the
latter know a version of the same vectors altered by a random
perturbation whose magnitude controls the amount of non-
recoverable information at the decoder.

From a cryptographic perspective, the analog input signal
is the plaintext, the measurements are the ciphertext and the
pseudorandom encoding is the encryption algorithm, of which
the initial state is the private key. This paper does not aim to
prove whether CS is a cryptographically secure algorithm or
not; it rather shows an information concealing system which
makes signal recovery from ciphertext computationally hard,
and recovery relying on incomplete knowledge of the key
affected by an arbitrarily high amount of noise.

As a proof of concept, this two-class scheme is applied to
electrocardiographic signals (ECGs): the first-class receiver is
designed to decode the complete signal profile and reproduce
all its features with low reconstruction noise, while the second-
class receiver is able to observe only basic features such as
the heart rate, but cannot detect sensitive information such as
cardiac cycle anomalies due to a pathologic condition.

II. TWO-CLASS CONCEALING BY COMPRESSED SENSING

Let x ∈ Rn be a signal in an n-dimensional vector space;
we say x is k-sparse w.r.t. a basis Ψn×n (or a dictionary
Ψn×p , p ≥ n) if x = Ψα, where α ∈ Rn has k � n
nonzero coefficients. CS essentially states that if x is k-sparse,
then it can be recovered from only m < n linear projections,
where m depends on the sparsity k and the dimensionality n
[5]. In particular, if Φm×n is a matrix with independent and
identically distributed (i.i.d.) entries belonging to a wide class
of possible random variables, the needed measurements can
be found in the vector y = Φx = ΦΨα.

When x is a window of n Nyquist rate samples of an analog
signal x(t) which is known to be sparse in a basis Ψ, there are
a number of architectures that implement CS of x(t), among
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Fig. 1. Measurement matrix generator architecture

which the most straightforward is the RMPI converter [3]. In
order to recover x from y under the prior that x is k-sparse,
one may solve the well-known min `1 optimization problem
(see [4]): min

∑n−1
j=0 |αj | s. t. y = Θα, where Θ = ΦΨ. This

is a linear programming (LP) problem that can be solved very
efficiently by standard means.

From a more architectural point of view, the RMPI encoder
is an array of m analog inner products between the signal x(t)
and the rows of Φ; the decoder is a standard LP solver which
takes the matrix Θ and the encoded message y as inputs and,
if the m projections have raked enough information from the
input signal, it outputs the sparsest approximation α̂ to α.

To understand how effective two-class information conceal-
ing can be embedded in such a system note that the encoder
and the decoder must agree on an initial state of the PRNG
generating Φ (it is known that Φ can be as simple as a
collection of antipodal pseudorandom symbols) so that any
decoder who knows the seed knows Φ. On the contrary, a
decoder ignoring Φ will not be solving the same instance of the
LP problem, and reconstruction errors will be unavoidable. We
exploit this encoder/decoder agreement to conceal information
by introducing a controlled mismatch in the matrix Φ for
lower-class receivers.

The two-class system works as follows. We encode x with
a measurement matrix generated by combining two random
sources, one being an i.i.d. stream of m ·n antipodal symbols,
the other being a pseudorandom set C of positions in the
symbol buffer, of cardinality |C| = c � m · n. First the
symbol buffer is filled by the pseudorandom stream generating
the matrix Φ(2). Then, the symbols at the positions contained
in C are flipped by changing their sign. The altered buffer is
then used to obtain the matrix Φ(1) that can be expressed as
Φ(1) = Φ(2) + ∆Φ, where ∆Φ is the perturbation matrix of
elements

∆Φj,k =

{
−2Φ

(2)
j,k , (j, k) ∈ C

0 , (j, k) /∈ C
chosen uniformly at random. A thorough analysis of per-
turbations in CS can be found in [8]. For our purposes, it
is enough to say that if the entailed PRNGs are a good
approximation of i.i.d. symbol sources, the two matrices Φ(1)

and Φ(2) are statistically indistinguishable and satisfy the
classical assumptions [5] ensuring recovery of the original
signal from the measurements they produce.

The seeds of the PRNGs generating Φ(2) and ∆Φ define
the first-class user key K1 = (sΦ(2) , s∆Φ), while the second-
class key is K2 = (sΦ(2)). The complete matrix generator is

(a) jth RMPI channel

(b) Two-Class Encoder

(c) First-class Decoder (d) Second-class Decoder

Fig. 2. Two-class Encoder/Decoder Architecture

depicted in Fig. 1 and must be present at both the encoder and
the first-class decoder side; since second-class users only know
sΦ(2) , the lower PRNG is missing in second-class decoders.

The CS encoder is depicted in Fig. 2(b); it transmits the
compressed measurements y encoded with Φ(1). The acqui-
sition is performed by m parallel RMPI channels, whose
jth instance (see Fig. 2(a)) modulates x(t) by the waveform
Φ

(1)
j (t) (the jth row of Φ(1)). The first-class decoder, de-

picted in Fig. 2(c), receives the measurements y and, since it
knows K1, it solves the min `1 problem given the constraint
y = Φ(1)x; if there are no other noise sources and the m
measurements carry sufficient information, the reconstruction
α̂ will be exact, yielding x̂ = Ψα̂ with low or no reconstruction
noise w.r.t. x. The second-class decoder (in Fig. 2(d)) receives
y = (Φ(2) + ∆Φ)x = Φ(2)x + ν∆Φ, where ν∆Φ = ∆Φx is
equivalent to additive colored noise since ∆Φ is unknown
to this decoder. From [7] we know that in presence of
additive noise the reconstruction error cannot be bounded but
proportionally to ||ν∆Φ||22 so the second-class receiver will be,
in general, affected by a higher reconstruction noise.

The energy ‖ν∆Φ‖22 of ν∆Φ is controlled by the number
c of flipped positions in Φ(1) w.r.t. Φ(2). Hence, increasing
c is expected to raise the average reconstruction noise of the
second-class receiver. We have to choose c such that the noise
threshold for second-class users in the selected application
agrees with the specifications.

We cannot prevent the second class receiver from improving
its reconstruction quality by denoising. According to experi-
mental results, simple attacks such as trivial noise filtering
do not improve the reconstruction quality; however, more
complex attacks based on signal priors may have some effect
at the expense of much higher computational effort.

Eavesdroppers, i.e., malicious receivers trying to decode the
concealed signal, do not know any of the two seeds and are
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Fig. 3. Design space for the proposed two-class ECG compressed sensing
system when the input signal has an intrinsic SNR of 30 dB. The contour
plot shows the ARSNRdB performance after min `1 decoding when we vary
the number of measurements m and the ratio of corrupted entries γ.

therefore unable to obtain the projection matrix and use it for
signal recovery. A few contributions exist (e.g., [9]) trying to
clarify the strength of this protection and some novel insight
on this is given in the final part of this paper. By now we
exemplify the two-class concealing scheme by addressing a
sample application.

III. APPLICATION TO HEART PATIENT MONITORING

In our sample application the ECG trace of a heart patient is
acquired by RMPI-A2I and must be transmitted to monitoring
devices ensuring privacy. Low-level monitoring (second-class
receivers) is only interested in heartbeat measurement but must
not have access to detailed data. High-level monitoring (first-
class receivers) must have access to a full resolution heartbeat
trace for possible medical diagnosis.

The interpretation of ECGs is out of the scope of this paper.
It suffices to say that relevant informations are associated to
the position of the five peaks usually indicated with the letters
P, Q, R, S and T [10].

In this case, the idea is that first-class users must be able
to appreciate the exact position and shape of all peaks, while
second-class receivers are able to reconstruct only a perturbed
version of the trace in which all the peaks but the highest one
can be precisely identified.

Starting from the dictionary Ψ used in [11] and from syn-
thetic ECGs generated as in [12] with an additional Gaussian
noise at −30 dB, we may compute the performance contour
plot in Figure 3; in that plot, the average reconstruction SNR,
ARSNRdB = 20 log10 Ex [||x||2/||x̂− x||2] is reported as a
function of the number of measurements m and the relative
perturbation magnitude γ = c/(m · n) for n = 250. The
reconstruction is performed over 250 synthetic ECG instances
per (γ,m) pair by linear programming using ILOG CPLEX.

Clean ECGs require an ARSNR of at least 20 dB. From
Figure 3, this is ensured by setting m = 80 and γ = 0. To
corrupt information about the lower peaks {P, Q, S, T}, we
will allow second-class receivers to reconstruct the same ECGs
with an ARSNR not higher than 6 dB. For m = 80, this is
achieved with γ = 0.03.
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Fig. 4. (a) First-class receiver signal reconstruction compared with the
original signal. The position of the PQRST peaks is clearly identifiable and
the healthy ECG (top) can easily be distinguished from the pathological
one (bottom). (b) Second-class receiver signal reconstruction, where only the
R peaks are identifiable; the healthy (top) and pathological (bottom) ECGs
cannot be distinguished.

A sample performance of a system designed with the above
parameters is depicted in Figure 4, where two ECG traces
coming from public databases [13] have been considered. In
Figure 4(a) we depict two signals decoded by the first-class
receiver, one from a healthy patient (top) and the other from
a patient affected by cardiac insufficiency (bottom), compared
with the original signal. The position of the peaks is well
identifiable both in the healthy case (SNR = 19.6 dB) and the
pathological case (SNR = 23.6 dB) reconstructions, and the
two traces are clearly distinguishable from each other.

In the signal available to second-class receivers (Figure
4(b)) information on the peak position except for the QRS
complex is severely corrupted by reconstruction noise, making
distinction between healthy and ill patients virtually impossi-
ble. In this case, the healthy patient trace is reconstructed with
SNR = 5.0 dB, the pathological case with SNR = 6.3 dB.

IV. SHANNON SECURITY AND COMPRESSED SENSING

The aim of this section is to give a hint on the security of the
proposed system. Despite the fact that it is designed to work in
simple and low-cost applications, a certain amount of security
is nevertheless ensured. An extensive analysis of possible
attacks leveraging on some kind of side information is possible
but incompatible with the scope of this communication. For
this reason we here concentrate on the most basic requirement
of security.

According to Shannon’s definition, a prerequisite of all
secure systems is that the statistical properties of the ciphertext
(the measurements) must be independent of the plaintext (the
signal to acquire) [14], i.e. any statistical analysis of the
encrypted message alone gives no information on the original
message.

Previous works have studied secrecy in compressed sensing
[9] and immediately clarified that the Shannon prerequisite
cannot be fulfilled in general due to the linearity of the pro-
jection operator used to obtain the measurements. In particular,
we will see that linearity makes eavesdroppers able to detect
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energy-related information. Yet, we are also able to prove that,
at least asymptotically, such information is the only percolating
through our encoding.

More formally, let us consider a sequence of systems with
increasing n in which the projection matrices Φm×n are made
of i.i.d. entries with zero mean, variance σ2

n = 1/n and
bounded absolute third-order moment µ3

n ≤ M for some
M > 0 (for example i.i.d. antipodal symbols ±1/

√
n). These

systems acquire a bounded signal x with |xl| ≤ X and finite
power W = limn→∞ 1

n

∑n−1
l=0 x

2
l <∞.

The jth measurement is yj =
∑n−1

l=0 φj,lxl = 1√
n

∑n−1
l=0 zj,l

with zj,l =
√
nφj,lxl. Regardless of j, the sequence zj,l is

made of independent random variables with zero mean and
such that

lim
n→∞

1

n

n−1∑

l=0

E[z2
j,l] = lim

n→∞
1

n

n−1∑

l=0

x2
l = W

and

0 ≤ lim
n→∞

1

n3/2

n−1∑

l=0

E[|zj,l|3] ≤ lim
n→∞

1

n3/2

n−1∑

l=0

MX3 = 0

Hence, by the Central Limit Theorem, every yj asymptoti-
cally distributes as a zero-mean Gaussian with variance equal
to the power W of the signal to acquire.

Yet, in the same asymptotic conditions, any two signals with
the same power will be statistically indistinguishable given
the measurements, thus ensuring Shannon security whenever
power information is not substantial, e.g., when all the real-
izations to acquire at a given time window have (or can be
made to have) approximately the same energy.

To numerically illustrate this property, we consider the
two ECG traces from which the windows in Fig. 4(a) were
taken and extract n = 50, 100, 150, . . . , 2500 samples from
each of them. For each n, the two sample collections are
normalized to unit energy and projected along 108 i.i.d.
antipodal vectors. To model what would happen in a real
implementation, measurements are quantized in 8-bit words
(B = 28 bins). Quantization levels are optimized assuming
a Gaussian distribution to have a maximum-entropy digital
encoding. This provides us with N = 108 samples from the
distributions of the digital words y′, y′′ encoding two different
ECG signals x′, x′′. These samples are used to estimate the
Kullback-Leibler divergence D (y′||y′′) [15] that is plotted in
Figure 5 against the value of n.

As a reference, we also report the theoretical expected value
of the divergence estimated using two sets of N samples
coming from the same discrete uniform distribution, i.e.,
β = (B − 1)/(N ln2) ' 3.67× 10−6 bit.

It is clear that the measurements of the two signals become
statistically indistinguishable for n above few hundreds, since
the number of bits of information that can be apparently
inferred from their differences (≤ 10−5 bit for n > 500)
is mainly due to estimation uncertainties and cannot support
straightforward statistical attacks.

V. CONCLUSION

We have proposed a compressed sensing system that selec-
tively hides information content by introducing a controlled

Fig. 5. Estimated Kullback-Leibler divergence between the probability
distributions of two 8-bit measurements corresponding to different original
signals.

amount of perturbations in the measurement matrix. This
system may find application whenever one wants to perform
simultaneous sensing, compression and information conceal-
ing directly in the analog domain, before the signal is digitized.
The system was shown to be asymptotically secure in the
Shannon sense except for the signal power.
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