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Featured Application: Aerostatic spindles are used in high-speed micromachining applications.
The main goal of the work is to validate the developed non-linear numerical model through the
proposed identification procedure and the performed experimental tests.

Abstract: This paper proposes a method to experimentally identify the main modal parameters, i.e.,
natural frequencies and damping ratios, of an aerostatic spindle for printed board circuit drilling.
A variety of methods is applied to the impulse-response function of the spindle in the presence
of zero rotational speed and different supply pressures. Moreover, the paper describes the non-
linear numerical model of the spindle, which consists of a four-degree-of-freedom (DOF) rigid and
unsymmetrical rotor supported by two aerostatic bearings. The main goal of the work is to validate
the developed non-linear numerical model through the proposed identification procedure and the
performed experimental tests. The comparison proves satisfactory, and the possible sources of
uncertainty are conjectured.

Keywords: aerostatic journal bearings; PCB spindles; dynamic identification; logarithmic decrement
method; complex exponential method; half-power method; damping factor identification; rigid rotor;
modal analysis

1. Introduction

Gas bearings, owing to their properties, play an essential role in turbochargers, gyro-
scopes, turbo blowers, gas turbines and micromachining spindles. In particular, microma-
chining spindles are widely used in surface finishing, printed circuit board (PCB) drilling,
micro-processing, micro-milling, micro-grinding and, in general, for micromachining mate-
rials with low shear resistance. This is because compared to oil and rolling bearings, gas
bearings can reach higher rotation speeds while simultaneously reducing the amount of
machine maintenance required.

The aim of research on spindles supported by gas bearings is to develop systems
with excellent dynamic stability and stiffness, along with very low runout of the tool,
even at very high rotation speeds. Poor damping is one of the main disadvantages of
journal gas bearings, which can compromise the accuracy of high-precision machining.
Moreover, friction power losses in motors and bearings can be a non-negligible source of
heat at high speeds. The contribution of thermally induced deformations of a machine
tool can exceed 50% of the total machining error [1], which is very significant in precision
milling. To reduce these problems, an efficient and precise refrigeration system is required.
Recent developments in manufacturing technologies have made it possible to realize
innovative high-precision devices that can even be miniaturized. Research has therefore
been enriched by numerous experimental contributions, some of which are discussed
below. Machine tools of 4 mm and 1/8” diameters used for micro-milling can now be
supported on aerostatic bearings up to 400 krpm and 450 krpm [2,3]. Experiments on
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dynamic characterization of air-bearing spindles are described in [4,5], where the frequency-
response function (FRF) of the spindle is measured. Impact tests have been carried out with
an impact hammer [4] or with a custom-designed impact excitation system able to provide
excitations up to 20 kHz [5]. Ref. [6] describes a test rig used to measure the dynamic
stiffness and damping coefficients of a hemisphere spiral groove hybrid gas bearing. In
this rig, the excitation is provided by means of two electromagnetic exciters.

Mathematical models have long been used as a valuable tool to investigate the dy-
namic performance and stability of high-speed rotors. Early attempts at modelling this kind
of system were aimed at gaining a better insight into the half-whirl instability, known today
as asynchronous whirl instability [7]. At the time, this was one of the most troublesome
problems in journal bearings. The first attempts to actually solve the equations of motion
and the gas-lubricated equation simultaneously were reported by Sternlicht [8], Poritsky
and Arwas [9]. In their solution, they linearized the equations of motion of a 2 DOF rotor,
along with the Reynolds equation, to obtain lubricant pressure distribution. However, in
the Reynolds equation, they omitted the time derivative of pressure, and therefore, the
resulting quasi-static solutions do not adequately represent the squeeze-film effects. In the
same period, the literature presented many other models based on the “p-h” linearization
of the time-dependent Reynolds equation and the equations of motion of a 4 DOF rigid
rotor [10,11]. However, in most cases, these kinds of simplified models cannot replace more
costly trial-and-error experimentation since they do not represent a reliable theory.

The results obtained from these models have become ever more accurate with the
use of finite-difference and finite-element models, where the perturbation method can be
used to compute stiffness and damping coefficients for rotordynamic models. Ref. [12]
investigates the impulse response of an ultra-precision raster milling spindle under the
simplified hypothesis of constant coefficients. In [13], critical speeds and modal shapes
of a micro-spindle machine tools were evaluated, but this analysis is limited because it
only considers bearings with constant stiffnesses and neglects their damping properties.
A rotordynamic model of an air spindle with a diameter of 1/8” was considered [14],
which involves coefficients that depend on the rotational speed. Here, the critical rotational
speeds were calculated as a result of the rotordynamic analysis. A test rig to measure the
rotordynamic response of a spindle supported on porous gas bearings is described in [15].
In [16–19], the dependence of stiffness and damping properties on both rotational speed
and perturbation frequency is expressed with analytical formulations. With this technique,
it is possible to calculate the critical speeds and verify the stability of rigid or flexible rotors.
During the design process of a spindle supported on gas bearings, it is of great importance
to estimate the conical and cylindrical natural frequencies. A clear design guideline is
illustrated in [20] to avoid critical speeds within the operating speed range. The influence
of temperature on the dynamic behavior of the spindle is also discussed. Conical and
cylindrical modes are investigated in [21] for a non-uniform slot-clearance journal bearing,
together with the onset speed of whirl instability.

The orbit method is an alternative to the linearized coefficient analysis employed in the
aforementioned papers. It includes the complete nonlinear equations of the rotor and the
bearings, which are integrated numerically to obtain the shaft center orbits corresponding
to any set of geometrical, running, and initial conditions. This technique essentially uses
the computer as an accurate experimental rig; it operates exactly in accordance with
the assumed governing equations [22]. This method is currently used to calculate the
unbalance response, the onset speed and the non-linear rotor behavior in case of large
displacements [23]. Ref. [24] makes use of this method for a spindle with herringbone-
grooved journal bearings. Ref. [25] highlights the differences between linear and non-linear
analyses of a rotor supported by plain journal bearing. Past research by the authors
concerns an electro-spindle of 50 mm shaft dia. supported on aerostatic bearings [26],
a textile spindle [27] and a mesoscopic spindle of 10 mm diameter [28]. However, the
experimental campaigns to validate the models are not always time- and cost-effective.
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This paper proposes a cheap and simple experimental identification procedure for
aerostatic spindles. Impulse and static tests are performed to identify the natural fre-
quencies, damping ratio and static stiffness evaluated at the nose of an electro-spindle for
PCB drilling. The natural frequencies and damping factors are measured by considering
the impulse-response function of the system, whereas the stiffness at the nose spindle is
detected through the application of static forces. These spindle features are evaluated at
zero rotational speed and with different supply pressures. Moreover, the paper describes
the non-linear numerical model of the spindle, which consists of a 4 DOF rigid and unsym-
metrical rotor supported by two aerostatic bearings. The equations of motion of the rigid
rotor are solved simultaneously with the isothermal time-dependent Reynolds equation
through Euler’s explicit method to obtain the lubricant pressure distribution. The main
goal of the work is to validate the developed non-linear numerical model through the
proposed identification procedure and the performed experimental tests.

2. Experimental Setup
2.1. The Prototype

Figure 1a,b show the investigated electro-spindle. During tests, the system was kept
in horizontal position by means of a nylon block and a clamp. The spindle is driven by
a permanent magnet (PM) synchronous motor that is placed between the rear and front
aerostatic journal bearings. A sketch of the rotor-bearings system is shown in Figure 2.
The bearings have slightly different diameters: 25 mm (front bearing) and 22 mm (rear
bearing). Their axial length is 30 mm. They are supplied by means of two series of supply
orifices of diameter ds = 0.15 mm, located at 7 mm from the borders of the bearings. Each
series includes 12 holes equally spaced along the circumferential direction. Downstream
each supply hole, a small pocket of dia. 1.1 mm and depth 0.2 mm is present. Considering
the manufacturing tolerances, the radial air-film thicknesses are h f = 17.5 ± 1.5 µm and
hr = 21.5 ± 1.5 µm on the front and rear bearings, respectively. Table 1 lists the mass
properties of the rotor. The spindle is equipped with a water-cooling system to ensure
temperature stability during operation.

Table 1. Mass properties of rotor.

Rotor mass: mr = 382 g

Transversal inertia moment: I = 666.1 × 10−6 kg m2

Polar inertia moment: Ip = 31.1 × 10−6 kg m2
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Figure 2. Sketch of the rotor-bearings system.

2.2. Shaft-Displacement Detection

Figure 2 shows the cartesian reference system, Oxyz, used to define the rotor center
of mass and its position with respect to the bearings. The origin, O, is located at the front
edge of the front journal bearing. Axis z is along the axial direction and directed from the
front to the rear bearing. The axial coordinates of journal centers are indicated with z f and
zr for front and rear bearings, respectively.

The rotor displacement is detected by means of two couples of capacitance probes
located at z1 = −21 mm (front plane) and z2 = 91.5 mm (rear plane). The center of mass of
the shaft is located at zG = 41 mm. The shaft center-of-mass displacements and the rotations
about x and y axes are obtained from the sensor readings on front (x1, y1) and rear planes
(x2, y2), as below:

xG = x1(z2−zG) − x2(z1−zG)
z2−z1

yG = y1(z2−zG) − y2(z1−zG)
z2−z1

ϑy = x2−x1
z2−z1

ϑx = y1−y2
z2−z1

(1)

The shaft displacement at the spindle nose (z = znose = −40 mm) can be extrapolated
using Equation (2):

xnose =
x1(z2−znose) − x2(z1−znose)

z2−z1

ynose =
y1(z2−znose) − y2(z1−znose)

z2−z1

(2)

2.3. Static Stiffness on the Nose

The static stiffness on the nose was evaluated by extrapolating the displacement
produced through the application of a 30 ± 1 N load at z = znose. A dynamometer was em-
ployed to impose the load, and the spindle displacement at z = znose was computed by using
Equation (2). Table 2 lists the resulting stiffness, measured at different supply pressures.

Table 2. Resulting static stiffness on the nose.

ps (MPa) knose (N/µm)

0.3 1.14
0.5 2.9
0.7 4.0
0.9 4.6
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2.4. Experimental Characterization at Null Rotational Speed

The damped natural frequencies, ωd, and the damping factors, ζ, were experimentally
investigated by means of impulse response tests. A vertical impulse was applied to the
nose in correspondence of the tool artifact, and the spindle trajectory was detected by
the capacitive sensors (capaNCDT CS05 by Microepsilon) (see Figure 1a). The tests were
performed at null rotational speed and absolute supply pressures ps = 0.3, 0.5, 0.7 and
0.9 MPa. Each test was repeated four times, and signals were sampled with sampling
frequency fs = 50 kHz.

The spectra of signals y1 and y2, measured by sensors on the front and rear measuring
planes, were evaluated through fast Fourier transform (FFT) in order to visualize the
number of modes captured and their frequencies. Figure 3 shows one of the computed
spectra (at 0.5 MPa supply pressure), while the related time signals are depicted in Figure 4.
In all the investigated cases, only one rigid mode shape is visible. Meanwhile, the higher
frequency can be attributed to the flexural mode of the spindle since it does not depend on
the supply pressure of the air bearings. As can be seen from Figure 4, the first mode shape
is conical since y1 and y2 present a 180◦ phase shift.
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2.4.1. Single-DOF Modal-Identification Analysis through LDM and HPM

In view of these considerations, as a first approach, two single-DOF methods were em-
ployed to identify the modal parameters of the system: the logarithmic decrement method
(LDM) [29] and the half-power method (HPM) [30]. Table 3 lists the mean values of the
estimations of the damped frequencies, ωd, and the damping ratios, ζ, computed through
HPM and LDM. The values of the damped natural frequencies increase with the supply
pressure, whereas the damping ratios exhibit an opposite trend. The accuracy of these
estimations was verified by comparing the experimental signals with those reconstructed
through the identified modal parameters (see Figure 4) by making use of the following
1 DOF analytical formula:

yrec(t) = [a cos(ωdt) + b sin(ωdt)] · e−ζωnt

a = yrec(0)

b =
.
yrec(0) + ζωnyrec(0)

ωd

(3)

where constants a and b depend on the initial conditions, and the undamped natural
frequency is ωn = ωd/

√
1− ζ2.

Table 3. Experimental natural frequency and damping ratio of signal y2 at different supply pressures;
the results were obtained with HPM and LDM.

ps
(MPa)

HPM LDM

ωd
(krpm) ζ

ωd
(krpm) ζ

0.3 70.23 0.2611 72.82 0.3928
0.5 87.63 0.1464 86.50 0.2347
0.7 95.42 0.1084 92.60 0.1497
0.9 100.3 0.1125 97.64 0.2325

Unfortunately, as can be seen from Figure 4, the reconstructed signals do not exhibit
a satisfactory degree of accuracy if the estimated parameters are not manually corrected
with a trial-and-error procedure. This mismatch was mainly due to the fact that in some
cases, the analyzed modes presented a relatively high damping factor (small number
of oscillations in the time signal) and a flat peak in the spectrum. In fact, despite the
large amount of energy provided by hammering the spindle nose, in most cases, the rotor
stopped after a few oscillations. To overcome these problems, the estimations were repeated
by means of the least-squares complex exponential method (LSCEM).

2.4.2. Multi-DOF Modal Analysis with LSCEM

This is a multi-DOF method that works in the time domain [31]. It is based on the
impulse-response function (IRF) of the MDOF system with N couples of complex and
conjugate poles:

hij(t) =
2N

∑
r=1

Ar,ij · esrt (4)

where sr = ζrωn,r ± i ωn,r
√

1− ζ2
r and Ar,ij are the rth poles and the modal constants

of the system and i and j refer to the nodes where the impulse is applied and where
the system response is measured, respectively. The advantage of this method is that the
nonlinear solution for the eigenvalues is computationally very straightforward since it
performs an exponential fitting that requires no starting values. To obtain a solution, it is
only necessary to supply the algorithm with the impulse-response function, hij(t), and the
order of the model (N). A particular solution strategy was adopted in these cases. In order
to provide the algorithm with the possibility to fit-noisy signals, the order of the model
was chosen equal to 20, and frequency stabilization diagrams were used to distinguish the
“computational modes” from the real ones. This kind of diagram was obtained by iterating
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the LSCEM from a minimum (3) to a maximum order (20) and superimposing the obtained
frequencies on the obtained spectrum.

In order to obtain a cleaner stabilization diagram, before plotting the obtained damped
frequencies, ωd, they were filtered by considering only the first 4 modes presenting the
higher modal constant (ω1,N , ω2,N , ω3,N and ω4,N). Figures 5 and 6 show the spectrum and
time signal reconstructed by using the modal parameters obtained from this procedure.
In Figure 5, the results correspond to the “+” symbols, and they are coloured in blue, red,
cyan and black from the higher to the lower modal constant. A further filter was imposed
by considering a threshold of 5% on the values of the normalized modal constants in
an attempt to exclude the computational modes. The results that satisfied this threshold
are circled in green (see Figure 5). Figure 5 also shows the comparison between the
experimental spectrum and that reconstructed through the LSCEM. Figure 6 shows the
same comparison in the time domain.
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As can be seen, in this case, the accuracy of the method is satisfactory. The results
obtained with the LSCEM method are summed up in Table 4, where the damped natural
frequencies and damping ratios are reported, together with their phase, φ, and modal
constant, A. Only the first rigid mode was considered, as the second mode exhibited a
natural frequency of about 220 krpm, which was almost constant with the supply pressure
and had modal constants much smaller than the first mode. The evaluation of the phase
shifts, ∆φ = |φ(y1) − φ(y2)|, confirms that the mode identified is of the tilting type.

Table 4. Experimental natural frequency and damping ratio of signals y1 and y2 at different supply
pressures (only the first rigid mode is reported); the results were obtained with LSCEM.

ps (MPa) Signal ωd (krpm) ζ (−) φ (deg) A1 (−)

0.3
y2 73.44 0.1483 3.474 3.400

y1 70.21 0.2578 169.8 7.963

0.5
y2 89.50 0.1072 9.420 5.305

y1 87.23 0.1632 178.0 7.673

0.7
y2 99.75 0.00762 −3.336 5.223

y1 95.46 0.1060 153.6 8.461

0.9
y2 103.8 0.07330 19.69 3.150

y1 107.0 0.09230 −154.6 4.102

2.4.3. LSCEM vs. LDM and HPM (Experimental)

The damped frequencies obtained with the 1 DOF methods are in good accordance
with those obtained with LSCEM; the error is less than 4%. The damping factors, apart
from cases with ps = 0.3 MPa, differ by less than 36% for HPM and 61% for LDM.

3. Numerical Model

In this section, the numerical model of the spindle described in Section 2.1 is presented.
The effect of the double-face thrust bearing is not taken into account, as it is negligible
in the determination of radial and tilting stiffness with respect to the contribution of
journal bearings.

The time-dependent Reynolds equation is considered in the fluid domain of journal bearings:

∂

∂z

(
ph3

12µRT
∂p
∂z

)
+

∂

r∂ϑ

(
ph3

12µRT
∂p
r∂ϑ

)
+ gin =

ωr
2RT

∂(ph)
r∂ϑ

+
1

RT
d(ph)

dt
(5)

where gin is the input flow per unit surface that crosses the supply orifices. The input flow
is estimated using the analytical expression of the supply hole’s discharge coefficient [32]
without considering the Reynolds number dependence:

cd = 0.85
(

1− e−8.2 h
ds

)
(6)

where ds is the supply hole’s diameter and h is the local air gap under the orifice. The RE is
discretized with finite difference technique, and the pressure distribution at time t + 1 is
obtained from the previous pressure distribution with the Euler explicit method:

pt+1
ij = pt

ij + ∆t · f
(

pt, pt+1
)

(7)

where f is a non-linear function that involves the pressure values in node i,j and in the
adjacent nodes. The pocket downstream of each supply orifice is also considered, as it
influences the dynamic characteristics of bearings. Once pressure pij is calculated at time
t + 1, this value is immediately used to calculate pi+1,j at the same time. This improves the
stability of the numerical scheme, as it facilitates the transmission of the information in the
adjacent nodes. The film thickness depends on the rotor center-of-mass position (xG, yG)
and on the rotor axis orientation (ϑx, ϑy):
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h(z, ϑ) = h0 −
[
xG + ϑy(z− zG)

]
cos ϑ− [yG − ϑx(z− zG)] sin ϑ (8)

Once the pressure distribution is calculated, the shear stress on the rotor surface is
given by:

τ =
h
2

∂p
r∂ϑ

+ µ
ωr
h

(9)

The 4 DOF equations of motion for a rigid rotor are considered:

mr
..
xG − Fcx − Fext, x = mreω2 cos ωt

mr
..
yG − Fcy − Fext, y = mreω2 sin ωt

I
..
ϑx + Ipω

.
ϑy −Mcx − Fext, y(zG − znose) =

(
Ip − I

)
γω2 sin(ωt + ϕ1)

I
..
ϑy − Ipω

.
ϑx −Mcy + Fext, x(zG − znose) =

(
I − Ip

)
ω2γ cos(ωt + ϕ1)

(10)

where e and γ are the static and the dynamic rotor unbalances, respectivelye; ϕ1 is the
angle that locates the dynamic unbalance plane with respect to the static unbalance plane;
Fext,x and Fext,y are the external-force components acting on the rotor at coordinates znose;
Fcx, Fcy, Mcx and Mcy are the reaction forces and moments of the bearings, calculated by
integrating the pressure distribution and the shear stress in the fluid domain.

The moments are expressed with respect to the rotor center of mass:[
Fcx
Fcy

]
=
∫ L

0

∫ 2π

0

(
−p
[

cos ϑ
sin ϑ

]
+ τ

[
sin ϑ
− cos ϑ

])
rdϑdz (11)

The moments are expressed with respect to the rotor center of mass:[
Mcx
Mcy

]
=
∫ L

0

∫ 2π

0

[
(z− zG)(p sin ϑ + τ cos ϑ)
(z− zG)(−p cos ϑ + τ sin ϑ)

]
rdϑdz (12)

The time integration of these equations of motion are carried out with the first order
Euler method:

qt+1 = qt +
.
qt∆t (13)

where q is the state-space vector defined by

q =
[

xG yG ϑx ϑy
.
xG

.
yG

.
ϑx

.
ϑy

]
The algorithm performed for the coupled integration of the ODE and the PDE system

is described below. After assuming an initial pressure distribution, for each time iteration,
the following steps are followed:

1. The reaction forces and moments are calculated using Equations (11) and (12);
2. The center-of-mass accelerations and the angular accelerations of the rotor are com-

puted from the equations of motion (10);
3. The state-space vector at time t + 1 is obtained from Equation (13);
4. The film thickness at time t + 1 is updated from Equation (8);
5. The pressure and shear-stress distributions at time t + 1 are updated by solving RE

(2) and using Equation (9);
6. Go back to point 1.

This method is known as the “orbit method” and has the advantage of also taking
into account the non-linearities of bearings [22]. Conversely, it is more time-consuming
compared to linearized methods.

For static problems, the rotor position is fixed, and only the pressure distribution is
considered time-dependent. In this case, only steps 1 and 5 are considered in order to find
the steady-state solution. The iterative process is stopped when the load-capacity relative
variation decreases below a given tolerance:∣∣∣∣ Ft+1

c − Ft
c

Ft
c

∣∣∣∣ < 10−6 (14)
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4. Numerical Results

The numerical model developed was validated using both literature benchmarks
and numerical results. In particular, the numerical load capacity, W, and attitude angle,
Φ, were compared with the analytical values for plain dynamic journal bearings. In the
comparison, the static stiffness of the spindle measured in correspondence of the nose was
also considered, together with the damped natural frequencies and the damping ratio at
null rotational speed.

4.1. Static Validation with Analytical Solution of Plain Dynamic Journal Bearings

The mathematical model was validated in static conditions, comparing it with the
analytical solution that exists for the plain dynamic journal bearing [7]. The dimensionless
load capacity is expressed with a real and imaginary parts, which represent the in-phase
and the out-of-phase components with respect to the line of centers:

W =
W

εpaLD
=

iΛ
1 + iΛ

π

2

1−
tanh

(√
1 + iΛ L

D

)
√

1 + iΛ L
D

 (15)

where
Λ =

6µω

pa

( r
C

)2
(16)

is the bearing number, and

ε =
e
C

(17)

the eccentricity ratio. The front and rear journal bearings were simulated with no supply
orifices for comparison with the dynamic-bearing analytical solution. Figure 7 shows a
perfect match, both regarding the load capacity and the attitude angle, Φ.
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4.2. Choice of Grid Resolution

The influence of the grid-point number on the numerical solution is evaluated both in
static and dynamic conditions. A total of 31 nodes were chosen along the axial direction
for each bushing. Along the circumferential direction, 48 or 96 nodes were considered.
Figures 8–10 compare the pressure distribution, load capacity and air consumption ob-
tained with these computational grids in the presence of an eccentricity of e = 1 µm. As
can be seen, the difference is minimal. As a result of these considerations, a 31 × 48 grid
was used.
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Figure 8. Axial (a) and circumferential (b) pressure distributions obtained with different numbers of
grid points along the circumferential direction (48 and 96); ps = 0.5 MPa.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 25 
 

Figure 8. Axial (a) and circumferential (b) pressure distributions obtained with different numbers of grid points along the 

circumferential direction (48 and 96); 𝑝𝑠 = 0.5 MPa. 

 
  

Figure 9. Load capacity vs. number of iterations obtained with different grid numbers along the 

circumferential direction. 

 
  

Figure 10. Air flow vs. number of iterations obtained with different grid numbers along the circum-

ferential direction. 

4.3. Static Stiffness of Journal Bearings 

The stiffness of journal bearings at zero speed was obtained from static simulations. 

A given displacement was imposed on the shaft (1 μm on radius), and the reaction forces 

in the bearings were computed in order to estimate the radial stiffness, 𝑘𝑓 and 𝑘𝑟, of the 

front and rear bearings, respectively. The stiffness values are listed in Table 5, considering 

minimal and maximal radial clearances and taking into account the manufacturing toler-

ances, as shown in Section 2.1. Of course, stiffness values increase with supply pressure 

and decrease with increasing air gaps. The front bearing shows an increment of stiffness 

with the air gap only with 𝑝𝑠 = 0.3 MPa. The following explanation can be given after 

Figure 9. Load capacity vs. number of iterations obtained with different grid numbers along the
circumferential direction.



Appl. Sci. 2021, 11, 11462 12 of 25

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 25 
 

Figure 8. Axial (a) and circumferential (b) pressure distributions obtained with different numbers of grid points along the 

circumferential direction (48 and 96); 𝑝𝑠 = 0.5 MPa. 

 
  

Figure 9. Load capacity vs. number of iterations obtained with different grid numbers along the 

circumferential direction. 

 
  

Figure 10. Air flow vs. number of iterations obtained with different grid numbers along the circum-

ferential direction. 

4.3. Static Stiffness of Journal Bearings 

The stiffness of journal bearings at zero speed was obtained from static simulations. 

A given displacement was imposed on the shaft (1 μm on radius), and the reaction forces 

in the bearings were computed in order to estimate the radial stiffness, 𝑘𝑓 and 𝑘𝑟, of the 

front and rear bearings, respectively. The stiffness values are listed in Table 5, considering 

minimal and maximal radial clearances and taking into account the manufacturing toler-

ances, as shown in Section 2.1. Of course, stiffness values increase with supply pressure 

and decrease with increasing air gaps. The front bearing shows an increment of stiffness 

with the air gap only with 𝑝𝑠 = 0.3 MPa. The following explanation can be given after 

Figure 10. Air flow vs. number of iterations obtained with different grid numbers along the
circumferential direction.

4.3. Static Stiffness of Journal Bearings

The stiffness of journal bearings at zero speed was obtained from static simulations. A
given displacement was imposed on the shaft (1 µm on radius), and the reaction forces in the
bearings were computed in order to estimate the radial stiffness, k f and kr, of the front and
rear bearings, respectively. The stiffness values are listed in Table 5, considering minimal
and maximal radial clearances and taking into account the manufacturing tolerances,
as shown in Section 2.1. Of course, stiffness values increase with supply pressure and
decrease with increasing air gaps. The front bearing shows an increment of stiffness
with the air gap only with ps = 0.3 MPa. The following explanation can be given after
investigating the pressure distribution: the reason is that the front bearing is near the
saturation condition; that is to say that the pressure drop through the input orifices is quite
small (less than 0.03 MPa).

Table 5. Radial stiffness of journal bearings at different supply pressures and radial clearances.

ps (MPa)
hf = 16 µm, hr = 20 µm hf = 19 µm, hr=23 µm

kf (N/µm) kr (N/µm) kf (N/µm) kr (N/µm)

0.3 4.51 4.57 5.53 4.22
0.5 12.6 9.37 11.8 7.45
0.7 20.3 13.0 16.7 9.5
0.9 27.0 15.8 20.6 10.9

The tilting stiffness of each journal bearing, calculated with respect to its center, is also
evaluated in order to investigate whether its contribution to the overall tilting stiffness of
the rotor bearings system is negligible or not. Table 6 compares the contribution of each
bearing to the tilting stiffness obtained from the radial stiffness (left column) with the tilting
stiffness of each bearing with respect to its center (right column). From this comparison, it
is evident that in this case, this last bearing can be neglected so the overall tilting stiffness
can be estimated from the radial stiffness of each journal bearing.
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Table 6. Comparison between different contributions to tilting stiffness; results refer to geometrical
configuration with h f = 19 µm, hr = 23 µm and supply pressure ps = 0.7 MPa.

Tilting Stiffness of Journal Bearing with
Respect to the Shaft Center of Mass

Tilting Stiffness of Journal Bearing
Respect to Its Center

kf·(zG−zf)/θx (Nm/rad) kr·(zG−zr)/θx (Nm/rad) kϑf (Nm/rad) kϑr (Nm/rad)

33507 57166 925 534

4.4. Stiffness on the Nose

The overall stiffness, knose, measured on the nose at z = zF = −40 mm, is a function of
the bearing stiffness according to:

knose = k f
zr − z f

zr − zF
(18)

Table 7 lists the radial stiffness on the nose extrapolated from the journal bearings
stiffness calculated in the centered position, with 1 µm rotor eccentricity. In case an external
radial load of 30 N is applied on the nose, the eccentricities on bearings are greater and the
resulting nose stiffness is lower. Table 8 lists these values.

Table 7. Radial stiffness on the nose at different supply pressures and radial clearances, calculated at
small eccentricity (1 µm).

ps (MPa) knose (N/µm)
hf = 16 µm, hr=20 µm

knose (N/µm)
hf = 19 µm, hr=23 µm

0.3 2.87 3.51
0.5 8.01 7.50
0.7 12.9 10.6
0.9 17.1 13.1

Table 8. Radial stiffness of the nose at different supply pressures and radial clearances; these values
were obtained with a 30 N load applied on the nose.

ps (MPa) knose (N/µm)
hf = 16 µm, hr=20 µm

knose (N/µm)
hf = 19 µm, hr=23 µm

0.3 1.32 1.29
0.5 4.02 3.79
0.7 6.59 5.36
0.9 8.82 6.52

4.5. Simplified Natural Frequencies

At null rotational speed, in case the damping effects are neglected, the cylindrical
natural frequency is expressed by:

ωcyl =

√
k f + kr

mr
(19)

The conical natural frequency is given by:

ωcon =

√√√√(
k f l2

f + krl2
r

)
I

(20)

where l f and lr are the distances between the rotor center of mass and the centers of
the front and the rear journal bearings, respectively. In this formulation, the eventual
tilting stiffness of each journal bearing is neglected. Table 9 reports the undamped natural
frequencies of the rigid rotor-bearings system at null rotational speed.
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Table 9. Undamped natural frequencies at different supply pressures and radial clearances.

ps (MPa)
hf = 16 µm, hr = 20 µm hf = 19 µm, hr = 23 µm

ωcyl (krpm) ωcon (krpm) ωcyl (krpm) ωcon (krpm)

0.3 46.6 58.9 48.2 57.7
0.5 72.4 86.2 67.8 78.0
0.7 89.2 102.8 79.1 88.9
0.9 101.1 114.3 86.7 95.9

4.6. Choice of the Time Step

The optimal time step, dt, must be chosen for simulations in order to guarantee a stable
solution and independence of the dynamic solution on the time step. The entity of the
damping factor was found to be dependent on the time step, dt, and on the grid refinement.
Figure 11 compares the values obtained for the damping factor at different rotational
speeds and time steps, dt, with a 31 × 96 grid. As shown, the convergence is reached with
a time step of dt = 10−8 s, and a further decrease does not significantly change the damping
factor. The effect of the grid on the damping factor is visible in Figure 12. When doubling
the grid nodes along the circumferential direction, it is sufficient to halve the time step, dt,
in order to obtain a very similar solution. As a result of these considerations, a 31 × 48 grid
with dt = 2 × 10−8 s was chosen for dynamic simulations, as it was found to be a good
compromise between accuracy and computational time.
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Figure 12. Comparison of vibrations obtained on front and rear bearings with 31 × 96 and
31 × 48 grids; the two curves match fairly well in case the time step is halved when doubling
the grid points.

4.7. Damped Natural Frequencies and Damping-Factor Identification

The damped natural frequencies and the damping factors were evaluated for the
displacements along the x and y directions by the rotor in correspondence of planes at
z = 0 (at the right edge of the front journal bearing) and at z = zL = 126 mm (at the left
edge of the rear journal bearing). Moreover, to better identify both the cylindrical and the
conical modes, the center-of-mass displacement, yG, and the tilting angles, ϑx and ϑy, were
considered. Two different initial conditions were simulated since the frequency content of
the spectra of the system response may depend on how the system is excited. Condition 1
is defined by:

x(z = 0, t = 0) = 0 , y(z = 0, t = 0) = 0
x(z = zL, t = 0) = 0, y(z = zL, t = 0) = 0

.
x(z = 0, t = 0) = 0 ,

.
y(z = 0, t = 0) = −0.01 m/s

.
x(z = zL, t = 0) = 0 ,

.
y(z = zL, t = 0) = 0

Condition 1 was adopted in an attempt to reproduce the performed experimental
tests. Vertical impulses were applied to the spindle nose, and the rotor oscillations were
measured on the rear and front plane. Since the results obtained with the initial conditions
(condition 1) were mainly governed by the conical mode, a second condition (condition 2)
was simulated in an attempt to better figure out the cylindrical mode-shape of the rotor.

x(z = zG, t = 0) = 1 µm, y(z = zG, t = 0) = 0
ϑx(t = 0) = 0, ϑy(t = 0) = 0

.
x(z = zG, t = 0) = 0 ,

.
y(z = zG, t = 0) = −0.01 m/s

.
ϑx(t = 0) = 0 ,

.
ϑy(t = 0) = 0

Condition 2 was chosen to simultaneously produce a whirl and a translation of the
rotor. Due to the non-symmetry of the rotor-bearings system, both modes were visible both
with initial condition 1 and with condition 2. The frequency content of rotor displacements
puts in evidence the general presence of two natural frequencies, as seen in Figure 13. The
prominence of one with respect to the other depends on the initial condition.
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4.7.1. Logarithmic Decrement Method (LDM)

Although the LSCEM proved to be the most reliable method, for the sake of complete-
ness, the LDM method was also used to identify the main damping factors (with the largest
modal constant) and natural frequencies of the numerical signals y0, yL, yG and θx. The
LDM was used, considering time intervals ∆T of 5 and 10 ms. The resulting values of the
damping factors were compared to evaluate the sensitivity of the method with respect to the
signal length. The main frequency of each signal was also evaluated by measuring the av-
erage period of the oscillations present in the considered time intervals. This frequency can
be compared with the peaks visible in the related spectrum. Tables A1–A4 in Appendix A
list both the natural frequencies resulting from the FFT analysis and the frequencies and
the damping factor of the signal resulting from the logarithmic decrement method. When
the oscillation was highly damped (ps = 0.3 and 0.5 MPa), only a 5 ms time window was
considered. The following considerations can be made based on the data analysis:

• The frequency obtained from the average period of the oscillation is quite similar to
one of the two frequencies detected in the FFT spectrum; in particular, the higher
frequency is visible only on the rear plane (signal yL), while the lower frequency is
present on the other signals (y0, yG and ϑx);

• in most cases, the application of LDM to signals with durations of 5 and 10 ms does
not influence the results;

• depending on the initial condition, one of the two modes prevails;
• due to the short duration of the vibration at ps = 0.3 MPa, which is highly damped,

the FFT algorithm does not provide a good estimation of the frequency spectra;
• the frequency increases with the supply pressure, while the damping factor decreases;
• by increasing the air gap, the frequency decreases, as well as the damping factor.
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4.7.2. LSCE Method

The frequency content of the numerical signals yL and y0 was investigated by adopting
a procedure similar to that adopted in Section 2.4. To obtain more reliable frequency-
stabilization diagrams, the adopted procedure was slightly different than that used for the
experimental data. In this case, to favor the exponential fitting, the model order used in
the LSCEM was 80, and a random noisy signal was added to the numerical signals [31].
Figures 14 and 15 show the comparison obtained between the original and reconstructed
data. The damped frequencies and damping factors evaluated on signals y0 and yL are
listed in Table 10, together with their phase shift and modal constants.
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Table 10. Modal parameters resulting from LSCEM.

ps (MPa) hf/hr Signal ωd,1
(krpm)

ζ1
(-)

ϕ1
(deg)

A1
(-)

ωd,2
(krpm)

ζ2
(-)

ϕ2
(deg)

A2
[-]

0.3 16/20
yL 80.51 0.1675 −19.07 0.0737 n.a. n.a. n.a. n.a.
y0 58.28 0.3427 −54.14 0.9738 n.a. n.a. n.a. n.a.

0.3 19/23
yL 70.00 0.1556 −18.80 0.1224 n.a. n.a. n.a. n.a.
y0 50.00 0.2044 −70.50 1.115 n.a. n.a. n.a. n.a.

0.5 16/20
yL 100.6 0.0804 −21.40 0.0618 n.a. n.a. n.a. n.a.
y0 74.82 0.1394 −76.58 0.7109 n.a. n.a. n.a. n.a.

0.5 19/23
yL 86.97 0.0620 −21.69 0.0710 66.22 0.0667 100.1 0.0377
y0 65.86 0.0629 82.46 0.7587 n.a. n.a. n.a. n.a.

0.7 16/20
yL 113.3 0.0365 21.8 0.029 87.83 0.0604 −50.2 0.0135
y0 87.69 0.0652 115.17 0.3245 n.a. n.a. n.a. n.a.

0.7 19/23
yL 96.09 0.0356 −23.30 0.0496 75.80 0.0193 79.62 0.0218
y0 75.81 0.0166 −85.73 0.6339 n.a. n.a. n.a. n.a.

0.9 16/20
yL 122.3 0.0124 4.855 0.0251 97.46 0.0281 −14.7 0.0104
y0 97.30 0.0265 157.25 0.3423 n.a. n.a. n.a. n.a.

0.9 19/23
yL 102.5 unst. unst. unst. 82.03 unst. unst. unst.
y0 82.03 unst. unst. unst. unst. unst. unst. unst.

4.7.3. Comparison of LSCEM and LDM for Numerical Simulations

When LDM and LSCEM are compared for the numerical simulations, the damped
frequencies obtained with LSCEM differ by less than 1.6% with respect the frequencies
obtained with LDM, apart from the case with ps = 0.3 MPa. The estimations of damping
factors differ by much more—up to 80%. This parameter is more sensitive to variations in
the air gap and pressure.

5. Comparison between Experimental and Numerical Results

The first critical speed of the spindle was experimentally measured by analyzing the
amplitude of the synchronous whirl at different rotational speeds. It was found to be
72 krpm and 94 krpm at gauge supply pressure ps = 0.5 and 0.7 MPa, respectively. If com-
pared with the theoretical frequencies resulting from the simplified model of Section 4.5,
the difference is less than 6%.

The experimental stiffness on the nose at different pressures is lower than the the-
oretical value calculated near the rotor-centered condition (between 27% and 39% with
respect to the theoretical value). Considering that the 30 N external load imposed on
the nose involves non-negligible eccentricity ratios on bearings (especially on the front
bearing and with low pressure), a non-linear estimation of the stiffness is preferred (see
Section 4.4). If compared with the stiffness obtained in this case, the experimental stiffness
is more in accordance with the prediction (between 52% and 86% with respect to the
theoretical value).

The experimental damped frequencies and the damping factors evaluated on the shaft
vertical vibration at z = zL are compared with the numerical frequencies in Figure 16.
The experimental damped natural frequencies are in good accordance with the numerical
frequencies, as they fall in the range defined on the basis of the tolerance considered on
the front (h f = 17.5 ± 1.5 µm) and rear (hr = 21.5 ± 1.5 µm) clearances. Conversely, the
computed experimental damping factors are higher than the numerical simulations. The
single-DOF methods were found to be less accurate than LSCEM to capture the modal
parameters of experimental signals, especially the damping factors.
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6. Conclusions

This paper describes the experimental and numerical investigation of an electro-
spindle supported by aerostatic bearings. The numerical model was validated against
literature results in the case of plain aerodynamic bearings and against static and dynamic
experimental tests carried out on the electro-spindle at null rotational speed. Both single-
DOF methods and a multi-DOF method were proposed to estimate the damped natural
frequencies and the damping factors. The accuracy of the model results with respect to
the experimental data was discussed. In particular, the damping factor evaluated with
LSCEM was in good agreement with the experimental data, while the single-DOF methods
overestimated it. Future investigations will regard the dynamic behavior of the spindle at
different rotational speeds in order to study its unbalance response and stability.
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Nomenclature
Ar: ij rth modal costant
C Bearing radial clearance
D Journal bearing diameter
dt Time step
ds Supply holes diameter
e Static rotor unbalance
Fc Bearing reaction force
Fext External force applied on rotor
fs Sampling frequency
gin Input flow per unit surface through the supply orifices
hi,j Impulse-response function (IRF)
h f Radial-film thickness for the front journal bearing
hr Radial-film thickness for the rear journal bearing
I Transversal inertia moment of rotor
Ip Polar inertia moment of rotor
k Radial stiffness of journal bearings
k f Radial stiffness of the front journal bearing
knose Radial stiffness of the spindle evaluated on the nose
kr Radial stiffness of the rear journal bearing
kϑ f

Tilting stiffness of front journal bearing with respect to its center
kϑr Tilting stiffness of rear journal bearing with respect to its center
L Journal bearing length
l f , lr Axial distance between the rotor center of mass and the centers of the front

and rear journal bearings
Mc Reaction moment in bearings
mr Mass of rotor
N Order of the least squared complex exponential (LSCE) fitting
p Absolute pressure
pa Ambient pressure
ps Supply absolute pressure
r Journal bearing radius
sr rth pole of the system
x Generic position measured along the x-axis
xG Center-of-mass position measured along the x-axis
xnose Spindle nose position measured along the x-axis
x1 Position measured along the x-axis in the front plane
x2 Position measured along the x-axis in the rear plane
y Generic position measured along the y-axis
yG Center-of-mass position measured along the y-axis
ynose Spindle nose position measured along the y-axis
yrec Signal reconstructed by means of the identified modal parameters
y1 Position measured along the y-axis in the front plane
y2 Position measured along the y-axis in the rear plane
z Generic position measured along the z-axis
z f Front-bearing center axial coordinate
zG Rotor center-of-mass axial coordinate
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zL Axial coordinate of the rear end of the rotor
znose Spindle nose position measured along the z-axis
zr Front-bearing center axial coordinate
z0 Axial coordinate of the front end of the rotor
z1 Axial position of the front measuring plane
z2 Axial position of the rear measuring plane
W Dimensionless load capacity
t Time
∆T Time inteval used for LDM
ε Eccentricity ratio
φ Phase angle
ϕ Angle identifing dynamic unbalance of the rotor
Φ Attitude angle
Λ Bearing number
µ Air viscosity
γ Dynamic unbalance of the rotor
ϑx, ϑy Rotations around x and y axes
τ Shear stress
ζ Damping factor
ω Angular speed
ωcon Conical mode-shape frequency of the spindle
ωcyl Cylindrical mode-shape frequency of the spindle
ωd Damped natural frequency
ωn Undamped natural frequency

Appendix A

Tables A1–A4 report both the natural frequencies resulting from the FFT analysis,
both the frequencies and the damping factor of the signal resulting from the logarithmic
decrement method.

Table A1. Damped frequencies and damping factors resulting from FFT analysis and from LDM;
ps = 0.3 MPa.

hf/hr
(µm)

T
(ms)

Initial
Condition Signal ωd LDM

(krpm)
ζ LDM
(krpm)

ωd, 1/2
(krpm)

16/20

5 1

y0 55.556 0.345

49.80
82.03

yL 78.125 0.219

yG 55.046 0.361

θx 56.250 0.325

5 2

y0 55.556 0.346

49.80
82.03

yL 78.125 0.220

yG 55.046 0.361

θx 56.426 0.326

19/23

5 1

y0 49.180 0.171

48.40
68.80

yL 69.971 0.151

yG 49.180 0.174

θx 49.315 0.167

5 2

y0 49.180 0.171

48.00
71.60

yL 70.175 0.151

yG 49.180 0.174

θx 49.315 0.167
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Table A2. Damped frequencies and damping factors resulting from FFT analysis and from LDM;
ps = 0.5 MPa.

hf/hr
(µm)

T
(ms)

Initial
Condition Signal ωd LDM

(krpm)
ζ LDM
(krpm)

ωd, 1/2
(krpm)

16/20

5 1

y0 74.534 0.119

73.60
100.8

yL 99.448 0.100

yG 73.846 0.115

θx 75.710 0.125

5 2

y0 74.257 0.143

73.20
101.1

yL 99.291 0.078

yG 73.892 0.142

θx 75.567 0.145

19/23

5 1

y0 65.934 0.063

66.00
86.60

yL 86.331 0.027

yG 65.934 0.065

θx 65.753 0.059

5 2

y0 65.934 0.063

66.00
86.60

yL 86.331 0.027

yG 65.934 0.065

θx 65.753 0.059

10 1

y0 65.934 0.059

66.00
86.60

yL 80.488 0.073

yG 65.854 0.059

θx 65.854 0.060

10 2

y0 65.934 0.059

66.00
86.60

yL 80.685 0.071

yG 65.854 0.059

θx 65.854 0.060

Table A3. Damped frequencies and damping factors resulting from FFT analysis and from LDM;
ps = 0.7 MPa.

hf/hr
(µm)

T
(ms)

Initial
Condition Signal ωd LDM

(krpm)
ζ LDM
(krpm)

ωd, 1/2
(krpm)

16/20

5 1

y0 87.72 0.053

87.6
113.4

yL 112.9 0.052

yG 87.21 0.052

θx 88.50 0.057

5 2

y0 87.60 0.047

87.6
113.4

yL 113.2 0.042

yG 87.27 0.046

θx 88.13 0.049
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Table A3. Cont.

hf/hr
(µm)

T
(ms)

Initial
Condition Signal ωd LDM

(krpm)
ζ LDM
(krpm)

ωd, 1/2
(krpm)

10 1

y0 87.464 0.064

87.6
113.4

yL 113.6 0.041

yG 87.71 0.034

θx 114.13 0.053

10 2

y0 86.44 0.049

87.6
113.4

yL 113.3 0.047

yG 95.00 0.038

θx 113.5 0.035

19/23

5 1

y0 75.71 0.019

75.60
96.00

yL 95.24 0.010

yG 75.71 0.019

θx 75.95 0.019

5 2

y0 75.76 0.019

75.60
96.00

yL 84.41 0.026

yG 75.76 0.019

θx 75.85 0.019

10 1

y0 75.95 0.021

75.60
96.00

yL 95.74 0.031

yG 75.71 0.014

θx 76.19 0.028

10 2

y0 75.76 0.020

75.60
96.00

yL 96.33 0.031

yG 75.85 0.015

θx 75.76 0.028

Table A4. Damped frequencies and damping factors resulting from FFT analysis and from LDM;
ps = 0.9 MPa.

hf/hr
(µm)

T
(ms)

Initial
Condition Signal ωd LDM

(krpm)
ζ LDM
(krpm)

ωd, 1/2
(krpm)

16/20

5 1

y0 97.297 0.024

97.40
122.0

yL 121.390 0.036

yG 97.297 0.024

θx 97.826 0.025

5 2

y0 97.297 0.031

97.40
122.0

yL 122.245 0.023

yG 97.035 0.013

θx 124.030 0.040
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Table A4. Cont.

hf/hr
(µm)

T
(ms)

Initial
Condition Signal ωd LDM

(krpm)
ζ LDM
(krpm)

ωd, 1/2
(krpm)

10 1

y0 97.335 0.025

97.40
122.0

yL 122.160 0.025

yG 97.222 0.024

θx 97.561 0.025

10 2

y0 97.110 0.028

97.40
122.0

yL 122.450 0.019

yG 97.335 0.019

θx 123.010 0.024

19/23

5 1

y0 82.645 −0.001

82.80
102.6

yL 87.209 −0.019

yG 82.645 −0.001

θx 82.873 −0.002

5 2

y0 83.102 0.001

82.80
102.6

yL 102.560 0.022

yG 82.418 −0.005

θx 83.565 0.009

10 1

y0 82.759 −0.002

82.80
102.6

yL 85.511 −0.007

yG 82.759 0.002

θx 82.854 −0.002

10 2

y0 82.854 0.001

82.80
102.6

yL 103.330 0.035

yG 82.664 −0.004

θx 82.949 0.004
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