
25 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Topological Gradient-based Competitive Learning / Barbiero, Pietro; Ciravegna, Gabriele; Randazzo, Vincenzo; Pasero,
Eros; Cirrincione, Giansalvo. - ELETTRONICO. - (2021), pp. 1-8. (Intervento presentato al  convegno 2021 International
Joint Conference on Neural Networks, IJCNN 2021 tenutosi a Shenzhen, China nel 18-22 July 2021)
[10.1109/IJCNN52387.2021.9533411].

Original

Topological Gradient-based Competitive Learning

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/IJCNN52387.2021.9533411

Terms of use:

Publisher copyright

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2927518 since: 2021-09-27T12:14:46Z

Institute of Electrical and Electronics Engineers Inc.



Topological Gradient-based Competitive Learning

Pietro Barbiero∗ , Gabriele Ciravegna†‡ , Vincenzo Randazzo§ , Eros Pasero§ , Giansalvo Cirrincione¶‖
∗Cambridge University, Cambridge, United Kingdom

Email: barbiero@tutanota.com
† University of Siena, Siena, Italy

‡ University of Florence, Florence, Italy
§ Politecnico di Torino, Turin, Italy

¶ University of Picardie Jules Verne, Amiens, France
‖ University of South Pacific, Suva, Fiji

Abstract—Topological learning is a wide research area aiming
at uncovering the mutual spatial relationships between the ele-
ments of a set. Some of the most common and oldest approaches
involve the use of unsupervised competitive neural networks.
However, these methods are not based on gradient optimization
which has been proven to provide striking results in feature ex-
traction also in unsupervised learning. Unfortunately, by focusing
mostly on algorithmic efficiency and accuracy, deep clustering
techniques are composed of overly complex feature extractors,
while using trivial algorithms in their top layer. The aim of this
work is to present a novel comprehensive theory aspiring at
bridging competitive learning with gradient-based learning, thus
allowing the use of extremely powerful deep neural networks for
feature extraction and projection combined with the remarkable
flexibility and expressiveness of competitive learning. In this
paper we fully demonstrate the theoretical equivalence of two
novel gradient-based competitive layers. Preliminary experiments
show how the dual approach, trained on the transpose of the
input matrix i.e. XT , lead to faster convergence rate and higher
training accuracy both in low and high-dimensional scenarios.

Index Terms—Gradient-based Clustering, Competitive Learn-
ing, Deep Learning, Duality Theory, Topology, Unsupervised
Learning.

I. INTRODUCTION

From the dawn of Artificial Intelligence (AI), data clustering
has always been a field of great interest in the scientific
community. First approaches were mainly based on similarity
measures among data. Prominent methods like k-Means [1],
Gaussian Mixture Models (GMM) [2] and more recently
Density Based Spatial Clustering (DBSCAN) [3] have been
extensively used to uncover unknown relations in unsupervised
problems. These types of approaches are capable of finding
groups of samples that are similar, but they cannot detect the
underlying topology. Hierarchical clustering partially solved
this issue by creating a hierarchy of clusters either with an
agglomerative [4], [5] or with a divisive strategy [6], [7]. Other
approaches, instead, try to solve this problem by introducing a
topological structure among cluster nodes. The first algorithm
exploiting this concept is the Self-Organizing-Map (SOM) by
Kohonen [8], where a neural network is trained to represent
the input space using a grid, whose number of units and their
connections, i.e. the topology, is defined in advance. Alter-
natively, techniques such as Neural Gas (NG) [9], Growing

Neural Gas (GNG) [10] and their variants [11]–[13] apply
the the Competitive Hebbian Learning (CHL) [14]–[16] for
defining local topology; indeed, given an input sample, the two
closest neurons, called first and second winners, are linked by
an edge [17], [18]. All the previous cited methods belong to
the competitive learning field; here, units compete to represent
the input sample, i.e. they move towards it depending on their
distances and the network current topology (neighbourhoods).
Another issue concerning the above-cited methods is the well-
known curse of dimensionality [19], [20]. Euclidean measures
are no more effective when dealing with high-dimensional
data such as images. To this aim, many works proposed di-
mensionality reduction and feature extraction methods as pre-
processing before the clustering step like Principal Component
Analysis (PCA) [21] and kernel functions. These methods are
indeed capable of mapping row data into a feature space with
a much lower dimensionality. However, the effectiveness of
such techniques is limited when dealing with complex latent
structures. Recently, however, Deep Neural Networks (DNN),
and more specifically Convolutional Neural Network (CNN)
[22], have incredibly improved processing performances when
dealing with highly-dimensional data in supervised learning.
As a consequence, many approaches tried to apply these
methods also to the unsupervised learning field. Deep neu-
ral networks are capable to transform high-dimensional data
into clustering-friendly representations. By employing DNN,
clustering and feature transformation are now treated as a
single task. DNN architecture may be directly trained through
the optimization of a clustering loss. The choice of the
learning function is particularly important when dealing with
this type of architecture. As a matter of fact, straightforward
employment of DNN may lead to corrupted feature trans-
formation, where data are mapped to compact clusters that
do not reflect the real data topology. In order to overcome
this issue, some works proposed to exploit both unsupervised
and supervised network pre-training, weight regularization,
and data augmentation techniques. For what concerns un-
supervised network pre-training, common strategies consider
training Restricted Boltzmann Machines (RBM) [23] or Au-
toEncoders (AE) [24] and later fine-tune the networks (only
the encoder for AE) through a clustering learning function
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only [25], [26]. Supervised pre-training techniques are instead
commonly employed when dealing with image data. Indeed,
classical clustering algorithms perform well when using the
feature extracted from the last layer of a CNN, pre-trained
on big image dataset as ImageNet [27]. Direct approaches
that do not consider any network pre-training, have been
recently proposed in [28]–[30]. Otherwise, clustering learning
procedures may be integrated with a network learning process.
This allows the employment of more complex architectures
like Autoencoders (AE), Variational-Autoencoders (VAE) or
Generative Adversarial Networks (GAN). Such techniques
commonly consider a double stage learning in which they
first learn a good representation of the input space through
a network loss function and later fine tune the network by
also optimizing a clustering-specific loss.

However, the idea of joining the strength of DNN with the
higher representation capabilities of competitive learning ap-
proaches has been previously considered only in a few works
[31], [32]. In this work, we consider two possible variants of
a neural network architecture in which competitive learning
is taken into consideration by the loss function. The proposed
architectures can either be employed by themselves or they
can be placed on top of more complex neural architectures
such as AE, CNN, VAE or GAN.

This work is organized in three main sections. The first one
describes two novel methods that can be used to join compet-
itive and gradient-based learning, namely the vanilla compet-
itive layer (VCL) and the dual competitive layer (DCL). The
following section presents preliminary experiments showing
the benefits and the differences of the two approaches. Finally,
the last section describes how the methods presented in this
work can be further developed and extended.

II. GRADIENT-BASED COMPETITIVE LEARNING

This section describes two different approaches that join
competitive and gradient-based learning. In a standard com-
petitive layer [33]–[35], every competing neuron is described
by a vector of weights wi, representing the position of the
neuron (a.k.a. prototype) in the input space. The inverse of the
Euclidean distance between the input data xk and the weight
vector wi represents the similarity between the input and the
prototype. For every input vector xk, the prototypes compete
with each other to see which one of them is the most similar
to that particular input vector. By following the Competitive
Hebbian Learning (CHL) rule [14], [15], the two closest
prototypes to xk are connected using an edge, representing
their mutual activation.

In general, competitive learning is based on more or less
heuristic rules. Instead, the family of k-Means algorithms is
justified by the minimization of a loss function, representing
the quantization error. The first proposed approach (VCL),
instead, is based directly on the minimization of this loss.
This is performed by using a first-order gradient technique,
for straightly estimating the prototypes. Adding this layer to
the top of a deep neural network, a deep clustering can be
performed by backpropagating the gradient information from

the clustering to the previous layers. As a consequence, the
benefits of using a powerful feature extractor and a sophisti-
cated topological learning algorithm can be both exploited.
However, the loss used by this approach is only function
of the training set and the weights of the layer (the output
neuron weights are the prototypes). This means the outputs
of the layer are not taken into account. In this sense, the first
approach is better interpreted as a straight competitive learning
on the input set than a true layer to be added. The second
approach (DCL) is more neural, because it represents a true
transformation of the inputs. It is an alternative approach for
the implementation of a competitive layer which is trained
using the transpose of the input matrix, i.e. XT .

A. Dual neural networks

A deep neural network can be interpreted as a nonlinear
function f mapping input data x ∈ Rd into a different
representation y ∈ Rp which is optimized according to an
error function L. Hence, a concise representation of a neural
network is a pair (f,L) such that:

f : Rd → Rp, L : · → R (1)

The relationship between d and p and the kind of loss function
used to train the model determine the kind of learning task. In
most settings, deep neural networks are used to contract the
input space into an interpretable codomain where the perfor-
mance of the network can be easily assessed. For instance, if
p = 1 and the loss function is the mean squared error between
the output of the network (y ∈ R) and a target variable (t ∈ R),
the learning task is called regression:

f : Rd → R, L = mse(y, t) (2)

Another common learning task is classification which can be
obtained by setting p = c, where c corresponds to the number
of classes, and by using a cross-entropy error function H:

f : Rd → Rc, L = H(y, t) (3)

In practice, the training process is performed using a dataset
composed of objects X ∈ Rn,d and (for supervised tasks)
targets T ∈ Rn,p, where n is the number of samples, d
the number of input features, and p the number of output
features. Hence, the result of the training process can be seen
as a projection of the input matrix X into a (usually) lower
dimensional representation Y :

f : Rn,d → Rn,p [usually p� d]

Y = f(X) (4)

Therefore, a deep neural network can be summarized as a
nonlinear map reducing the number of columns of a matrix,
while keeping the original number of rows. If the rows of the
input matrix represent a set of samples and the columns a set
of features (as it usually is), then the neural network is actually
shrinking the number of features.

However, if we consider the transpose problem, where
XT ∈ Rd,n, the neural network can still be used to transform



the input matrix into useful representations. Also in this case,
the output must keep the same number of rows of the input
by construction, i.e. Y ∈ Rd,k. If k < n the neural network
is contracting the input, while if k > n the neural network
is augmenting the input. While normally neural networks are
used to generate an abstract representation of the input features
useful for supervised tasks like classification or regression,
the transpose problem can be used to generate an abstract
representation of the input samples useful for learning the
topology of the input manifold. In fact, by choosing an
appropriate clustering error function C we can define a deep
neural network learning the positions of cluster centroids
(a.k.a. prototypes) as:

f : Rd,n → Rd,k, L = C (5)

where k corresponds to the number of output units of the
network. Each of the k output unit returns as output a qT ∈ Rd

vector representing a position in the feature space Rd. Hence,
by optimizing such positions according to a clustering error
function, the neural network can learn prototypes correspond-
ing to cluster centroids.

B. Duality theory

The intuitions outlined in the previous section can be
formalized in a general theory which considers the duality
properties between a linear single-layer neural network and
its dual, defined as a network which learns on the transpose
of the input matrix and has the same number of neurons.

N N
d kd inputs k linear units

W1

X batch

d

N

X batchT

N inputs k linear units
d

k

Y1batch

W2

Y2batch

Fig. 1. Dual linear single-layer neural networks.

Consider a single layer neural network whose outputs have
linear activation functions. There are d input units and k output
units which represent a continuous signal in case of regression
or class membership (posterior probabilities in case of cross
entropy error function) in case of classification. A batch of
n samples, say X , is fed to the network. The weight matrix
is W1, where the element wij represents the weight from the
input unit j to the neuron i. The single layer neural network
with linear activation functions in the lower scheme is here
called the dual network of the former one. It has the same
number of outputs and n inputs. It is trained on the transpose
of the original X database. Its weight matrix is W2 and the
output batch is Y2. The following theorems state the duality

conditions of the two architectures. Figure 1 represents the
two networks and their duality.

Theorem 1 (Network duality in competitive learning). Given
a loss function for competitive learning based on prototypes, a
single linear network (base) whose weight output neurons are
the prototypes is equivalent to another (dual) whose outputs
are the prototypes, under the following assumptions:

1) the input matrix of the dual network is the transpose of
the input matrix of the base network;

2) the samples of the input matrix X are uncorrelated with
unit variance

Proof. Consider a loss function based on prototypes, whose
minimization is required for competitive learning. From the
assumption on the inputs (rows of the matrix X), it results
XXT = Id. A single layer linear network is represented by
the matrix formula:

Y =WX =
[
prototype1 . . . prototypek

]
X (6)

By multiplying on the right by XT , it holds:

WXXT = Y XT (7)

Under the second assumption:

W =
[
prototype1 . . . prototypek

]
= Y XT (8)

This equation represents a (dual) linear network whose outputs
are the prototypes W . Considering that the same loss function
is used for both cases, the two networks are equivalent.

This theorem directly applies to the VCL (base) and DCL
(dual) neural networks if the assumption 2 holds for the
training set. If not, a preprocessing, e.g. batch normalization,
can be performed.

Theorem 2 (Impossible complete duality). Two dual networks
cannot share weights as W1 = Y2 and W2 = Y1 (complete
dual constraint), except if the samples of the input matrix X
are uncorrelated with unit variance.

Proof. From the duality of networks and their linearity, for an
entire batch it follows:{

Y1 =W1X

Y2 =W2X
T

=⇒ W1 = Y1X
T

=⇒ W1 =W1XX
T

=⇒ XXT = Id (9){
Y1 =W1X

Y2 =W2X
T

=⇒ W2 = Y2X
T

=⇒ W2 =W2X
TX

=⇒ XTX = In (10)

where Id and In are the identity matrices of size d and n,
respectively. These two final conditions are only possible if
the samples of the input matrix X are uncorrelated with unit



variance, which is not the case in (almost all) machine learning
applications.

Theorem 3 (Half duality I). Given two dual networks, if the
samples of the input matrix X are uncorrelated with unit
variance and if W1 = Y2 (first dual constraint), then W2 = Y1
(second dual constraint).

Proof. From the first dual constraint (see Figure 2, right), for
the second network it stems:

Y2 =W1 =W2X
T (11)

Hence:
Y1 =W1X =⇒ Y1 =W2X

TX (12)

under the second assumption on XT from Theorem 1, which
implies XTX = In, the result follows (see Figure 2, left).

Theorem 4 (Half duality II). Given two dual networks, if
the samples of the input matrix X are uncorrelated with unit
variance and if W2 = Y1 (second dual constraint), then W1 =
Y2 (first dual constraint).

Proof. From the second dual constraint (see Figure 2, left),
for the second network it stems:

Y1 =W2 =W1X (13)

From the assumption on the inputs (rows of the matrix X),
it results XXT = Id. The first neural architecture yields (see
Figure 2, right):

Y2 =W2X
T =⇒ Y2 =W1XX

T =W1 (14)

Theorem 4 justifies the use of the first single-layer neural
network as a competitive layer.

C. Analysis of the learning process
The theorems illustrated in the last section establish a set of

conditions under which a base competitive layer (e.g. VCL)
and its dual network (e.g. DCL) are equivalent. However,
this theory shows such an equivalence only in terms of the
architecture of the two neural networks. By analyzing the
forward and the backward pass, the learning process of the
two layers is quite different. In particular, in the VCL there
is no forward pass as Y1 is not computed nor considered and
the prototype matrix is just the weight matrix W1:

P1 =
[
prototype1, . . . , prototypek

]
=W1 (15)

where prototypei ∈ Rd×1. In the dual network, instead, the
prototype matrix corresponds to the output Y2; hence, the
forward pass is a linear transformation of the input XT

through the weight matrix W2:

P2 =
[
prototype1 . . . prototypek

]T
= Y2 =W2X

T =

=


wT

1 f1 wT
1 f2 . . . wT

1 fd
wT

2 f1 wT
2 f2 . . . wT

2 fd

. . . . . .
. . .

...
wT

k f1 wT
k f2 . . . wT

k fd

 (16)

N
kd inputs k

W1

N inputs k

Y1 batch

W2

i-th label

i-th label

d inputs k

W1

N inputs k
d

k

W2

Y2 batch

i-th prototype

i-th prototype

Fig. 2. Half dualities.

where wi is the weight vector of the i-th output neuron of
the dual network and fi is the i-th feature over all samples
of the input matrix X . The components of each prototype
are computed using a constant weight wi, because P2 is an
outer product, which has rank 1. Besides, each component
is computed as it were a one dimensional learning prob-
lem. For instance, the first component of the prototypes is[
wT

1 f1 . . .w
T
k f1

]T
; which means that the first component of

all the prototypes is computed by considering just the first
feature f1. Hence, each component is independent from all the
other features of the input matrix, allowing the forward pass
to be just like a collection of d one-dimensional problems.

Such differences in the forward pass have an impact on the
backward pass as well, even if the form of the loss function
is the same for both systems. However, the parameters of the
optimization are not the same. For the base network:

L = L(X,W1) (17)

while for the dual network:

L = L(XT , Y ) (18)

where Y is a linear transformation (filter) represented by W2.
In the base competitive layer the gradient of the loss function



with respect to the weights W1 is computed directly as:

∇L(W1) =
dL
dW1

(19)

On the other hand, in the dual competitive layer, the chain
rule is required to computed the gradient with respect to the
weights W2 as the loss function depends on the prototypes Y2:

∇L(W2) =
dL
dW2

=
dL
dY2
· dY2
dW2

(20)

As a result, despite the architecture of the two layers is
equivalent, the learning process is quite different.

D. Qualitative analysis and comparison

The differences outlined in the previous subsection may
have an impact in favoring one or the other layer depending on
the problem. The main advantage of using the base competitive
layer consists in a lower computational cost, as the forward
pass is not required and the backward pass is much easier
to compute. Besides, for low dimensional datasets, i.e. when
N � d, the size of the weight matrix W1 is d × k, while
the size of W2 is N × k. This means that the number of
parameters of the dual network is much higher with respect
to the base layer, leading to a even higher computational
cost. However, by having more parameters, the dual layer
may have an advantage in terms of flexibility and in finding
better local minima. On the other hand, in high-dimensional
settings, when N � d, the matrix W1 is much larger than
W2. Hence, by having fewer parameters to optimize, the dual
layer behaves like a system with a larger set of constraints,
leading to smoother gradient flows and less overfitting.

Furthermore, another reason why the dual layer might be
less sensitive to the number of features may depend on its
learning process. Indeed, the forward pass decouples the orig-
inal problem into a set of d one-dimensional problems, while
the loss function and the gradient perform the coupling of such
problems. Finally, by considering how the two layers build
their prototypes, the dual network seems more suitable for
joining with deep neural networks. Indeed, the base network
is an atypical layer as it does not perform a forward pass at all.
The dual network, instead, is more similar to a regular layer as
it applies a linear transformation to its input. This latter linear
map could also be generalized to a nonlinear transformation
by stacking a set of dense layers with nonlinear activation
functions.

E. Deep dual clustering

The fact that the dual layer is designed for using the gradient
of the loss function for training allows to back-propagate to
other previous layers in order to preprocess implicitly the
training set. The same can be said for the base network.
However, the latter is not a true layer. Indeed, it is simply
a minimization process in which the weights are directly
estimated. For this reason, the output has no meaning. Instead,
the dual one has meaningful outputs and, so, has the same
nature of the blocks composing a deep neural network.

The deep dual network is composed of a stack of fully-
connected layers. The first layer is fed with the transpose of the
input matrix X and the last layer is the dual linear layer. All the
hidden layers have non linear activation functions (tanh), but
the output layer is linear. This approach allows the invariance
of the feature dimension at each layer. Instead, it is the number
of samples that changes at each step. In this way, clustering
centroids are directly estimated in the original input space,
despite the fact that they are pre-processed in the hidden layers.

F. Extension to topological clustering

Topological clustering refers to a class of techniques where
cluster centroids are connected during the learning process
such that a Delaunay triangulation of the data manifold is
induced. One of the most common approaches employs CHL
at this purpose: If two prototypes are the two closest centroids
for the same sample, an edge is created between them,
representing their mutual relationship outlined by the common
neighborhood.

The framework developed in the previous section can be
easily adapted to accommodate for this kind of learning task.
In this sense, the loss function main term represents a cluster-
ing index, the quantization error or the ratio between inter- and
intra-cluster distances. However, in order to learn the minimal
topological relationship, the loss function can be augmented
by a Lagrangian term accounting for the complexity of the
network connecting prototypes. At the end of each epoch, the
adjacency matrix E, which represents the connections between
prototypes using CHL, is computed and its norm is also
included in the loss function. The gradient of the resulting loss
can be computed in order to optimize prototypes’ positions
such that the complexity of the connections is minimized. The
overall loss function looks like:

L = Q+ λ||E||2 (21)

where Q is the quantization error (average squared Eu-
clidean distance between samples and corresponding cen-
troids) and E is the adjacency matrix representing the connec-
tions between prototypes. At the end of the learning process,
prototypes without connections and with an empty Voronoi
set can be pruned. Hence, the number of output units in the
last layer represents an upper bound of the number of valid
prototypes, as the neural network will automatically prune
redundant centroids.

III. EXPERIMENTAL EVALUATION

In order to validate the theory with non-trivial experiments
and to analyze the differences of the two learning approaches,
the base competitive layer and its dual network are compared
on three synthetic datasets containing clusters of different
shapes and sizes. Table I summarizes the main characteristics
of each experiment. The first dataset is composed of samples
drawn from a two-dimensional Archimedean spiral (Spiral).
The second dataset consists of samples drawn from two half
semicircles (Moons). The last one is composed of two concen-
tric circles (Circles). Each dataset is normalized by removing
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Fig. 3. Comparison VCL (blue line) and DCL (red line) over 10 runs on three metrics: the quantization error (top row), the norm of the matrix of the
edges (middle row), and the number of valid prototypes (bottom row). The metrics are computed on three different datasets: Spiral (left column), Moons
(middle column), and Circles (right column).

the mean and scaling to unit variance before fitting neural
models. For all the experiments, the number of output units k
of the dual network is set to 30. A grid-search optimization is
conducted for tuning the hyperparameters. The learning rate
is set to ε = 0.008 for the base competitive layer and to
ε = 0.0008 for its dual layer. Besides, for both networks, the
number of epochs is equal to η = 400 while the Lagrangian
multiplier to λ = 0.01. For each dataset, both networks are
trained 10 times using different initialization seeds in order to
statistically compare their performance.

TABLE I
SYNTHETIC DATASETS USED FOR THE EXPERIMENTS.

DATASET SAMPLES FEATURES CLUSTERS

SPIRAL 500 2 1

MOONS 500 2 2

CIRCLES 500 2 2

Qualitative results are presented in Figure 4. The solutions
provided by the base competitive layer are shown in the first
row, while the dual network ones are in the second row. Nodes
(prototypes) belonging to the same connected component are
linked with edges according to their neighborhood. Samples
are represented with different colors depending on the cluster
they belong to. Qualitative considerations considering the lo-
cation of prototypes suggest that good clustering performance
can be obtained using both networks. However, as shown in

Figure 3, the dual network tends to propose solutions using a
slightly higher number of prototypes, thus finding better con-
nections between them and providing a superior representation
of the underlying topology, especially considering the Spiral
and the Circles datasets, where clusters are well separated.

In order to assess the main characteristics of the learning
process, several metrics are evaluated while training the two
networks on the three benchmark datasets. Figure 3 shows
for each dataset a comparison between the base layer and
its dual on three key metrics: the quantization error, the
topological complexity of the solution (i.e. the norm of the
edge matrix), and the number of valid prototypes (i.e. the
ones with a non-empty Voronoi set). The main differences
between the two approaches are outlined by the quantization
error. Both networks seem to converge to similar local minima

V
C

L
D

C
L

Fig. 4. Experiments on synthetic datasets. From left to right: Spiral, Moons,
and Circles dataset.



in all scenarios, thus validating their theoretical equivalence.
Nonetheless, the single-layer dual network exhibits a much
faster rate of convergence compared to a standard competitive
layer. The training of the dual network appears much more
stable as outlined by a much lower variance of the quantization
error.

A. An application to high-dimensional clustering

Here the performance of the standard competitive layer
and its dual network in tackling high dimensional problems
is assessed. Sure enough, standard distance-based algorithms
generally suffer the well-known curse of dimensionality when
dealing with high-dimensional data. Therefore, the intuition
described in previous Section about dual-layer performances
in this scenario is evaluated by working with an increasing
number of features and a fixed number of samples. The
MADELON algorithm proposed in [36] is used to generate the
high-dimensional datasets. This algorithm creates clusters of
points normally distributed about vertices of an n-dimensional
hypercube. An equal number of cluster and data is assigned
to two different classes. Both the number of samples (ns)
and the dimensionality of the space (nf ) in which they are
placed can be defined programmatically. More precisely, the
number of samples is set to ns = 100 while the number of
features ranges in nf ∈ [1000, 2000, 3000, 5000, 10000]. The
number of required centroids is fixed to one tenth the number
of input samples. Three different networks are compared: the
base network (VCL), a single dual layer network (DCL), and
a deep variant of the dual network with two hidden layers of
10 neurons each (deep-DCL). Results are averaged over 10
repetitions on each dataset. Accuracy for each cluster is cal-
culated by considering true positive those samples belonging
to the class more represented and false positive the remaining
data. As shown in the top plot of Fig. 5, VCL accuracy already
drops when the number of feature is higher than 1000. DCL
and deep-DCL, instead, are more capable to deal with high-
dimensional data and their accuracy remains near 100% until
2000 and 3000, respectively. Nevertheless, all the proposed
methods struggle when dealing with higher-dimensional data.

A further experiment is also performed in order to check
whether the opposite scenario holds true - i.e. that the DBGC
layer was not suitable for working with a high number of
samples (corresponding to a high number of network inputs).
In order to do that we repeated the experiment on the MADE-
LON dataset by setting a fixed number of features nf = 100,
while working with an increasing number of samples ns ∈
[102, 103, 104]. In the bottom plot of Fig.5, it is shown that
notwithstanding a higher computational complexity, DBGC
and deep-DBGC are still capable to find a perfect quantization
even when dealing with a very high number of samples.

IV. CONCLUSION

This work sketches a novel interpretation of topological
competitive learning using backpropagation. The foundation
of a new theory is provided bridging two research fields which
are usually thought as disjointed: gradient-based learning and
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tested while working with fixed number of samples and an increasing number
of features (top) and a fixed number of features and an increasing number
of samples (bottom) on the synthetic MADELON dataset [36]. Error bands
represent the standard error of the mean.

unsupervised competitive neighborhood-based learning. This
theory may represent the basis for a comprehensive reinter-
pretation of supervised and unsupervised learning with neural
networks. Besides, as outlined in the experimental section,
the framework can be easily extended to integrate complex
topological structures and relationships among prototypes. The
two novel competitive layers presented in this work represent
the first steps towards the integration of competitive and
topological learning with deep neural architectures, outlining
the power and flexibility of the approach paving the way
towards more advanced and challenging learning tasks such
as: topological nonstationary clustering , hierarchical clus-
tering , core set discovery , incremental and attention-based
approaches, or multi-objective optimization of a latent space
with topological constraints.

SOFTWARE

All the code has been implemented in Python 3, relying
upon open-source libraries [37], [38]. All the experiments have
been run on the same machine: Intel® Core™ i7-8750H 6-Core
Processor at 2.20 GHz equipped with 8 GiB RAM.

To enable code reuse, the Python code for the mathematical
models including parameter values and documentation will
be freely available under Apache 2.0 Public License from a
GitHub repository. Unless required by applicable law or agreed
to in writing, software will be distributed on an ”as is” basis,
without warranties or conditions of any kind, either express or
implied.



REFERENCES

[1] J. MacQueen et al., “Some methods for classification and analysis of
multivariate observations,” in Proceedings of the fifth Berkeley sympo-
sium on mathematical statistics and probability, vol. 1, no. 14. Oakland,
CA, USA, 1967, pp. 281–297.

[2] G. Mclachlan and K. Basford, Mixture Models: Inference and Applica-
tions to Clustering, 01 1988, vol. 38.

[3] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based
algorithm for discovering clusters in large spatial databases with noise.”
in Kdd, vol. 96, no. 34, 1996, pp. 226–231.

[4] R. Sibson, “Slink: an optimally efficient algorithm for the single-link
cluster method,” The computer journal, vol. 16, no. 1, pp. 30–34, 1973.

[5] D. Defays, “An efficient algorithm for a complete link method,” The
Computer Journal, vol. 20, no. 4, pp. 364–366, 01 1977. [Online].
Available: https://doi.org/10.1093/comjnl/20.4.364

[6] L. Kaufman and P. J. Rousseeuw, Finding groups in data: an introduc-
tion to cluster analysis. John Wiley & Sons, 2009, vol. 344.

[7] G. Cirrincione, G. Ciravegna, P. Barbiero, V. Randazzo, and E. Pasero,
“The gh-exin neural network for hierarchical clustering,” Neural Net-
works, vol. 121, pp. 57–73, 2020.

[8] T. Kohonen, “Self-organized formation of topologically correct feature
maps,” Biological cybernetics, vol. 43, no. 1, pp. 59–69, 1982.

[9] T. Martinetz, K. Schulten et al., “A” neural-gas” network learns topolo-
gies,” 1991.

[10] B. Fritzke, “A growing neural gas network learns topologies,” in Ad-
vances in neural information processing systems, 1995, pp. 625–632.

[11] ——, “A self-organizing network that can follow non-stationary dis-
tributions,” in International conference on artificial neural networks.
Springer, 1997, pp. 613–618.
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