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Motion Analysis for Experimental Evaluation of
an Event-Driven FES System

Andrea Prestia, Graduate Student Member, IEEE , Fabio Rossi, Member, IEEE ,
Andrea Mongardi, Member, IEEE , Paolo Motto Ros, Member, IEEE , Massimo Ruo Roch, Member, IEEE ,

Maurizio Martina, Senior Member, IEEE , and Danilo Demarchi, Senior Member, IEEE

Abstract— In this work, a system for controlling Func-
tional Electrical Stimulation (FES) has been experimentally
evaluated. The peculiarity of the system is to use an event-
driven approach to modulate stimulation intensity, instead
of the typical feature extraction of surface ElectroMyo-
Graphic (sEMG) signal. To validate our methodology, the
system capability to control FES was tested on a population
of 17 subjects, reproducing 6 different movements. Limbs
trajectories were acquired using a gold standard motion
tracking tool. The implemented segmentation algorithm has
been detailed, together with the designed experimental
protocol. A motion analysis was performed through a multi-
parametric evaluation, including the extraction of features
such as the trajectory area and the movement velocity.

The obtained results show a median cross-correlation
coefficient of 0.910 and a median delay of 800 ms, between
each couple of voluntary and stimulated exercise, making
our system comparable w.r.t. state-of-the-art works. Fur-
thermore, a 97.39 % successful rate on movement replica-
tion demonstrates the feasibility of the system for rehabili-
tation purposes.

Index Terms— Event-driven, Experimental Protocol,
Functional Electrical Stimulation, Motion Analysis, Surface
Electromyography

I. INTRODUCTION

Muscle paralysis is a condition able to gravely compromise
the quality of life. This illness induces several limitations
to the self-sufficiency, social integration, and psychological
discomfort [1], [2]. The leading causes of paralysis are stroke,
spinal cord injury, and multiple sclerosis [3]. These neuro-
logical deficits afflict the nervous system by inhibiting the
ability of the brain to generate motor commands [4] or by
compromising the neural pathway to the muscles [5], [6]. If
the neurons innervating the skeletal muscles, together with
the articular joints, are still functional, the contraction of
the myofibers can be induced through Functional Electrical
Stimulation (FES) [7]. FES consists in applying low energy
pulses to the axons of motor neurons for action potentials
generation [7]. The primary aim of the FES is to restore
the movements functionalities, but also to improve blood
circulation and prevent muscle atrophy due to disuse [8].

Different strategies can be employed to control FES, either
by triggering the stimulation, or by modulating the energy
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of the stimulation pulses [9], [10]. If the control aims to be
at a central level, the ElectroEncephaloGraphy (EEG) can be
used by integrating FES into a Brain-Computer Interface (BCI)
and exploiting approaches such as Motor Imagery (MI) [11]
or Action Observation Treatment (AOT) [12]. Alternatively,
focusing on a peripheral level control, surface ElectroMyoG-
raphy (sEMG) could be employed to build a Human-Machine
Interface (HMI) [13] thanks to its widespread adoption in
monitoring skeletal muscle activity for both the diagnostics
and prosthetic fields [14], [15].

Among the mentioned techniques, we opted for an sEMG-
FES system because it directly activates the muscle fibers
by processing the information of the muscular activation
itself, thus avoiding more complex feature extraction from
EEG. Moreover, similar to FES, sEMG works with surface
electrodes easily placed on the muscle belly, allowing the
overall system to be completely non-invasive and fast to set
up. In this scenario, the muscles from which the sEMG signals
are acquired can be contralateral of the stimulated ones, or
they can be muscles belonging to a different person from the
one receiving the stimulation. In the first case, known as Con-
tralaterally Controlled FES (CCFES) [9], the controller and
the controllee are the same subject, and this self-stimulation is
growing interest for the therapeutic management of hemiplegia
and hemiparesis. In the second case, the stimulation applied to
a patient is modulated by processing the muscular activity of
a therapist, intended as a professional capable of performing
a physiologically ideal movement [16]. Moreover, the efficacy
of the therapist-controlled FES approach could be further
improved by allowing the patient to see the therapist during
the movement execution. Indeed, as in AOT rehabilitation
protocols, the involvement of mirror neurons, which fire during
the observation of an action, promotes neural plasticity [17],
[18].

Looking at the recent state-of-the-art, sEMG parameters
such as the signal envelope [19]–[21] or its entropy [22]
are typically used to define the stimulation pattern. Further
approaches involve extracting multiple time-domain features
(e.g., mean absolute value, zero-crossing, number of slope
sign changes) to feed a machine learning algorithm for
FES parameters modulation [23], [24]. However, the features
processing requires the full recording of the sEMG signal,
followed by software extraction techniques. Finding a way to
relax these computations, we proposed a completely different
approach, named Average Threshold Crossing (ATC) [25],
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Fig. 1: The main use-case scenario consists in the following information flow. (left) The therapist performs a movement while
wearing the acquisition device. Each AFE consists of the sEMG signal conditioning stages and the voltage comparator for
the Threshold Crossing (TC) signal generation. All the AFEs (up to 8, as the stimulation channels) are connected to the
Apollo3 MicroController Unit (MCU) to count the TC events (i.e., calculating ATC) and stream the ATC values through its
Bluetooth Low Energy (BLE) transceiver. (middle) The control platform, whose modular software is developed using the
Python programming language, receives the ATC values and processes them to define the stimulation parameters. The user can
actively supervise the system functionalities (e.g., active channels selection, plotting of ATC and FES values) by interacting
with a custom Graphical User Interface (GUI). (right) The electrical stimulator (RehaStim2) receives commands from the
control platform via serial communication and applies FES to the patient for movement replication.

which does not even require sampling the sEMG signal. Our
process consists of counting how many times the analog
sEMG signal overcomes a threshold in a period (i.e., ATC
window). Considering the demonstrated relation between ATC
and muscle activity [26], this approach results in an on-
board feature extraction process suitable for edge-computing
applications [27], [28]. Indeed, taking into consideration the
FES scenario, in our recent work [29], we described how the
ATC-FES definition could be implemented using a very simple
Look-Up-Table (LUT) structure, which allows us to achieve,
among all, promising results from a real-time application
perspective (i.e., processing time below 10 ms).

In this paper, being aware of the electronic robustness of
our system, we took a further step toward the validation of the
ATC-FES prototype, aiming to confirm the previous and intro-
ductory motor tests [30]. A novel experimental campaign has
been conceived by involving 17 healthy subjects in simulating
therapist-patient rehabilitative sessions for upper and lower
body limb flexion and extension. A motion capture system
has been used to record voluntary and stimulated movements
to assess their similarity. We developed a trajectories analysis
algorithm to extract well-known figures of merits (e.g., cross-
correlation, delay) and new experimental ones (e.g., area,
velocity) to evaluate the ATC-FES motor control performance.

Although the analyzed movements are still a simplistic
representation of daily-life actions, our starting point gave
us feedback on the pros and cons of our system, and set
a reference point for next analyses about more complex
movements and tests on pathological subjects.

II. MATERIALS AND METHODS

The system architecture, whose high-level block-scheme is
depicted in Fig. 1, is composed of the acquisition device, the
control platform, and the electrical stimulator. In the main use-
case scenario, the execution of a movement by the therapist,
from which the sEMG signals are acquired, results in the

replication of the same movement by the patient, to which
FES is applied [16]. Basically, the acquisition device applies
the ATC technique to the sEMG signals and transmits the
ATC values through Bluetooth Low Energy (BLE) commu-
nication [27]. On the basis of the ATC values, the control
platform computes a suitable stimulation intensity pattern
(i.e., modulating the pulse amplitude) to allow the stimulated
patient to replicate the therapist movement in a bio-mimetic
way [29]. Dedicated experimental tests allowed us to evaluate
system performances in terms of therapist-patient (subjects)
movements replicability.

A. System architecture

22 mm

25
 m

m

Fig. 2: AFE.

1) Acquisition device: Considering
our previous experiences in imple-
menting ATC-FES systems [27], [29],
[30], we developed an improved ver-
sion of our acquisition device architec-
ture [28], [29] able to fit at best our
needs. The proposed solution consists
of multiple Analog Front Ends (AFEs),
which properly detect sEMG raw sig-
nals and extract Threshold Crossing
(TC) events, and a digital part for ATC

computation and data transmission (see Fig. 1 (left)). The AFE
architecture (Fig. 2 shows a prototype) is the evolution of the
channel described in [29]: the sEMG conditioning circuit is
designed for differential signal acquisition (i.e., two sensing
electrodes and one which refers a common electrical poten-
tial [31]), providing a 70 Hz–400 Hz transfer function with a
default gain of 500 V/V (which could be further increased by
×2, ×3, ×5 or ×6 multiplication factor if needed). The last
stage of each AFE is a voltage comparator, which, by applying
a calibrated threshold to the analog sEMG signal, allows the
generation of the quasi-digital TC signal [25]. This final output
is then provided to the MCU for ATC computation.
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After different investigations in defining the most efficient
digital configuration [25], [27]–[29], we selected the Apollo3
Blue [32] MCU because of its ultra-low power features for em-
bedded computing, which also simplify the design of portable
and wearable battery-powered acquisition devices.

A BLE server was implemented on the acquisition side
making the system easy to be interfaced and supervised:
beyond the configurable features (e.g., programmable gain,
threshold setting for ATC), the device streams ATC values
every 130 ms [25] to the control platform client.

2) Control platform and software: The inputs/outputs of the
system are commonly handled by a laptop, but, alternatively,
a Raspberry Pi can be employed [29]. The control software
was developed using the Python programming language, and
it is designed on three levels (see Fig. 1 (middle)). At the
bottom level, the BLE and FES modules are dedicated to
communication with the Bluetooth acquisition device and
the electrical stimulator (USB interface), respectively. At the
middle level, the System module processes in real-time the
ATC data received from the BLE module to generate a suitable
stimulation pattern for FES. The use of minimal information
(i.e., ATC) allows us to condense the processing phase in a
LUT that links, for each acquisition/stimulation channel, the
ATC value with the stimulation intensity, as reported in [29].
Finally, at the top level, a Graphical User Interface (GUI) was
designed to guarantee full (and secure) control over FES.

3) Electrical stimulator: As in the previous works [27], [29],
[30], we continued to use the RehaStim 2 [8] as electrical
stimulator considering its enhanced features: its battery power-
supply minimizes noise interference (e.g., 50 Hz power-line);
the symmetrical bi-phasic pulse pattern avoids charge accu-
mulation in stimulated tissues; many configurable parameters
permit the user to achieve an improved FES modulation of
up to 8 channels simultaneously, also adapting the stimulation
to subject(s) body conditions. The control of the device is
via the ScienceMode2 communication protocol [33], whose
convenient implementation allows the user to update the stim-
ulation parameters (e.g., pulse amplitude, pulse width, pulse
group mode) during on-going stimulation (see Fig. 1 (right)).
In the developed system, this protocol perfectly meets our need
to update the stimulation intensity (i.e., pulse amplitude) every
time new ATC values are available (at the end of each 130 ms
window) [29].

B. Experimental protocol

The effectiveness of the proposed ATC-FES motor control
was investigated simulating clinical rehabilitative sessions.
In particular, during the experimental campaign, we focused
on the therapist-patient configuration, instead of the self-
stimulation approach (i.e., CCFES), to promote the muscular
relaxation of the stimulated subject, which could not be en-
tirely achieved if the same subject is already executing another
movement. Each test involved two subjects: the therapist
performs the movement voluntarily and the patient replicates
the movements as a consequence of FES application. In
this situation, ATC values expressed by the therapist were
used in the definition of FES intensity. From these tests, we

aimed to extract the trajectory of the voluntary and stimulated
movements and compare them to analyze their similarity.
Therefore, subjects body movements were captured using
the Vicon system in a 12 camera configuration, as it is the
commercial gold standard tool for motion capture [34]. In-
vestigating clinical procedures and state-of-the-art works [24],
[35]–[38], we defined a total of six key movements concerning
both upper and lower limbs, listed below with their reference
positions:

• Elbow Flexion (EF): subjects are seated with the forearm
in supine position and the elbow leaning on the table.
Among analyzed movements, this is the one with the
highest Range Of Motion (ROM) [39], [40].

• Wrist Extension (WE): subjects are seated with the fore-
arm in neutral position and the elbow leaning on the table.

• Wrist Flexion (WF): same reference position of WE.
• Knee Extension (KE): subjects are seated on a chair high

enough to avoid any impairment between the foot and
the floor during movement execution. Among analyzed
movements, this is the one with the greatest load, given
by the weight of the lower leg.

• Ankle Extension (AE): same reference position of KE.
Among analyzed movements, this is the one with the
lowest ROM [39], [40].

• Ankle Flexion (AF): same reference position of KE.
The test campaign involved a total of 17 healthy volunteers,

12 males and 5 females, aged between 24 and 30 years old.
In compliance with regulations regarding COVID-19, the

proper distance between the subjects was guaranteed and each
of them was required to wear a protective mask. The sanitizer
gel was used during the preparation phase of the subjects and
it was made available for further use.

These experimental tests were approved by the Comitato
Bioetico di Ateneo of the University of Turin [41]
(experimental code: 445154).

In the following paragraphs, the phases of our experimental
test are described.

1) Procedures explanation: The goal of the test and how
it would be performed were explained to the volunteers, also
detailing technical information about the instrumentation. The
informed consent signature was required from participants to
proceed with the testing phase.

2) Vicon system setup: After placing all the necessary
equipment in the 3D motion capture environment, Vicon
infrared cameras were masked to limit instrumentation re-
flection, which could lead to data corruption [42]. Then, the
sampling volume was calibrated and the axes’ origin was set.
Reflective markers were applied to subjects’ bodies follow-
ing the positioning guideline reported in [43]. In particular,
considering that our tests concerned only upper and lower
limbs, we limited the applied markers to those needed for
our experimental campaign, hence excluding head, torso, and
pelvis areas.

3) Electrodes application: Kendall™ H124SG (Ag/AgCl,
24 mm �) pre-gelled electrodes [47] were used for sEMG
detection. The SENIAM project recommendations [44] were
followed to adequately prepare the skin before electrodes
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attachments, preventing the sEMG signal to be corrupted by
noise sources (e.g., motion artifacts) or electrodes imbalance.
Electrodes locations were identified both considering SE-
NIAM project indications [44] and through manual palpation,
thus assuring the correct and standardized placement w.r.t. the
muscles condition of involved subjects.

As regards the stimulation electrodes, we employed the
HASOMED® RehaTrode [8] (5 cm×9 cm) and the FIAB
PG470W [48] (3.5 cm×4.5 cm) products to provide the appro-
priate stimulation intensity considering the diverse typology
and orientation of muscle fibers. As for sEMG, skin prepara-
tion and standardization of electrode placement were provided
following the indications reported in [45] and [46], also taking
care to apply a conductive gel on electrode surface to enhance
the current flow and to minimize discomfort perception.

A summary of the acquisition and stimulation muscles,
and their relative electrode locations, are listed in Table I.
These indications are not strictly binding, since depending on
the subjects’ anatomy and their comfort with stimulation, the
positioning can be modified.

4) ATC-FES system calibration: The creation of the ATC-
FES relationship by means of the LUT structure [29] allows
the system to completely exploit its versatility, making pos-
sible the adaptation of the physiological muscle conditions
(e.g., muscular tone, exerted force) among subjects. At the
end of this two-step process, the therapist ATC values drive a
stimulation intensity (i.e., pulse amplitude) able to reproduce
a similar action in the patient body, although their different
muscle status.

The first step includes the calibration of the ATC threshold
during the muscular rest condition and the subsequent repeti-
tion (at least three times) of the desired movement in order to
identify the maximal variation of the ATC value.

In the second step, the maximal value of the stimulation
intensity, able to induce the target action in the patient, is
determined. To accomplish this task, the stimulation intensity
is gradually increased until the proper setting is identified. If
the subject feels discomfort (e.g., cramp, burning or pain),
non-modulated stimulation parameters (i.e., frequency, pulse
width) or the electrodes position could be changed trying to
better adapt to subject condition.

5) Test execution: Every trial consists of three sessions,
during which each target movement is repeated ten times,

preserving 10 s inter-repetition and 5 min inter-session pause
times to prevent muscle fatigue effects.

Since each type of movement was performed by 8 volun-
teers at least, with the exception of WF with 9 volunteers
(because not all the subjects had the time availability to
participate in testing all the six movements), we obtained a
minimum number of 240 repetition for each movement.

The selected stimulation frequency (fs) and pulse width
(PW) for each movement, employed during the calibration and
execution phases, are reported in the right columns of Table I.

Fig. 3 (top) shows our experimental setup for upper limbs
movements, where the two subjects are positioned frontally
with the electrodes and markers applied. The reference posi-
tion features the subjects sitting upright with the limbs aligned.
In Fig. 3 (middle) an example of the reconstruction of body
segments for upper limbs, thanks to the identification of Vicon
markers, is reported. The angular trajectories of both subjects
are accordingly extracted, as represented in Fig. 3 (bottom).

C. Data processing
The sampling frequency of Vicon cameras was set to

100 Hz, a suitable value to accurately reconstruct human
joint flexions and extensions [49]. Starting from markers
identification and human body segments reconstruction, limb
trajectories were extracted using the Nexus software [50].
Since the Vicon cameras may not recognize some markers
during the execution of the test, data interpolation was often
needed to reconstruct the totality of the rigid body. At this
point, movements trajectories were obtained by running the
Kinfit tool of the Nexus software, which, by processing
markers coordinates, results in the extraction of 3D volume
trajectories.

Vicon data were further processed on MATLAB®. Pre-
processing steps include the discard of segments that do not
belong to the test execution, and signal sign adjustment in
order to match the system reference for the two acquired
trajectories. Then, a segmentation process was performed to
identify four temporal coordinates for each movement repeti-
tion: the start (s1) and the end (s2) of the rise; the start (s3) and
the end (s4) of the fall (see Fig. 4). Basically, the implemented
segmentation algorithm scans for variations in the derivative

TABLE I: For each tested movement, the acquisition and stimulation sites are reported, together with the involved muscles.
The non-modulated stimulation parameters used during the experimental tests are also shown.

ID Acq. muscles Acquisition sites1,3 Stim. muscles Stimulation sites2,3 fs
2,3 (Hz) PW2,3 (µs)

Line medial acromion - fossa E1: closer to the crease of the elbow,EF Biceps Brachii cubit at 1/3 from fossa cubit Biceps Brachii E2: over the muscle belly 40 250 - 350

Extensor Carpi At 10 % of line medial epicondyle of Extensor Carpi Ulnaris, E1: over the tendinous area of the forearm,WE Ulnaris the humerus - ulnar styloid process Extensor Digitorum E2: just distal to lateral condyle 40 200 - 300

Flexor Carpi At 10 % of line medial epicondyle of Flexor Carpi Radialis, E1: over the flexor surface of tendons,WF Radialis the humerus - radial styloid process Palmaris Longus E2: high towards the medial condyle 40 200 - 300

At 50 % of line anterior spina iliaca E1: proximal and towards the lateral side,KE Rectus Femoris superior - superior part of patella Quadriceps Femoris E2: distal and slightly to the medial side 40 350 - 500

E1: over the origins of both the medial andAE Gastrocnemius At 1/3 of line head of fibula - heel Gastrocnemius, Soleus the lateral gastrocnemius, E2: over the soleus 40 300 - 400

At 1/3 of line tip of fibula - tip of E1: close to the tibia, further down the shank,AF Tibialis Anterior medial malleolus Tibialis Anterior, Peroneus E2: over the muscle belly, very midline 40 250 - 300

1Compliant with [44]; 2Compliant with [45], [46]; 3Adjustable to account for variability across subjects.
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Fig. 3: (top) Experimental setup: the therapist (on the left)
and the patient (on the right) are connected to the acquisition
device (1) and the electrical stimulator (2), respectively; Vicon
markers (3) are applied on both subjects; (middle) Upper
limbs reconstruction using Vicon system; (bottom) Exported
elbow flexion trajectories.

of the signal. The algorithm is provided with the following
parameters: Diffmin is the minimum signal variation for rising
and falling points definition; Ns1,s4 and Ns2,s3 are the number
of analyzed consecutive points to identify s1 and s4, or s2 and
s3, respectively. For the identification of s1 and s4, Nagree and
Ndisagree are also used, both percentages relative to Ns1,s4 : Nagree
defines the minimum number of points that must be consistent
with the identification (e.g., in the case of s1 the subsequent
points must be rising ones); Ndisagree defines the maximum
number of allowed contrary points (e.g., the maximum number
of falling points in the rising phase).

The steps of the segmentation algorithm are summarized in
the following list:

1) Application of a moving median operator, with window
length equal to 41 samples, to suppress the noise re-
sulting from possible markers flickering (which can be
present despite Nexus interpolation) and to allow the
algorithm to neglect the non-relevant signal fluctuations,
such as those resulting from the return of the limb to its
reference position (see Fig. 4 (a), at 2.8 s);

2) Down-sampling of the signal by ×2 factor to simplify
the segmentation process, as it depends on the number of
points in the trajectory and the difference of their values
(this step is not strictly necessary, but a high sampling
rate is not required for segmentation and a lower rate
makes the choice of tuning parameters less critical);

3) Identification of the rising and falling points of the
trajectory by applying a threshold (i.e., Diffmin) to the
derivative of the signal, as reported in Equation 1:

pi ∈

{
Rising, if pi − pi−1 ≥ Diffmin

Falling, if pi − pi−1 ≤ −Diffmin
(1)

where pi is the i-th point of trajectory.

4) Moving forward on the signal one point at a time; if
the current point is a rising one, and at least the Nagree
percent of the next Ns1,s4 points are rising point, and less
than the Ndisagree percent of them are falling points, then
the current point is identified as s1;

5) Moving backward on the signal one point at a time
(starting five seconds after s1), if the current point is
a falling one, and at least the Nagree percent of the next
Ns1,s4 points are falling point, and less than the Ndisagree
percent of them are rising points, then the current point
is identified as s4;

6) Identification of the maximum value between s1 and s4;
7) Starting from the 70% of the maximum value (left side),

moving forward one point at a time, if the current point
is a rising point, and there is at least one rising point
among the next Ns2,s3 points, then the current point
is identified as s2. If s2 is not identified within the
maximum point, s2 is located at the point before the
maximum point;

8) Starting from the 70% of the maximum value (right
side), moving backward one point at a time, if the
current point is a falling point, and there is at least
one falling point among the next Ns2,s3 points, then the
current point is identified as s3. If s3 is not identified
within the maximum point, s3 is located at the point
after the maximum point.

Due to the variability among acquired trajectories, the
parameters of the algorithm can vary slightly between different
movements. Table II reports the typically used values, which,
although not constraining, can be used as reference. Still, it is
up to the user to determine the most appropriate ones.

The alterations made to the signal during processing (e.g.,
down-sampling) regard only the segmentation algorithm,
while the extraction of the evaluation features (described
below) is carried out on the original signal, to which just a
moving median operation with window length equal to 11
samples is applied for noise suppression.

In the formulas below for calculating the evaluation features,
ek,x and tk,x are the excursion and time components of the
k-th sample of the therapist (x = ‘th’) or patient (x = ‘pt’)
trajectory.

In order to test the performances of the system, the nor-
malized cross-correlation coefficient (ρ) and the delay (D)
between therapist and patient movements were computed to
evaluate the effectiveness of the FES control, as also reported
in [23], [51]. While ρ perfectly represents the similarity among

TABLE II: Typical parameters tuning for the trajectories seg-
mentation algorithm.

ID Diffmin (°) Ns1 ,s4 Ns2 ,s3 Nagree (%) Ndisagree (%)
EF 0.8 10 7 70 20
WE 0.6 10 7 70 20
WF 0.4 12 9 70 20
KE 0.6 10 7 70 15
AE 0.2 10 7 50 20
AF 0.4 12 7 50 20
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Fig. 4: The example (a), on the left, reports a trajectory with no significant baseline changes between the beginning and end of
the movement, in contrast to the trajectory shown on the right (b). Starting from the rising (green) and falling (red) points of
the curve, we obtain s1, s2, s3, and s4, which are the segmentation result. Using them, we extract the evaluation parameters of
interest (ρmax, D, ROM , v, and A) for each movement repetition. Section II-C provides for more detailed information about
the segmentation algorithm and the formulas used for parameters extraction.

movements, from D we obtained an overall information about
FES application timings, including both computational and
physiological latencies. Moreover, we computed ρ also be-
tween the subjects trajectories and their respective ATC and
FES profiles to better understand the most critical step during
the transfer of information (see the information flow from
therapist to patient in Fig. 1). Equations 2 and 3 show the
formulas for ρmax and D:

ρmax = max
(
ρ(m)

)
= max

 R̂a,b(m)√
R̂a,a(0)R̂b,b(0)

 (2)

D = ts1,pt − ts1,th (3)

where R̂a,b is the estimated correlation between a and b (i.e.,
therapist or patient trajectory, ATC or FES profile) and m is
the lag between the signals.

We also performed a complementary analysis by calculating
Range Of Motion (ROM ), rise velocity (v) (i.e., the velocity
of the concentric phase of the movement), and area under
the curve (A). We deemed the use of these three trajectory
features effective to complete the qualitative analysis about
the executed movements. Fall velocity (i.e., the velocity of
the eccentric phase of the movement), on the other hand, was
not taken into account since our focus is addressed to the
active phase of the movement. Fig. 4 reports an example of
our segmentation results, also providing a figurative concept
of the extracted parameters, which were computed as follows:

ROMx = emax,x − es1,x (4)

vx =
∆e

∆t
=
es2,x − es1,x
ts2,x − ts1,x

(5)

Ax =

s4∑
i=s1

(
ei,x −min (es1,x, es4,x)

)
· ts +

− |es4,x − es1,x| · (ts4,x − ts1,x)

2

(6)

where ts is the Vicon sampling period (i.e., 10 ms).
In Equation 6, the subtraction of min (es1 , es4) takes into

account the possibility of negative excursion values caused by
baseline oscillation. Indeed, after some movement repetitions,
the baseline usually differs from zero because the subject
does not always return to the starting reference position
(see Fig. 4(b)). The second term of Equation 6 takes into
consideration the effect of the baseline changes in terms of
computed areas by removing over-estimation, as depicted by
red dashed area in Fig. 4.

In order to evaluate relative, rather than absolute, quantities,
parameters ROM , v, and A extracted from each patient move-
ment are normalized to those obtained from the corresponding
therapist one as reported in Equation 7. Therefore, each
parameter is referenced to the maximum ROM value obtained
from each subject to consider her/his maximum excursion
capabilities.

Xpt/th =
Xpt

Xth
· max(ROMth)

max(ROMpt)
(7)

where X can be ROM , v, or A.

III. RESULTS AND DISCUSSION

This section reports the results, and their discussion, which
allowed us to reach a proper evaluation of the proposed system.
We report our experimental analysis about the voluntary and
stimulated movements replication, discussing the appropri-
ateness of our approach w.r.t. the descriptive parameters we
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TABLE III: Extracted parameters for motion assessment.

Param. Description
ρmax Maximum normalized cross-correlation coefficient
D Delay between therapist and patient movement

ROM Movement excursion
v Limb velocity during concentric phase
A Area under angular trajectory
SR Successful rate of movement replications

extracted from the limbs trajectories. Table III summarizes the
evaluation parameters used for the following discussion.

Fig. 5 and 6 show our comparison analysis, between the
therapist and patient angular data, for all the extracted param-
eters (see Section II-C), which are organized into box plots
to adequately represent the information variability of each
movement along the total number of repetitions. Furthermore,
we decided to synthesize our results using the median value
because it adequately describes a population of measurements
while being more robust (to the outliers) than the mean value.

Since our purpose is the real-time control over the stimu-
lation, giving the possibility to the therapist to correct her/his
movement according to the one executed by the patient, we
measured the movement replication delays. Obtained values
(see Fig. 5 (a)) are up to about 100 times higher than
the computational latencies of the control software, which
is typically within 10 ms [29]. Indeed, the latter has to be
summed to the 130 ms of implicit delay due to the use of
the window we chose for the ATC. In addition, the measured
delay also includes the lag between the onset of the therapist
movement and the first TC events indicating muscle activity.
Finally, an additional delay component is the physiological
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Fig. 5: Angular trajectories features comparison between
therapist and patient movements: Elbow Flexion (EF), Wrist
Extension (WE), Wrist Flexion (WF), Knee Extension (KE),
Ankle Extension (AE), Ankle Flexion (AF). Please refer to
Equation 7 to see the normalization performed for features
with subscript pt/th.

response time between the start of the stimulation and the
beginning of the movement, which in literature is known
as ElectroMechanical Delay (EMD) [52], and can be over
300 ms [53]. The highest median value of replication delay,
equal to 1.08 s, has been obtained during knee extension
repetitions while the lowest results have been found for ankle
flexion, calculating a median value equal to 660 ms. The
significant difference between these two movements, which
both act against gravity, is that the tibialis anterior muscle
reaches its maximum activation values after few degrees of
excursion, while the quadriceps femoris muscles are mainly
activated during the last stages of excursion, when the load
has the greatest weight. Following the above discussion, these
delay values, with an overall median of 800 ms, are sufficiently
low to allow the therapist to adjust and modulate her/his
movement in response to the patient’s activity. This possibility
surely increases the application versatility of the proposed
system since it gives the user the opportunity to control the
stimulation during the session, e.g., updating the FES intensity
to help the patient reach the target exercise according to the
subject’s physical abilities.

Looking at Fig. 5 (b), the median of the obtained ROMpt/th

values is about 1 (0.92–0.99) for all movements. This can be
justified by the fact that, in general, the protocol to which we
adhered avoid a fatigue onset affecting the patient movement
more than the therapist one, as the excursions were propor-
tional between the two subjects. However, there is a discrete
presence of outliers for knee and wrist extension, mainly due
to less excursion by the patient. For knee extension, we found
that these outliers are due to the lack of ATC values sufficiently
high to generate a stimulation intensity suitable to complete
the execution of the movement, which we recall to be the one
with the greatest body load. This could be solved by adapting
the calibration strategy to update the reference ATC values
since, with the progress of the exercise, the therapist may
express lower values than those obtained during the calibration
phase. Instead, for wrist extension the outliers are related to the
fact that, during our tests, each repetition of wrist extension
did not alternate with a repetition of wrist flexion. Hence,
sometimes the patient’s wrist did not return to the same starting
position, thus reducing the resulting ROM (see Fig. 4 (b)). In
particular, we calculated that 4 % of wrist extension repetitions
had a baseline drop greater than 20 % of the total excursion
performed.

With the exception of ankle movements, the rise velocity
comparison (Fig. 5 (c)) offered vpt/th with medians greater
than 1: the movement of the patient, in fact, is typically faster
than the one of the therapist due to stimulation. While for
ankle extension the median vpt/th is equal to 0.98, for ankle
flexion it is 0.70. A plausible explanation for having lower
values for these movements is that the ankle joint is also the
one with the lowest ROM among those analyzed: hence, both
the subjects soon reach the maximum joint excursion.

The area comparison box plot (Fig. 5 (d)) shows median
Apt/th values between 0.49 and 0.65 among the tested move-
ments. Considering that the areas are normalized over the
maximum ROM obtained from the respective subject, this
comparison parameter is strictly dependent on the movement
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replication delays. Indeed, the delay mainly affects the begin-
ning of the movement, whereas the end of the activity of the
two subjects is almost simultaneous (we calculated a median
delay equal to 20 ms among all the performed repetitions).
Moreover, the area offers an overall information given by the
trajectory shape, thus being dependent also on rise velocity. In
fact, ankle flexion and extension involve similar delays (both
present median values equal to 660 ms) but this behavior is not
reflected by Apt/th (median values equal to 0.48 for AE and
0.60 for AF). This aspect can be justified by looking at rise
velocity box plot (Fig. 5 (c)), where ankle extension results in
greater vpt/th values (median equal to 0.97 against 0.70 for
AF), thus reducing the area under the curve.

The correlation for each step of the information transfer is
reported in Fig. 6. As regards ρmax between therapist trajectory
and ATC profile (Fig. 6 (a)), the highest results have been
obtained for wrist extension, ankle extension and ankle flexion,
with the median of ρmax equal to 0.950, 0.942, and 0.973,
respectively. A considerable contribution to this fact is that, for
these three cases, muscle activity is easily detectable during the
whole execution of the movement, thus increasing the overlap
between the therapist trajectory and the corresponding ATC
profile. While for elbow flexion and wrist flexion the median
of ρmax is still quite high (0.927 and 0.905, respectively), for
knee extension we obtained 0.862. In fact, as discussed above,
the main activity occurs during the isometric phase of the KE
movement, rather than during the concentric or eccentric one.

The median values of ρmax among ATC and FES profiles
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Fig. 6: Maximum of the cross-correlation coefficient (ρmax)
for each step of the information flow, divided among move-
ment types: Elbow Flexion (EF), Wrist Extension (WE), Wrist
Flexion (WF), Knee Extension (KE), Ankle Extension (AE),
Ankle Flexion (AF). The green dashed line at ρmax = 0.850
in (a) defines the threshold used for the classification of
ATC poor, whereas in (d) indicates the selected acceptability
threshold for the overall correlation (i.e., therapist and patient
trajectories similarity).

(Fig. 6 (b)) are always higher than 0.970, since the only
non-linearity during ATC processing is the moving median
operation implemented for noise robustness. Also for the cor-
relations between the FES profiles and the patients trajectories
(Fig. 6 (c)) the computed values are quite high, although
the presence of a greater number of outliers in cases where
the stimulation parameters were not adequate for the proper
execution of the movement.

For ρmax among therapist and patient limb trajectories
(Fig. 6 (d)), we chose an acceptability threshold equal to 0.850
as it is consistent with what is found in the literature [22],
[23], [54]. The obtained median value among all the executed
exercises is equal to 0.910, largely satisfying the chosen
constraint. Going into details, the lowest result has been
obtained for knee extension, with a median value of ρmax

equal to 0.861, as a consequence of what has been discussed
before. The highest outcomes, instead, have been obtained
during ankle extension and elbow flexion repetitions, with
median values equal to 0.931 and 0.923, respectively. For
ankle extension, such a high ρmax is not surprising, since
among the six proposed movements this is the simplest one,
with the lowest excursion.

In order to account also for movements not replicated
by the patient, we labeled them according to the reason of
the failures, as reported in Table IV. If the ρmax between
therapist trajectory and ATC profile is lower than 0.850, we
classified the movement failed for ATC poor. Otherwise, if the
failed movement is consecutive to a stimulation pattern with
a maximum intensity 60 % lower than the stimulation value
established during calibration, the movement is classified as
FES poor. Lastly, if the failure of the movement is not ascrib-
able to either of these two cases, the movement is classified as
FES ineffective. From these labels, we defined the Successful
Rate (SR) parameter as the number of valid repetitions over
the total, to summarize the replication success for each tested
movement. Even if the SR values are satisfactory for all the
tests, it is interesting to note that elbow flexion and ankle
extension are the movements with the lowest reproduction
rate (below 97 %), although their (median) cross-correlation
coefficient is the highest among all the movements.

TABLE IV: The total number of repetitions for each type of
movement (e.g., EF, WE) has been analyzed to classify the
replication outcome: a valid label means that the therapist and
patient trajectories are almost similar; otherwise, an unsatisfac-
tory replication of movements is marked as ATC poor, FES
poor, or FES ineffective depending on the cause of failure.
The Successful Rate (SR) is calculated as the percentage ratio
between the valid and total movement repetitions.

ATC FES FES
ID Total Valid poor poor ineff SR (%)
EF 273 263 7 2 1 96.34
WE 260 254 2 3 1 97.69
WF 290 282 1 5 2 97.24
KE 256 249 5 1 1 97.27
AE 264 255 3 1 5 96.59
AF 250 248 0 1 1 99.20
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This final outcome, in addition to the above discussion,
points out how a multi-parameters approach is needed to
characterize an FES system effectively: the motor control and
the movement reproduction could not be described simply by
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Fig. 7: Movements execution variability among different ther-
apists in concentric phase velocity (a) and overall movement
duration (b). Sub-figures (c) and (d) report therapist-patient
cross-correlations obtained when velocity and duration are
above Q3, respectively. On the other hand, (e) and (f) report
what was obtained below Q1.

analyzing the cross-correlation coefficient among the therapist
and patient trajectories, but additional parameters (e.g., area,
velocity) and the evaluation of the FES definition process (i.e.,
Fig. 6) are essential to better understand the effectiveness of
an induced movement.

In conclusion, a last analysis takes into account how the
variable execution of an exercise could have consequences
on movements reproduction. Indeed, although the execution
of a movement has been standardized as much as possible
(e.g., by defining a reference posture), a variability among
therapists actions needs to be considered. Rise velocity and
movement duration have been selected as the parameters able
to discriminate the difference in therapist movements, as it
can be seen by the boxplots (e.g., looking at whiskers) in
Fig. 7 (a) and (b). For the sake of the synthesis, here we
focus the discussion of these results on the cross-correlation
coefficient: ρmax between the therapist and patient trajectories
was computed for all cases in which these two parameters are
greater than the third quartile (Q3) (Fig. 7 (c) and (d)) or less
than the first quartile (Q1) (Fig. 7 (e) and (f)). Comparing
all the permutations of movement velocity and duration, we
concluded that each combination still ensure a median ρmax

above our acceptability criteria (ρmax ≥ 0.850), although
slower movements (lower rise velocity and longer duration)
feature lower ρmax values.

IV. STATE-OF-THE-ART SYSTEMS COMPARISON

Despite the differences among the state-of-the-art systems
for FES control, we report a brief comparison with other
works in Table V. The innovative aspect of our system is
that the modulation of the stimulation intensity is performed
using an event-driven technique, i.e., the ATC, which provides
information about muscle activity without even sampling the
sEMG signal. In this work, we investigated the versatility
of our system in controlling the movements of different
joints in a therapist-patient scenario by means of an extensive
experimental campaign.

Comparing our system with the ones of the research group
who published [22], [23], [54], we identified a potential

TABLE V: Comparison among recent state-of-the-art works for FES control.

Work Control Mechanism FES Modulation Tested Movement Tested Population Th-Pt1 Evaluation Parameters

Hybrid FES 94 % tracking error reduction and less 74 %[35] exoskeleton Pulse Width Elbow Flexion 7 Healthy No control effort w.r.t. exoskeleton alone
Delay < 300 ms; ρmax > 0.840;[54] Wrist Movements 6 Healthy Yes mean(SR) = 92.5 %

Ankle Extension[22]

Time-domain
sEMG features

Pulse Width
Frequency

Ankle Flexion 6 Healthy Yes Delay < 300 ms; ρmax > 0.820

Time-domain Pulse Width 6 Hemiplegic Classification accuracy > 90 %;[23] sEMG features Frequency Wrist Movements 1 Healthy Yes mean(Delay) = 270 ms; mean(ρmax) = 0.840
Time-domain Classification accuracy = 100 %;[24] sEMG features Pulse Amplitude Wrist Movements 2 Healthy No mean(Delay) = 600 ms (CCFES scenario)

Hand opening mean(Classification accuracy) = 81.72 %;[21] sEMG envelope Pulse Amplitude Grasping 1 Healthy No Delay > 2 s (CCFES scenario)
Angular velocity 10 Healthy mean(ρmax) = 0.902 between FES-evoked[55] EMG modeling Pulse Width Ankle Flexion 6 Drop Foot No EMG and natural EMG during gait
Angular velocity Goodness of fit = 77.87 % between real and[56] Flexion angle Pulse Width Ankle Flexion 10 Healthy No reference ankle trajectories

median(Delay) = 660 ms–1080 ms;
median(ρmax) = 0.861–0.931;This ATC Pulse Amplitude

Elbow, Wrist, Knee,
Ankle extension/flexion 17 Healthy Yes

SR = 96.34 %–99.20 %

1Therapist-Patient approach
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margin for improvements w.r.t. movement replication delays.
Indeed, although our delays are comparable with [24] and
lower than [21], their further decrement in system latency for
obtaining a functional movement could improve the benefits of
the mirror control in a rehabilitation scenario (i.e., promoting
neural plasticity).

Looking at the system applicability, the main difference
between [23] and our system architecture is the absence of a
control platform (since the stimulation parameters definition
is embedded in the acquisition device) and the use of a
custom stimulator. From one side, a completely embedded
system (with no GUI) could be appealing in implementing
an autonomous and wearable system. Still, the user loses the
possibility to supervise the ongoing stimulation actively. On
the other side, dedicated FES solutions (e.g., stimulator algo-
rithms and structure) optimize the stimulation effectiveness for
a set of movements but reducing the application versatility of
the system at different body parts.

Nevertheless, considering our case study, the proposed ATC-
FES system shows good performance in controlling an induced
motor activity (e.g., assessed by cross-correlation and suc-
cessful rate parameters), featuring some of the highest values
if compared with the figures of merit proposed in the other
works.

V. CONCLUSIONS AND FUTURE PERSPECTIVES

This paper reports the experimental tests performed with
our FES control system, detailing both the test protocol and
the processing steps of the acquired data, in order to extract
parameters for system evaluation. The use of this system
allows a subject undergoing FES to replicate the voluntary
movements of a subject from which muscle activity informa-
tion is extracted using an event-driven approach. Compared
to our latest FES-related paper [29], here we focused on
the experimental part of our work, testing the system on a
larger population of subjects while performing a wider set of
movements. Moreover, we used a professional tool to capture
subjects’ limbs trajectories.

The lowest cross-correlation coefficient (median value) was
found equal to 0.861 for knee extension, which also presents
the highest replication delay, equal to 1.08 s. On the other
hand, ankle extension and elbow flexion offers the highest
movement correlation, with a median value equal to 0.931 and
0.923, respectively. A median replication delay value equal to
660 ms has been obtained for both ankle extension and ankle
flexion, with the latter obtaining a successful rate equal to
99.2 %. The overall result of our testing campaign allow us
to consider the proposed system a valid solution for therapist-
controlled FES in the rehabilitation field.

Our next step is to use the proposed system to replicate more
complex movements, e.g., reaching, to aim for application in
the rehabilitation field to support Activities of Daily Living
(ADL) [57]. To achieve this goal, we designed a more compact
and wearable hardware [25] and, moving towards the use of
our system for people with neural injuries, we are planning
the study of muscle synergies to address muscle coordination
impairments [58]. Moreover, we are aware that the current

system is limited by modulation of stimulation intensity only.
Further investigations will aim to use mathematical models
to also modulate the stimulation frequency and pulse width
to prevent muscle fatigue [59]. The main challenge would
concern the development of a model for working in non-
isometric contractions, still allowing the ATC employment
in our system. Finally, we will have to investigate a an
effective technique to analyze muscular activity directly from
the stimulated muscles, thus exploiting this information for
muscle fatigue monitoring [60] without excessively affecting
the recorded signal quality.
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