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Abstract 

In the last decades, an increasing attention has been devoted to space gravimetric missions, with the goal of 

improving the understanding of Earth’s mass change phenomena. One of the main objectives of these missions consists 

in measuring the temporal variations of the Earth gravity field over a long-time span, with very high spatial and 

temporal resolutions. In this context, the paper focuses on a gravity monitoring mission featuring a formation with two 

satellites following each other on the same orbit and each of them drag compensated. The aim is to design a formation 

control which is able both to counteract bias and drift of the residual drag-free accelerations and to reach the orbit and 

formation long-term stability. At this purpose, a Nonlinear Model Predictive Control (NMPC) framework is 

considered. A key element of this control technique is the use of an internal prediction model for finding an optimal 

trajectory over a finite time interval. Here, an Integrated Formation Control (IFC) model, based on a novel set of Hill-

type equations, has been used. This model allows a common description of the formation altitude and inter-satellite 

distance, by defining a specific orbital reference frame called Formation Local Orbital Frame (FLOF). The ESA Next 

Generation Gravity Mission (NGGM), as part of the ESA-NASA cooperation in the frame of the MAGIC (Mass 

Change and Geosciences International Constellation), is considered as a benchmark for the developed NMPC 

framework. In this regard, a high-fidelity nonlinear model, with the 30th order gravity field and various atmospheric 

disturbances (e.g., atmospheric drag and solar pressure), has been used. Furthermore, to simulate a realistic situation, 

the issues related to the transmission of data between satellites is also considered by assuming long sampling times of 

the measurements due to absence of a radio-frequency inter-satellite link. Such lack of data has been dealt with the 

implementation of orbit propagators, which are able to propagate, on board of each satellite, position and velocity of 

the companion spacecraft. The novelty of these propagators is the ability to compute accurately the companion satellite 

orbit, despite being designed considering a low order gravity field and completely neglecting other atmospheric 

disturbances. The obtained results demonstrate the effectiveness of the proposed NMPC strategy and show its 

capability to guarantee long-term stability, despite the lack of companion satellite information and a low command 

effort. 

Keywords: NMPC, Autonomous Guidance, Control, NGGM, Orbit Propagator, Formation 

 

Nomenclature 

𝑀: Total Torque 

𝐼𝑚: Inertia Matrix 

𝑞: Body Attitude Quaternion 

𝑎𝐶𝑜𝑀: Center of Mass Acceleration 

ΔV: Delta-V 

𝜇: Earth’s planetary constant 

𝑔0: Earth’s gravity acceleration at sea level 

𝐼𝑠𝑝: Specific impulse 

𝐽: Generic cost function 

𝐿: True longitude 

𝑚: Mass 

𝑟: Orbit radius 

𝑝: Semilatus rectum 

𝑇: Thrust 

𝑇𝑝: Prediction horizon 

𝑇𝑠: Sampling time 

𝑢: Acceleration 

𝑣: Velocity 

𝑓𝑑𝑟𝑎𝑔: Drag Force 

𝑓𝑠𝑢𝑛: Solar Pressure 

𝑢𝑓𝑜𝑟𝑚: Formation Control 

𝑔: Gravity Acceleration (30th Order Term of Spherical 

Harmonics)  

𝑔4: Gravity Acceleration (4th Order Term of Spherical 

Harmonics)  

 

Acronyms/Abbreviations 

NMPC: Nonlinear Model Predictive Control 

IFC: Integrated Formation Control 

FLOF: Formation Local Orbital Frame 

NGGM: Next Generation Gravity Mission 

LAGEOS: Laser Geodynamics Satellite 

GRACE: Gravity Recovery and Climate Experiment 

GOCE: Gravity Field and steady-state Ocean Circulation 

Explorer 
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EMC: Embedded Model Control 

ESA: European Space Agency 

RF ISL: Radio-Frequency Inter-Satellite Link 

CoM: Center of Mass 

LEO: Low Earth Orbit 

CoP: Center of Pressure 

NGA: National Geospatial-Intelligence Agency 

GNSS: Global Navigation Satellite System 

MPC: Model Predictive Control 

RHC: Receding Horizon Control 

SSL: Satellite-to-Satellite Line 

LTI: Linear Time-Invariant 

SQP: Sequential Quadratic Programming 

 

1. Introduction 

 In the first decades of the XXI century an increasing 

attention has been devoted to space gravimetric missions. 

The main purpose of this type of missions consists in 

measuring with high accuracy and resolution the value of 

the Earth’s gravity field while monitoring its changes in 

time and space. As a matter of fact, the Earth’s 

gravitational field is not constant and homogeneous over 

the entire surface of our planet, but it specifically depends 

on the mass distribution among all its layers. As a result, 

the measure of the gravity field could be an important 

instrument of information about the morphology and the 

density of all the different parts of the Earth, from its 

interiors to the crust, also involving the atmosphere [1]. 

Since the value of this measure is influenced by mass 

change phenomena, it results evident the reason that 

pushes the research to place ever greater emphasis on this 

type of studies. Indeed, mass changes phenomena are 

strictly linked with all the climate variables, and their 

observation and monitoring enable the investigation on 

all those geophysical processes which involve hydrology 

(total water storage and cycles), tectonic plates 

displacement, changes in the mass of ice sheets, ocean 

and atmosphere circulation, and so forth.  

In order to observe mass distribution changes and 

transport in and between the different Earth’s system 

layers (Atmosphere, Oceans, Hydrosphere, Cryosphere, 

and Solid Earth), the most direct way consists in 

measuring the temporal variations of the Earth gravity 

field over a long-time span [2]. Since gravity constraints 

the motion of Earth’s satellites, studying the 

perturbations introduced in their orbits can give us a good 

source of information to measure the gravitational field 

[3]. At this purpose, in the last 50 years different satellites 

dedicated to geodesy have been conceived. The first that 

fits inside this context is the LAGEOS (Laser 

Geodynamics Satellite), launched in 1976 [4]. It made 

use of very low altitude satellites and novel measurement 

techniques to provide a measure of the gravity field with 

good spatial and temporal resolution. Nevertheless, it is 

especially in the last 20 years that many steps forward 

have been made in this direction thanks to the progresses 

given by the successful US-German gravity missions 

GRACE (Gravity Recovery and Climate Experiment, 

launched in 2002 [5]), GRACE Follow-On [6] and the 

European GOCE (Gravity Field and steady-state Ocean 

Circulation Explorer, launched in 2009 [7], [8]) mission. 

In order to increase at a higher degree the recovery of 

the gravity field, future Earth gravimetry missions will 

fact as free falling proof masses and will measure the 

inter-satellite distance variations via a laser 

interferometer instrument [9], for revealing anomalies 

and variations of the local gravity field. This ambitious 

goal can be reached considering long-distance distributed 

space systems, in the order between 100 and 220 km 

distance (as in GRACE FO), but possibly at lower 

altitude (down till 350 km). Given that at those altitudes 

the effects of the residual Earth atmosphere are very 

severe, this kind of missions require “drag-free” satellites 

and an accurate distance measurement system [1], [10].  

In this context, the paper focuses on an Earth-gravity 

monitoring mission featuring a formation with two drag-

free satellites. In order to make the spacecraft only 

affected by local gravity, that is to counteract the 

atmospheric drag, pre-designed linear and angular drag-

free controllers are employed. They are based on the 

Embedded Model Control (EMC) [11], [12], an efficient 

and robust technique for model-based design capable of 

stabilizing systems affected by parametric and structural 

uncertainties. However, given the impossibility of a 

perfect drag-free condition, due to some secular (low 

frequency) residual accelerations, a formation control is 

needed. In this regard, the aim of our work is to design a 

formation control which is able both to counteract bias 

and drift of the residual drag-free accelerations and to 

reach the orbit and formation long-term stability. The 

approach adopted in the formation control design is based 

on the Nonlinear Model Predictive Control (NMPC) [13] 

methodology. The idea comes from the need of 

developing an optimal control law managing, at the same 

time, state and input constraints due to the numerous 

formation scientific requirements and the limited thruster 

range. Indeed, besides the formation requirements, also 

the very low thruster authority and the need to cancel the 

drag-free residual acceleration strongly constraint the 

problem under study. A key element of the NMPC is an 

internal prediction model, used to find an optimal 

trajectory over a finite time interval. Here, an integrated 

formation control (IFC) model, based on a novel set of 

Hill-type equations, has been developed and used. This 

model allows a common description of the formation 

altitude and inter-satellite distance, by defining a specific 

orbital reference frame called Formation Local Orbital 

Frame (FLOF). 

The Next Generation Gravity Mission (NGGM) pair 

is considered as a benchmark for the developed NMPC 

framework. The concept of NGGM has been proposed by 

ESA with the aim to improve the work started by the 
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previous gravimetric missions, like GOCE and GRACE. 

Indeed, relying on the heritage gained from these two 

successful missions, NGGM sets its goal in the 

measurement of the variations of the Earth’s gravity 

field, over a long-time span, with spatial and temporal 

resolution [14]. In this regard, to emulate the NGGM 

mission, a high-fidelity nonlinear model, with the 30th 

order gravity field and various atmospheric disturbances 

(e.g., atmospheric drag and solar pressure), has been used 

for the long-run simulations. 

Furthermore, to consider an even more realistic 

situation, the issues related to the transmission of data 

between satellites is also taken into account by assuming 

long sampling times of the measurements due to absence 

of a radio-frequency inter-satellite link (RF ISL). As a 

result, the position and velocity information of the 

companion spacecraft is propagated on board of each 

satellite in the time intervals during which no real-time 

information is available (e.g., 1 orbit). To deal with such 

lack of data, orbit propagators with low computational 

complexity are implemented. The novelty of these 

propagators is the ability to compute accurately the 

companion satellite orbit, despite being designed 

considering a low order gravity field (J4) and completely 

neglecting other atmospheric disturbances. 

The paper is organized as follows. In Section 2, an 

overview about the nonlinear model developed in 

Simulink for the NGGM mission is presented. In Section 

3, the design of the orbit and formation control by means 

of NMPC methodology is described. Section 4 deals with 

the introduction of the innovative low-fidelity orbit 

propagators. The simulations results are presented in 

Section 5. At last, the conclusions are drawn in Section 

6. 

 

2. NGGM Model 

The NGGM will consist in a formation of a pair of 

satellites, placed in a near-polar orbit at an altitude 

between 350 and 500 km. The nonlinear model used for 

simulation purposes has been developed in Simulink and 

is composed of three main blocks: one block for each 

satellite and the third one used to generate the nominal 

variables of FLOF. As shown in Figure 1, the model of 

each satellite includes three parts: a first block is devoted 

for simulating the satellite kinematics and dynamics and 

for deriving the orbital elements; a second block is used 

to model the atmospheric and gravity disturbances 

(forces and torques) acting on the satellite, and a last 

block is used to model the measurement instruments and 

metrology systems adopted by each spacecraft for 

measuring and monitoring the variables of interest.  

Going more into detail, the satellite kinematics and 

dynamics have been modelled treating the satellites as 

rigid bodies which move with respect to some inertial 

frame. In the simulator, the attitude dynamics block 

implements the Euler moment equation, which, starting 

from total torque 𝑴 acting on the spacecraft and given 

the inertia matrix 𝐼𝑚 , returns the simulated angular 

velocity and acceleration of the spacecraft in the body 

frame: 

 

𝐼𝑚�̇� =  𝑴 − 𝝎 × 𝐼𝑚𝝎 (1) 

 

The angular velocity exiting from the attitude dynamics 

block becomes the input of the attitude kinematic block, 

which, according to the following equation, gives as 

output the body attitude quaternion 

 

�̇� =
1

2
𝑞 ⊗ 𝝎𝑞  (2) 

 

where 𝝎𝑞 = (0,𝝎) is the quaternion translation of the 

angular velocity 𝝎. 

The non-gravitational body forces, as well as gravity 

forces, are used by the Orbit Dynamics block to compute 

the satellite CoM acceleration 𝒂𝐶𝑜𝑀 and, by integration, 

the satellite CoM velocity and position. These quantities, 

together with the angular momentum, are finally needed 

to obtain the six classical orbital elements (𝑎, 𝑒, 𝑖 , 𝛺 , 

𝑎𝑟𝑔 , 𝜃 ), through which it is possible to completely 

describe the orbit of a satellite and its position on it.  

 

The block used to model the atmospheric and gravity 

disturbances takes as input the simulated satellite 

position and velocity coming from the dynamics and 

kinematics block. Among all the environmental forces 

and torques acting on the satellite, the disturbances that 

significantly affect the spacecraft are the Aerodynamic 

Drag and the Solar Pressure, described in the following.  

The Atmospheric Drag can be seen as the friction which 

opposes the spacecraft velocity vector. Since it is 

proportional to the density, which decreases 

exponentially with the altitude, it represents a significant 

disturbance especially in Low Earth Orbits (LEO). In this 

study, to model this disturbance force, each spacecraft 

has been considered made by a number of flat surfaces, 

result of a trade-off between the computational load and 

the smoothness of forces and torques profiles. Each 

surface is identified by its normal unit vector and its 

centre. The contribution given by each tile to the total 

drag force depends on the element surface, the relative 

wind velocity, and the air density. For these reasons, the 

Drag Model block takes as input the body wind velocity 

and the body angular rate and computes the relative 

velocity of each flat surface. Then, the contributions of 

each surface are combined in order to obtain the overall 

drag force and torque. For the computation of the 

aerodynamic coefficient, two models can be adopted to 

describe the kind of interaction between the body and the 

air flow taking into account, eventually, the momentum 

transfer between the gas particle and the surface element: 
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Fig. 1. Nonlinear Model of a Single Satellite 

 

1. The Hyper-thermal model, in which the particles 

move in straight lines parallel to the airflow and 

only those surfaces directly invested by the 

airflow contribute to the definition of the 

aerodynamic coefficients.  

2. The Thermal model, in which the particles 

motion is not parallel to the airflow direction and 

also the shadowed surfaces contribute to the 

definition of the aerodynamic coefficients. 

In the present study the thermal model has been adopted 

as it considered the best fitting of the drag experienced in 

flight by GOCE [15]. Note that, even if the drag force is 

a distributed load, it can be considered as an equivalent 

concentrated force applied in a point called Centre of 

Pressure (CoP). Therefore, the drag force produces also 

a torque having magnitude proportional to the lever arm, 

that is the distance between CoM and CoP. 

As previously said, the second important atmospheric 

disturbance considered here is the solar radiation 

pressure, that is the mechanical pressure exerted upon the 

spacecraft surfaces due to the exchange of momentum 

between the spacecraft and the electromagnetic field. The 

inputs of the model used to compute this disturbance 

force are the spacecraft position and the sun position. In 

particular, the latter is needed to take into account that 

only those surfaces that are directly exposed to the sun 

give a not null contribution. Consequently, a coefficient 

that varies between 0 and 1 has been introduced in order 

to consider the degree of exposure of each surface to the 

solar radiations. For each tile, the solar pressure force 

𝑭𝑟𝑘  is computed by combining specular reflections, 

diffuse reflections, and total absorption. Finally, as done 

for the atmospheric disturbance, the overall sun force and 

torque are obtained by summing the contributions of all 

the spacecraft surfaces. 

Besides the atmospheric disturbances, the forces and 

torques acting on the spacecrafts also include the gravity. 

Indeed, the Earth gravity field interacts with the satellite 

generating a force that, applied in the CoM, determines 

the body orbit, and a torque that acts as an attitude 

perturbation. In the nonlinear model presented here, the 

gravity model is obtained considering the spherical 

harmonic representation of planetary gravity at a specific 

location. The planetary model that has been adopted is 

EGM2008, that is the latest Earth spherical harmonic   

gravitational model from National Geospatial-

Intelligence Agency (NGA). The spherical harmonic 

representation is needed to consider a more accurate 

model of the Earth gravitational field than the one that 

can be obtained by considering a spherical gravity model, 

which ideally assumes the Earth mass concentrated in its 

centre as in a central force field. Since the measure of the 

Earth gravitational field is the target of NGGM, for this 

study a spherical harmonic expansion of high degree 

(𝑘 = 30) has been used in order to guarantee an accurate 

description of its influence.  

As previously said, a second contribution given by the 

Earth gravity field is the gravity gradient torque. This 

torque is due to the nonuniform gravity forces acting on 

extended bodies and can be expressed as  

 

𝑀𝑔
⃗⃗ ⃗⃗  ⃗ = ∫𝑠 × 𝑔 (𝑟 )𝑑𝑚

𝐵

 (3) 
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where B is the body volume, and 𝑠  the difference 

between the mass position 𝑟   and the spacecraft CoM 

position. 

 

 Finally, we can briefly summarize the measurement 

instruments and metrology systems involved in the 

monitoring of the variables of interest. They may roughly 

be subdivided into three main categories: 

- Inertial navigation sensors, such as accelerometers 

and gyroscopes, that are mostly used to detect 

acceleration and angular rate variations. 

- Position and navigation sensors, such as the Global 

Navigation Satellite System [GNSS], needed to measure 

the spacecraft position and velocity by observing the 

motion of the spacecraft CoM with respect to the GNSS 

constellation. 

- Attitude sensors, such as Sun and Earth sensors, star 

trackers and magnetometers, that are used to measure the 

satellite attitude.  

All the mentioned sensors have been modelled by 

summing a noise to the clean signal. For instance, the 

accelerometer model is composed by a filtered high 

frequency noise to which bias and drift have been added. 

 

3. Formation Control 

 This paper is focused on the development of a NMPC 

framework for the formation control of a gravimetric 

mission. As previously said, the Next Generation Gravity 

Mission has been considered as a benchmark for this 

purpose. In particular, the inline formation type, in which 

the two satellites fly on same nominal orbit with different 

true anomalies, has been taken into account. The 

ambitious goal of the formation control consists in 

guaranteeing the long-term stability of the system by 

simultaneously counteracting bias and drift of residual 

drag-free accelerations. Indeed, due to some secular 

residual accelerations, a perfect drag-free condition 

cannot be achieved. As described by the requirements 

collected in Table 1, the control strategy shall allow the 

concurrent monitoring of both satellites’ altitude and 

relative distance in order to ensure that perturbations 

affecting these two quantities remain bounded during the 

entire mission lifetime, namely a solar cycle. These 

requirements, splitted into distance, radial and lateral 

variations, are expressed in terms of percentage with 

respect to the nominal altitude and distance values. 

To face the problem, a NMPC-based framework has been 

implemented. The Model Predictive Control (MPC), also 

called Receding Horizon Control (RHC) is a modern 

feedback strategy widely adopted for industry 

applications, especially for linear processes. This control 

technique can find an optimal control law managing at 

the same time state and input constraints and providing 

an online adaptation of the control strategy to possible 

variations of the process conditions. However, since 

many systems are, in general, inherently nonlinear, linear   

Table 1. NGGM Formation Control Requirements 

 

models are often inadequate to represent the behaviour of 

the system. This is the rationale behind the NMPC, which 

is a variant of the standard MPC based on nonlinear 

models and/or nonlinear constraints. 

  

In detail, consider the following nonlinear system: 

 
�̇�(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡))

𝑦(𝑡) = ℎ(𝑥(𝑡), 𝑢(𝑡)),
(4) 

 

where 𝑥 ∈  ℝ𝑛𝑥 , 𝑢 ∈  ℝ𝑛𝑢 , 𝑦 ∈  ℝ𝑛𝑦  are the state, the 

input and the output, respectively. We assume that the 

state is measured, with a sampling time 𝑇𝑠 . If this 

assumption does not hold, an observer can be employed. 

The measurements are 𝑥(𝑡𝑘),  𝑡𝑘 = 𝑇𝑠𝑘, 𝑘 = 0, 1, … . At 

each time 𝑡 = 𝑡𝑘 , a prediction of the system state and 

output over the time interval [𝑡, 𝑡 + 𝑇𝑝]  is performed, 

where 𝑇𝑝 > 𝑇𝑠  is the prediction horizon. The prediction 

is obtained by integrating the equation (4). At any time 

𝜏 ∈ [𝑡, 𝑡 + 𝑇𝑝] , the predicted output  �̂�(𝜏) ≡

 �̂�(𝜏, 𝑥(𝑡), 𝑢(𝑡: 𝜏)) is a function of the ‘initial’ state 𝑥(𝑡) 

and the input signal. The notation 𝑢(𝑡: 𝜏)  is used to 

indicate the input signal in the interval  [𝑡, 𝜏]. At each 

time 𝑡 = 𝑡𝑘 , we look for an input signal  𝑢∗(𝑡: 𝜏) , 

minimizing a suitable cost function 𝐽 (𝑢(𝑡: 𝑡 + 𝑇𝑝)) 

subject to possible constraint that may occur during the 

system’s operations. Mathematically, at each time 𝑡 = 𝑡𝑘, 

the following optimization problem is solved:  

 

𝑢∗(𝑡: 𝑡 + 𝑇𝑝) = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑢(⋅)

𝐽 (𝑢(𝑡: 𝑡 + 𝑇𝑝))                 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:                                                                        

     �̇̂�(𝜏) = 𝑓(�̂�(𝜏), 𝑢(𝜏)),     �̂�(𝑡) = 𝑥(𝑡)                       (5)

�̂�(𝜏) = ℎ(�̂�(𝜏), 𝑢(𝜏))                                                     

�̂�(𝜏) ∈ 𝑋𝐶 ,   �̂�(𝜏) ∈ 𝑌𝐶 ,   𝑢(𝜏) ∈  𝑈𝐶                            

 

 

where 𝑋𝐶 , 𝑌𝐶 , and 𝑈𝐶  are suitable sets describing 

possible constraints on the state, output, and input 

respectively. The performance index 𝐽  is a weighted 

quadratic function of the predicted output tracking 

error  �̃�𝑃 and the system input 𝑢: 

 

 

Variable Bound Unit 

Formation distance 

variation 

𝜂𝑑 = 10% % (distance) 

Formation radial 

variation 

𝜂𝑟 = 2% % (altitude) 

Formation lateral 

variation 

𝜂𝑦 = 1% % (distance) 
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𝐽 (𝑢(𝑡: 𝑡 + 𝑇𝑝)) =  ∫ ‖�̃�𝑃(𝜏)‖𝑄
2 + ‖𝑢(𝜏)‖𝑅

2  d𝜏 
𝑡+𝑇𝑝

𝑡

 

                                    + ‖�̃�𝑃(𝑡 + 𝑇𝑝)‖𝑃

2
. (6) 

 

The ‖𝑣‖𝑊
2  notation represents the (square) weighted 

norm of a vector 𝑣 ∈ ℝ𝑛 such that ‖𝑣‖𝑊
2 ≐ 𝑣𝑇𝑾𝑣 =

 ∑ 𝑤𝑖𝑣𝑖
2𝑛

𝑖=𝑖  and 𝑾 = diag(𝑤1, … , 𝑤𝑛) ∈ ℝ𝑛 , 𝑤𝑖 ≥ 0. 
The predicted tracking error is �̃�𝑃(𝜏) = 𝑟(𝜏) − �̂�(𝜏) , 

whereas 𝑟(𝜏) is the desired reference to track and �̂�(𝜏) is 

obtained by integration of equation (4). The weights 𝑸 ≥
0, 𝑷 ≥ 0 , and 𝑹 > 0  are diagonal matrix. Note that 

𝑸,𝑷 ∈ ℝ𝑛𝑦×𝑛𝑦  and 𝑹 ∈  ℝ𝑛𝑥×𝑛𝑥 . A receding control 

horizon strategy is employed: at a given time 𝑡 = 𝑡𝑘, only 

the first optimal input is applied to the plant, while the 

remainder of the solution is discarded. Then, the 

complete procedure is repeated at the next time 𝑡 = 𝑡𝑘+1. 

 

Remark. The optimization problem in equation (5) is 

in general numerically not tractable, since 𝑢(⋅)  is a 

continuous-time signal and thus the number of decision 

variables is infinite. To overcome this issue, a finite 

parametrization of the input signal 𝑢(⋅)  has been 

employed. In particular, we assumed a piece-wise 

constant parametrization, with changes of values at the 

nodes 𝜏1, … , 𝜏𝑛𝑁
∈ [𝑡, 𝑡 + 𝑇𝑝]. Several simulations have 

been carried out, considering values of 𝑛𝑁 from 1 to 6. It 

has been observed that the value 𝑛𝑁 = 1  leads to 

satisfactory behavior, without any significant 

performance degradation but with a reduced 

computational complexity with respect to the case 𝑛𝑁 >
1. Hence, this value (corresponding to a constant input 

for every 𝜏 ∈ [𝑡, 𝑡 + 𝑡𝑝] ) has been assumed for all 

simulation of Section 5.   

 

The Model Predictive Control, being a particular 

branch of model-based design, is based on the idea to 

employ a dynamical model of the plant to predict the 

future behaviour of the variables of interest and compute 

an optimal control command. In this paper, for the 

NMPC internal prediction an integrated formation 

control (IFC) model, based on a novel set of Hill-type 

equations, has been developed and used. This model 

allows a common description of the formation altitude 

and inter-satellite distance, and is based on the so-called 

triangular virtual structure, depicted in Figure 2, and on 

the definition of a specific orbital reference frame called 

Formation Local Orbital Frame (FLOF).  

The FLOF is built from the GNSS range 

measurements, and its axes are defined as follows: 

 

𝒐1 =
𝛥𝒓

𝑑
,      𝒐2 =

𝒓
𝑟

× 𝒐1

|
𝒓
𝑟

× 𝒐1|
,      𝒐3 = 𝒐1 × 𝒐2 (7) 

 

 
 

Fig. 2. NGGM Triangular Structure and Formation 

Local Orbital Frame 

 

where 𝒓 = (𝒓1 + 𝒓2)/2  is the main formation radius, 

𝛥𝒓 = (𝒓1 − 𝒓2) is the satellite relative position and 𝑑 =
|𝛥𝒓| is the inter-satellite distance. 

The model formulation assumes that the high-

frequency acceleration components are only due to the 

gravity term. This assumption holds if the short-term non 

gravitational accelerations are cancelled by means of a 

drag-free control. Looking at Figure 2, the satellite-to-

satellite distance variations are measured along the 

satellite-to-satellite line (SSL), which is defined as the 

line connecting the CoM of the satellites, assuming the 

presence of a proper attitude and pointing control system 

able to keep aligned the two satellites optical axis. 

To build the integrated formation model, a 

preliminary definition of formation and orbit 

perturbations is needed. At this purpose, let’s introduce, 

in the formulation of the formation mean and differential 

radius, the three Cartesian perturbations 𝛿𝑑, 𝛿𝑟𝑥  , 𝛿𝑟𝑧: 

 

𝛥𝒓 =  (𝑑𝑛𝑜𝑚 + 𝛿𝑑)𝑜1⃗⃗  ⃗

𝒓 =  𝑟𝑥𝑜1⃗⃗  ⃗ + 𝑟𝑧𝑜3⃗⃗  ⃗ = (0 + 𝛿𝑟𝑥)𝑜1⃗⃗  ⃗ + (𝑟𝑛𝑜𝑚 + 𝛿𝑟𝑧)𝑜3⃗⃗  ⃗
 (8) 

 

where 𝑑𝑛𝑜𝑚  is the nominal inter-satellite distance and 

𝑟𝑛𝑜𝑚  stands for the nominal formation altitude. 

Moreover, besides 𝛿𝑑, 𝛿𝑟𝑥 , 𝛿𝑟𝑧 , let’s define three other 

perturbations provided by the 3D non-zero components 

of the FLOF angular rate vector 𝝎 = 𝜔𝑥𝑜1⃗⃗  ⃗ + 𝜔𝑦𝑜2⃗⃗  ⃗ +

𝜔𝑧𝑜3⃗⃗  ⃗, whose norm is defined as 𝜔 = 𝜔𝑛𝑜𝑚 + 𝛿𝜔. As it 

is evident by the presence of 6 perturbations, the overall 

formation dynamics will be described by 6 DoFs, and 

consequently the IFC model will involve six differential 

equations. The first set of differential equations is 

obtained starting from the relative position vector 𝛥𝒓, 

while the second set of differential equations comes from 

the kinematic equation of the mean formation radius 𝒓. 

The final perturbation equations have been obtained by 

combining the kinematics equations involving the six 
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selected perturbations with the formation triangle 

dynamic equations. It is worth to underline that, for 

simplicity, in the derivation of the IFC model, the gravity 

gradient 𝛥𝒈 and the gravity term 𝒈 have been expressed 

in FLOF coordinates considering only the spherical 

gravity term, ideally arranging the higher order terms, 

from J2 on, as part of the external acceleration 

contribution. 

The obtained perturbation equations have been 

linearised around an equilibrium point, whose 

components are defined in the following: 

 
𝑑𝑒𝑞 = 𝑑𝑛𝑜𝑚

𝑟𝑧𝑒𝑞
= 𝑟𝑛𝑜𝑚

𝑟𝑥𝑒𝑞
= 0

𝜔𝑦𝑒𝑞
= 𝜔𝑛𝑜𝑚

𝜔𝑥𝑒𝑞
= 𝜔𝑧𝑒𝑞

= 0

(9) 

 

The obtained linearized equations can be expressed 

through the perturbed state variables and inputs, leading 

to the following linear time-invariant (LTI) continuous-

time system: 

 

[
𝛿�̇�𝑓

𝛿�̇�𝑓
] (𝑡) = 𝜔𝑛𝑜𝑚 [

0 𝐴12

𝐴21 𝐴22
] [

𝛿𝒙𝑓

𝛿𝐯𝑓
] (𝑡)

+
1

𝜔𝑛𝑜𝑚

[
0
𝐵2

] 𝒂𝑓(𝑡)

𝐲𝑓(𝑡) = [𝐶1 𝐶2] [
𝛿𝒙𝑓

𝛿𝐯𝑓
] (𝑡)

(10) 

 

where 𝐴12, 𝐴21, 𝐴22 and 𝐵2 are parameter free matrices. 

The formation triangle perturbed state vector can be 

defined as the difference between the actual and the 

nominal values and it is composed by two sub-vectors: 

𝛿𝒙𝒇  and 𝛿𝒗𝒇  that respectively represent the length and 

the rate state variables. Defining 𝛼 = 𝑑𝑛𝑜𝑚/𝑟𝑛𝑜𝑚 , the 

state vector and the non-gravitational acceleration input 

vector are given by: 

 

𝛿𝒙𝑓 = [

𝛿𝑑 = 𝑑 − 𝑑𝑛𝑜𝑚

𝜌𝑥 = 𝛼𝑟𝑥
𝜌𝑧 = 𝛼(𝑟𝑧 − 𝑟𝑛𝑜𝑚)

] ,  

 

𝛿𝒙𝑓 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 

𝛿�̇�

𝜔𝑛𝑜𝑚

𝜌�̇�

𝜔𝑛𝑜𝑚

𝛿𝜌�̇�

𝜔𝑛𝑜𝑚

𝑤𝑥 =
𝛼𝑟�̇�

𝜔𝑛𝑜𝑚

𝑤𝑦 =
𝑑𝑛𝑜𝑚(𝜔𝑦 − 𝜔𝑛𝑜𝑚)

𝜔𝑛𝑜𝑚

𝑤𝑧 =
𝛼𝑟�̇�

𝜔𝑛𝑜𝑚 ]
 
 
 
 
 
 
 
 
 
 
 
 
 

𝒂𝑓 =

[
 
 
 
 
 
𝛥𝑎𝑥

𝛥𝑎𝑦

𝛥𝑎𝑧

𝛼𝑎𝑥

𝛼𝑎𝑦

𝛼𝑎𝑧]
 
 
 
 
 

, (11) 

 

 

where 𝛼 is used to express all the quantities in length unit 

and 𝑎𝑥 , 𝑎𝑦 , 𝑎𝑧 , 𝛥𝑎𝑥 , 𝛥𝑎𝑦 , 𝛥𝑎𝑧  are the components of 

mean and differential accelerations 

 

𝒂 =
𝒂1 + 𝒂2

2
,         𝛥𝒂 = 𝒂1 − 𝒂2 .  (12) 

 

Now, from the complete model, it is possible to 

consider a restricted seventh order one, which is proven 

to be observable and controllable assuming 𝐲𝑓(𝑡) =

 𝛿𝒙𝑓(𝑡). The state vector of the restricted model takes 

into account only the three Cartesian perturbations 

(𝜌𝑥 ,  𝜌𝑧 , 𝛿𝑑 ) and their normalized rates (𝑤𝑥, 𝑤𝑧 , 𝑤𝑑 =

�̇�/𝜔𝑛𝑜𝑚), plus the normalized perturbation of the orbital 

rate 𝑤𝑦. In addition, also the input is restricted to the in-

plane input variables. The obtained 7-th order LTI system 

is 

 

[
�̇�
�̇�

] (𝑡) = [
0 𝐼𝜔𝑛𝑜𝑚

𝐴21 𝐴22
] [

𝒓
𝒘

] (𝑡) + [
0
𝐵2

] 𝒖(𝑡)

𝒚(𝑡) = [𝐼  0] [
𝒓
𝒘

] (𝑡), [
𝒓
𝒘

] (0) = [
𝒓0

𝒘0
]

(13) 

 

where 
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[𝒓 𝒘]𝑇 = [𝜌𝑥, 𝜌𝑧 , 𝛿𝑑,𝑤𝑥 , 𝑤𝑧 , 𝑤𝑑 , 𝑤𝑦]
𝑇
,

𝒖 = [𝑢𝑓𝑥,𝑢𝑓𝑧 , 𝛥𝑢𝑓𝑥, 𝛥𝑢𝑓𝑧]
𝑇

= [𝛼𝑎𝑥 , 𝛼𝑎𝑧 , 𝛥𝑎𝑥 , 𝛥𝑎𝑧]
𝑇 ,

𝐴12 = 3𝜔𝑛𝑜𝑚 [

1 0 0
0 1 0
0 1 0

−1 0 0

] , 𝐴22 = 2𝜔𝑛𝑜𝑚 [

0 − 1 1 0
1 0 0 1
0 0 0 1

0 0 − 1 0

] ,

𝐵2 = [

𝛼 0 0 1
0 𝛼 0 0
0 0 1 0

0 0 0 − 1

] 𝜔𝑛𝑜𝑚⁄ .

 (14) 

 

The NMPC controller has been implemented as a 

Simulink block able to perform the control algorithm 

previously described. For the internal prediction, the 

linearized model explained so far has been used. Looking 

at the IFC input vector 𝒖 , that is the NMPC control 

command, it is possible to note that in order to sum the 

formation control command with the other non-

gravitational contributions (namely atmospheric 

disturbances and drag-free control commands), it is 

necessary to derive from the command input 𝒖 , the 

accelerations 𝒂1 and 𝒂2 given by the formation control 

to the single satellites: 

 

𝒂1 = [

𝑎1𝑥

𝑎1𝑦

𝑎1𝑧

] =

[
 
 
 
 
2𝑢𝑓𝑥 + 𝛼𝛥𝑢𝑓𝑥

2𝛼
0

2𝑢𝑓𝑧 + 𝛼𝛥𝑢𝑓𝑧

2𝛼 ]
 
 
 
 

,

𝒂2 = [

𝑎2𝑥

𝑎2𝑦

𝑎2𝑧

] =

[
 
 
 
 
2𝑢𝑓𝑥 − 𝛼𝛥𝑢𝑓𝑥

2𝛼
0

2𝑢𝑓𝑧 − 𝛼𝛥𝑢𝑓𝑧

2𝛼 ]
 
 
 
 

.

 (15) 

 

where the out-of-plane coordinates are obviously equal 

to zero.  

For the choice of the best NMPC configuration, the 

relevant parameters to be tuned are the sampling time 𝑇𝑆, 

the prediction horizon 𝑇𝑃, the weight matrices 𝑄, 𝑃 and 

𝑅, and the command lower and upper bounds 𝐿𝑏 and 𝑈𝑏. 

At this purpose, the following guidelines have been taken 

into account:  

- A sampling time 𝑇𝑠 as large as possible needs to 

be considered in order to avoid interference with 

the wide-band drag-free control. 

- The prediction horizon 𝑇𝑝  can be obtained with 

a trial-and-error procedure, considering that 

generally a large 𝑇𝑝 increases the closed-loop 

stability properties but a "too large" 𝑇𝑝  may 

reduce the short time tracking accuracy. 

- The command input must remain very limited in 

order to guarantee a very low thruster authority, 

consequently very stringent input constraints 

have to be used. 

- A state constraint has to be included in the 

optimization problem in order to meet the 

requirement on the formation distance, as 

specified in Table 1. 

 

For the solution of the optimization problem required 

by the NMPC technique, the Sequential Quadratic 

Programming (SQP) solver provided by the Matlab 

Nonlinear Optimization Toolbox® has been used.  

 

4. Orbit Propagators  

This section is aimed at introducing the main 

modelling concepts regarding the development of low-

fidelity orbit propagators to be included in the nonlinear 

model previously described.  The reason behind the 

realization of these orbit propagators regards the issues 

related to the transmission of measurement data between 

one satellite and its companion, due to the absence of a 

radio-frequency inter-satellite link (RF ISL) and the long 

sampling times of measurements (at least one orbit). This 

means that the information about position and velocity 

of, for example, Satellite 2 provided by GPS 

measurements becomes available on Satellite 1 once 

every orbital period. During the time intervals in which 

no real-time information is available, position and 

velocity of Satellite 2 need to be computed by means of 

the orbit propagator. Consequently, the Satellite 2 orbit 

propagator is embedded inside the Satellite 1 block 

scheme, as shown in Figure 3. The outputs of the orbit 

propagator are the propagated Satellite 2 velocity and 

position which will be used to derive the Formation 

Variables on board of Satellite 1. In the same way, on 

Satellite 2 will be present the orbit propagator of Satellite 

1, whose outputs will be used to derive the Formation 

Variables on board of Satellite 2.  

The novelty of these propagators is the ability to 

accomplish their task despite having been designed with 

a very low computational complexity. Indeed, to develop 

a very simple model, only the perturbations due to the 

gravity term have been taken into account, while 

completely neglecting all the other atmospheric 

disturbances.  

In order to develop propagators capable of generating 

velocity and position as similar as possible to real ones, 

with the aim to compute the spacecraft orbit without 

impinging the capability of the control system to stabilize 

the formation virtual structure, it is necessary to obtain: 

 
𝒂𝐶𝑜𝑀𝑝𝑖

≅ 𝒂𝐶𝑜𝑀𝑖
 (16) 

 

where 𝑖 = 1,2 denotes one of the two satellites, 𝒂𝐶𝑜𝑀𝑝𝑖
 is 

the propagated acceleration of satellite 𝑖, while 𝒂𝐶𝑜𝑀𝑖
 is 

the real acceleration of satellite 𝑖 . The real satellite 

acceleration 𝒂𝐶𝑜𝑀  is given by the sum of the negative 

gravity acceleration 𝒈  and all the non-gravitational 

accelerations which include the atmospheric disturbances  
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Fig. 3. Satellite 1 Block Scheme with Orbit Propagator 

 

(e.g., drag force 𝒇𝑑𝑟𝑎𝑔 and solar pressure 𝒇𝑠𝑢𝑛) and the 

command actions of the drag-free control and the 

formation control 𝒖𝑓𝑜𝑟𝑚:  

 

𝒂𝐶𝑜𝑀 = −𝒈 +
𝒇𝑑𝑟𝑎𝑔

𝑚
+

𝒇𝑠𝑢𝑛

𝑚
+

𝒖𝑑𝑟𝑎𝑔

𝑚
+

𝒖𝑓𝑜𝑟𝑚

𝑚
  (17) 

 

Assuming that the drag-free control system is able to 

fulfil its task, that is the non-gravitational accelerations 

due to the atmospheric disturbances are zeroed by the 

drag-free command action, thus Eq. 17 becomes:  

 

𝒂𝐶𝑜𝑀 ≅ −𝒈 +
𝒖𝑓𝑜𝑟𝑚

𝑚
  (18) 

 

The approach adopted for the modelling of the orbit 

propagators presented in the following consists in a 

cascade of two integrators through which to derive the 

satellites propagated velocity and position starting from 

an approximated value of their acceleration. In particular, 

only the negative gravity term has been taken into 

account. Furthermore, it is worth noticing that the gravity 

model used inside the propagator is slightly different 

from the one adopted to simulate the real satellite orbital  

 

dynamics. Indeed, in the satellite nonlinear model the 

30th order of spherical harmonics was used for the 

gravity force, while inside the orbit propagator a 4th 

order zonal coefficient has been adopted. 

 In our work, three type of orbit propagators have 

been developed: 

1. Basic Orbit Propagator 

2. Orbit Propagator with Command Action 

3. Orbit Propagator with Error Correction 

 

In the first configuration, shown in Figure 4a, only the 

gravity term has been considered. Then, the 

approximated value of satellite acceleration is: 

 
𝒂𝐶𝑜𝑀𝑝𝑖

≅ −𝒈4𝑖  (19) 

 

where  𝑖 denotes one of the two satellites and 𝒈4 is used 

to indicate the gravity acceleration derived by means of 

the 4th order term of spherical harmonics. Note that, as 

shown in Figure 4, the two integrators used to propagate 

the satellite velocity and position are driven by means of 

a pulse generator whose frequency is the one to which the 

measurement data of the companion satellite become 

available on board of each spacecraft. This frequency is  
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Fig. 4. a) Basic Orbit Propagator   b) Orbit 

Propagator with Command Action   c) Orbit Propagator 

with Error Correction 

 

also used to decide when the integrators initial conditions 

need to be updated during the simulation. 

 

     To reduce the difference between real and propagated 

accelerations, a first refinement consists of introducing, 

as input of the orbit propagator, the command 

acceleration coming from the formation control, as 

depicted in Figure 4b. In this way, the approximated  

value of satellite acceleration 𝒂𝐶𝑜𝑀𝑝   becomes: 

 

𝒂𝐶𝑜𝑀𝑝𝑖
≅ −𝒈4𝑖 + 

𝒖𝑓𝑜𝑟𝑚𝑖

𝑚
 (20) 

 

As we can notice, this expression is very similar to the 

one in equation (17) with the only difference that the 

gravity term is obtained through a 4th order expansion of 

spherical harmonics. 

 

To compensate this difference between gravity terms, 

it was decided to implement one last modification in the 

model just described. The idea is to include, on board of 

each spacecraft, two orbit propagators: one to compute 

the orbit of the companion spacecraft and the other one 

to provide the propagated acceleration of the spacecraft 

on which the orbit propagator is mounted. In this way, it 

is possible to exploit the error 𝒂𝑟𝑒𝑠 between the real and 

propagated accelerations of one satellite to correct, at the   

  
Fig. 5. Difference between real and propagated position 

of Satellite 2 – 1st, 2nd and 3rd components 

 

next time instant, the orbit propagation of the other 

satellite. Then, this residual acceleration is defined as: 

 
𝒂𝑟𝑒𝑠 = 𝒂𝐶𝑜𝑀 − 𝒂𝐶𝑜𝑀𝑝 

= −𝒈 +
𝒇𝑑𝑟𝑎𝑔

𝑚
+

𝒇𝑠𝑢𝑛

𝑚
+

𝒖𝑑𝑟𝑎𝑔

𝑚
+

𝒖𝑓𝑜𝑟𝑚

𝑚
+ 𝒈4 −

𝒖𝑓𝑜𝑟𝑚

𝑚
≅ − − 𝒈 + 𝒈𝟒

 (21) 

 

As can be seen, 𝒂𝑟𝑒𝑠 provides the difference between the 

gravities computed using different orders expansion of 

spherical harmonics.  

 As illustrated in Figure 4c, after this last refinement, 

the final expression of the new propagated acceleration 

is:  

 

𝒂𝐶𝑜𝑀𝑝𝑖
≅ 𝒂𝑟𝑒𝑠𝑗

− 𝒈4𝑖 + 
𝒖𝑓𝑜𝑟𝑚𝑖

𝑚
 (22) 

 

where 𝑖 = 1,2 denotes the propagated satellite and 𝑗 =
1,2 (with 𝑗 ≠ 𝑖) indicates its companion.  

 

In Figures 5-6 the differences, obtained considering 

the third type of propagator, between real and propagated 

velocity and position of Satellite 2 are reported, with the 

intent to draw attention on the effectiveness of the 

proposed model in the computation of the satellite orbit. 

As shown in figures, according to the modelling design, 

the three components of each quantity reset to zero as 

soon as a new measurement data becomes available (in 

this case a sampling time of one orbit is considered). The  
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Fig.6. Difference between real and propagated velocity 

of Satellite 2 – 1st, 2nd and 3rd components 

 

obtained results prove that the orbit propagators are able 

to provide a very good estimation of the satellite position 

maintaining the error in the range of few meters. 

Moreover, it is also possible to notice that in the long run 

this error begins to progressively decrease. For the sake 

of brevity, Figures 5-6 are referred only to Satellite 2, but 

obviously the same considerations hold also for Satellite 

1. 

 

5. Results  

This section as the purpose to collect and present the 

simulated results obtained from a wide long-run 

simulation campaign performed before and after having 

introduced the orbit propagators above described.  The 

results, presented here, have been obtained with the 

NMPC configuration reported in Table 2. The parameters 

in the table have been chosen with a trial-and-error 

procedure, considering the guidelines previously defined. 

In all the simulated conditions, the NGGM mission 

requirements, introduced in Table 1, have been checked. 

All the tests have been performed with a simulation time 

lasting for 2000 orbits.  

     According to the previous considerations, the 

prediction horizon has been chosen as close as possible 

to the orbital period, that is 𝑇𝑃 = 4000 𝑠 . This value 

turned out to be the best trade-off between closed-loop 

stability properties and tracking accuracy. Then, noting a 

certain linear dependence between the drag-free residual 

acceleration and the command input, stringent input 

constraints have been chosen in order to ensure a very  

Table 2. NMPC configuration parameters and input 

constraints 

Parameter NMPC Configuration 

𝑇𝑠 10 𝑠 

𝑇𝑝 4000 𝑠 

𝑄 𝑑𝑖𝑎𝑔([1,1,1]) 

𝑃 𝑑𝑖𝑎𝑔([1,1,1]) 

𝑅 𝑑𝑖𝑎𝑔([0.5,0.5,0.5]) 

𝐿𝑏 [−𝛼𝑒−5, −𝛼𝑒−5, −5𝑒−5, −5𝑒−5] 
𝑈𝑏 [𝛼𝑒−5, 𝛼𝑒−5, 5𝑒−5, 5𝑒−5] 

Gravity Order 30 

 

small command effort, implying however a reduction of 

the sampling time up to 𝑇𝑃 = 10 𝑠. Finally, the diagonal 

elements of the weight matrices have been selected in 

order to obtain a suitable trade-off between convergence 

time ( 𝑃  and 𝑄 matrices) and fuel consumption ( 𝑅 

matrix). 

 

By means of simulations the fulfilment of the mission 

requirements specified in Table 1 has been checked. In 

particular, the main objective has been to ensure the long-

term stability of the lateral, radial and distance 

perturbations  (𝛿𝑟𝑥  , 𝛿𝑟𝑧 , 𝛿𝑑) though admitting ‘natural’ 

fluctuations around the altitude and distance nominal 

values.  

In Figure 7, the bounds imposed on each variable by the 

formation requirements have been highlighted with a 

green line. The plot clearly shows that the three states do  

not diverge but remain inside the specified limits, thus it 

Fig. 7. Formation Radial, Lateral and Distance 

Variations 
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Fig. 8. Formation Radial, Lateral and Distance 

Variations with propagators 

 

is possible to state that the developed NMPC framework 

is able to stabilize the system. In particular, the 

perturbation on the formation distance 𝛿𝑑 is close to zero 

and widely remains inside the specified bounds thanks to 

the control action and the state constraints introduced in 

the NMPC framework.  

The same check has been performed after having 

included the orbit propagators, specifically the “Orbit 

Propagator with Error Correction” configuration, inside 

the nonlinear model. As we can notice from Figure 8, the 

simulated results are almost identical to those of Figure 

7, proving the ability of the developed NMPC framework 

to stabilize the system and fulfill the requirements despite 

the lack of data due to the long sampling time of 

measurements. Simulations with orbit propagators have 

been performed considering a sampling time of 

measurements progressively increasing: 1 orbit, 3 orbits 

and 5 orbits. Beyond this value, the simulations began to 

show a performance degradation. 

 

6. Conclusions  

In summary, we have presented an alternative orbit 

and formation control for a new type of gravimetric 

missions, like NGGM under study by ESA. In particular, 

the paper focuses on two drag-free satellites flying in 

loose formation on a low-Earth orbit with the aim to 

measure temporal variations of the Earth gravity field 

over a long-time span.  The design of the orbit and 

formation control is based on the NMPC. This control 

methodology allows to meet the requirements, managing 

at the same time state and input constraints. As internal 

prediction model, the Integrated Formation Control 

model, which exploits the concept of formation triangle 

and the Formation Local Orbital Frame, has been used. 

To simulate a realistic situation, the Next Generation 

Gravity Mission is considered as a benchmark for the 

developed NMPC framework. In this regard, a high-

fidelity nonlinear model and the absence of a radio-

frequency inter-satellite link have been taken into 

account. Besides, for overcoming the lack of data, orbit 

propagators with low computational complexity are 

implemented.  The results, obtained after a long-run 

simulation campaign, prove the effectiveness of the 

proposed NMPC and show its capability to guarantee 

long-term stability, although the use of a very 

approximated internal model, lack of information about 

the companion satellite and low command effort. 
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