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Abstract

We study a Metric-Affine gravitational theory given by the Einstein-Hilbert action plus a

parity violating contribution (which we will refer to as the Hojman term, also known as Holst

term) in vacuum. We find out that for a certain value of the Barbero-Immirzi parameter the total

action possesses a remarkable invariance under particular transformations of the affine connec-

tion. We prove that in all cases, with appropriate gauge choices, the connection reduces to the

Levi-Civita one and that the theory turns out to be equivalent to general relativity in vacuum.

Subsequently, we generalize our discussion and analyze the case of Metric-Affine f(R) gravity

plus the Hojman term. In particular, we show that for f ′(R) 6= constant the theory results to be

on-shell equivalent to a metric-compatible torsionless Scalar-Tensor model. Matter coupling of

the aforementioned models is also discussed, together with explicit examples and applications.
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1 Introduction

In the 19th century, the branches of Mathematics and Physics experienced an extraordi-

nary progress with the emergence of non-Euclidean geometry. In particular, the development of

Riemannian geometry led to several important results, among which the rigorous mathematical

formulation of general relativity (GR). In spite of the great success and predictive power of GR,

there are still some open issues whose understanding and solution may need the formulation of new

theoretical frameworks as well as generalizations and extensions of Riemannian geometry. One

way to step beyond Riemannian geometry consists in releasing the Riemannian assumptions of

metric comparability and torsionlessness of the connection and therefore allow for non-vanishing

torsion and nonmetricity along with curvature. The latter constitutes a non-Riemannian geom-

etry [1] which is the geometric arena where Metric-Affine Gravity (MAG) [2] (see also [3] and

references therein) theories are developed.

In this generalized set-up, where geometrical objects have a clear physical meaning, the metric

and the affine connection are not related a priori, and a relation between them may be found only

after having solved the equations of motion of the theory. Moreover, many modified theories of
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gravity can be obtained as special cases of MAG. MAG models, among which the peculiar case of

f(R) theories of gravity [4],1 led to many relevant results and have been proved to have various

applications in both Mathematics and Physics [5–10]. Even though the extensive study of MAG

has started a few decades ago, there are many open issues that still need to be addressed, whose

understanding could provide remarkable insights in the gravity context.

Driven by the above motives, in this paper we analyze in detail MAG theories in four (3+1)

spacetime dimensions, providing new interesting results. In particular, we start by studying a

vacuum MAG theory involving the Einstein-Hilbert (EH) term and a parity violating contribution

defined by the contraction of the Riemann tensor with the Levi-Civita one. In the past litera-

ture, the latter term has been commonly referred to as the Holst term [11]. However, we wish

to highlight that the same was considered almost two decades before Holst’s work, by Roberto

Hojman et al. [12].2 Therefore, we will refer to the aforementioned parity violating contribu-

tion as the Hojman term. Its presence in the gravitational sector is perfectly allowable3 (if not

mandatory). Here, let us mention that the addition of the Hojman term in gravity theories was

already considered in past literature in the presence of torsion (Einstein-Cartan gravity) [13,14],

also at the quantum level [15]. In our analysis, involving both torsion and nonmetricity, we find

that for a particular value of the Barbero-Immirzi (BI) parameter [16–18] the total action pos-

sesses a remarkable invariance under peculiar transformations of the affine connection, which, to

our knowledge, is reported here for the first time. We prove that, in all cases, with appropri-

ate gauge choices, the connection reduces to the Levi-Civita one and that the theory turns out

to be equivalent to vacuum GR. We also discuss matter coupling of the aforementioned model.

Subsequently, we focus on another MAG action given by Metric-Affine f(R) gravity plus the

Hojman contribution. Remarkably, we show that in the case f ′(R) 6= constant the theory results

to be on-shell equivalent to a metric-compatible torsionless Scalar-Tensor model. We also discuss

explicit examples with f(R) = R + εR2 (where ε is a constant parameter with dimensions of

inverse mass squared) and f(R) = R2. For the latter case, we also provide an application to

homogeneous cosmology and obtain a solution.

The paper is organized as follows: In Section 2 we give some preliminary theoretical back-

ground together with notation and conventions, which will be useful in the rest of the work. In

Section 3 we study the Metric-Affine theory given by the EH action plus the Hojman term in

vacuum. In particular, there will be distinct cases to study separately: α 6= ± i
2 and α = ± i

2 ,

where α is the BI parameter. We will show that in the former case, projective invariance of the

action allows to perform a proper gauge choice in such a way to end up with a final connection

that is just Levi-Civita. In this case, as we will see, the theory results to be equivalent to GR

1Here and in the sequel, f(R) denotes an arbitrary function of the scalar curvature R = gµνRµν (Γ), with Γ a

general affine connection; see also [3] and references therein for details.
2We would like to thank Yuri Obukhov for bringing this fact to our attention.
3Indeed, just by dimensional analysis there is nothing preventing us to add this term. As a matter of fact, along

with the Ricci scalar, these are the only two scalar and pseudo-scalar combinations one can write down that are

linear in the Riemann tensor. Note that for Riemannian geometries the latter term vanishes identically due of the

absence of torsion in that case.
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in vacuum. On the other hand, we will show that, remarkably, in the case in which α = ± i
2 the

total action enjoys an enlarged symmetry under affine connection transformations. Also in this

case, the theory reduces to vacuum GR and the final connection results to be the Levi-Civita one.

Subsequently, in Section 4 we study the MAG theory given by Metric-Affine f(R) gravity plus the

Hojman term. Here, in particular, we find that in the case f ′(R) 6= constant the theory results

to be on-shell equivalent to a metric-compatible torsionless Scalar-Tensor model. Therefore,

we obtain and explicitly demonstrate a remarkable result: Metric-Affine f(R) gravity plus the

Hojman term is equivalent to a Scalar-Tensor theory with vanishing torsion and nonmetricity.

Moreover, we analyze explicit examples together with an application to homogeneous cosmology.

Matter coupling is also discussed in all cases. Finally, we conclude our work with a discussion

and possible future developments.

2 Preliminaries

Let us start by giving, in the sequel, some theoretical background of MAG theories, reviewing

the main geometric objects entering such models. We adopt the same notation and conventions

of [3] and consider models in four (3+1) spacetime dimensions. Our metric convention is η =

diag(−,+,+,+). The generic decomposition of an affine connection reads

Γλµν = Γ̃λµν +Nλ
µν , (2.1)

where the distortion tensor Nλ
µν and the Levi-Civita connection Γ̃λµν are respectively given by

Nλ
µν =

1

2
gρλ (Qµνρ +Qνρµ −Qρµν)︸ ︷︷ ︸

deflection

− gρλ (Sρµν + Sρνµ − Sµνρ)︸ ︷︷ ︸
contorsion≡Kλ

µν

, (2.2)

Γ̃λµν =
1

2
gρλ (∂µgνρ + ∂νgρµ − ∂ρgµν) . (2.3)

In (2.2), Sµν
ρ is the Cartan torsion tensor,

Sµν
ρ := Γρ[µν] , (2.4)

and Qλµν is the nonmetricity tensor, defined as

Qλµν := −∇λgµν = −∂λgµν + Γρµλgρν + Γρνλgµρ . (2.5)

Let us also recall the decomposition of the nonmetricity Qλµν and torsion Sλµ
ν in a trace and

traceless part. In four dimensions, one has [3]

Qλµν =
5

18
Qλgµν −

1

9
Q̃λgµν +

4

9
gλ(νQ̃µ) −

1

9
gλ(νQµ) + Ωλµν , (2.6)

Sλµ
ν =

2

3
δ[µ

νSλ] +
1

6
ελµκρg

κν S̃ρ + Zλµ
ν , (2.7)

where Qλ ≡ Qλµµ (also known as the Weyl vector) and Q̃ν := Qµµν are the nonmetricity vectors

(trace parts of the nonmetricity tensor), Sλ := Sλσ
σ is the trace part of the torsion, and S̃ρ is
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the torsion pseudo-vector, while Ωλµν denotes the traceless part of the nonmetricity and Zλµ
ν

is traceless and such that Zλµν = 4
3Z[λ(µ]ν) (with ελµνρZλµν = 0). Here and in the sequel we

denote by εµναβ the Levi-Civita symbol, while εµναβ = 1√
−g ε

µναβ is the Levi-Civita tensor. In

the following, we shall also need the variation of the torsion and nonmetricity w.r.t. the metric

and the connection, which is given by [3]

δgQραβ = ∂ρ (gµαgνβδg
µν)− 2gλµgν(αΓλβ)ρδg

µν , δgSµν
α = 0 , (2.8)

and

δΓQραβ = 2δνρδ
µ
(αgβ)λδΓ

λ
µν , δΓSαβ

λ = δ[µ
α δ

ν]
β δΓ

λ
µν . (2.9)

Finally, we adopt the following definition of the Riemann tensor for a general affine connection

Γλµν :

Rµναβ := 2∂[αΓµ|ν|β] + 2Γµρ[αΓρ|ν|β] . (2.10)

Correspondingly, Rµν = Rρµρν and R = gµνRµν are the Ricci tensor and the scalar curvature

of Γλµν , respectively. We will denote by ∇ the covariant derivative associated with the general

affine connection Γλµν , while ∇̃ will represent the Levi-Civita covariant derivative.

The following decomposition of the Riemann tensor of the general affine connection Γλµν ,

which holds in four spacetime dimensions, will also be useful in the sequel:

Rλµνκ =
1

2

(
gλνR̃µκ − gλκR̃µν − gµνR̃λκ + gµκR̃λν

)
− 1

6
R̃ (gλνgµκ − gλκgµν) + Cλµνκ

+ ∇̃κNλµν − ∇̃νNλµκ +NλανN
α
µκ −NλακN

α
µν ,

(2.11)

where R̃µν and R̃ := gµνR̃µν are the Ricci tensor and Ricci scalar of the Levi-Civita connection

Γ̃λµν , Nλ
µν is the distortion tensor given by (2.2), and Cλµνκ is the so-called Weyl tensor, which

fulfills (every tensor contraction between indices of the Weyl tensor gives zero)

Cλµλκ = 0 (2.12)

and

C(λµ)νρ = 0 , Cλµ(νρ) = 0 , Cλµνρ = Cνρλµ , C [λµνρ] = 0 , gρνC
ρλµν = 0 . (2.13)

The Weyl tensor automatically vanishes in three spacetime dimensions. We will work in a first

order (Palatini) formalism, where the metric gµν and the connection Γλµν are treated as inde-

pendent variables.

Let us also highlight, before proceeding, that the following two ways of contracting the torsion

with the Levi-Civita tensor are actually not independent:

Sαβµε
αβλν , Sµαβε

αβλν . (2.14)

Indeed, starting with the identity

δνµε
αβκλ + δλµε

ναβκ + δκµε
λναβ + δβµε

κλνα + δαµε
βκλν = 0 (2.15)
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and contracting the latter with Sαβκ, we easily obtain

− δνµS̃λ + δλµS̃
ν + Sαβµε

αβλν + 2Sµαβε
αβλν = 0 , (2.16)

indicating their dependence. Note that substituting (2.7) into (2.16) the latter results to be

identically satisfied (it reduces to the trivial identity) and it does not give any constraint on the

torsion tensor, as expected.

3 A parity violating Metric-Affine gravitational model involving the Hojman

term

As a first model we shall consider a MAG action consisting of the EH term along with the

parity violating Hojman term. The first part of this section is a review of the same model studied

in [3] just in the presence of torsion; here we also consider the presence of nonmetricity and we

analyze the complete Metric-Affine theory in detail, obtaining new results. The total action reads

SEH+Hojman =
1

2κ

∫
d4x
√
−g
(
R+ αεµναβRµναβ

)
, (3.1)

where κ = 8πG is the gravitational constant and where α is a dimensionless constant parameter.

R = gµνRµν (Γ) is the scalar curvature for a general affine connection Γ and Rλµνρ = Rλµνρ (Γ)

is the Riemann tensor whose definition is given in (2.10).

Some comments are now in order. Firstly, note that (3.1) is the most general MAG action

that is linear in the Riemann tensor. Secondly, both the EH and the additional Hojman terms

are projective invariant, meaning that, as it can be easily checked, the action (3.1) is invariant

under projective transformations4 of the connection

Γλµν 7→ Γλµν + δλµξν , (3.2)

where ξµ is an arbitrary one-form. As a result, the connection field equations will have a vanishing

trace in the first two indices. This means that there will be an undetermined vector degree of

freedom and the connection can be solved only modulo the projective mode.

Having clarified this, let us now proceed with the field equations. Variation w.r.t. the metric

gives

R(µν) −
1

2
gµνR− αε αβγ

(ν Rµ)αβγ = 0 , (3.3)

where the Riemann tensor Rλµνρ of the affine connection Γλµν can be written in terms of its

Levi-Civita and torsion and nonmetricity as given in (2.11). By contracting (3.3) with gµν we get

the relation

αεµναβRµναβ = −R . (3.4)

4The latter are defined as those transformations of the affine connection that leave the autoparallels of vectors

invariant up to reparametrizations of the affine parameter [19].
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Note that, using (3.4), (3.3) can also be rewritten as

R(µν) +
α

2
gµνε

ρσαβRρσαβ − αε αβγ
(ν Rµ)αβγ = 0 . (3.5)

On the other hand, varying the action w.r.t the connection we obtain

P µν
λ + 2α

(
− 1√
−g

(2Sα −∇α)(
√
−gε µαν

λ )− ε µαβ
λ S ν

αβ

)
= 0 , (3.6)

where

P µν
λ = −∇λ(

√
−ggµν)√
−g

+
∇σ(
√
−ggµσ)δνλ√
−g

+ 2(Sλg
µν − Sµδνλ + gµσS ν

σλ ) (3.7)

is the so-called Palatini tensor, which is traceless in µ,λ (that is P µν
µ = 0). The following formula

giving the explicit form of the Palatini tensor will be useful in our calculations (see [3] for details

on its derivation):

P µν
λ = −Ωλ

µν +
1

3
gµν

(
2

3
Qλ +

1

3
Q̃λ + 4Sλ

)
+

1

9
δλ
ν
(
−4Qµ + 7Q̃µ

)
+

1

9
δλ
µ

(
1

2
Qµ − 2Q̃ν

)
− 1

3
ελ
µνρS̃ρ − 2Zλ

µν .

(3.8)

The additional contribution from the Hojman term in (3.6) also has a vanishing trace in µ, λ, as

we already mentioned. In fact, there is a somewhat more convenient way to derive the connection

field equations in another form. Indeed, using the identity5

εµναβRµναβ = 2∇̃αS̃α + 2εµναβS λ
αβ (Qµνλ + Sµνλ) , (3.9)

disregarding surface terms we arrive at

P µν
λ + 2α

(
εµναβQαβλ + εµναβSαβλ − ε ναβ

λ S µ
αβ

)
= 0 . (3.10)

Let us observe that (3.6) and (3.10) actually coincide, due to the following identity which holds

in four dimensions:

Zλµν = ελµρσZ̃
ρσ
ν , (3.11)

where Z̃ ν
λµ is a tensor such that

Z̃[λµν] = 0 . (3.12)

Now, contracting (3.10) one time in λ, ν and another with gµν , after some relabeling, we obtain

Pµ + 2αS̃µ = 0 (3.13)

and

P̃µ − 2αS̃µ = 0 , (3.14)

5See [3]; here we also correct a misprint appearing there.
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where

Pµ ≡ P µν
ν = 3

(
Q̃µ − 1

2
Qµ
)
− 4Sµ (3.15)

and

P̃λ ≡ gµνP µν
λ =

1

2
Qλ + Q̃λ + 4Sλ . (3.16)

Notice that the traces coming from the variation of the Hojman term are the same up to a minus

sign. To be more specific, defining

H µν
λ :=

α√
−g

δ(
√
−gεµναβRµναβ)

δΓλ µν

= 2α
(
εµναβQαβλ + εµναβSαβλ − ε ναβ

λ S µ
αβ

)
, (3.17)

we observe that

H µλ
λ = −Hµαβgαβ = 2αS̃µ . (3.18)

That is, the two contractions are linearly dependent. This is hardly a coincidence and implies

that a larger symmetry is at play here. Indeed, using the results of [20] the above relation between

the traces implies that the Hojman term is invariant under the connection transformation

Γλµν 7→ Γλµν + δλν ζµ + ζλgµν , (3.19)

where ζµ is an arbitrary one-form vector. Using the terminology of [20], this is a constrained

vectorial transformation of the connection. Recalling that the Hojman term is also invariant

under projective transformations, we conclude that the latter is invariant under the general class

of transformations

Γλµν 7→ Γλµν + δλµξν + δλν ζµ + ζλgµν , (3.20)

where ξµ and ζµ are arbitrary independent one-forms. Notice, however, that the total action (3.1)

is not invariant under (3.20).

We can now move on to the analysis of the field equations. In the following analysis, we shall

discard the trivial case α = 0.6 Combining (3.13)-(3.16), we obtain

Qλ =
8

3
αS̃λ −

16

3
Sλ (3.21)

and

Q̃λ =
1

4
Qλ =

2

3
αS̃λ −

4

3
Sλ . (3.22)

Using all the above, together with the decomposition of the nonmetricity and torsion tensors,

namely (2.6) and (2.7), eq. (3.10) becomes

2αεµνρσΩρσ
λ − Ωλ

µν − 1

3

(
1 + 4α2

)
ελ
µνρS̃ρ + 2α (εµνρσZρσλ − ελνρσZρσµ)− 2Zλ

µν = 0 . (3.23)

6The trivial case α = 0 would correspond to the absence of the parity violating Hojman term in the action and

would lead to a purely Levi-Civita (2.3) connection by choosing an appropriate gauge parameter for the projective

mode.
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After some algebraic manipulation and applying contractions (involving also contractions with

the Levi-Civita tensor) on (3.23), we find(
1 + 4α2

)
S̃µ = 0 , (3.24)

Ωλµν = −2
(
1 + 4α2

)
Zλ(µν) , (3.25)

and

Zµν
λ =

1 + 12α2

4α
εµνρσZ

λρσ . (3.26)

Let us observe that using (3.21)-(3.26), we have that (3.4) yields

R̃ = 0 , (3.27)

where the vanishing scalar curvature R̃ is the Ricci scalar of the Levi-Civita connection, and that

(3.23) is identically satisfied. Then, summarizing, we are left with the above equations together

with (3.3). Moreover, we can write the provisional form of the connection as follows (substituting

(2.6) and (2.7) into (2.2), using (3.21) and (3.22), and plugging the result into (2.1)):

Γλµν = Γ̃λµν +
1

6
gλκεκµνρS̃

ρ − 1

3
αgµν S̃

λ +
2

3
αδλ(µS̃ν) −

2

3
δλµSν

− 1

2
Ωλ

µν + Ω(µν)
λ − 2Zλµν ,

(3.28)

where (3.25) and (3.26) hold and where Γ̃λµν is the Levi-Civita connection defined in (2.3).

Now, we can see that, if we consider 1 + 12α2 6= 0 (that is, α 6= ± i
2
√

3
), we can contract (3.26)

with the Levi Civita tensor, obtaining

Zαβ
λ =

2α

1 + 12α2
εαβµνZ

µνλ . (3.29)

Then, comparing (3.26) with (3.29) and using the fact that Z[µνλ] = 0 ⇒ Zµνλ = −2Zλ[µν], we

get the following equation: (
1 + 12α2

4α

)2

= −1 , (3.30)

whose solution reads

α = ± i
2
∨ α = ± i

6
. (3.31)

In any other case, one has Zλµν = 0. Let us now analyze the different solutions.

3.1 Case α = ± i
2
√

3

In this case, (3.25) and (3.26) become, respectively

Ωλµν = 0 , (3.32)

Zλµν = 0 . (3.33)
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Moreover, from (3.24) we get

S̃λ = 0 , (3.34)

which, plugged into (3.21) and (3.22), implies

Qλ = −16

3
Sλ (3.35)

and

Q̃λ = −4

3
Sλ . (3.36)

Thus, we are left with a single independent vector, Sλ, and, using (3.32)-(3.36), we find that the

final form of the connection (3.28) becomes

Γλµν = Γ̃λµν −
2

3
δλµSν . (3.37)

Let us now observe that the torsion vector Sλ in (3.37) can be gauged away through a projective

transformation of the connection (3.2) with ξµ = 2
3Sµ, that is

Γλµν 7→ Γλµν +
2

3
δλµSν . (3.38)

This means that, exploiting (3.38), the connection of the theory reduces to the Levi-Civita con-

nection (2.3), namely

Γλµν = Γ̃λµν . (3.39)

Notice that, in this case, using the above equations together with (3.27) we also find that (3.3)

becomes

R̃µν = 0 , (3.40)

where R̃µν is the Ricci tensor of the Levi Civita connection. Therefore, in this case the theory

results to be equivalent to vacuum GR.

3.2 Case α = ± i
2

Let us mention, before proceeding, that these particular values of α are relevant in the context

of the canonical 3+1 Hamiltonian formulation of the Hojman action, where, in particular, α = − i
2

happens to correspond to Ashtekar variables, formulating (complex) GR as a special type of Yang-

Mills gauge theory. The action was seen to correspond to the Palatini action with the curvature

tensor replaced by its self-dual part only [21–25]. In the present framework, in this case we have

that (3.24) is identically satisfied and (3.21), (3.22), and (3.26) respectively become

Qλ = ±4i

3
S̃λ −

16

3
Sλ , (3.41)

Q̃λ = ± i
3
S̃λ −

4

3
Sλ , (3.42)

Zµνλ = ±iεµνρσZλρσ . (3.43)
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Moreover, eq. (3.25) reduces to (3.32). In particular, we can see that we are left with two

independent vectors, say S̃λ and Sλ. Using (3.32), (3.41), and (3.42), we find that the final form

of the connection (3.28) now becomes

Γλµν = Γ̃λµν +
1

6
ελµνρS̃

ρ ± i

6

(
2δλ(µS̃ν) − gµν S̃λ

)
− 2

3
δλµSν − 2Zλµν , (3.44)

with Zλµν obeying (3.43). This form for the connection seems to be rather complicated but, as

we will see in the sequel, exploiting a remarkable symmetry of the action one can remove the

torsion contribution, ending up with a final connection that is the purely Levi-Civita one.

3.2.1 The enlarged symmetry corresponding to the case α = ± i
2

The peculiar cases α = ± i
2 are very interesting for many reasons. Some of them we outlined

in the Introduction. Another one is the following: As we have shown, for α = ± i
2 the torsion

pseudo-vector S̃µ is left completely unspecified. This is not a coincidence and there is a deeper

reason why this is so. As we will show below, this very reason is again some symmetry obeyed

by the total action (3.1). To start with, let us first define the total off-shell variation

W µν
λ :=

δ

δΓλ µν

(
R+ αεµναβRµναβ

)
, (3.45)

where, at this point, we are not making any assumption on the value of α. Defining the traces [20]

Wµ
(1) := W λµ

λ , Wµ
(2) := W µλ

λ , Wµ
(3) := Wµαβgαβ , (3.46)

we immediately have that Wµ
(1) ≡ 0 since both the EH and the Hojman terms are independently

projective invariant. Regarding the other two traces, by subtracting them we find

Wµ
(2) −W

µ
(3) = 2(Q̃µ −Qµ − 4Sµ) + 4αS̃µ . (3.47)

Moreover, we may also compute the contraction of Wαµν with the Levi-Civita tensor, which gives

us the pseudo-vector

εαβγµWαβγ = 2S̃µ − 4α(Q̃µ −Qµ − 4Sµ) . (3.48)

Notice now that for generic values of α the traces (3.47) and (3.48) are linearly independent unless

α = ± i
2 , in which case they become linearly dependent and it holds that

Wµ
(2) −W

µ
(3) ∓ iε

αβγµWαβγ = 0 . (3.49)

Then, using the Theorem of [20], we can conclude that in this case the total action (3.1) is also

invariant under connection transformations of the form

Γλ µν 7→ Γλ µν + δλνψµ − ψλgµν ∓ iελµναψα , (3.50)

where ψµ is an arbitrary one-form vector. It is worth stressing out that this symmetry is another

gauge symmetry for the total action (3.1) on top (and independent) of the projective invariance.

Collecting the above results, we are led to the following conclusion:
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Proposition 1. The scalar combination

R± i

2
εµναβRµναβ (3.51)

is invariant under the two-parameter gauge transformations of the connection

Γλ µν 7→ Γλ µν + δλµξν + δλνψµ − ψλgµν ∓ iελµναψα , (3.52)

where ξµ and ψµ are arbitrary independent one-form vectors. That is, for α = ± i
2 the total

MAG action (3.1) consisting of the EH contribution plus the Hojman term admits the enlarged

symmetry (3.52) generalizing projective invariance.

Proof. Both the EH and the Hojman terms are independently projective invariant. Consequently,

any combination of them will also be so. That is, (3.51) is invariant under

Γλ µν 7→ Γλ µν + δλµξν . (3.53)

In addition, as we have shown above, the combination in (3.51), but not each term separately, is

invariant under

Γλ µν 7→ Γλ µν + δλνψµ − ψλgµν ∓ iελµναψα . (3.54)

Then, combining the above two results, we conclude that the combination (3.51) is invariant

under the general class of transformations (3.52).

The last result has dramatic consequences when applied to (3.44). Indeed, after some trivial

rearrangement, (3.44) reads

Γλµν = Γ̃λµν ±
i

6

(
δλν S̃µ − gµν S̃λ ∓ iελµνρS̃ρ

)
+

1

3

(
−2Sν ±

i

2
S̃ν

)
δλµ − 2Zλµν . (3.55)

Note now that the second parenthesis in the right-hand side of the above equation can be gauged

away by using the projective freedom and appropriately picking ξµ. In addition, the first paren-

thesis can also be gauged away by using the extended invariance of the action under (3.54) for

α = ± i
2 . Fixing these two gauges, the connection takes the simpler form

Γλµν = Γ̃λµν − 2Zλµν , (3.56)

where the gauge-fixing has enabled us to remove all the vectorial parts. Finally, one can prove

that the action (3.1) with the choice α = ± i
2 is also invariant under the following transformation

of the connection7

Γλµν 7→ Γλµν + V λ
µν , (3.57)

where Vλµν is a tensor such that

Vλµν = ±iελµρσVνρσ , V[λµν] = 0 . (3.58)

7One can prove this by noting that Wλµν = ±iελµρσWν
ρσ and W[λµν] = 0. Then, using the results of [20] we

obtain the invariance under the associated connection transformation as given by (3.57).
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Then, exploiting (3.57) with the choice

V λ
µν = 2Zλµν , (3.59)

the final connection simply reduces to the purely Levi-Civita one, (2.3), meaning that we are

left with (3.39). In other words, we have found that when α = ± i
2 also the Zλµν tensor is non-

dynamical and can be reabsorbed (consistently set to zero), meaning that eq. (3.3) reduces to

(3.40) and that the theory results, again, to be equivalent to GR in vacuum. Let us conclude by

highlighting the following result we have obtained so far:

Proposition 2. The scalar combination (3.51) is invariant under the gauge transformations of

the connection

Γλ µν 7→ Γλ µν + δλνψµ − ψλgµν ∓ iελµναψα + δλµξν + V λ
µν , (3.60)

where V λ
µν is a tensor fulfilling (3.58) and where ψµ and ξµ are arbitrary one-form vectors. That

is, for α = ± i
2 the total MAG action (3.1) consisting of the EH contribution plus the Hojman

term admits the enlarged symmetry (3.60), which generalize projective invariance. The above

defines an equivalence class of connections with 4 + 4 + 16 = 24 elements.

Proof. As we have previously proved, for α = ± i
2 the total MAG action (3.1) is invariant under

(3.52). Combining this with the above discussion on the transformations involving the tensor

V λ
µν , we can conclude that the combination (3.51) is invariant under the general class of trans-

formations (3.60).

3.3 Case α = ± i
6

Here, from (3.24) we get (3.34), while (3.21) and (3.22) respectively reduce to (3.35) and

(3.36). Moreover, (3.26) becomes

Zµνλ = ∓iεµνρσZλρσ , (3.61)

and (3.25) gives

Ωλµν = −8

3
Zλ(µν) . (3.62)

Thus, in this case, the final form of the connection (3.28) reads

Γλµν = Γ̃λµν −
2

3
δλµSν +

2

3
Zλνµ +

2

3
Zµν

λ . (3.63)

As in the first case, here we have just one independent vector, Sλ, and we can thus exploit the

projective transformation (3.38) to reabsorb it, obtaining

Γλµν = Γ̃λµν +
2

3
Zλνµ +

2

3
Zµν

λ . (3.64)

Finally, using the above equations, together with (3.27), eq. (3.3) yields

R̃µν +
1

3

(
−1

2
gµνZαβγZ

αβγ + 2Zµ
αβZναβ

)
= 0 , (3.65)
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where Zλµν obeys (3.61).

Now, let us observe that one can prove that the action (3.1) with the choice α = ± i
6 results

to be invariant under the following transformation of the connection

Γλµν 7→ Γλµν + V λ
νν + Vµν

λ , (3.66)

where Vλµν is a tensor such that

Vλµν = ∓iελµρσVνρσ , V[λµν] = 0 . (3.67)

Then, exploiting (3.66) and performing the choice

V λ
µν = −2

3
Zλµν , (3.68)

the final connection simply reduces to the purely Levi-Civita one, that is we are left once again

with (3.39). Consequently, (3.65) can be consistently reduced to (3.40) and the theory is equiva-

lent to vacuum GR.

3.4 Cases α 6= ± i
2
∧ α 6= ± i

6

In all these remaining cases (which actually include also the case α = ± i
2
√

3
), as we have

previously proved, we are left with (3.33) and, thus, also with (3.32). Moreover, we have (3.34),

which also implies (3.35) and (3.36). Finally, the remaining independent vector Sλ can be elim-

inated by exploiting projective invariance, as we have already discussed above, and we end up

with a connection that is purely Levi-Civita, together with eqs. (3.27) and (3.40).

Summary of the results for the Metric-Affine EH + Hojman theory. We have shown

that for α = ± i
2 , interestingly, the action (3.1) is invariant under connection transformations

of the form (3.60), which, in particular, generalize projective invariance. This peculiar feature

is reported here for the first time and it allows to reduce the final form of the connection, by

appropriate gauge choices, to the purely Levi-Civita one. Additionally, we have proved that in all

the solutions to the theory given by the action (3.1) the final form of the connection can be recast

into the form (2.3), that is it can be reduced to the Levi-Civita connection, and the equations

coming from the variation w.r.t. the metric reduce to (3.27) and (3.40). Thus, the theory turns

out to be equivalent to GR in vacuum.

3.5 Comments on the torsionful metric case

Let us first of all mention, here, that if we set the nonmetricity tensor Qλµν to zero in the

model under analysis after variation of the action (3.1), we get either vanishing torsion, which

leads to a final connection that is the purely Levi-Civita and to (3.27) and (3.40), or a model

with vanishing torsion traces

Sλ = 0 , S̃λ = 0 , (3.69)
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but non-vanishing traceless part of the torsion. Indeed, considering (3.25) and setting Ωλµν = 0,

we have that either Zλµν = 0 or α = ± i
2 . In the latter case, Zλµν obeys (3.43) and the final form

of the connection coincides with (3.56). Nevertheless, as we have already mentioned, in the case

α = ± i
2 we can exploit the transformation (3.57) with the choice (3.59) to reabsorb the traceless

part of the torsion, ending up with a purely Levi-Civita connection (3.39) also in this case. Also,

we find (3.27) and (3.3) reduces to (3.40). Thus, in each of these cases, the final form of the

connection is given by the Levi-Civita one and the theory is equivalent to vacuum GR.

If we now focus on the parity violating model (3.1) by considering a torsionful metric connec-

tion from the very beginning (that is to say, directly putting the nonmetricity to zero in (3.1) and

restricting ourselves to the so-called Einstein-Cartan framework), what we get is again the purely

Levi-Civita connection for the final form of the connection. Indeed, by performing an analysis on

the same line of the one previously done, recalling that now

Qλµν = 0 (3.70)

from the very beginning, one can prove that the equation obtained by varying (3.1) w.r.t. the

connection yields (3.34) and, consequently, as one can easily show,

Sλ = 0 , (3.71)

together with (3.33). Then, the final form of the connection results to be (3.39) and, again, the

equations obtained from the variation w.r.t. the metric reduce to (3.27) and (3.40), that is the

theory is equivalent to GR in vacuum.

3.6 Observations on the purely Metric-Affine Hojman action

As we have already noticed, the Metric-Affine Hojman term in (3.1) is invariant not only under

projective transformations but also under the general class of transformations (3.20). Moreover,

one can prove that it is also invariant under the following transformation of the connection:

Γλµν 7→ Γλµν + Uλµν , (3.72)

where Uλµν is a completely symmetric tensor. This will be useful in the sequel, where we will

study the case in which only the Metric-Affine Hojman term contributes to the theory.

Thus, let us now consider the action

SHojman =
1

2κ

∫
d4x
√
−gαεµναβRµναβ . (3.73)

As usual, we shall always discard the trivial case α = 0. Variation w.r.t. gµν gives

ε αβγ
(ν Rµ)αβγ = 0 . (3.74)

By contracting this with gµν , we obtain

εµναβRµναβ = 0 . (3.75)
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On the other hand, the variation w.r.t. Γλµν yields

εµναβQαβλ + εµναβSαβλ − ε ναβ
λ S µ

αβ = 0 . (3.76)

As we have already mentioned (and can be easily proved), (3.76) has a vanishing trace in µ, λ.

Now, contracting (3.76) in λ, ν we get (3.34), while the contraction with gµν identically vanishes.

Substituting (3.34) into (3.76) and contracting the resulting equation with the Levi-Civita tensor

ελµνρ, we find

Q̃ρ = Qρ + 4Sρ , (3.77)

which means, together with (3.34), that we are left with two independent vectors, Qρ and Sρ.

Plugging (3.77) into the resulting equation mentioned above, after some contractions with the

Levi-Civita tensor and making some algebraic manipulation, we end up with (3.33), together with

Ωλµν = Ω(λµν) , (3.78)

meaning that the traceless part of the nonmetricity tensor is completely symmetric. Using all

these results, we have that (3.74), (3.75), and (3.76) are identically satisfied (this means, in

particular, that the equation obtained by varying w.r.t. the metric reduce to the trivial identity),

and the final form for the connection reads

Γλµν = Γ̃λµν +
1

12
δλµ

(
Qν −

8

3
Sν

)
+

1

12
δλν

(
Qµ +

16

3
Sµ

)
+

1

12

(
Qλ +

16

3
Sλ
)
gµν +

1

2
Ωλ

µν .

(3.79)

Finally, exploiting the fact that the Hojman action (3.73) is invariant under (3.20) and (3.72),

meaning that it is invariant under the transformation

Γλµν 7→ Γλµν + δλµξν + δλν ζµ + ζλgµν + Uλµν , (3.80)

where ξν and ζµ are arbitrary one-form vectors and where Uλµν is a completely symmetric tensor,

with the choice

Uλµν = −1

2
Ωλ

µν , ξν = − 1

12

(
Qν −

8

3
Sν

)
, ζµ = − 1

12

(
Qµ +

16

3
Sµ

)
, (3.81)

one can prove that the final form of the connection (3.79) reduces just to the purely Levi-Civita

connection, namely (3.39).

Finally, let us also mention that in the case in which one either sets the nonmetricity to zero

after having varied (3.73) or considers the same model (3.73) with just a torsionful connection

(that is, setting the nonmetricity to zero from the very beginning), the result is, again, (3.39), as

expected, at this point. Thus, for the purely Hojman Metric-Affine gravitational term as well as

for the torsionful metric case the final connection reduces to the Levi-Civita one.
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3.7 Matter coupling

We shall now wish to add some matter to the previously analyzed model8 and discuss the

consistency issues that may arise. Taking into account that we are in a Metric-Affine framework

and the metric and the affine connection are independent a priori, the matter can (and will)

couple to the connection as well. Having clarified this, by adding a matter part to (3.1) we have

SEH+Hojman+M =
1

2κ

∫
d4x
√
−g
(
R+ αεµναβRµναβ

)
+ SM[g,Γ,Ψ] , (3.82)

where SM is the matter action and Ψ collectively denotes the matter fields. Proceeding, we define

the energy-momentum tensor in the usual way,

Tµν := − 2√
−g

δSM

δgµν
, (3.83)

with Tµν = Tνµ. Now, since matter couples also to the connection, we also define the hypermo-

mentum tensor [26]

∆ µν
λ := − 2√

−g
δSM

δΓλ µν
, (3.84)

which encodes the microscopic characteristics of matter such as spin, dilation and shear [26–29].

Then, varying the action (3.82) w.r.t. the metric and the connection, we obtain, respectively,

R(µν) −
1

2
gµνR− αε αβγ

(ν Rµ)αβγ = κTµν , (3.85)

P µν
λ + 2α

(
− 1√
−g

(2Sα −∇α)(
√
−gε µαν

λ )− ε µαβ
λ S ν

αβ

)
= κ∆ µν

λ , (3.86)

where the latter is equivalent to

P µν
λ + 2α

(
εµναβQαβλ + εµναβSαβλ − ε ναβ

λ S µ
αβ

)
= κ∆ µν

λ . (3.87)

Let us first concentrate on the connection field equations, since many conclusions can be drawn

by these alone. To start with, taking the trace of (3.86) in µ, λ and using the fact that the

gravitational part of the action is projective invariant, we find the constraint

∆ µν
µ = 0 , (3.88)

namely only projective invariant matter is allowed [26, 30]. This means that the theory is com-

patible only with matter with a vanishing dilatonic current and, in general, one would then run

into possible inconsistencies [26].9 However, both the bosonic and fermionic fields are projective

invariant (see [33] related to this point) and therefore the presence of such fields does not introduce

8Here as well as in the sequel, we refer to ‘matter’ as any further contribution to total action except purely

gravitational terms (according with the terminology adopted in the literature).
9One may break the projective invariance by constraining one of the torsion or nonmetricity vectors, or a

combination of them in a certain way through Lagrange multipliers [30–32] and alleviate the constraint on the

trace of the hypermomentum.
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any consistency issue.10 One can prove, by taking traces and contractions with the Levi-Civita

tensor of (3.87), that also in the matter-coupled case one may exploit projective invariance and

consider an appropriate gauge choice to get rid of the nonmetricity vector Q̃λ.11 Moreover, it

can also be shown that the presence of matter does not allow for a vanishing Qµ, since the latter

results to be given in terms of hypermomentum traces. Let us conclude this analysis with a

comment on the case in which α = ± i
2 . In this particular case, from the contraction of the

connection field equations (3.87) with the Levi-Civita tensor, one gets the following constraint on

the hypermomentum currents:

∆µ
(2) −∆µ

(3) ∓ iε
αβγµ∆αβγ = 0 , (3.89)

where we have defined ∆µ
(2) := ∆λµ

λ and ∆µ
(3) := ∆µλ

λ, along with ∆µ
(1) := ∆λ

λµ = 0 (which

is, in fact, (3.88)). We shall refer to this type of matter as matter with a ‘parity restricted

hypermomentum’. It would be very interesting to find physical systems for which the latter

condition on matter fields holds true.12 Moreover, as we have previously observed, for the specific

choice α = ± i
2 the gravitational part of the action results to be invariant also under connection

transformations of the form (3.60), where the tensor Vλµν satisfies the constraints given in (3.58).

Again, this fact puts some constraints on the matter part of the theory and, in particular, it

implies that the hypermomentum obeys

∆λµν = ±iελµρσ∆ν
ρσ , ∆[λµν] = 0 . (3.90)

This last condition means that for the cases α = ± i
2 there is no room for coupling with purely

fermionic matter (a detailed study of the coupling with purely fermionic matter will be given in

the sequel). Here, matter coupling certainly deserves further investigation in order to conclude

whether the above restrictions on the hypermomentum are always unphysical or there are systems

where these arise naturally. We conclude by mentioning that if one considers the torsionful metric

case with matter (that is, if one considers vanishing nonmetricity from the very beginning) the

constraint (3.88) does not arise anymore. In particular, in that case one obtains

S̃ν = − k

4α
∆ν

(1) . (3.91)

Nevertheless, one can also prove that other constraints on the hypermomentum arise (which, as

usual, can be related to invariances of the gravitational part of the action), meaning that, again,

matter results to be constrained by the gravitational part of the theory. In the sequel, we will

analyze the case in which the Metric-Affine EH plus Hojman term theory is coupled with purely

fermionic matter.

10Whether projective invariance should be broken or not (and, thus, if it has a physical relevance) is still an open

issue, whose analysis goes beyond the aim of the present paper. In fact, some recent investigations suggest that

keeping projective invariance is key in order to avoid ghosts [34–36].
11Let us recall, here, that neither of the combinations 4Q̃µ − Qµ, Q̃µ − Qµ − 4Sµ, and S̃µ can be set to zero

because all of them are projective invariant by themselves.
12For instance, it would be worth to study applications to the perfect hyperfluid discussed in [29].
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3.7.1 Purely fermionic matter

Let us now concentrate on the case in which the Metric-Affine EH plus Hojman term model is

coupled with purely fermionic matter. In this case, the hypermomentum has only a non-vanishing

totally antisymmetric part, namely

∆αµν = ∆[αµν] := ∆̂αµν , (3.92)

with the other pieces all vanishing. Then, from the connection field equations it follows that

(3.21) and (3.22) hold, together with

2(1 + 4α2)S̃µ = κεαβγµ∆̂αβγ . (3.93)

From (3.93) we can see that for α = ± i
2 we get the constraint εαβγµ∆̂αβγ = 0, which means,

taking into account (3.92),

∆̂αµν = 0 . (3.94)

Thus, as a consequence of the equations obtained from the variation w.r.t the connection with α =

± i
2 we find that that for the theory coupled with purely fermionic matter the hypermomentum

vanishes on-shell. Therefore, we can conclude that the cases α = ± i
2 lead to an inconsistency

related to the vanishing of the hypermomentum when coupling with purely fermionic matter is

considered. On the other hand, for α 6= ± i
2 from (3.93) we get

S̃µ =
κ

2(1 + 4α2)
εαβγµ∆̂αβγ , (3.95)

which shows how matter sources torsion in this case. Note now that in the theory currently under

analysis, which is invariant under projective transformations of the connection (3.2),13 we still

have that the projective freedom can be exploited in such a way to remove a vector by choosing

an appropriate gauge. Interestingly, we cannot set the combination Q̃µ−Qµ−4Sµ to zero because

it is projective invariant by itself.14 Of course the same holds true for S̃µ. A natural gauge would

be the one for which the nonmetricity traces are removed. Considering such a gauge, we can set

Q̃µ = 0 and by means of (3.22) we also have Qµ = 0. In addition, here the hypermomentum does

not source neither Ωλµν nor Zλµν . Indeed, one can prove that we are left with (3.25) and (3.26).

Then, we can safely set both Ωλµν and Zλµν to zero.15 Thus, with a proper gauge-fixing, we end

up with (3.70) and

Sλ =
α

2
S̃λ , (3.96)

13Indeed, following [3] one can prove that, due to the fact that the hypermomentum here is completely traceless

(see (3.92)), the matter contribution to the full action result to be invariant under projective transformations (3.2)

(in the matter Lagrangian, here, only the completely antisymmetric part of the contorsion contributes, giving

vanishing traces).
14This can be proved by considering (2.9) together with (2.6) and (2.7), taking contractions, and subsequently

applying (3.2) (see also [3], where some projective invariant combinations have been explicitly written).
15See the previous discussion regarding the theory in vacuum; here, since the hypermomentum is completely

antisymmetric, we can consistently gauge away Ωλµν and Zλµν by exploiting the same transformations.
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and, therefore, with

Sµνλ =
κ

1 + 4α2

(
α

6
gλ[µεν]αβγ∆̂αβγ − 1

2
∆̂µνλ

)
, (3.97)

where we recall that ∆̂µνλ is completely antisymmetric. Concluding, the final form for the con-

nection results to be

Γλµν = Γ̃λµν +
κ

2(1 + 4α2)

[α
3

(
−δλνεµαβγ + ελαβγgµν

)
∆̂αβγ − ∆̂λ

µν

]
. (3.98)

Let us also observe that, considering the equation obtained by varying the action w.r.t. the

metric, that is (3.85), where now (3.92) holds, and taking its µ, ν trace, after some algebraic

manipulation and using all the equations and information above, we get

R̃ =
κ2

4(1 + 4α2)
∆̂αβγ∆̂αβγ − κT , (3.99)

where we have defined the trace of the energy-momentum tensor as T := gµνTµν . Combining

(3.99) and (3.85) with (3.92), we are finally left with

R̃µν = κ

(
Tµν −

1

2
gµνT

)
+

κ

4(1 + 4α2)
∆̂ αβ
µ ∆̂ναβ . (3.100)

From eqs. (3.99) and (3.100) we can see that the Ricci scalar and the Ricci tensor of the Levi-

Civita connection are entirely given in terms of matter contributions, namely of the energy-

momentum and hypermomentum tensors. The extra term involving the hypermomentum in

(3.100) is a spin-spin interaction. This is easily seen as follows: The Dirac Lagrangian in the

presence of torsion reads LD = L̃D+ψ̄γ[µγνγρ]ψKρµν . Here, L̃D is the Riemannian part and Kρµν

is the contorsion tensor. Now, from the definition of the hypermomentum we get ∆̂µνα ∝ ψ̄γ[µνα]ψ,

where γ[µνα] := γ[µγνγα] and where γµ denotes the Dirac gamma matrices in four dimensions.

Finally, using the relation γ[µνα] = −iελµναγλγ5, it follows that ∆̂µνα ∝ ελµναψ̄γλγ5ψ, from which

∆̂µνα∆̂µνα ∝ (ψ̄γµγ
5ψ)(ψ̄γµγ5ψ), as stated. Here, let us also mention that this amounts to a

four-fermions interaction that originates from torsion associated with spin degrees of freedom,

recently analyzed in [37]. There, such an interaction has been proved to lead to a novel universal

mechanism for producing singlet fermions in the Early Universe, with these fermions playing the

role of dark matter particles. It would be interesting to further analyze this aspect in the models

we are proposing in the current paper.

As a final comment, let us mention that, as we can see, there exists a well-defined limit α→∞
for which the torsion vanishes and the theory results to be equivalent to GR. Indeed, in the limit

α→∞, from (3.98) we find that the final form of the connection reduces to the purely Levi-Civita

one, that is (3.39), and from (3.99) and (3.100) we obtain

R̃µν −
1

2
gµνR̃ = κTµν , (3.101)

with

R̃ = −κT , (3.102)

which correspond to the Einstein’s field equations. This means that in the strong parity violating

regime the non-Riemannian contributions die off and the theory reduces to GR.
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4 Metric-Affine f(R) gravity with Hojman term

Let us now consider a Metric-Affine gravitational action consisting of the Metric-Affine f(R)

gravity contribution along with the parity violating Hojman term. The total action now reads

Sf(R)+Hojman =
1

2κ

∫
d4x
√
−g
(
f(R) + αεµναβRµναβ

)
, (4.1)

where f(R) is an arbitrary function of the scalar curvature R = gµνRµν (Γ), with Γ a general

affine connection. Variation of the above w.r.t. gµν gives

f ′(R)R(µν) −
f(R)

2
gµν − αε(ν

αβγRµ)αβγ = 0 , (4.2)

while the variation w.r.t. Γλµν leads to

P µν
λ + δλ

νgµσ
∂σf

′

f ′
− gµν ∂λf

′

f ′
+

2α

f ′

(
εµναβQαβλ + εµναβSαβλ − ε ναβ

λ S µ
αβ

)
= 0 , (4.3)

where f ′ = f ′(R). The trace of (4.2) yields

f ′(R)R− 2f(R) = αεµαβγRµαβγ , (4.4)

which can be also rewritten as

f

f ′
=
R

2
− α

2f ′
εµαβγRµαβγ . (4.5)

Observe that substituting (4.4) into (4.2) the latter can be rewritten as

f ′(R)R(µν) −
1

4

(
f ′(R)R− αεραβγRραβγ

)
gµν − αε(ν

αβγRµ)αβγ = 0 , (4.6)

that is

R(µν) −
1

4
Rgµν +

α

4f ′
εραβγRραβγgµν −

α

f ′
ε(ν

αβγRµ)αβγ = 0 , (4.7)

which is correctly traceless in µ, ν. Notice that if we restrict to the (trivial) case α = 0 and also

take f(R) = R, from (4.4) we get R = 0 and then the metric field equations (4.2) boil down

to R(µν) = 0, just as expected for the purely EH case without matter fields. Thus, one could

consistently take the limit α = 0, f(R) = R and arrive at the well-known result of Einstein

gravity modulo projective invariance (see for instance [3] for details).

We can now move on to the analysis of the field equations. Taking the λ, µ trace of (4.3) we

get the trivial identity, which is in accordance with the invariance of (4.1) under the projective

transformations of the connection given in (3.2). Considering, on the other hand, the λ, ν trace

and the contraction with gµν of (4.3), after some algebraic manipulation we obtain

Qλ =
8α

3f ′
S̃λ −

16

3
Sλ + 4

∂λf
′

f ′
, (4.8)

Q̃λ =
1

4
Qλ =

2α

3f ′
S̃λ −

4

3
Sλ +

∂λf
′

f ′
. (4.9)
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Plugging (4.8) and (4.9) into (4.3) and contracting the resulting equation with ελµνρ we find

∂ρ ln f ′ = −4α2 + f ′2

6αf ′
S̃ρ . (4.10)

With this, we may express the above as

Qλ = −2f ′

3α
S̃λ −

16

3
Sλ , (4.11)

Q̃λ =
1

4
Qλ = − f

′

6α
S̃λ −

4

3
Sλ . (4.12)

Then, substituting all these results into (4.3), the latter becomes

2α

f ′
[εµνρσ (Ωρσ

λ − 2Zλ
ρσ)− 2ενλρσZ

µρσ]− Ωλ
µν − 2Zλ

µν = 0 . (4.13)

Taking contractions of (4.13) with the Levi-Civita tensor, after some algebraic manipulations we

obtain the following equations:

Zµνλ =
12α2 + f ′2

4αf ′
εµνρσZλ

ρσ , (4.14)

Ωλµν = −3
4α2 + f ′2

f ′2
Zλ(µν) . (4.15)

Finally, one can prove that, using (4.14) and (4.15), eq. (4.13) results to be identically satisfied,

meaning that we do not get any further constraint. Let us now carry on the analysis by studying

separately the solutions with constant f ′ (recall that here we are considering α to be a constant

parameter) and the case in which f ′ is not a constant.

Before doing that, we remark, here, that due to the projective invariance of the Metric-Affine

f(R) gravity action plus the Hojman contribution, the coupling with matter leads again to (3.88),

meaning that only projective invariant matter is allowed.

4.1 Solutions with f ′ = constant

We start by analyzing the cases in which f ′ = constant. First of all, let us observe that if

f ′(R) = C0 , (4.16)

where C0 is an arbitrary constant, then we get

f(R) = C0R+ C1 , (4.17)

where C1 is an arbitrary integration constant. Moreover, we have

∂ρf
′ = 0 . (4.18)

Let us mention, here, that the action (4.1), in principle, is just invariant under projective trans-

formations (3.2) (see [3] for details on the projective invariance of Metric-Affine f(R) gravity).
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Nevertheless, if we consider (4.16), this automatically yields (4.17), and the equations obtained

by considering the same from the very beginning in (4.1) coincide with the equations that we

obtain by considering (4.16) and (4.17) after having varied the action. Then, if we take (4.16)

and (4.17) from the very beginning in (4.1), we have that the latter has the same symmetries that

we have discussed in the previous section when studying the Metric-Affine EH + Hojman theory.

Finally, using the equations above and the symmetries of the action, after some straightforward

calculations, one can prove that in all the cases in which (4.16) holds true one is left with a final

form of the connection that is purely Levi-Civita.

Concluding, we observe that the case f ′ = constant takes us back to the results we obtained

in the previous section, that is to the MAG theory with EH + Hojman. Note that here, in

addition, we also have a cosmological constant, so that the theory actually is EH + Hojman +

Cosmological constant. However, the presence of the cosmological constant does not modify in

any way our previous analysis and only adds the usual extra term in the field equations for the

metric. This is so because its presence does not modify in any way the connection field equations

(being independent of Γ). Therefore, in the case f ′ = constant we still get GR, but in the presence

of a cosmological constant.

4.2 Case with f ′ 6= constant

Let us now turn our attention to the f ′ 6= constant case. This turns out to be much more

interesting then the previous one. Before proceeding, let us recall that, in this (more general)

case, (4.1) is invariant just under the projective transformations (3.2), meaning that there is no

other invariance that one could exploit to gauge-fix non-physical degrees of freedom.

In this case, (4.14) yields (3.33) and (4.15) becomes (3.32), that is both Zλµν and Ωλµν vanish.

Let us also notice, for the sake of simplicity, that (4.8) and (4.11) can be recast as follows:

Qλ = 4Q̃λ , (4.19)

Sλ = −3

4
Q̃λ −

f ′

8α
S̃λ , (4.20)

where we recall that (4.10) holds. Then, after some algebraic manipulation, we find that now the

connection reads

Γλµν = Γ̃λµν +
1

2
δλµQ̃ν +

1

6
ελµνρS̃

ρ +
f ′

12α

(
gµν S̃

λ − δλν S̃µ
)
. (4.21)

One can then properly exploit the invariance of the action (4.1) under projective transformations

of the connection, (3.2), to get rid of the nonmetricity vector Q̃µ (choosing ξν = −1
2Q̃ν in (3.2)).

Then, from (4.19) we can see that, automatically, also the nonmetricity vector Qλ is eliminated

from the theory. In this way, we are left with just one independent vector, that is the torsion

pseudo-vector S̃λ, and the final form for the connection becomes

Γλµν = Γ̃λµν +
1

6
ελµνρS̃

ρ +
f ′

12α

(
gµν S̃

λ − δλν S̃µ
)
, (4.22)
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where S̃µ obeys (4.10), which can also be rewritten as

S̃µ = −3∂µ

[
arctan

( f ′
2α

)]
. (4.23)

Then, from (4.20), taking the above discussion into account and using (4.23), for the torsion

vector we get

Sµ =
3

8
∂µ

[
ln (f ′2 + 4α2)

]
. (4.24)

From the last two equations we conclude that both the torsion vector and pseudo-vector are exact

and sourced by f ′. This fact reflects a certain similarity with the case of the so-called Palatini

f(R) gravity with matter (see, for instance, [3] and references therein for details on this point).16

Finally, using the information above, one can prove that eq. (4.5) becomes

f

f ′
=
R

2
+

1

6
S̃µS̃

µ − α

f ′
∇̃µS̃µ . (4.25)

Given the form for S̃µ in (4.23), the latter equation can be seen a second order differential equation

for R. This will become clearer in an explicit example we will discuss in the sequel. In the present

case, (4.25) can be recast as follows:

f

f ′
=
R̃

2
+

(
1

12
− f ′2

16α2

)
S̃µS̃

µ +

(
f ′

4α
− α

f ′

)
∇̃µS̃µ , (4.26)

where we have used the fact that now we have

R = R̃− 1

2

(
1

3
+
f ′2

4α2

)
S̃λS̃

λ +
f ′

2α
∇̃λS̃λ . (4.27)

On the other hand, (4.7) become

R(µν) −
1

4
Rgµν −

1

6
gµν

(
1

6
S̃ρS̃

ρ +
α

f ′
∇̃ρS̃ρ

)
+

1

9
S̃µS̃ν +

2α

3f ′
∇̃(µS̃ν) = 0 , (4.28)

where the only independent vector appearing in (4.28) (also in the first two terms of the latter)

is just the torsion pseudo-vector S̃µ. Thus, we can conclude that in the case f ′ 6= constant we

are left with the connection (4.22) where the torsion pseudo-vector S̃µ is exact and obeys (4.23),

together with the above equations (4.26) and (4.28). Let us now observe that one can integrate

(4.23), obtaining

arctan

(
f ′

2α

)
= Φ , (4.29)

where we have defined

Φ := −1

3

∫
S̃µdx

µ + constant . (4.30)

From (4.29) it follows that

f ′ = 2α tan Φ . (4.31)

16With the term ‘Palatini’ here we mean that the hypermomentum tensor vanishes identically, that is the matter

action is independent of the connection.
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Using df
dR = df

dΦ
dΦ
dR , we can see that (4.31) implies

f = −2α ln (cos Φ) . (4.32)

Using (4.32) into (4.24), the latter yields

S̃µ = −3∂µ [arctan (tan Φ)] . (4.33)

Assuming, consistently, that R takes values in R, then we find, from (4.31), that if we take

Φ ∈
(
−π

2
,
π

2

)
, (4.34)

this range for Φ automatically maps to the whole real line. Thus, the choice (4.34) does not

introduce any additional constraint in the present theory. With the choice (4.34), eq. (4.33)

becomes

S̃µ = −3∂µΦ . (4.35)

Here, notice also that the same would have been obtained by simply substituting the left-hand side

of (4.29) written in terms of Φ into (4.24), confirming that what we are performing is consistent

and well-defined by construction. Consequently, eq. (4.25) yields,

− (cot Φ) ln (cos Φ) =
R

2
+

3

2
√
−g

(cot Φ) ∂µ
(√
−g∂µΦ

)
+

3

2
∂µΦ∂µΦ . (4.36)

Using the fact that (4.27), which is the decomposition of R in terms of R̃ and non-Riemannian

contributions, now reads as follows:

R = R̃− 3√
−g

(tan Φ) ∂µ
(√
−g∂µΦ

)
+

3

2

(
2− 3 (sec Φ)2

)
∂µΦ∂µΦ

= R̃− 3√
−g

(tan Φ) ∂µ
(√
−g∂µΦ

)
− 3

2

(
1 + 3 (tan Φ)2

)
∂µΦ∂µΦ ,

(4.37)

we find that (4.36) leads to

R̃ = −2 (cot Φ) ln (cos Φ) +
3√
−g

(tan Φ− cot Φ) ∂µ
(√
−g∂µΦ

)
− 3

2

(
1− 3 (tan Φ)2

)
∂µΦ∂µΦ ,

(4.38)

which gives R̃ in terms of functions of Φ and its derivatives, and one can also prove that eq.

(4.28) becomes

R̃µν −
1

4
gµνR̃+

1

8
gµν

[
(sec Φ)2 ∂ρΦ∂

ρΦ +
2√
−g

(csc Φ) (sec Φ) ∂ρ
(√
−g∂ρΦ

)]
− 1

2
(sec Φ)2 ∂µΦ∂νΦ− (csc Φ) (sec Φ) ∇̃µ∂νΦ = 0 .

(4.39)

One can also plug the expression for R̃ given in (4.38) into (4.39), ending up with R̃µν in terms

of Φ and its derivatives, namely

R̃µν = gµν

[
− 1

2
(cot Φ) ln (cos Φ)−

(
1

2
− (tan Φ)2

)
∂ρΦ∂

ρΦ

+
1√
−g

(
1

2
tan Φ− cot Φ

)
∂ρ
(√
−g∂ρΦ

) ]
+

1

2
(sec Φ)2 ∂µΦ∂νΦ

+ (csc Φ) (sec Φ) ∇̃µ∂νΦ .

(4.40)
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We will see later some explicit examples with different assumptions on the form of f(R). Notice

that the right-hand side of the above suggests that there is some additional scalar mode at play

here. This is indeed the case, as we formally prove in what follows. Let us conclude this analysis

by saying that using all the relations we have obtained so far we also have

αεµνρσRµνρσ = −6α

[
(tan Φ) ∂µΦ∂µΦ +

1√
−g

∂µ
(√
−g∂µΦ

)]
. (4.41)

Eq. (4.41), together with the other results collected above, will be particularly useful in the sequel

to prove an intriguing equivalence that we are going to provide.

4.2.1 On the degrees of freedom and equivalence with a metric torsionless Scalar-

Tensor theory

As it may be already evident by now, in the case in which f ′ 6= constant the theory seems

to carry one more scalar degree of freedom with respect to GR. This is no other than the scalar

mode Φ and its very appearance in (4.39) indicates that this should indeed be the case. In the

sequel, we formally prove this. Notice that the equivalence between Metric-Affine f(R) gravity

plus Hojman term (in the general case f ′ 6= constant) and metric torsionless Scalar-Tensor theory

we are going to discuss is an on-shell equivalence (meaning that the two theories exhibit the same

dynamics) which holds true after having gauged away the (non-physical) nonmetricity degrees of

freedom from the Metric-Affine f(R) gravity theory plus Hojman term.

Following the standard f(R) equivalence prescription [4, 6], we introduce an auxiliary scalar

field χ and consider the action

S =
1

2κ

∫
d4x
√
−g
[
f(χ) + f ′(χ)(R− χ) + αεαβµνRαβµν

]
, (4.42)

where f ′(χ) represents the derivative of f(χ) w.r.t. χ. Variation of (4.42) w.r.t. χ leads to

f ′′(χ) (R− χ) = 0 . (4.43)

Therefore, we have that if f ′′(χ) 6= 0 then χ = R, which, when substituted back into (4.42),

establishes the equivalence of the latter with (4.1). Now, in the usual manner (see [4, 6]) we set

f ′(χ) = Ψ and suppose that this can be inverted to give χ = χ(Ψ). With this identification the

action (4.42) takes the form

S =
1

2κ

∫
d4x
√
−g
[
ΨR+ V (Ψ) + αεµνρσRµνρσ

]
, (4.44)

where, as usual [4], we have defined the potential V (Ψ) := f(χ(Ψ)) − Ψχ(Ψ). Now, notice that

on-shell we have f ′(χ) = f ′(R), and, therefore, using (4.31), we get

Ψ = 2α tan Φ , (4.45)
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which (under the consistent assumptions previously discussed) implies Φ = arctan
(

Ψ
2α

)
. Then,

using the latter into (4.41), we obtain

αεµνρσRµνρσ = − 3

4α2

Ψ(
1 +

(
Ψ
2α

)2)2∂µΨ∂µΨ− 3∇̃µ

[
∂µΨ

1 +
(

Ψ
2α

)2
]
. (4.46)

Finally, plugging (4.46) back into the action (4.44), disregarding the surface term, we arrive at

S =
1

2κ

∫
d4x
√
−g

ΨR+ V (Ψ)− 3

4α2

Ψ(
1 +

(
Ψ
2α

)2)2∂µΨ∂µΨ

 . (4.47)

At this point, this action looks like the one for a Scalar-Tensor theory. Nevertheless, let us recall

that here R is the Ricci scalar of the affine connection Γλµν , meaning that it also contains non-

Riemannian contributions that will be now functions of Ψ. Using the decomposition of R given

in (4.37) one can prove that we are left with

√
−gΨR =

√
−gΨR̃+

√
−g
[
3

(
− Ψ2

4α2
ω2 +

3ω

4α

)]
Ψ∂µΨ∂µΨ− 3

2α
∂µ
[√
−gΨ2 (∂µΦ)ω

]
, (4.48)

where we have defined

ω :=
1

2α

1(
1 + Ψ2

4α2

) . (4.49)

Substituting (4.48) into the action (4.47), discarding the surface term (that is the last term in

the right-hand side of (4.48)), we finally get the equivalent theory

S =
1

2κ

∫
d4x
√
−g
[
ΨR̃+ V (Ψ) +

3

2

Ψ

(4α2 + Ψ2)
∂µΨ∂µΨ

]
, (4.50)

which is, indeed, a metric torsionless Scalar-Tensor theory,17 that is the theory propagates an

additional scalar degree of freedom compared to GR. We have therefore arrived to the remarkable

result that the vacuum Metric-Affine f(R) gravity plus Hojman term theory is equivalent to a

metric torsionless Scalar-Tensor theory.

Let us now analyze the field equations of theory (4.50). Taking the variation of the latter

w.r.t. Ψ, we obtain

R̃+ V ′(Ψ) +
3

4α2 + Ψ2

(
−Ψ∇̃µ∂µΨ +

1

4α2 + Ψ2
Ψ2∂µΨ∂µΨ− 1

2
∂µΨ∂µΨ

)
= 0 . (4.51)

On the other hand, by varying the same action w.r.t. gµν we get

R̃µν + gµν

(
−1

2
R̃− 1

2

V (Ψ)

Ψ
+
∇̃ρ∂ρΨ

Ψ
− 3

4 (4α2 + Ψ2)
∂ρΨ∂

ρΨ

)

+
3

2 (4α2 + Ψ2)
∂µΨ∂νΨ− ∇̃ν (∂µΨ)

Ψ
= 0 ,

(4.52)

17See [3, 5, 6], where the equivalence between other f(R) gravity theories and Scalar-Tensor models has been

discussed.
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whose trace yields

R̃+
2

Ψ
V (Ψ)− 3

Ψ
∇̃µ∂µΨ +

3

2 (4α2 + Ψ2)
∂µΨ∂µΨ = 0 . (4.53)

Plugging (4.53) back into (4.52) we find

R̃µν +
1

2
gµν

(
V (Ψ)

Ψ
− ∇̃ρ∂

ρΨ

Ψ

)
+

3

2 (4α2 + Ψ2)
∂µΨ∂νΨ− ∇̃ν (∂µΨ)

Ψ
= 0 , (4.54)

while from comparison of (4.53) with (4.51) we are left with

−2V (Ψ)

Ψ
+ 3

[(
1

Ψ
− Ψ

4α2 + Ψ2

)
∇̃µ∂µΨ +

(
Ψ2

(4α2 + Ψ2)2 −
1

4α2 + Ψ2

)
∂µΨ∂µΨ

]
+ V ′(Ψ) = 0 ,

(4.55)

where this last equation determines the dynamics of Ψ. Observe, here, that the field equations

for Ψ are second order ones. Finally, rewriting all the information above in terms of Φ,18 one can

prove, after some algebraic manipulation, that the equations of motion of the metric torsionless

Scalar-Tensor theory (4.50) coincide with those of the vacuum Metric-Affine f(R) gravity plus

Hojman term theory previously analyzed, confirming the on-shell equivalence between the two

theories. Notice, in particular, that we find out that eq. (4.55) reduces to the trivial identity

and that the description of the dynamics of the scalar degree of freedom is transferred to the

equations of the Metric-Affine f(R) gravity plus Hojman term model.

It is also worth stressing out the in the small α limit the Scalar-Tensor theory actually becomes

a Brans-Dicke theory with Brans-Dicke parameter ω0 = −3
2 , as it can be easily seen by neglecting

the α2 term appearing in (4.47).19

Let us finally mention that one could also study how matter with vanishing hypermomentum

affects this result. We aleady know that Metric-Affine f(R) gravity plus matter with no hyper-

momentum is equivalent to a specific Brans-Dicke theory (see [6,38]). In the case under analysis,

we expect things to be considerably more involved and leave this study for a future work.

4.3 Comments on the torsionful metric case

Here we make some comments of the torsionful metric case. First of all, let us observe that

if we set the nonmetricity tensor Qλµν to zero in the theory above after variation of the action

(4.1), we are led to the same results obtained in the torsionful nonmetric case.

On the other hand, one could consider vanishing nonmetricity from the very beginning in

(4.1). The introduction of the Hojman term in an f(R) theory of gravity with torsion has been

18Using, in particular, eqs. (4.31) and (4.37), together with (4.45) and the fact that we are led to V ′(Ψ(Φ)) =

−χ = −R.
19See [4, 6] for the equivalence between generic Palatini f(R) theories of gravity with matter and Brans-Dicke

gravity. Note that the aforementioned Palatini f(R) gravity theories with matter have been proved [4, 6] to be

equivalent to Brans-Dicke gravity with Brans-Dicke parameter the same parameter ω0 = − 3
2
, and the this holds

true in the case in which either torsion or nonmetricity vanishes as well.
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previously considered in [39] in the Hamiltonian formalism, and in [40], but there the BI parameter

has been promoted to a field.20 We will study the case where the BI parameter is promoted to a

field in a future work [some work is now in progress on this point], while for the moment we shall

focus on α being a constant parameter.

Thus, in the case in which one considers (3.70) from the very beginning in (4.1), the variation

of the action w.r.t. the connection yields

4

3
gµνSλ −

1

3
ελ
µνρS̃ρ − 2Zλ

µν + δλ
νgµσ

∂σf
′

f ′
− gµν ∂λf

′

f ′
+

4α

f ′
εµναβSαβλ = 0 , (4.56)

where we have also written explicitly the Palatini tensor with vanishing nonmetricity exploiting

(3.8). Taking the λ, µ trace of (4.56) we get (3.34) (we discard, as usual, the trivial case α = 0).

Substituting (3.34) into (4.56) and taking the λ, ν trace of the resulting equation we get

Sµ =
3

4

∂µf
′

f ′
, (4.57)

while, using also (4.57) and taking the contraction with the Levi-Civita tensor of the aforemen-

tioned resulting equation, we find
∂µf

′

f ′2
= 0 . (4.58)

Observe that this is a rather strong constraint, meaning that the only solutions admitted here are

the ones with f ′ = constant. We will come back to this point at the end of this analysis. Now,

plugging (4.58) into (4.57), we are led to

Sµ = 0 . (4.59)

After some algebraic manipulation on the remaining equation, we find (3.33). Thus, we are left

with

Sµν
λ = 0 , (4.60)

meaning that the torsion vanishes and that the final form of the connection reduces to the Levi-

Civita one. Furthermore, one can prove that the equations obtained by varying the action w.r.t.

the metric yield
f

f ′
=
R̃

2
, R̃µν −

1

4
gµνR̃ = 0 . (4.61)

Finally, as we have already mentioned, looking at (4.58), we can deduce that f ′ = constant,

that is (4.16), which implies (4.17). Therefore, we conclude that there is no such thing as metric

torsionful f(R) + Hojman gravity, since f(R) is forced to be linear in R. Namely, the theory is

consistent only for the choice f(R) = C0R + C1. In this latter case, the theory turns out to be

equivalent to vacuum GR in the presence of a cosmological constant.

20In [40], the authors called β(xµ) the the reciprocal of the Immirzi field that couples to the Riemann tensor by

means of the completely antisymmetric tensor, that is the Levi-Civita tensor.
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4.4 An explicit example: f(R) = R + εR2 plus Hojman term

Let us now consider, as an explicit example, the case in which one has the Metric-Affine f(R)

gravity plus Hojman term theory with

f(R) = R+ εR2 , (4.62)

where ε is a constant parameter with dimensions of inverse mass squared (or, equivalently, squared

length). Here we immediately get

f ′(R) = 1 + 2εR . (4.63)

In the following analysis, we discard the case R = constant, since it would just automatically lead

to a purely Levi-Civita connection. Thus, let us carry on our study by considering R 6= constant,

from which we have f ′ 6= constant and f 6= constant. We have that eq. (4.23) now becomes

S̃µ = −3∂µ

[
arctan

(
1 + 2εR

2α

)]
, (4.64)

where we recall that S̃ρ is the only independent (pseudo-)vector that remains in our theory (see

the discussion on projective invariance previously done), while from (4.24) we get

Sµ =
3

8
∂µ

[
ln
(

(1 + 2εR)2 + 4α2
)]

. (4.65)

Moreover, we find that (4.25) becomes

R =
1 + 2εR

3
S̃µS̃

µ − 2α∇̃µS̃µ , (4.66)

while (4.28) yields

R(µν) −
1

4
Rgµν −

1

6
gµν

[
1

6
S̃ρS̃

ρ +
α

1 + 2εR
∇̃ρS̃ρ

]
+

1

9
S̃µS̃ν +

2α

3(1 + 2εR)
∇̃(µS̃ν) = 0 . (4.67)

Let us also mention that from (4.27) now we get

R = R̃− 1

2

(
1

3
+

(1 + 2εR)2

4α2

)
S̃λS̃

λ +
1 + 2εR

2α
∇̃λS̃λ , (4.68)

where S̃µ is exact and given by (4.64).

Observe that integrating (4.64) we get

arctan

(
1 + 2εR

2α

)
= Φ , (4.69)

where Φ is defined in (4.30). Then, we are left with

R =
1

ε

(
α tan Φ− 1

2

)
. (4.70)
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Thus, we find that (4.64) yields (4.35). Substituting the above into (4.66) and (4.67) we obtain,

respectively,

1

ε

(
−1

2
+ α (tan Φ)

)
=

6α√
−g

∂µ
(√
−g∂µΦ

)
+ 6α (tan Φ) ∂µΦ∂µΦ , (4.71)

which is an equation for Φ, and (4.39). Let us finally mention that we can also write

R̃ =
1

ε

(
α tan Φ− cot Φ

4α

)
+

3√
−g

(tan Φ− cot Φ) ∂µ
(√
−g∂µΦ

)
− 3

2

(
1− 3 (tan Φ)2

)
∂µΦ∂µΦ ,

(4.72)

where the Ricci scalar R̃ of the Levi-Civita connection is given in terms of functions of Φ and its

derivatives. One can also plug (4.72) into (4.39) to get R̃µν completely in terms of functions of

Φ and its derivatives, that is

R̃µν = gµν

[
1

4ε

(
α tan Φ− cot Φ

4α

)
−
(

1

2
− (tan Φ)2

)
∂ρΦ∂

ρΦ

+
1√
−g

(
1

2
tan Φ− cot Φ

)
∂ρ
(√
−g∂ρΦ

) ]
+

1

2
(sec Φ)2 ∂µΦ∂νΦ

+ (csc Φ) (sec Φ) ∇̃µ∂νΦ = 0 .

(4.73)

Furthermore, following the previous discussion on the remaining scalar degree of freedom, one

can prove that the theory is on-shell equivalent to a metric torsionless Scalar-Tensor model with

potential V (Ψ) = 1
4ε

(
1 + 2Ψ−Ψ2

)
, where Ψ is given by (4.45). Having studied this explicit

example, we can now proceed by analyzing the restriction to the case in which f(R) = R2, where

we will also give an application to homogeneous cosmology.

4.5 Restriction to f(R) = R2 plus Hojman term

Here we restrict ourselves to the case in which

f(R) = R2 , (4.74)

yielding

f ′(R) = 2R . (4.75)

Let us mention that with the choice (4.74), the f(R) term in the action (4.1) results to be invariant

under conformal transformations of the metric tensor (as defined in [3]),

gµν 7→ e2Ωgµν , Γλµν 7→ Γλµν , (4.76)

where Ω is a scalar function. Indeed, under (4.76) we have

d4x
√
−g 7→ d4xe4Ω√−g , Rλµνρ 7→ Rλµνρ , Rµν 7→ Rµν , R 7→ Re−2Ω , (4.77)

and one can clearly see that the f(R) term in (4.1) with the choice (4.74) is invariant. Nevertheless,

the complete action (4.1) is not invariant under (4.76), due to the fact that the Hojman term is
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not. We now proceed with our analysis. Again, we discard the case R = constant. Now, eqs.

(4.23) and (4.24) respectively boil down to

S̃µ = −3∂µ

[
arctan

(
R

α

)]
, (4.78)

Sµ =
3

8
∂µ
[
ln
(
4
(
R2 + α2

))]
. (4.79)

On the other hand, (4.25) becomes

∇̃µS̃µ −
R

3α
S̃µS̃

µ = 0 . (4.80)

Moreover, eq. (4.28) yields

R(µν) −
1

4
Rgµν −

1

6
gµν

(
1

6
S̃ρS̃

ρ +
α

2R
∇̃ρS̃ρ

)
+

1

9
S̃µS̃ν +

α

3R
∇̃(µS̃ν) = 0 , (4.81)

which, exploiting (4.80), can be also rewritten as

R(µν) −
1

4
Rgµν −

1

18
gµν S̃ρS̃

ρ +
1

9
S̃µS̃ν +

α

3R
∇̃(µS̃ν) = 0 . (4.82)

Finally, (4.27) now reads

R = R̃− 1

2

(
1

3
+
R2

α2

)
S̃λS̃

λ +
R

α
∇̃λS̃λ , (4.83)

where, as we can see from (4.78), the torsion pseudo-vector S̃µ is exact.

Let us now observe, on the same lines of what we have previously done, that we can integrate

(4.78) to obtain

R = α tan Φ , (4.84)

where Φ is defined as in (4.30), together with (4.35). Thus, one can prove that eq. (4.80) becomes

∂µ(
√
−g∂µΦ) +

√
−g (tan Φ) ∂µΦ∂µΦ = 0 . (4.85)

Then, we get once again (4.39), while eq. (4.83) becomes

R̃ = α tan Φ +
3√
−g

(tan Φ− cot Φ) ∂µ
(√
−g∂µΦ

)
− 3

2

(
1− 3 (tan Φ)2

)
∂µΦ∂µΦ . (4.86)

Moreover, we get

R̃µν = gµν

[
α

4
tan Φ−

(
1

2
− (tan Φ)2

)
∂ρΦ∂

ρΦ

+
1√
−g

(
1

2
tan Φ− cot Φ

)
∂ρ
(√
−g∂ρΦ

) ]
+

1

2
(sec Φ)2 ∂µΦ∂νΦ

+ (csc Φ) (sec Φ) ∇̃µ∂νΦ = 0 ,

(4.87)
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which expresses R̃µν in terms of functions of Φ and its derivatives. Having established the Scalar-

Tensor equivalence, let us observe that one could also have arrived at the same result by directly

studying the equations of motion of the Scalar-Tensor action (4.50) with potential V (Ψ) = −Ψ2

4 .21

Indeed, one can prove that the theory is on-shell equivalent to a Scalar-Tensor model with the

aforementioned potential.

We will now give an application in the cosmology context, showing, in particular, how (4.85)

may be solved to obtain the scalar curvature R.

4.5.1 Homogeneous cosmology

Let us now consider an illuminating application in order to illustrate how (4.85) may be

solved to obtain R in a cosmology context. In a homogeneous cosmological background we have

∂µΦ = δ0
µΦ̇, and the equation we have to solve, that is (4.85), becomes (here, a(t) is the scale

factor)
d

dt
(a3Φ̇) + a3Φ̇2 tan Φ = 0 . (4.88)

If we now express the latter as

1

a3Φ̇

d

dt
(a3Φ̇) = − (tan Φ) Φ̇ , (4.89)

we can see that it can be trivially integrated to get

a3Φ̇ = cos Φ + c1 , (4.90)

where c1 is an arbitrary integration constant. For the sake of simplicity, let us assume that the

initial conditions are such that c1 = 0. Then, integrating (4.90), we arrive at

Φ(t) = arcsin

(
Ceλ − 1

Ceλ + 1

)
, (4.91)

where C is another integration constant and where we have defined

λ(t) := 2

∫
dt

a3(t)
. (4.92)

Thus, using the above results, eq. (4.84) yields

R(t) = 2α tan

[
arcsin

(
Ceλ − 1

Ceλ + 1

)]
. (4.93)

Note also that the latter can be also formally rewritten as

R(t) =
2αϕ√
1− ϕ2

, (4.94)

21This follows immediately from the defining relation of V (Ψ) and for the choice f(R) = R2. Here there also is

another way to arrive at the same result: Integrating V ′ = −χ we get V (Ψ) = −
∫
χ(Ψ)dΨ; then, using the fact

that from (4.43) we have, for f ′′(χ) 6= 0, χ = R, here we find (using also (4.45) and (4.84)) χ = Ψ
2

, which in turn

implies V (Ψ) = −Ψ2

4
. In this way, taking the classical mechanics analogue too far, one might also interpret χ(Ψ)

as the conservative ‘force’ which, when integrated, gives us the potential V (Ψ).
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where we have defined

ϕ :=
Ceλ − 1

Ceλ + 1
, (4.95)

with λ being defined in (4.92). Then, exploiting the decomposition of R in terms of R̃ plus

non-Riemannian contributions, one gets an evolution equation for the scale factor, which, in this

case, is an integral equation.

5 Conclusions

Considering a Metric-Affine set-up, we have studied a gravitational theory given by the EH

term along with a parity violating term defined by the contraction of the Riemann tensor with

the Levi-Civita tensor. The latter is oftentimes referred to as the Hojman term but we explained

it is more appropriate to call it Hojman term. Interestingly, in the MAG framework, this is

the most general theory one can write down whose gravitational part is linear in the Riemann

tensor. Starting with the vacuum case, we have shown that the phenomenology of the model

depends crucially on the values of the dimensionless coupling constant of the Hojman term. In

particular, there are two distinct cases to study separately: α 6= ± i
2 and α = ± i

2 . In the

former case, projective invariance of the action allows to appropriately choose the gauge in such

a way to end up with a final connection that is purely Levi-Civita and prove that the theory is

equivalent to vacuum GR. On the other hand, in the latter case (α = ± i
2), we have found that,

intriguingly, the total action EH + Hojman enjoys an enlarged symmetry, namely it is invariant

under connection transformations given by (3.60). Thus, the addition of the Hojman term not

only does not break the projective invariance of the theory (since itself respects this symmetry)

but for α = ± i
2 it promotes the projective group to a greater one. We have then proved that

exploiting the invariances of the action, also in the case α = ± i
2 the final connection coincides

with the Levi-Civita one and the theory results to be equivalent to GR in vacuum. Note that

neither the EH nor the Hojman term is invariant under (3.60), but their linear combination for

α = ± i
2 is indeed left invariant. To our knowledge, this invariance is reported for the first time

here and it restricts the matter form that can be coupled to the theory. To show this explicitly,

we have also added matter to the model and derived the aforementioned restriction imposed by

the enlarged symmetry on the hypermomentum.

Subsequently, we have extended our discussion and studied the Metric-Affine version of f(R)

+ Hojman term gravity. In this case, we have demonstrated how one can always consistently

set the nonmetricity to zero by exploiting the projective freedom appropriately. The whole

analysis then boils down to the two distinctive cases f ′ = constant and f ′ 6= constant. In the

former case, we have f(R) = C0R + C1, which means that the theory becomes EH + Hojman

+ cosmological constant. Then, the results are identical to the EH + Hojman theory since the

cosmological constant does not modify anything apart from adding an extra term to the metric

field equations. Far more interesting is the other possibility, namely f ′ 6= constant. In this case,

as we have explicitly proved, the theory is on-shell equivalent to a metric-compatible torsionless
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Scalar-Tensor theory, that is we have arrived at the following remarkable result: Vacuum Metric-

Affine f(R) + Hojman term gravity is on-shell equivalent to a metric torsionless Scalar-Tensor

theory. In addition, for |α| << 1 the aforementioned Scalar-Tensor theory actually reduces to a

Brans-Dicke theory with Brans-Dicke parameter ω0 = −3
2 .

A future development could consist in studying how matter with vanishing hypermomentum

affects the results we have obtained in the case of Metric-Affine f(R) gravity plus Hojman term

(and its on-shell equivalence with a metric torsionless Scalar-Tensor theory). It would be worth to

extend our analysis to the case in which the BI parameter is promoted to a field [work in progress],

on the same lines of [40–43], considering separately the addition of the Hojman and of the Nieh-

Yan terms in this case. Indeed, the Nieh-Yan term, which is included into the Hojman one, has

been proved to provide many remarkable applications, among which the ones discussed in [44–46]

and also [39,47]. Furthermore, applications to the cosmological perfect hyperfluid of [29] deserve

to be analyzed and discussed. It would be also interesting to carry on an analysis on the same

lines of what we have done in the present paper but considering a more general theory developed

in [48] in a Metric-Affine framework, that is involving both torsion and nonmetricity from the

very beginning. In particular, in [48] the authors considered the EH action plus Hojman term

with torsion in first order formalism and then also generalized their scheme upon the introduction

of other geometrical terms, studying instantonic solutions of the theory. There, some surprising

features and analogies with superconductivity arose, obtaining topological singularities which are

different from those of pure gravity. The gravity theory presented in [48] does not imply any

asymptotic statement on spacetime and its effect are expected to be important for small scale

phenomena, and it would be therefore intriguing to study possible generalizations of these results

in the Metric-Affine set-up.
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