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A B S T R A C T   

The decrease of the apparent uniaxial tensile strength resulting from a single flawless spherical cavity in an 
infinite linear elastic continuum under uniaxial tension is investigated. To this end, a new generalized semi
analytical expression for the stress intensity factor of an annular crack surrounding the spherical cavity under 
different loading conditions is proposed and validated. The apparent tensile strength is then estimated by four 
different approaches: two criteria implement a single condition, either on the stress field (Theory of Critical 
Distances) or on the energy release rate (equivalent Linear Elastic Fracture Mechanics), whereas the other two 
are stress-energy coupled criteria, namely the Finite Fracture Mechanics and the Cohesive Zone Model. Finally, 
theoretical predictions are discussed and compared with experimental data and atomistic simulations available 
in the literature, showing good correlation.   

1. Introduction 

The use of brittle materials for critical structural components has 
been largely limited by the strong flaw-sensitiveness of their failure 
behavior, which introduces a stochastic uncertainty in the effective 
strength, thus increasing its unreliability and making them difficult to 
characterize. Nonetheless, certain materials that fall within this cate
gory, e.g. ceramics and glass, present some other characteristics, such as 
heat and wear resistance or chemical inertness, that make them strong 
candidates for structural applications in extreme environments. There
fore, the research activity on the effect that different flaws and their size 
have on the ultimate behavior is of paramount importance to ensure the 
safe use of brittle materials. 

This paper focuses on flaws whose shape is (or can be approximated 
as) spherical. The effect of the spherical void’s size and the related 
material porosity on the structural strength of brittle materials has been 
considered in experimental studies, such as those in [1] on borosilicate 
glass and in [2] on alumina composites. Therein it was found that, for 
pores big enough, even very low porosities had a noticeable reductive 
effect on the strength (up to 50%). Likewise, this dependence clearly 
showcased a size effect, since the weakening diminished with decreasing 

pore size, meaning that simple strength predictions based on the stress 
concentration factor derived in [3] are not reliable. Similar size effects 
were experimentally observed on single voided silicon nitride specimens 
in [4] and in the atomistic simulations of silicon carbide in [5]. 

However, this size effect on the weakening of “defective” specimens 
is not particular to those having spherical pores, but in general to any 
kind of defect resulting in a stress concentration. It is well known (see e. 
g. [6]) that the size effect on the strength of brittle or quasi-brittle ma
terials can be caught by introducing energetic considerations into stress- 
based failure criteria. Following this thread, different failure criteria 
have incorporated energy-related magnitudes in their formulation: 
either explicitly, such as Finite Fracture Mechanics (FFM) or Cohesive 
Zone Model (CZM); implicitly, through a fixed length depending on the 
fracture toughness, as the Theory of Critical Distances (TCD); or have 
extended the conventional Linear Elastic Fracture Mechanics for its use 
in uncracked bodies like the equivalent LEFM (eqLEFM). Referring 
specifically to FFM, previous studies have successfully predicted either 
analytically or semi-analytically the scaling of structural strength for 
both singular and non-singular elemental geometries. To cite but a few, 
here there can be quoted a slab with a through-thickness crack [7,8], a 
solid with a Penny-shaped crack [9], a plate with a circular hole [10–13] 
and plain and notched specimens under three-point bending [14,15]. 

Abbreviations: FFM, Finite Fracture Mechanics; CZM, Cohesive Zone Model; TCD, Theory of Critical Distances; LEFM, Linear Elastic Fracture Mechanics; eqLEFM, 
Equivalent Linear Elastic Fracture Mechanics; avg, Average; PM, Point Method; LM, Line Method; SIF, Stress Intensity Factor; SERR, Strain Energy Release Rate; 
CMOD, Crack Mouth Opening Displacement; URS, Uniform Remote Stress (loading); CSL, Constant Stress Lip (loading); LLE, Line-Load Edge (loading). 
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However, to the author’s best knowledge, no study has so far faced 
the strength size effect of specimens containing spherical voids by means 
of the previously mentioned approaches. Some relevant studies on the 
topic include the work in [16], which was based on Weibull statistical 
analysis, or those in [17,18], where LEFM was used by assuming the 
presence of an annular crack surrounding the void. 

Therefore, given the representativeness showcased by the already 
mentioned coupled (stress and energy) failure criteria, the present work 
will focus on their particularization to the problem herein considered. 
The required analytical expressions for the stress field and Stress 

Intensity Factor are provided in Section 2. Making use of these relations, 
the failure predictions by Finite Fracture Mechanics, Cohesive Zone 
Model and other relevant methods are given in Sections 3, 4 and 5 
respectively, in a semi-analytical fashion. Eventually, comparisons 
against experimental results and atomistic simulations available in the 
literature are shown in Section 6, and the final conclusions are drawn in 
Section 7. 

2. The annular crack around a spherical void 

Should a single spherical void of radius R be present in an otherwise 
solid infinite domain tensioned in the z-direction by a constant remote 
stress σ∞ (as in Fig. 1) the elsewhere uniaxial and uniform stress field is 
perturbed in the surroundings of the feature. If the domain is filled with 
a homogeneous and isotropic material, fracture is expected to occur as a 
mode I annular crack stemming from the void’s equator (hereafter 
annular crack) and lying in the z = 0 plane. On such a plane, the normal 
stress is given by Eq. (1) according to [3]. Hence, the stress concentra
tion factor is as in Eq. (2), varying from 1.93 to 2.17 as the Poisson’s 
ratio ν changes from 0 to 0.5; noteworthy, it is equal to 2 for ν = 0.2. 

σzz(r, θ, 0) = σ∞

[

1+
4 − 5ν

2(7 − 5ν)

(
R
r

)3

+
9

2(7 − 5ν)

(
R
r

)5
]

(1)  

σzz(R, θ, 0)
σ∞

=
3(9 − 5ν)
2(7 − 5ν) (2) 

As evident from Eqs. (1) and (2), and differently from what happens 
around a circular hole (see [19]), there exists a dependency on the 
Poisson’s ratio ν and, thus, the stress field is material dependent. In what 
follows, unless otherwise specified, ν will be taken equal to 0.2. 

No dependence on the azimuth angle θ is noted in geometry, loading 
or material properties. Since also the crack onset is assumed to share the 
same feature, the problem is to be treated as axisymmetric onwards, 
reducing the tridimensional system of coordinates (r, θ, z) to a bidi
mensional one as (r,z). 

In the following, the annular crack onset will be tackled, among 
other approaches, by means of FFM and CZM. To this aim, the expres
sions for both the Stress Intensity Factor (SIF) and the Crack Mouth 
Opening Displacement (CMOD) for different loading cases are needed, 
although exact definitions for any of these magnitudes are not achiev
able. On the other hand, accurate approximate solutions can still be 
obtained on the basis that an annular crack of radial length a sur
rounding the spherical void of radius R respectively resembles an Edge- 
Crack (EC) or a Penny-shaped Crack (PC) in the limits a/R→0 and 
a/R→∞. Based upon these tendencies, Fett [20] proposed that the 
approximate solution for the annular crack can be obtained through an 
interpolation based on these two known limit cases. 

In the following subsection, a generalized approximate analytical 
expression of the annular crack’s SIF, along with its particularizations to 
different loading cases, is provided by exploiting a procedure similar to 
the one proposed in [20], but improving the expression’s simplicity and 
robustness. 

2.1. Stress Intensity Factors 

In order to apply FFM, one needs the SIF for the annular crack loaded 
by a Uniform Remote Stress (σ∞ − URS); to apply the CZM, also those for 
the Constant-Stress Lip (σc − CSL) loading and the Line-Load Edge (P −

LLE) scenarios are necessary. A schematic description of each of these 
loading cases is found in Fig. 2 (a), (b) and (c), respectively. 

For the URS and CSL loading cases, the general structure of the SIF’s 
expressions proposed in [20] was as in Eq. (3), where the interpolation 
function βFett(a,R) was always kept as shown in Eq. (4). In said reference, 
only the proposal for the URS’s SIF expression was proven to be in close 
agreement with results from the literature, while no proof on the 

Nomenclature 

(r,θ,z) Cylindrical coordinates triad 
R Spherical void’s radius 
a Annular crack radial length 
E Young’s modulus 
ν Poisson’s ratio 
σzz Normal stress component as per z 
σ∞ Uniform remote stress 
σc Unvoided strength/Cohesive stress 
P Line-load 
KI Stress intensity factor 
β Interpolation function 
Fσi Geometric shape function under stress σi(i = {∞, c} )

loadings 
FP Geometric shape function under line-load P conditions 
uσi

z (R, 0) Crack mouth opening displacement under σi(i = {∞,

c} ) loadings 
σf Failure stress 
Δ Finite crack extension 
ap Process zone radial length 
lch Irwin’s length 
KIc Fracture toughness  

Fig. 1. Schematic representation of a spherical void in an infinite tensioned 
body in 3D. 
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accuracy of the therein proposed CSL’s SIF function was provided. 
Likewise, the LLE loading case was not addressed. 

KI =
[
KPC

I +
(

KEC
I

⃒
⃒

a/R→0 − KPC
I

⃒
⃒

a/R→0

) ]
βFett(a,R) + KPC

I [1 − βFett(a,R) ]

(3)  

βFett(a,R) =
(

R
R + 2a

)2

(4) 

Therefore, given the complexity of the expression in Eq. (3), added to 
the lack of proof of this proposal’s applicability for two out of the three 
required cases, it is herein introduced in Eq. (5) a new generalized (and 
simpler) expression for the SIF of an annular crack under different 
loading conditions, where the new interpolation function β(a,R) is that 
in Eq. (6). 

KI = KEC
I β(a,R) + KPC

I [1 − β(a,R) ] (5)  

β(a,R) =
(

R
R + ma

)2

(6) 

Eq. (5) still relies on the same basic idea used in relevant former 
studies such as [20] and [21]: the annular crack’s SIF may be approxi
mated by combining the solutions of known simpler cases. Nonetheless, 
Eq. (5) shows in a clearer way with respect to Eq. (3) that the proposed 
annular crack SIF function is obtained through a weighted sum of the 
respective Edge Crack’s and Penny-shaped Crack’s SIF solutions. 

On the other hand, the interpolation function in Eq. (6) coincides 
with the one in Eq. (4) except for the strictly positive parameter m, 
which, for the sake of generality and robustness, is now left to be 
independently defined for each loading case. Of course, the interpola
tion function always fulfils the extreme cases since β→1 for a/R→0, and 
β→0 as a/R→∞. Besides, the values of m subsequently particularized in 
this subchapter were chosen for each addressed loading scenario to 
deliver accurate results against the respective numerical simulations and 
results from the literature, as it will be then shown in Section 2.3. 

According to Eq. (5), the SIF of the annular crack only depends on the 
respective solutions for both the Edge Crack and Penny-shaped Crack 
under the corresponding crack-plane stress distributions defined by 
σzz(r). For simple loading cases, these SIF functions are known. To 
further simplify the formulation, the component KEC

I , having only a 
relevant effect on the solution when a/R→0, is onwards replaced by its 
limit value KEC

I
⃒
⃒
a/R→0. This assumption allows computing the otherwise 

complex SIF solution of the Edge Crack under the URS loading case as if 
it was loaded by constant normal stress equal to σ∞ [(27 − 15ν)/(14 −

10ν) ] (see Eq. (2)). 
With regards to using non-dimensional magnitudes for subsequent 

comparisons, it is introduced in Eq. (7) the SIF geometric shape function 
relative to the i-th loading case (Fσi ), where σi(i = {∞, c} ) stands for the 
characteristic stress of either the URS (σ∞) or the CSL (σc) cases. 

Kσi
I = σi

̅̅̅̅̅
πa

√
Fσi (7) 

Instead, for the LLE (P) scenario the SIF geometric shape function is 
as in Eq. (8). 

KI
P =

P̅̅
̅̅̅

πa
√ FP (8) 

Subsequently, Eq. (9) is the proposal of the SIF geometric shape 
function for the URS case, obtained from Eqs. (5) and (7) by setting m = 5. 
The Penny-shaped Crack solution is obtained via the weight function 
method as described in [20] and making use of the stress σzz(r) in Eq. (1), 
while that of the Edge Crack is the well-known 1.122 factor times the 
void’s stress concentration. 

Fσ∞ (a,R, ν) = 1.122
27 − 15ν
14 − 10ν

(
R

R + 5a

)2

+
2
π

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a + 2R
a + R

√

⋅

[

1 +
R2

2(a + R)2 +
3R4

(7 − 5ν)(a + R)4

] [

1 −

(
R

R + 5a

)2
]

(9) 

For the LLE scenario, Eqs. (5) and (8) yield the SIF geometric shape 
function in Eq. (10) when m = 5. Here, the solutions for the Edge and 
Penny-shaped Cracks are taken from [22]. 

FP(a,R) = 2⋅1.297
(

R
R + 5a

)2

+
2R

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(a + R)(a + 2R)

√

[

1 −

(
R

R + 5a

)2
]

(10) 

Eventually, by now using m = 2, the particularization of Eqs. (5) and 
(7) results into the CSL’s SIF geometric shape function in Eq. (11), which 
exactly coincides with that proposed in [20]. Again, the solutions for the 
limit cases (Edge Crack and Penny-shaped Crack) are obtained from 
[22]. 

Fig. 2. Schematic representation of the considered loadings: (a) URS; (b) CSL; and (c) LLE.  
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Fσc (a,R) = 1.122
(

R
R + 2a

)2

+
2
π

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a + 2R
a + R

√ [

1 −

(
R

R + 2a

)2
]

(11)  

2.2. Crack Mouth opening displacement (CMOD) 

Paris’ integral, introduced in [23], relates the CMOD of a loading 
condition (σi) to the SIF functions of the very same scenario of interest 
plus an auxiliary one (LLE-P). For the axisymmetric case at hand, this 
equation reads as in Eq. (12). 

uσi
z (R, 0) =

(1 − ν2)

E

∫ a

0
Kσi

I
∂KI

P

∂P
R + a′

R
da′ (12) 

Subsequently, Eq. (12) allows to indirectly verify the herein pro
posed analytical interpolating expressions through the CMODs obtained 
via Finite Element analyses, which, as is well known, can deliver very 
accurate results for the displacement field far from the singularity. 

2.3. Finite Element model 

Throughout this section, the Finite Element analyses used to check 
the shape functions proposed in Eqs. (9)–(11) is detailed. The axisym
metric linear elastic model was developed using FEniCS [24] in a Python 
environment. The mathematical operators required for the solving and 
post-processing were those of the Unified Form Language library, 
whereas the meshing operations were based on the GMSH library. 
Combining these open-source libraries allows the development of high- 
performance numerical codes for variational problems. 

Since the studied problem is axisymmetric, the considered integra
tion domain Ω for the variational formulation is bidimensional and 
defined in the (r, z) space whereas both its boundary ∂Ω and the 
geometrical locus of the crack Γ are one-dimensional. The displacement 
field u→ is regarded as a tridimensional vectorial function with only non- 
zero components as per e→r and e→z directions. The stress σ and strain ε 
tensors are also tridimensional, as the hoop components are not zero. 
Moreover, it is worth reminding that the integral operators for area and 
curve integrals are respectively d x→= r dr dz and dς = r ds when cylin

drical coordinates are used, and that the axisymmetric condition im
poses that ∂(⋅)/∂θ = 0. 

The hypothesis of infinite solid domain surrounding the void stated 
above is reasonably relaxed to that of considering a sufficiently large 
domain with respect to the void and crack characteristic lengths, so that 
the free-edge effects are negligible. Then, the domain is discretized with 
first-order triangular elements, since an increase of the element order 
does not increase the accuracy, for cracked solids and in terms of the 

energy norm, of the approximate solution u→h with respect to the exact 
one u→. Moreover, as only the reduction in the characteristic mesh size is 
proven useful to reduce the error of the Finite Element approximation, 
mesh refinement is imposed close to the crack tip so that the element size 
is fifty times smaller than the crack length, as schematically shown in 
Fig. 3. The accuracy of this discretization is assessed with an auxiliary 
dual model of a Penny-shaped Crack, for which the analytical SIF so
lution is known, being its relative error below 1.5%. Externally applied 
stresses are as in Fig. 2 (a) or (b) for the URS and CSL loading cases, 
respectively. Moreover, the vertical symmetry of the problem is 
exploited, so that just one half of the axisymmetric domain is modeled. 

Subsequently, the resolution of the variational problem with the 
respective boundary and loading conditions results in the Finite Element 

approximation of the displacement field, namely u→h, from which the 
infinitesimal strain and stress tensors are obtained through the kine
matic and constitutive equations, respectively. 

Thereby, since the considered case is a pure mode I problem, the 
respective SIF and Strain Energy Release Rate (SERR) are univocally 
related through Irwin’s relation. As a result, the determination of the SIF 
may be done through the well-established non-local methods used for 
numerically computing the SERR. In particular, the present study 
considered both the axisymmetric particularizations of the SERR ap
proximations as per the G-θ method (Eq. (13)) and the J-Integral (Eq. 
(14)). For the latter one, the domain integral formulation presented in 
[25] is used, since, from a numerical point of view, domain integrals 
usually deliver more accurate results than their path integrals counter
parts. In these expressions, the superindex h indicates that the respective 
magnitude is a numerical approximation of the exact solution, whereas 
ω represents the elastic strain energy density. 

G ≈
1

R + a

∫

Ω\Γ

[
σh⋅
(
∇ u→h

∇ θ
→h)

− ωhdiv
(

θ
→h) ]

rdrdz (13)  

G ≈
1

R + a

∫

A

[

(∇q)T
(

(σh)
T ∂ u→h

∂r
− ωh e→r

)

+
(
σh

θθεh
θθ − ωh) q

r

]

rdrdz

(14) 

In the former method, besides solving the elastic problem, it is 
required to obtain the vectorial field θ

→, which has to be a piecewise 
continuously differentiable in Ω, valued t→ at the crack tip ( t→ being the 
unit vector tangent to the crack at its tip), tangent to the crack path in Γ 
and zero on the boundaries ∂Ω (except for the edge where the condition 
of symmetry is applied, where it is forced to be parallel to e→r). This field 
was numerically approximated by the solution of a proper variational 
problem on the discretized domain used for the elastic problem, even

tually yielding θ
→h

. It is noteworthy that the differential operators in Eq. 
(13) are in their axisymmetric form. 

Besides, since the expression in Eq. (14) is numerically independent 
of the integration domain A defined, an annulus centered at the crack tip 
and with minimum and maximum radii Rin and Rout , respectively, is used 
for the sake of simplicity. Besides, q represents a sufficiently smooth 
scalar field, valued one and zero on the inner and outer circumferences 
of A, respectively. Per the simple integration domain selected, q was 
analytically defined. 

Given the intrinsic inaccuracy of computing the SIF by means of local 
approaches relying on the crack tip elastic fields, i.e. stress or 
displacement, only the two presented non-local methods were used for 

Fig. 3. Schematic representation of the mesh definition and boundary condi
tions for the Finite Element model with a ratio a/R = 1. Crack highlighted in 
red. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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the verification of the URS loading case. The good correlation obtained 
between both different predictions shown in Fig. 4 (a) allows proving 
the representativeness of the numerically computed SIF results. Subse
quently, Fig. 4 (b) clearly shows the close matching of numerically ob
tained SIFs and those by Eq. (9) and references [20,21,26], thus 
supporting its further use. 

For the remaining SIF expressions to be checked against numerical 
models, i.e. those in Eqs. (10) and (11), crack opening measures are used 
along with Eq. (12). This poses one main advantage, since the use of 
displacement-based calculations is more accurate when using Finite 
Element approximate solutions, and even more when this magnitude is 
captured far from the singularity. 

Since Eq. (9) is already proven accurate, Eq. (10) can be indirectly 
checked through a comparison between the numerically obtained 

CMODs in the URS scenario and the predictions delivered through Eq. 
(12). This is shown in Fig. 4 (c) where the excellent correlation show
cased makes it reasonable to conclude that the proposed expression for 
the SIF in the LLE scenario in Eq. (10) is highly accurate. 

Eventually, Eq. (11) may be now numerically checked by using Eq. 
(12) and the already validated Eq. (10) to yield semi-analytical pre
dictions of the CMOD in the CSL scenario. Note that only the loading 
conditions are changed in the Finite Element model for this comparison, 
whose results are shown in Fig. 4 (d). Therein it is clearly seen how the 
used SIF expressions deliver excellent accuracy with respect to the Finite 
Element results, thus proving also the correctness of the expression 
proposed by [20]. Therefore, it is clear that the generalized definition for 
the annular crack’s SIF in Eqs. (5) and (6) can deliver highly represen
tative results for all the cases here considered upon correct choices of m. 

Fig. 4. (a) Correlation of the G-θ method and J-Integral results; (b) Comparison of various SIF models and FE results for the URS scenario; Comparison of the URS (c) 
and CSL (d) crack opening results for the proposed expressions and FE results. 
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Thus, its particularizations into Eqs. (9)–(11) will be hereafter used for 
the crack onset analysis. 

Before proceeding onwards, it is worth noting that the introduction 
of approximate analytical shape functions greatly simplifies the 
following analysis. Moreover, the analytical expressions match the limit 
cases (R→0, ∞) when Finite Element analyses are vastly difficult to 
perform. Lastly, the developed formulation inherently considers Pois
son’s ratio dependence. 

3. Finite Fracture Mechanics 

According to the FFM framework, crack propagation occurs spon
taneously over a finite distance Δ at the minimum loading σf in which 
both the pre-propagation stress field and the energy released upon crack 
propagation surpass certain thresholds. These are defined, respectively, 
in terms of the voidless specimen tensile strength σc and fracture energy 
Gc. It is highlighted that, in the present work, σc is considered as a 
structural property towards comprising also materials whose strength is 
highly flaw-dependent, such as ceramics. On the other hand, σc can only 
be considered as a purely intrinsic material property when the strength 
flaw-dependence is low, e.g. quasi-brittle materials. Likewise, the Irwińs 
length lch = (KIc/σc)

2 shares this nature dependence on the material 
flaw-sensitiveness. 

Moreover, since no plasticity takes place, the crack resistance is in
dependent of the crack length, precluding the material-caused stable 
crack propagation and thereby causing the complete specimen failure 
right after crack nucleation should the geometry be positive, i.e. 
∂G/∂a > 0. 

3.1. Original formulation 

According to the FFM formulation by [27], the stress condition re
quires that, just prior to crack propagation, the crack opening stress σzz 
must be higher than σc for the whole region where the crack would 
subsequently propagate, i.e. σzz(r, θ,0) ≥ σc, ∀r ∈ [R, R+ Δ]. For cases 
where σzz(r) is monotonically decreasing, such as the one considered in 
this work, this condition might be simplified by only enforcing the stress 
to be higher than σc at r = R + Δ. The energy condition states that the 

energy available for crack growth must be higher than the energy 
needed to create the new crack surfaces. Besides, the energy balance 
might be expressed in terms of the SIF through Irwin’s relation. The 
coupled requirements particularized for the annular crack are as shown 
in Eq. (15). 
⎧
⎪⎨

⎪⎩

σzz(R + Δ) ≥ σc (a)
∫ Δ

0

[
Kσ∞

I (a)
]22π(a + R)da ≥ π

[
(R + Δ)

2
− R2 ]K2

Ic (b)
(15) 

The actual failure stress is then the minimum one such that the two 
left-hand side terms are larger than the respective right-hand side terms 
in Eqs. (15). However, since the addressed geometry is positive, the 
otherwise minimization problem simplifies to a non-linear system of two 
equations. 

Eventually, expanding the expression above and introducing the 
Irwin’s length lch, it is possible to obtain the ratio of apparent strength 
reduction due to the presence of the void, σf/σc, as one of the two un
knowns of a determinate system of two nonlinear equations, being the 
other unknown the spontaneous crack growth Δ. 
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

σf

σc
=

1

1 +
4 − 5ν

2(7 − 5ν)

(
R

R + Δ

)3

+
9

2(7 − 5ν)

(
R

R + Δ

)5 (a)

σf

σc
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
lch
(
Δ2 + 2RΔ

)

2π
∫ Δ

0
a(Fσ∞ (a) )2

(a + R)da

√
√
√
√
√

(b)

(16) 

The solution of the integral in the denominator of the energy crite
rion of Eq. (16b) and the solution of the system of equations in Eqs. (16) 
is easily performed numerically. 

3.2. Averaged stress formulation 

The modification introduced in [14] to the original FFM formulation 
only concerns the stress condition. In this case, it is requested that the 
resultant force of the crack opening stress over the region where the 
crack is to propagate should be larger than the critical stress times the 

Fig. 5. Comparison of FFM and FFM-avg predictions for ν = 0.0 (solid) and ν = 0.5 (dashed): (a) weakening ratio; (b) finite crack extension. Matching colors/widths 
imply same method. 
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same area. Then, for the axisymmetric case, the stress condition yields 
Eq. (17). 
∫ R+Δ

R
σzz(r)2πrdr ≥ π

[
(R + Δ)

2
− R2 ]σc (17) 

Introducing the stress expression Eq. (1) into Eq. (17), the FFM-avg 
stress criterion for the annular crack results as in Eq. (18), being the 
energy criterion still as in Eq. (16b). 

σf

σc
=

Δ2 + 2ΔR

Δ2 + 2ΔR − 4+5ν
7− 5ν

(
R3

R+Δ − R2

)

− 3
7− 5ν

[

R5

(R+Δ)
3 − R2

] (18) 

The predictions of the weakening ratio σf/σc by the two FFM criteria 
are plotted in Fig. 5 (a) in dimensionless form and for the extreme 
Poisson’s ratio values 0.0 and 0.5. As expected, FFM can catch the 
transition in the weakening ratio from a unit value, for vanishing void 
sizes, to the inverse of the stress concentration factor (Eq. (2)) for very 
large pore sizes. While these extreme values are strength-driven only 
and independent of the FFM variant used, the transition from one 
another does depend on both the formulation and the fracture toughness 
(through lch). As it occurs for other geometries, the FFM-avg model 
provides lower failure load predictions with respect to the original FFM. 

Besides, the results for the dimensionless finite crack extensions Δ/lch 
are plotted in Fig. 5 (b), where the extreme values for both FFM for
mulations respectively coincide at 3π/8 (for R→0) and 2/1.1222π (for 
R→∞). In turn, these figures agree with the values of finite crack 
extension given in the literature for a Penny-shaped Crack [9] and an 
Edge Crack [14], respectively. They are also coherent with the collapse 
of the target geometry to these two simpler cases noted in Section 2.1. 
Besides, it is showcased that the dependency of Δ with the Poisson’s 
ratio ν is small and limited to the transition region between the voidless 
and large-void solutions. 

4. Cohesive Zone Model 

In this section, the CZM-based solution is provided in a semi- 
analytical way, partly as an original contribution, partly to corrobo
rate the FFM approach by a comparison with a well-known and wide
spread model. 

According to the CZM, once a certain threshold on the stress state is 
reached, the material starts to soften. The region where this cohesive 
behavior appears is commonly known as process zone, and there the 
behavior is no longer governed by a stress–strain relation, but by a 
stress-crack opening dependence. The crack whose length is the stress- 
free crack plus the process zone is named fictitious crack [28] and, 
differently to the case of an actual crack, there is no stress singularity at 
its tip, thus being null its SIF. Eventually, crack nucleation/propagation 
occurs when the dissipated energy per unit area at the real crack tip is 
equal to Gc. 

In the present study, the simplest CZM model, proposed in [29], is 
analytically addressed. It considers the cohesive stress constant and 
equal to σc all along the process zone length ap. Thus, using the super
position principle and enforcing the SIF to vanish at the fictitious crack 
tip, an equation relating ap, σc and σ∞ is obtained as in Eq. (19). 

σ∞ Fσ∞
(
ap
)
− σc Fσc

(
ap
)
= 0 (19) 

The solution to Eq. (19) forces the process zone length ap to increase 
as σ∞ rises. At last, the crack nucleates when the opening displacement 
at the real crack tip reaches the critical value δc = Gc/σc. Thus, using Eq. 
(12) and, once again, the superposition principle, the energetic condi
tion of the CZM is as in Eq. (20) (the SIF expressions being given by Eqs. 
(7)–(11)). 

2
(1 − ν2)

E

(∫ ap

0
Kσ∞

I
∂KI

P

∂P
R + a

R
da −

∫ ap

0
Kσc

I
∂KI

P

∂P
R + a

R
da
)

=
Gc

σc
(20) 

Thereby, the CZM failure prediction of the considered specimen is 
determined by a system of two non-linear equations as in Eqs. (21), 
easily solvable with numerical algorithms. 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

σf

σc
=

Fσc
(
ap
)

Fσ∞
(
ap
) (a)

σf

σc
=

lchR + 2
∫ ap

0
Fσc FP(R + a)da

2
∫ ap

0
Fσ∞ FP(R + a)da

(b)

(21) 

It comes naturally to compare this system of equations with those 
resulting from the FFM analysis. Eq. (21a), which ensures the no stress 
singularity at the fictitious crack tip, is purely stress-based and, thus, 
equivalent to the stress criterion used in FFM. On the other hand, Eq. 
(21b) quantifies the energy dissipated by the process zone at the real 
crack tip, thereby playing a role similar to the energy criterion of FFM. 
Moreover, the process zone length ap represents the CZM’s counterpart 
of the finite crack propagation distance Δ. Therefore, up to a certain 
extent, both FFM and CZM are equivalent in terms of the quantities they 
both rely on to predict the crack nucleation. However, there are also 
some differences: e.g., the stress is not allowed to exceed σc in the CZM. 

Just as different stress conditions lead to different FFM models, 
different cohesive laws yield different CZMs [30]. Usually, a good 
matching is found when comparing Leguillon’s FFM with Dugdale CZM 
for cracked geometries [7,9]. Fig. 6 shows a fairly good agreement be
tween the two models also for the geometry at hand, especially for small 
void radii; the relative difference is maxed at approximately 12%. On the 
basis of what showcased in [31] for rhomboidal holes, for low order 
stress singularities or just stress concentrations as in the present case, an 
even better match is expected comparing Leguillon’s FFM and a CZM 
with a linear softening law. However, the implementation of other CZM 
models is beyond the scope of the current work. 

5. Simplistic theoretical approaches 

Within this section, the solutions provided by simplistic models, 
namely eqLEFM and TCDs, are described. Although they lack a solid 
physical background, their simplicity and still relatively good prediction 
capabilities make them useful for engineering applications. 

Fig. 6. Comparison of weakening ratio predictions by FFMs, CZM, 
TCDs, eqLEFM. 
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5.1. Equivalent Linear Elastic Fracture Mechanics 

The eqLEFM is a generalization of the conventional LEFM criterion 
(see e.g. [6]) that allows predicting crack nucleation in uncracked 
bodies by artificially introducing an initial crack of length a0. The 
physical meaning of this length may be different depending on the type 
of material considered. For highly brittle materials, whose failure is 
flaw-driven, this length can be regarded as the maximum inherent flaw 
size, i.e. a structural property. On the other hand, for quasi-brittle ma
terials whose failure is strength-driven, a0 is a material property. 

The ratio of strength reduction due to the spherical void presence 
according to the eqLEFM is as in Eq. (22), where a0 has been taken equal 
to lch/(1.1222π) and the selection of strength or toughness-driven failure 
mode is performed by the minimum operator. The factor 1.122 of the 
toughness-governed failure criterion stands for the SIF’s geometry co
efficient of an edge crack, which is the geometry to be considered for the 
very large void size case according to the eqLEFM approach. 

σf

σc
= min

(
1.122

Fσ∞
(
lch
/

1.1222π,R, ν
), 1

)

(22)  

5.2. Theory of Critical Distances 

Thoroughly described in [32], the TCD is a set of failure criteria 
based explicitly on the magnitude of the stress field along a certain fixed 
length only dependent on the material. This latter amount is determined 
in order to recover the LEFM solution for the large-crack asymptote, thus 
implicitly considering the fracture toughness in its formulation, and 
enabling its use for cases with high gradients or singularities in the stress 
field. Similarly to the FFM formulation, different TCD variants have been 
proposed, being the Point Method (TCD-PM) and the Line Method (TCD- 
LM) the two most frequently used. According to the former, propagation 
occurs when the stress at a distance of lch/2π from the stress concen
tration reaches the failure stress σc, yielding by Eq. (1) the crack onset 
stress as in Eq. (23). 

σf

σc
=

1

1 + 4− 5ν
2(7− 5ν)

(
2πR

2πR+lch

)3

+ 9
2(7− 5ν)

(
2πR

2πR+lch

)5 (23) 

In the case of the TCD-LM, the stress field ahead of the stress con
centration is averaged over a line of distance 2lch/π, and failure is 
considered to happen whenever this measure equals the failure stress σc, 
resulting in Eq. (24). 

σf

σc
=

2lch

π
{

2lch
π −

(4− 5ν)R3

2(14− 10ν)
(πR)2 − (πR+2lch)

2

[R(πR+2lch) ]
2 − 9R5

4(14− 10ν)
(πR)4 − (πR+2lch)

4

[R(πR+2lch) ]
4

} (24) 

The crack onset stress predictions according to the eqLEFM and the 
TCDs approaches are plotted in Fig. 6 along with the ones previously 
obtained. It is evident that all the models are able to catch the transition 
between voidless and large void solutions, although each model pro
vides its own transition: TCD-LM is the one providing the smoother 
transition, while the most abrupt one is due to eqLEFM. Moreover, TCDs 
provide the lowest failure stresses, the higher ones being provided by the 
CZM. Besides, both eqLEFM and CZM coincide in predicting that R/lch ≈

0.4 is the biggest pore for which voidless solutions are valid, i.e. σf = σc. 

6. Comparison with experimental results and atomistic 
simulations 

Along the present section, the FFM approach is validated through 
experimental data and atomistic simulations available in the literature. 
For the sake of simplicity, the focus is set only on FFMs because: (i) FFMs 
represent the main original contribution of the present paper; (ii) the 
models presented in Section 5 (TCDs and eqLEFM), although easy to 
achieve, possess a weaker physical background; (iii) it can be easily 
shown that, for the experimental sets considered, TCD generally pro
vides the poorest predictions; (iv) CZM could match better experimental 
data if implemented with different cohesive laws as previously observed, 
but this analysis is beyond the scope of the paper. 

Aiming for characterizing the effect that porosity has on the strength 
of sodium borosilicate specimens, [1] conducted a series of experiments 
that has then been the reference for many other analytical studies on the 
topic (e.g. [17,18]). Both porosity and pore sizes were controlled by 
introducing a certain amount of size-within-a-range nickel spheres 
during the vacuum hot-pressing of the glass. Per the lack of bonding 
between the two materials and since the nickel presents a higher thermal 
coefficient than the borosilicate glass, it is ensured that, from a practical 
point of view, the matrix will present controlled porosity. 

Given the brittleness of borosilicate, specimen failure is flaw-governed 
and, thus, stochastic. To minimize the scatter, each specimen’s surface was 
equally sanded with SiC grits of 240, 400 and 600, thus generating surface 
flaws with an approximate size in the range of 8 through 26.5 µm in length. 
These, in turn, cause the specimen to have a certain flaw insensitivity: 
superficial defects of a length below a threshold a0 will have no effect on 
the effective strength. Then, assuming that these superficial flaws gener
ated by sanding are edge-crack alike, the structural lch can be estimated as 
1.1222πa0 (see Section 5.1). For the sake of simplicity, a0 is taken as the 
mean value of the sanding-generated flaw sizes, resulting in the value of lch 
in Table 1. Eventually, combining the voidless specimen strength reported 
by the reference and the lch value in Table 1, the respective average frac
ture toughness results in KIc = 0.68 MPa

̅̅̅̅
m

√
, which is within the range 

reported by [33] for different sodium borosilicate compositions, thus 
supporting the representativeness of the assumptions made. 

Thereafter, localized uniaxial tensile conditions were imposed by a 
four-point bending test. Per the random location of the voids with 
respect to themselves, to the specimen’s surface and to the flaws, higher 
stress concentrations might arise because of either free-edge effects, 
void-void, or void-flaw interactions. Added this to the uncertainty in the 
critical void size, i.e. the one where failure nucleates from, scattering in 
the experimental results was expected. Since the present investigation 
addresses single void conditions, only the results respective to the two 
lowest porosities (2% and 5%, respectively) have been considered and 
shown in Fig. 7 (a), where both average and extreme cases are reported. 
For this experimental set, the uncertainty in the vertical axis is consid
ered through the 95% confidence interval of each group of experiments 
within the same void’s radius range, whereas, in the horizontal axis, it is 
addressed by using the extreme values of each void’s radius range. 

Good correlation is obtained against analytical predictions, although 
the experimental scatter hinders determining the most accurate model. 
Now, considering the average results from the lowest porosity specimens 
as the most representative case, the best accuracy is provided by FFM- 
avg. On the other hand, the steep decrease in the apparent strength of 
the 5% porosity conditions for R ∼ lch infers that there exists non- 

Table 1 
Relevant input parameters used for the comparison with experimental data.  

Material ν  σc  KIc  lch  Void’s radius range 

Sodium borosilicate [1]  0.20  82.25 MPa  0.68 MPa
̅̅̅̅
m

√ 68.23 μm  [5.00 − 186.00] μm  

Silicon nitride [4]  0.28  735.0 MPa  6.00 MPa
̅̅̅̅
m

√ 66.64 μm  [56.0 − 273.50] μm  

Silicon carbide [5]  0.20  58.00 GPa  1.69 MPa
̅̅̅̅
m

√
8.48 Å  [1.170 − 19.960] Å   

A. Chao Correas et al.                                                                                                                                                                                                                         



Theoretical and Applied Fracture Mechanics 116 (2021) 103120

9

negligible pore interaction in such a case, reducing the representative
ness of its results for verification purposes. 

Another experimental study on the effect that the presence of 
spherical pores has on the apparent specimen strength was performed in 
[4], where the authors generated a single spherical void on silicon 
nitride specimens. The pore shape, size and location were initially 
controlled by the introduction of organic inclusions prior to sintering 
and then double-checked by scanning electron micrographs. This pro
cedure allowed an excellent control of the actual failure conditions, and 
hence a reduction in the experimental uncertainty. 

Being silicon nitride a highly brittle material, its inherent critical 
flaw size is very small. Nonetheless, per the lack of information con
cerning each specimen surface finishing, the value of lch used for the 
experimental comparison in Fig. 7 (b) was computed out of the tensile 
strength and fracture toughness provided by the authors and reported in 
Table 1. It is evident that the analytical predictions lie on the left side of 
experimental data set. However, as already discussed, the surface fin
ishing might affect the specimen flaw sensitiveness by raising lch (the 
value in Table 1 is regarded as a lower bound). Hence, the shift can be 
explained by a larger structural length that would move the analytical 
predictions rightwards. What is not changing with the considered lch is 
the mean slope of the failure stress vs. the hole radius, which is truly well 
fitted by the FFM approaches. Hence, the representativeness of these 
formulations is inferred also from comparison with this second data set. 

Despite the relatively good agreement in the results obtained with 
both previous experimental data sets, it is seen that the existence of 
flaws in highly flaw-sensitive materials (and so, the proper determina
tion of lch) hinders a bold conclusion to be made regarding the soundness 
of the FFM approach. To sort out this handicap, either a material with a 
perfect internal structure or a more flaw tolerant material should be 
used. Concerning the former option, since it is not possible to obtain 
crystalline structures without flaws at temperatures above 0 K, the only 
way of characterizing the purely material failure is via atomistic simu
lations, such as those performed in [5]. 

In their study, Ippolito and co-workers [5] explicitly modelled a 
β-Silicon carbide crystalline lattice, and the spherical void was created 
by removing certain atoms from the atomic pattern. Therein it was 
found that, whenever the external dimension of the virtual specimen 
was at least ten times bigger than the void́s radius, free-edge effects were 
negligible. Moreover, values for the strength and fracture toughness of 
the atomistic arrange were computed from bespoke simulations, 
allowing to directly determine the Irwin’s length as lch = (KIc/σc)

2 and 
yielding the values reported in Table 1. Notice that by eliminating the 
intrinsic defects of a real crystalline lattice, the values of the strength 
(Irwin’s length) are several orders of magnitude higher (lower) than 
those obtained macroscopically. It is highlighted that this conclusion is 
in accordance to the original findings of Griffith in [34] on the large 
difference in the breaking load of the bulk glass in comparison with the 
theoretical load required for breaking the atomic bonds. 

Per the microscopic arrangements of the atomistic pattern, some 
roughness in the voids surface is showcased, especially noticeable for small 
void’s radii. However, since the absolute upper bound in the length of these 
irregularities, equal to the interatomic distance c0 = 2.64 Å, is of the same 
order than the material’s flaw sensitiveness a0 = lch/(1.1222π), their effect 
was not further considered. Subsequently, the comparison conducted in 
Fig. 7 (c) between these simulations and the herein discussed analytical 
models shows a great correlation, especially when considering the FFM 
formulation in its average stress variant. Note that excellent correlation 
between molecular dynamics simulations and FFM has already been 
noticed for different flaw shapes in previous studies such as that in [35]. 

7. Conclusions 

The tensile failure of a linear elastic and brittle material containing a 
spherical cavity is thoroughly investigated within this study. Although 

Fig. 7. Comparison of the different models addressed with: experimental re
sults from (a) [1], (b) [4]; (c) atomistic simulations in [5]. 
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presenting a non-singular stress field, the maximum stress criterion is not 
deemed suitable since it does not capture the experimentally observed size 
effect on the voided specimen weakening. However, this scaling effect is 
caught by more refined approaches that take energy balances and/or en
ergy quantities into account. Among these formulations, the most repre
sentative ones (and those herein presented) are Finite Fracture Mechanics, 
Cohesive Zone Model, Theory of Critical Distances and equivalent LEFM. 

Since the energy considerations of the used approaches (except for 
Theory of Critical Distances) can be accounted for through the Stress 
Intensity Factor of the prospective crack, extensive characterization of 
the annular crack stemming from the void’s equator is conducted. In 
particular, a general procedure for obtaining the annular crack SIF under 
different loading conditions has been proposed and checked against 
Finite Element results, showing an excellent accuracy and even holding 
for loading cases not previously considered. 

The obtention of these approximated SIF functions, combined with 
the well-known solution for the spherical void’s stress field, allows for 
the derivation of semi-analytical expressions for failure per different 
approaches. It is noteworthy the use of Paris’ equation to deal with the 
CZM analytically. 

As expected, the adoption of energy considerations allows obtaining 
the gradual transition from the stress-driven extreme solutions, namely 
large-void and voidless. Although each theory provides a slightly 
different prediction, all of them agree to place the transition within the 
void’s radius range (0.1 lch, 10 lch). Moreover, the showcased relative 
differences in the failure prediction curves yielded by the different 
theories considered are consistent with those observed in the literature 
for different stress concentrations. 

Eventually, the comparison with two sets of experimental data and 
one set of atomistic simulations on ceramic brittle materials proves the 
representativeness of the considered approaches, especially those 
comprised within the FFM framework. Given the intrinsic scatter and 
uncertainty in the experimental sets, the obtention of a bold conclusion 
on the most accurate theory is hindered, both the FFM approaches 
providing reasonable accuracy. The data scattering due to the presence 
of flaws is eliminated in the atomistic simulations: in such a case FFM- 
avg provides the most accurate predictions. 
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