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Abstract: In this study, the biosynthesis of zinc oxide nanoparticles using Aspergillus niger (A/ZnO-
NPs) is described. These particles have been characterized by UV–Vis spectrum analysis, X-ray
powder diffraction, field emission scanning electron microscopy, and transmission electron mi-
croscopy. To use this biosynthesized nanoparticle as an antiproliferative and antimicrobial agent, the
IC50 value against the breast cancer cell line and inhibition zone against Escherichia coli were used to
optimize the effect of two processing factors including dose of filtrate fungi cell and temperature.
The biosynthesized A/ZnO-NPs had an absorbance band at 320 nm and spherical shapes. The
mean particles size was 35 nm. RSM (response surface methodology) was utilized to investigate the
outcome responses. The Model F-value of 12.21 and 7.29 implies that the model was significant for
both responses. The contour plot against inhibition zone for temperature and dose showed that if the
dose increases from 3.8 to 17.2 µg/mL, the inhibition zone increases up to 35 mm. As an alternative
to chemical and/or physical methods, biosynthesizing zinc oxide NPs through fungi extracts can
serve as a more facile and eco-friendly strategy. Additionally, for optimization of the processes, the
outcome responses in the biomedical available test can be used in the synthesis of ZnO-NPs that are
utilized for large-scale production in various medical applications.

Keywords: zinc oxide; nanomaterials; response surface methodology; anticancer; antimicrobial; optimization

1. Introduction

Nano-science and nano-technology rely on the understanding, manipulation, and
usage of matter at the nanoscale and could be potentially used in all of the scientific dis-
ciplines including biochemistry, biomaterials, and bioengineering [1–5]. Nanoparticles
have unique attributes and exclusive structure [6–10]. A number of nanoparticles (NPs)
including metal-oxide nanoparticles could be applied in biomedical applications [11–14].
Zinc-oxide NPs (ZnO-NPs) are among the most important in various research fields [15].
ZnO is an extensive band-gap semi-conductor, which has been used in several areas [3].
ZnO-NPs have emerged as a promising possibility in biomedical sciences, particularly
in anti-cancer and anti-microbial fields, where their ability to trigger extra-ROS (reactive
oxygen species) production and release zinc ions may play a role in cell apoptosis [16,17].
ZnO-NPs have low or non-toxicity. Nevertheless, higher levels of ZnO-NPs show greater
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cell toxicity in cancerous cell lines. Mechanisms of cell toxicity of ZnO-NPs cause zinc-
mediated protein activity disequilibrium and oxidative stress, finally killing the cell [18].
Results have revealed that ZnO-NPs stimulate cytotoxicity in cancer cells (WEHI-3) [19],
neural stem cells in mouse and human [20,21], osteoblast cancer cells [22], and tumor cell
lines (HeLa, A549, SK-MES-1, and NCI-H460) [23]. ZnO-NPs can be synthesized using
chemical and biological methods [24]. Generally, biological synthesis of metal-oxide NPs is
a more proper solution than chemical methods of synthesis as it exhibits several advantages
like using low-cost, non-toxic chemicals [25–27]. Bio-agents are usually ecofriendly and can
act as reducing agents of metal ions, thus being applied for the synthesis of small and stable
ZnO-NPs [28]. Microorganisms like yeast, bacteria, algae, and fungi play an important
role in the reducing metals either intra- or extracellularly, which forms the basis for the
use of microorganisms in the biosynthesis of nanoparticles using eco-friendly methods
and act as interesting nano-factories [29]. These strategies are used for the synthesis of
different metal nanoparticles like silver, gold, and zinc [30,31]. Attention has been paid to
fungi as candidates for NP synthesis. Fungi have advantages over other microorganisms
for the biosynthesis of nanoparticles due to high tolerance toward metals and high wall
binding capacity as well as intracellular metal uptake capabilities; their high secretion
of proteins, enzymes, and metabolites; high growth rates; easy handling in large-scale
production; and low-cost requirements for production procedures. In addition, nanoparti-
cles synthesized using fungi present fair mono-dispersity and stability compared to other
microorganisms [32]. The exact mechanism for the production of NPs is still partly unclear,
but the existence of bio-molecules in the biomass may be used for the production of NPs.
For example, fungi release huge quantities of enzymes and are easy-growing, thus they
are regarded as a suitable source for the synthesis of NPs. Bio-modeling and optimization
can help to better understand and perform biological tests [33–35]. In the present study,
the optimization of ZnO-NP synthesis using IC50 values against breast cancer cells and
Escherichia coli bacteria for two characteristics including temperature and dose of filtered
fungal cells is demonstrated.

2. Experimental
2.1. Materials

A registered Aspergillus niger strain (PTCC 5012) was obtained from the Persian
Type Culture Collection (PTCC, Tehran, Iran). The fungi were inoculated in solution media
containing: glucose (10 g/L), KH2HPO4 (7.0 g/L); K2HPO4 (2 g/L); MgSO4·7H2O (0.1 g/L);
(NH4)2SO4 (1 g/L); yeast extracts (0.6 g/L). The fungus was placed inside the flask and
an orbital shaker was used to incubate the fungus at 150 rpm at the temperature of 37 ◦C
for 96 h. The culture of the fungi was then filtered through Whatman no. 1 paper. The cell
filtrate was used for NP synthesis.

2.2. Green Synthesis and Characterization of A/ZnO-NPs

Zinc acetate dihydrate (Zn(CH3COO)2·2H2O of analytical grade was used as a source
to synthesize ZnO-NPs. For the synthesis of NPs, 50 mL of zinc acetate dihydrate solution
(1 mM) was mixed and stirred with different doses of cell filtrate and agitated at different
temperatures based on the experimental design in the dark. After that, the gained solution
was centrifuged at 10,000 rpm for 5 min. The precipitate was gathered, washed once with
96% ethanol, twice with deionized water, and then dried for characterization.

Characterization of A/ZnO-NPs was performed by using several techniques such as
UV–Visible spectrophotometry (UVD-3200, LABOMED, USA), field-emission scanning
electron microscopy (JEOL, Tokyo, Japan), transmission electron microscopy (Leo 912 AB
Zeiss, Oberkochen, Germany), and powder X-ray diffraction (D8 ADVANCE-BRUKER,
Billerica, MA, USA).
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2.3. Cytotoxicity Effects

MCF7 and skin fibroblast cells were treated with 20 µg/mL of A/ZnO-NPs. The
nanoparticles were suspended in deionized water. After the incubations, the MTT test was
done and absorbance was measured at 570 nm with plate-reader spectroscopy (Epoch,
Biotek, Winooski, VT, USA). The cell-viability percentage was measured by this ratio: (A
treated/A control) × 100, where A is the absorbance of the cells.

2.4. Antimicrobial Activity

The antimicrobial activity of A/ZnO-NPs was evaluated against Escherichia coli (MTCC
No. 739) by the agar diffusion test [36]. Mueller–Hinton agar plates were cultured with
100 µL of grown broth cultures of the respective test bacteria. Sterile readymade discs
were loaded with 20 µg/mL A/ZnO-NPs separately. The nanoparticles were suspended in
deionized water. The plates were incubated for 48 h. The growth of the inhibition zone
around the extract-loaded discs was recorded in millimeters (diameter of the zone).

2.5. Experimental Plan

In order to control the optimum status for biosynthesis of ZnO-NPs, dose of filtrate
fungi cell and temperature as the impelling agents were selected and the central composite
design (CCD) was applied. This design allowed us to establish the optimal rate of the
substantial factors and the interactions of such variables in the process. A three-level CCD
with four replicates at the center point with 13 runs was applied. Tested variables (IC50 and
inhibition zone) were denoted as x1 and x2, respectively. The principle of response surface
methodology (RSM) has been explained [37] with the objective of optimization of the
response based on the factors evaluated. The arrangement of CCD permits the expansion
of an empirical second-order polynomial multiple regression models. In order to specify
the significance of the model, ANOVA (analysis of variance) was conducted. The response
surface and contour plots of the model-predicted responses were applied to specify the
interactive relations between the significant variables. Design Expert, v. 8.0.7.1 (Stat-Ease
Inc., Minneapolis, MN, USA) was used to design the tests and for regression and graphical
analysis of the obtained data.

3. Results and Discussion

Green production of metal-oxide NPs utilizing biomass constituents is appealing
because these methods are uncomplicated, cheap, and non-toxic compared to chemico-
physical procedures [38–41]. The current study reports the extracellular synthesis of
A/ZnO-NPs via fungi. The biochemical procedure of NP shaping and stabilization has
remained largely undiscovered, except for some investigation groups that have shown that
the proteins observed in enzymes released by microorganisms are the chief biomolecules
included in the formation of metal/metal oxide NPs. Figure 1 summarizes the mechanism
of synthesis of ZnO-NPs by A. niger.

3.1. Characterization of A/ZnO-NPs

UV–Vis spectrum analysis is usually used to study the size and shape of NPs [42].
The rate and width of the surface plasmon absorbent rely on the size/shape of the NPs
as well as on the dielectric constant of the metal itself and the surrounding medium. It
is also well known that solutions containing ZnO-NPs exhibit a characteristic absorption
peak below 400 nm. Therefore, the A/ZnO-NPs absorbance peak was identified using
UV–Vis spectroscopy in the range of 250 to 400 nm. The UV–Vis spectrum analysis of the
biosynthesized A/ZnO-NP specimen is displayed in Figure 2. It was revealed that the
UV–Vis absorption spectra of green synthesized ZnO-NPs showed an absorption peak
at 320 nm. The bandgap energy was calculated using the formula Eg = 1240/λ eV and
was found to be 3.8 eV, which is comparable to the previously reported values of energy
bandgap for ZnO nanoparticles [43,44]. It is worth noting that the obtained Eg value was
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different from the bandgap of bulk ZnO (3.37 eV); this result can be attributed to the optical
confinement effect corresponding to the size and length of NPs [45].
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Powder X-ray diffraction (PXRD) was conducted to examine the crystal structure of the
optimized sample and crystallite size (Figure 3). The crystal structure was compatible with
the reference pattern of zinc oxide with code JCPDS #01-076-0704. Hence, the corresponding
(hkl) values were (100), (002), (101), (102), (110), (103), (200), (112), (201), (004), and (202).
The calculated 20 values and intensities (%) were 31.74 (57), 34.38 (41.5), 36.22 (100), 47.48
(21.2), 56.54 (30.8), 62.78 (26.5), 66.30 (4.1), 67.87 (22), 69.01 (10.9), 72.47 (1.6), and 76.87
(3.4). The 2θ values of the synthesized A/ZnO-NPs were in close relation to the reference
pattern, which had values of 31.90, 34.55, 36.35, 47.58, 56.62, 62.92, 66.44, 68.00, 69.18, 72.73,
and 77.08◦. The A/ZnO-NPs had a hexagonal crystal system and P63mc space group. The
crystallite size of the nanoparticles was obtained by the Scherrer equation, which was
calculated to be 35.51 nm.
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The TEM image showed that the particles sizes ranged from 10 to 70 nm (Figure 4).
The mean diameter of the biosynthesized nanoparticles measured by TEM was about
33 nm, which is in good accordance with the NP size estimated from the PXRD results.
Dark shadows on the surface of the nanoparticles in the TEM image may be the bioorganic
molecules/enzyme of fungi. The dimension, shape, and distribution of the as-synthesized
A/ZnO-NPs were analyzed through FE-SEM monitoring. Figure 5 presents the FE-SEM
image of A/ZnO-NPs, which were prepared after 24 h of incubation. A/ZnO-NPs showed
a distorted spherical shape. This agglomeration is the caused by polarity and electrostatic
attraction of ZnO-NPs. Regarding the fact that the specific properties of NPs depend on
their shape, synthesis of NPs, along with controlling shape, is very important. In general,
the most appropriate shape that can be used for biological purposes is the spherical shape,
as the absence of sharp or cutting edges prevent damage to cells/tissues.
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Nanoparticles produced by plant and microorganism extracts are the center of atten-
tion because of their bio-compatibility and low cost [46,47]. ZnO displays significantly en-
hanced biomedical characteristics in its nano-forms. Working on the properties of ZnO-NPs
revealed that their nanocomposites (NCs) had more potent biomedical and photocatalytic
effects [48,49]. Bacteria were amongst the main organisms employed for the production
of nanoparticles as a result of their feasibility of isolation and use [50]. Saravanan et al.
generated anisotropic ZnO-NPs by Bacillus megaterium cell free extracts as unique reduc-
ing/capping agents [51]. The UV spectrum of the ZnO-NPs displayed the SPR peak at
346 nm, which is consistent with our results. In the other study, β-chitinous scaffolds were
employed as a template for the formation of ZnO materials. The results showed the growth
of ZnO nano-crystals on the β-chitin. The chitin/ZnO composites showed antibacterial
properties against Gram-positive bacteria [52]. In another work, extracellular metabolites
of A. niger were used to transform ZnO-NPs into a zinc oxalate [53]. The results show that
due to the presence of high active metabolites, A. niger can biomineralize inorganic NPs
and transform these NPs into more stable oxalate complexes.

3.2. Central Composite Design

RSM is a statistical technique that uses quantitative data from proper tests to explain
regression model equations. This is generally achieved by assessing which of the inves-
tigated variables and their interactions have more important effects. There are several
variables that may affect the response of a system, and it is almost incredible to recognize
and control them all. In this work, we studied how to optimize two responses induced
by ZnO-NPs (i.e., the cytotoxic effects toward MCF-7 cells (IC50) and the anti-bacterial
activity (inhibition zone) against E. coli). The effect of the two variables including the dose
of filtrated fungi cell and temperature were studied. Two independent RSM models were
developed to precisely structure the model and ascertain the impact of individual factors.



Biomimetics 2021, 6, 34 7 of 13

The ANOVA was used to analyze the differences among means. Only those terms rendered
significant results according to ANOVA were applied in the model. Central composite
design (CCD) for the two variables and two experimental responses including IC50 and
inhibition zone adapted after 13 runs is shown in Table 1.

Table 1. Central composite design (CCD) for the two variables (temperature and dose of biosynthe-
sized NPs) and two experimental responses (IC50 and inhibition zone).

Factor 1 Factor 2 Response 1 Response 2

Std A: Temperature (◦C) B:Dose IC50 Inhibition zone (mm)

1 36.0 3.8 17 20

2 89.0 3.8 15 17

3 36.0 17.2 5 40

4 89.0 17.2 5 40

5 25.0 10.5 120 2

6 100.0 10.5 50 2

7 63 1.0 50 2

8 63 20.0 2 46

9 63 10.5 150 2

10 63 10.5 150 2

11 63 10.5 150 2

12 63 10.5 150 2

13 63 10.5 150 2

ANOVA was done to obtain the best synthesis conditions for ZnO-NPs so that they
had the highest cytotoxicity effects against cancer cells. The results are presented in Table 2.
According to the data from Table 2, the quadratic model is the best model for both dose
and temperature for the IC50 response. As shown in Table 2, the two factors, temperature
(A) and dose (B), and combination of them was not significant (p-value > 0.05), but A2

and B2 were significant. F value of the quadratic model and individual model terms also
helped in finding their significance. The F-value of the model of 12.21 showed that the
model was significant (Table 2). p-values less than 0.05 highlighted that the model terms
were significant.

Table 2. ANOVA of the response surface quadratic model for IC50.

Source Sum of Squares df Mean Square F-Value p-Value

Model 47,886.85 5 9577.37 12.21 0.0024

A-Temperature 1275.00 1 1275.00 1.63 0.2430

B-Dose 1009.85 1 1009.85 1.29 0.2938

AB 1.00 1 1.00 0.0013 0.9725

A2 13,315.22 1 13,315.22 16.98 0.0045

B2 37,325.65 1 37,325.65 47.60 0.0002

Residual 5489.15 7 784.16

Therefore, A2 and B2 were the significant model terms with F-values of 16.98 and
47.60 (Table 2). Hoseinpour also reported that extract ratio was a significant factor for
the biosynthesis of ZnO-NPs from a Dittrichia aqueous extract [54]. Figure 6 displays the
predicted response values in parallel to the actual response values. The purpose was to
identify a value or group of values not easily predictable by the model.
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In order to obtain the effective factors to find the optimal conditions, linear regression
was used. In linear regression, mean response and predicted response are values of the
dependent variable measured from the regression parameters and a given value of the
independent variable. The values of these two responses are similar, but their calculated
variances are dissimilar. Table 3 shows the final equation regarding the actual factors.

Table 3. Final equation in terms of actual factors.

IC50 =

−222.86128

+7.27221 Temperature

+32.24067 Dose

+0.002807 Temperature × Dose

−0.062222 (Temperature)2

−1.62327 (Dose)2

Equations determine that the dose was the most influential factor with a positive
result, and then temperature had positive effects on the IC50. Souri et al. indicated that the
extract to metal ratio was the most effective parameter for the biosynthesis of manganese
dioxide NPs by Yucca gloriosa leaf extract [55]. The normal probability plot is a graphical
method for evaluating whether or not a dataset is approximately normally distributed.
If the normal probability diagram depicts a straight line, the residuals have a normal
distribution. The contour plot is a two-dimensional (2D) representation of the response
plotted against combinations of numeric factors and/or mixture components. It can display
the association between the responses, mixture components, and/or numeric factors.

The combined result of the dose and temperature was evaluated and the consequences
were given in the form of contours and 3D plots (Figure 7a,b). The contour plot against
IC50 for temperature and dose is shown in Figure 8a. Contour plots are a way to show a
three-dimensional surface on a two-dimensional plane (Figure 7b). The 3D surface plot is a
projection of the contour plot giving shape, in addition to the color and contour. Figure 8a,b
shows that if the temperature increases from 36 to 89 ◦C and the dose increases from 3.8 to
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17, the IC50 on the MCF-7 cells decreased from 150 to about 50, which means that it is in
accordance with the model.
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ANOVA analysis was also performed to obtain the best synthesis conditions for
ZnO-NPs, leading to the greatest anti-bacterial effects. The results are presented in Table 4.
According to the data from Table 4, the quadratic model is the best model for the inhi-
bition zone response. As shown in Table 4, the term of dose (B) and B2 were significant
(p-value ≤ 0.05), but the term of temperature (A) and A2 and the combination of them (AB)
were not significant. The F-value of the model was 7.29, which reflects the significance
of the model (Table 4). The probability of obtaining such a great F-value due to noise is
only 1.07%. p-values < 0.05 revealed significant model terms including B and B2 with the
respective F-values of 1.40 and 19.20 (Table 4).

Final equation in terms of actual factors is shown in Table 5. The equation regarding the
actual values can be utilized to anticipate the response for the levels of an individual factor.

The combined result of the dose and temperature was examined and the results
are given in the form of contours and 3D plots (Figure 7a,b). The contour plot against
inhibition zone for temperature and dose showed that if the dose increases from 3.8 to
17.2, the inhibition zone increases up to 35 mm, which means that it is in accordance with
the model.
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Table 4. ANOVA for response surface quadratic model for the inhibition zone.

Source Sum of Squares df Mean Square F-Value p-Value

Model 2996.86 5 599.37 7.29 0.0107

A-Temperature 1.13 1 1.13 0.0137 0.9102

B-Dose 1384.05 1 1384.05 16.84 0.0046

AB 2.25 1 2.25 0.0274 0.8733

A2 114.81 1 114.81 1.40 0.2759

B2 1578.29 1 1578.29 19.20 0.0032

Residual 575.45 7 82.21

Table 5. Final equation in terms of actual factors.

Inhibition Zone =

+44.45795

−0.780575 Temperature

−5.31481 Dose

+0.004211 Temperature × Dose

+0.005778 (Temperature)2

+0.333795 (Dose)2

4. Conclusions

In this study, zinc oxide nanoparticles prepared using Aspirgilous niger extracts were
optimized and estimated using design expert software. The ZnO-NPs were characterized
via FESEM, TEM, and XRD analysis methods. Design of the response surface was selected
to examine the main effects of the factors and their interactions. In this research, two
variables factors, dose of filtrate fungi cell and temperature, were used to optimize the
synthesis of ZnO-NPs for two responses, cytotoxicity against MCF-7 cell (IC50) and antibac-
terial activity (inhibition zone). The F-value of model was 12.21 and 7.29 for the IC50 value
and inhibition zone, respectively, which implies that the model is significant. In the case
of IC50, dose (B) and temperature (A) as well as combination of them were not significant
(p-value > 0.05), but the A2 and B2 were significant. In the case of inhibition zone, the terms
dose (B) and B2 were significant (p-value ≤ 0.05), but the terms of temperature (A) and A2

and the combination of them (AB) were not significant. The biosynthesized A/ZnO-NPs
had an absorbance band at 320 nm and spherical shapes. The mean particle size was 35 nm.
The contour plot against inhibition zone for temperature and dose showed that if the
dose increased from 3.8 to 17.2 µg/mL, the inhibition zone increased up to 35 mm. As an
alternative to physico-chemical methods, producing ZnO-NPs through fungi can serve
as a more simplistic and eco-friendly plan. Moreover, for optimization of the processes,
the outcome responses in the biomedically available test can be used in the synthesis of
ZnO-NPs that are utilized for large-scale production in various medical applications.
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