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Generalized Perturbation Techniques for Uncertainty

Quantification in Lead-Cooled Fast Reactors

Nicolò Abratea, Sandra Dullaa, Piero Ravettoa

aPolitecnico di Torino, Dipartimento Energia,
Corso Duca degli Abruzzi, 24 - 10129 Torino (Italy)

Abstract

The design of innovative nuclear fission systems requires a careful evaluation
of the uncertainties affecting the basic input data. Among them, nuclear data
are particularly relevant, due to their dramatic energy dependence. Because
of this feature and of the strong spatial heterogeneity of nuclear reactors
arrangement, full-core calculations are carried out using energy collapsed and
spatially homogenised constants. Nowadays, collapsing is often performed
with Monte Carlo codes, which allow a discretisation-free treatment of the
neutron transport equation.

The most popular method to propagate the uncertainty in the nuclear
data libraries throughout the Monte Carlo transport calculation is the Gen-
eralised Perturbation Theory (GPT). However, due to its multi-group nature,
GPT often blurs the continuous-energy feature of the Monte Carlo method.
Therefore, in order to fully exploit its advantages, the XGPT method has
been recently proposed. After discussing the main differences between these
two approaches, the paper presents the application to an uncertainty quan-
tification study on the lead-cooled fast reactor ALFRED design, performed
with GPT and focused on the multi-group cross sections.

Afterwards, the two nuclides that most contribute to the overall uncer-
tainties, i.e. Pu-239 and U-238, are considered to compare the GPT results
to some XGPT calculations carried out with different multi-group energy
structures. This analysis suggests that XGPT is a consistent method for
uncertainty quantification in the continuous-energy Monte Carlo framework.
Moreover, it can be concluded that an adequate number of low-energy groups
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is necessary for an accurate uncertainty evaluation in the case of a fast sys-
tem.

Keywords: uncertainty propagation; sensitivity analysis; reduced-order
models; GPT; XGPT; Monte Carlo; Serpent 2 code; nuclear data;
lead-cooled fast reactor;

Foreword by Sandra Dulla

The year 2020 has been dubbed annus horribilis for reasons that are very
clear to the whole society, and it is also the year when Massimo Salvatores
left us. He passed away, but the correct statement is really “he left us”, as
the void he left in our scientific community, and our hearts, is practically
irreplaceable.

In his long career, he has provided fundamental contributions in basically
every reactor physics-related topic and beyond. His work on Generalized
Perturbation Theory is just one example, and this paper aims at honoring
his legacy with a, tiny in comparison, contribution.

A paper in this special issue written by P. Ravetto and G. Palmiotti
provides a beautiful summary of Massimo’s works, and we do get a glimpse
on Massimo’s life thanks to the obituary by G. Palmiotti and A. Gandini.
All the persons who had the luck to cross paths with Massimo surely have
some nice memories of the event, typically combining the scientific exchanges
with the human aspects.

I do have my own memories. In September 2012 Massimo Salvatore came
to Politecnico di Torino to give a PhD excellence course on “Multiphysics
problems for advanced nuclear application”. It was my occasion to appreci-
ate, together with the many PhD students participating to the course, Mas-
simo’s outstanding skills as teacher, his passion for science and clear vision
for the future of nuclear engineering research. I also remember a colleague
from a neighboring field being almost mesmerized by Massimo’s clear talk-
ing and engaging thinking, but the best memory comes from a different field.
Massimo spent some time in our offices, talking to one of our PhD student at
that time. She then told me she would have loved to have a grandfather as
Massimo, who was taking his granddaughter to London to watch the opera.
I did share that feeling.

In 2018 Massimo was giving a plenary talk at the PHYSOR conference
entitled “Measuring the earth and the sky”, where he was able to summarize,
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in a single talk, notions related to the history and art of Mexico with reactor
physics concepts. Later that night, in front of a drink, he was asked questions
on the latter and, naturally, provided his enlightening physical insight. That
conference was for some of us a wonderful occasion to spend some time with
him, talking about travels, food and even tv series, discovering a side of him
that you cannot get from his immense scientific production.

Massimo Salvatores was to me a scientific father, a title I can give to
a few, exceptional figures in our scientific community. This is why, when I
got the information of his condition in early March 2020, the news hit me
this hard. At the same moment, my father was in hospital for the COVID
infection. Of these two, unfortunately, only one managed to get out of that
extremely difficult time.

My heart is half-broken for this scientific father I lost.

1. Introduction

One of the methodologies currently employed for the safety assessment
of nuclear reactors is the so-called Best Estimate Plus Uncertainty (BEPU)
approach, which aims at qualifying the results provided by high fidelity com-
putational codes with an estimate of their uncertainty [1, 2]. The uncer-
tainty affecting the calculations may be epistemic, i.e. the one related to
the physico-mathematical model and its assumptions (e.g., multi-group vs.
continuous-energy, diffusion vs. transport, ...), or aleatory, due to the intrin-
sic randomness in the phenomena observed [3].

The uncertainty in the basic nuclear data, such as cross sections or energy-
angular distributions, is the combination of both contributions and it is a
relevant source of the overall uncertainty associated to a best estimate cal-
culation. More specifically, the uncertainty in the raw nuclear data affects
directly the homogenised and collapsed multi-group constants, which are gen-
erated for the full-core neutronic analyses. The common approach to generate
the multi-group data is using high-fidelity codes that address space, energy
and angle in detail, thus providing an accurate estimate for the flux at the
assembly level. The flux information is then used to collapse on energy and
homogenise over space the cross sections. This step is usually carried out us-
ing deterministic codes like the ECCO-ERANOS system [4] or, more recently,
using Monte Carlo codes [5]. In spite of their larger computational burden,
stochastic methods allow to reduce as much as possible both the modeling
and the numerical errors, because of the discretization-free treatment of the
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phase space. On the other hand, due to the nature of the method, Monte
Carlo calculations are affected by statistical uncertainty.

Whatever is the methodology employed to generate the multi-group con-
stants, the nuclear data vector p uncertainty on the output vector response
r of interest is usually assessed using the well-known sandwich rule [6],

var[r] = ~S
r

pcov[p]~S
rT

p , (1)

where var[r] is the variance of the response, ~S
r

p is the relative sensitivity of r
with respect to a variation in the input p, and cov[p] is the relative covari-
ance matrix associated to p. In spite of its first-order accuracy, eq. (1) is
widely employed in nuclear engineering to propagate uncertainty in combi-
nation with Generalized Perturbation Theory (GPT), a surrogate technique
based on the forward and adjoint neutron models, originally developed by
L.N. Usachev and later exploited by A. Gandini and M. Salvatores [7, 8].
GPT allows to estimate the sensitivities to a large number of input parame-
ters for many responses in a computationally efficient manner, although the
information conveyed is limited to the response uncertainty.

If a richer information is coveted, e.g. the response distribution or its
moments, an Uncertainty Quantification (UQ) study can be carried out with
a direct sampling technique. Among the various sampling methods avail-
able, the so-called Total Monte Carlo (TMC) method [9] is one of the best
candidates for UQ, since it is not subjected to the curse of dimensionality
[10]. Nevertheless, this approach is extremely computationally intensive, as
it scales like 1/

√
N , where N is the number of samples.

A promising alternative to both GPT and TMC is represented by a re-
cently developed method, the eXtended Generalised Perturbation Theory
(XGPT). This algorithm, currently implemented in Serpent 2 [11, 12], is a
first-order projection technique that can be employed to build approximated
response distributions, working as a reduced-order version of TMC. This fea-
ture makes XGPT very interesting, especially as a fast, yet still accurate, tool
to estimate the distributions of multi-group constants due to the uncertainty
in the input parameters. Such a kind of uncertainty analysis is of paramount
importance for a proper safety-oriented design of innovative reactors like the
Gen-IV fast systems, whose behaviour is featured by a strong interplay be-
tween neutronics and thermal-hydraulics. The intrinsic multiphysics nature
of such systems and the presence of uncommon nuclides with respect to cur-
rently operating reactors require the adoption of state-of-the-art techniques
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for the correct propagation of the uncertainty from the nuclear data to the fi-
nal output of the calculation chain, e.g. Polynomial Chaos Expansion (PCE)
[13].

Polynomial Chaos Expansion is a surrogate technique that allows to prop-
agate the uncertainty from the input data to the output of a computational
model with a limited number of model executions, thanks to a clever choice
of the samples. However, to exploit the full potential of this technique, the
distributions for the model input parameters are necessary, even in an ap-
proximated form.

The XGPT approach may provide the missing piece for a consistent UQ
from the raw nuclear data to the multiphysics full-core calculations. There-
fore, this work aims to assess the possibility to generate output response
distributions using XGPT, focusing on some selected multi-group constants.
The first part of the paper presents a preliminary UQ study carried out on
the ALFRED (Advanced Lead Fast Reactor European Demonstrator) reac-
tor design [14], using the legacy GPT approach. Afterwards, two relevant
nuclides are chosen to compare the uncertainties estimated with the GPT
and XGPT methods implemented in Serpent 2, analysing the influence of
the different tuning parameters, e.g. the energy grid structure. Finally, the
distributions for some output responses are computed using XGPT method
and conclusions on the potential of this reduced-order model are drawn.

2. Generalized perturbation methods for uncertainty quantifica-
tion

This section is devoted to describe the GPT and XGPT methods, pointing
out their the main features.

GPT is a legacy reactor physics approach, therefore it is available as a
standard routine in most deterministic codes [4]. Since these codes discretise
the energy axis with the multi-group approximation, both the sensitivity
coefficients computed with GPT and the covariance matrices employed in eq.
(1) are evaluated on multi-group structures. This fact has induced the nuclear
data evaluators to develop methods and tools [15] to process the covariance
matrices over relatively coarse energy structures (usually no more than a
thousand groups). In spite of this approximation, GPT has been applied
successfully for sensitivity and uncertainty analyses in reactor physics and
engineering applications since the 70’s, thanks especially to the contributions
given by A. Gandini and M. Salvatores. Due to its popularity, GPT has
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also been implemented in various continuous-energy Monte Carlo codes, like
MCNP [16] and Serpent 2. Nevertheless, in spite of the absence of any energy
approximation, also Monte Carlo GPT provides group-wise sensitivities, since
the statistical error increases if the tally bin width is reduced.

In order to overcome this Monte Carlo GPT limitation, the XGPT method
has been proposed [11]. The main idea of this approach is to compute the
sensitivities by means of scalar products on basis functions extracted from the
covariance matrices. Since the scalar products involve integration over the
energy, the XGPT coefficients are less prone to statistical issues, potentially
allowing continuous-energy evaluations.

In addition to the improvements in the calculation of the sensitivity co-
efficients, XGPT also permits the adoption of ”high-resolution” covariance
matrices, i.e. evaluated on a fine energy grid. Nevertheless, due to the his-
torical development of multi-group codes, it is still not possible, nowadays, to
process the Evaluated Nuclear Data Files (ENDF) tapes into a continuous-
energy format. The only relevant exception, to the authors’ knowledge, con-
sists in extracting the sample covariance matrices from a set of continuous-
energy perturbed ENDF tapes generated with the T6 package [17, 18, 19],
as done in [11].

Figure 1 shows some examples of correlation matrices for Pu-239 and
U-238 data, taken from the ENDF/B-VIII.0 library [20] and evaluated on
different energy grids with the ERRORR module of NJOY [15]. It is in-
teresting to notice that the impact of the energy grids is straightforward for
Pu-239 and less evident for U-238, as it will be examined in more detail later.

The following subsection is devoted to highlight the main differences be-
tween the sensitivity evaluation by GPT and XGPT methods.

2.1. Evaluation of sensitivity coefficients

For a given physical system, the first-order relative sensitivity of a certain
response R of the system to a certain physical parameter P is defined as:

S
R

P =
∂R/R

∂P/P
=
P

R

∂R

∂P
. (2)

In this paper, the parameter P is always assumed to be the microscopic
cross section of a specific nuclide j for a certain reaction y, i.e. σy,j(E), while
the response is assumed to be the linear reaction rate ratio that defines the
macroscopic cross section for reaction x, homogenised over a region of volume
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Figure 1: Correlation matrices for Pu-239 (top) and U-238 (bottom) data evaluated on
ECCO-33 groups (left) and using 1500 groups (right).
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V and collapsed over a energy group g,

Rx
g =

∫
V

d~r

∫ Eg

Eg−1

dE Σx(~r, E)Φ(~r, E)∫
V

d~r

∫ Eg

Eg−1

dE Φ(~r, E)

=
〈Σx|Φ〉g
〈1|Φ〉g

=
Rx

1,g[Σx,Φ]

Rx
2,g[Φ]

, (3)

where the notation adopted highlights the fact that the response of interest
is the ratio of two functionals, Rx

1,g and Rx
2,g. As a consequence, eq. (2) can

be manipulated in order to get:

S
R
g
x

P = P
Rx

2,g

Rx
1,g

∂

∂P

(
Rx

1,g

Rx
2,g

)
=

P

Rx
1,g

∂Rx
1,g

∂P
− P

Rx
2,g

∂Rx
2,g

∂P
= S

Rx
1,g

P − S
Rx
2,g

P . (4)

The term S
Rx
1,g

P can be expressed as the sum of two first-order functional
derivatives, as:

S
Rx
1,g

P =
P

Rx
1,g

〈δΣx|Φ〉g
δP

+
P

Rx
1,g

〈Σx|δΦ〉g
δP

= S
Rx
1,g

P,dir + S
Rx
1,g

P,ind (5)

that are usually referred to as the direct and the indirect terms, respectively.
The direct term represents the change of the macroscopic cross section due
to P , while the indirect term represents the flux change due to P . From
now on, the variation symbol δ will be used in substitution of the continuous
derivative.

Starting from version 2.1.31, Serpent is able to compute automatically

both S
Rx
1,g

P,dir and S
Rx
1,g

P,ind only when the GPT routine is employed. If the XGPT
mode is adopted, the user must define suitable detectors in order to estimate
also the direct term.

To obtain the explicit tally definitions to be employed to estimate the
direct sensitivities presented in this work, it is useful to notice that, for a
heterogeneous system like the ALFRED reactor, Σx can be usually expressed
as

Σx(~r, E) =
I∑
i=0

Ni(~r)σx,i(E), (6)

where Ni is the atomic density of the i-th nuclide species. Since the analysis
carried out in this paper concerns only the fissile isotopes, the atomic density
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spatial distribution is a piece-wise constant,

Ni(~r) =

{
Ni ∀~r ∈ D1 ∪D2 ∪ ... ∪DF

0 otherwise,
(7)

where Dk indicates the k-th fuel pellet volume.
Equations (6) and (7) allow to evaluate the direct term explicitly for the

case P = σy,j(E):

S
Rx
1,g

P,dir(E) =
σy,j(E)

Rx
1,g

〈δΣx|Φ〉g
δσy,j(E)

=
σy,j(E)

Rx
1,g

1

δσy,j(E)

∫
V

d~r

∫ Eg

Eg−1

dE δΣx(~r, E)Φ(~r, E)

=
σy,j(E)

Rx
1,g

1

δσy,j(E)

∫
V

d~r

∫ Eg

Eg−1

dE
I∑
i=0

Ni(~r)δσi,x(E)Φ(~r, E)

=
σy,j(E)

Rx
1,g

I∑
i=0

∫
V

d~rNi(~r)

∫ Eg

Eg−1

dE Φ(~r, E)
δσi,x(E)

δσy,j(E)
,

(8)

The direct sensitivity coefficient vanishes if reactions x and y are independent
or if the nuclide species i and j are not the same, therefore the previous
equation reduces to:

S
Rx
1,g

P,dir(E) =
Njσy,j(E)

Rx
1,g

∫
VF

d~rΦ(~r, E)δxy, (9)

where δxy acts as the standard Kronecker operator and VF is the total fuel
volume inside the volume V considered for the homogenisation. As previously
mentioned, the major difference between GPT and XGPT lies in the way the
sensitivity defined in eq. (4) is scored. GPT scores group-wise sensitivities,

S
Rx

g

P,h =

∫ Eh+1

Eh

dE S
Rx
g

P (E), ∀ h = 1, . . . , H, (10)

while XGPT scores the projections of the sensitivity coefficient S
Rx
g

P (E) on
continuous-energy basis functions bk(E) extracted from the covariance ma-
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trices,

S
Rx

g

P,k =

∫ Emax

Emin

dE S
Rx
g

P (E)bk(E)

=

∫ Emax

Emin

dE

(
S

Rx
1,g

P,dir(E) + S
Rx
1,g

P,ind(E)− S
Rx
2,g

P (E)

)
bk(E),

(11)

where the integration is carried out between the minimum and maximum
energies considered for the intended calculation. Since the direct effect for a
collapsed cross section is only affected by perturbations occurring within its
energy boundaries, it can be written in XGPT fashion as:

S
Rx

1,g

P,dir,k =

∫ Eg+1

Eg

dE S
Rx
1,g

P,dir(E)bk(E)

=
1

Rx
1,g

∫ Eg+1

Eg

dE Njσj,x(E)bk(E)

∫
VF

d~rΦ(~r, E)

=
1

〈Σx|Φ〉g

∫ Eg+1

Eg

dE Σj,x(E)bk(E)

∫
VF

d~rΦ(~r, E).

(12)

While the denominator of eq. (12) can be evaluated defining a suitable tally,
it is not possible to directly score the scalar product over the basis functions.
To overcome this issue, the integral is evaluated a posteriori, scoring the
reaction rate over the whole volume of interest and over the same energy
grid employed to define the basis functions. In such a way, the integration
can be approximated as follows:∫ Eg+1

Eg

dE Σj,x(E)Ψ(E)bk(E) ∼=
H∑
h=1

Σj,x,hΨhbk,h∆Eh, (13)

where Ψ is the flux integrated over the fuel volume. All the sensitivity and
tally results presented throughout the paper have been processed using the
serpentTools package [21] and some in-house Python scripts. Despite the
projection requires an ad hoc implementation in the Monte Carlo code, it
is useful to observe that this procedure could be employed as an a poste-
riori step to obtain approximated projections using group-wise sensitivities
evaluated on a sufficiently fine energy grid:

S
Rx

g

P,bk
=

∫ Emax

Emin

dE S
R
g
x

P (E)bk(E) ∼=
H∑
h=1

S
R
g
x

P,hbk,h∆Eh. (14)
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This approach would not require any code modifications and could potentially
disclose the possibility of using also deterministic codes to get approximated
response distributions.

2.2. Determination of the basis functions

The basis functions employed in the scalar product of the sensitivity coef-
ficients can be computed by means of the Proper Orthogonal Decomposition
(POD) algorithm [22], which is a classical technique for the dimensionality
reduction of a set of data.

If the set of perturbed cross sections is available, the POD can be per-
formed computing the Singular Value Decomposition (SVD) of the snapshot
matrix, i.e. the matrix whose columns are the perturbed data. These data
can be sampled, for example, using the SANDY code [23] or the T6 package
[19], which allows to apply continuous-energy perturbations to the ENDF files
and, consequently, to obtain a continuous-energy sample covariance matrix.
This approach is described in more detail in [11] and [24]. If the information
available is the covariance matrix stored in the ENDF-6 files, the POD can
be performed via SVD of the covariance matrix itself. This second approach,
followed in this paper, allows to avoid the introduction of statistical errors
and biases related to the sample covariance matrix evaluation, but limits its
energy resolution.

The POD computed via SVD allows to factorise the relative covariance
matrix cov[p] ∈ Rm×m as

cov[p] = B̂Σ̂Âᵀ, (15)

where B̂ ∈ Rm×m is the column-wise set of cov[p] left eigenvectors, [~b1,~b2, . . . ,~bm],
Σ̂ ∈ Rm×m contains cov[p] singular values and Â ∈ Rm×m is the column-wise
set of cov[p] right eigenvectors. In this case Â = B̂, since cov[p] is square
and symmetric.

The dimensionality reduction can be carried out thanks to the fact that
the singular values σi of cov[p] constitute a monotonically decreasing se-
quence (σ1 > σ2 > ... > σm) that decays quickly. Since each eigenvalue is
proportional to the information carried by the corresponding basis function,
it is possible to approximate the original matrix cov[p] using a limited num-
ber t of eigenvectors. The value of t is often chosen looking at the value of
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the POD energy, defined as

E(t) =

t∑
k=1

σ2
k

r∑
k=1

σ2
k

. (16)

The POD energy is equal to 1 when t = m. In this case, the tolerance is
checked against 1− E .

2.3. XGPT uncertainty quantification

Once the projected sensitivities Srp,bk ∀ k = 1, ..., t are computed, one may
compute the response variance using the sandwich formula, or use XGPT in
a reduced-order fashion to approximate the response distribution. In the first
case, the uncertainty is estimated starting from the continuous version of the
sandwich formula [11],

var[r] =

∫ Emax

Emin

dE

∫ Emax

Emin

dE ′Srp(E)cov[p](E,E ′)Srp(E
′)

=

∫ Emax

Emin

dE

∫ Emax

Emin

dE ′Srp(E)B̂(E)Σ̂B̂(E ′)ᵀSrp(E
′)

=

(∫ Emax

Emin

dE B̂(E)ᵀSrp(E)

)ᵀ

Σ̂

(∫ Emax

Emin

dE B̂(E)ᵀSrp(E)

)
= ~Sr

ᵀ

p,b Σ̂ ~Srp,b,

(17)

where ~Srp,b is the column vector obtained stacking the projected sensitivities

Srp,bk . Since Σ̂ is a diagonal matrix whose entries are filled with the singular
values of cov[p], eq. (17) turns out to be a weighted sum of smaller and
smaller contributions.

Using the same quantities, it is possible to build a first-order model to
approximate the full-order model output response. Starting from eq. (2) and
assuming a linear variation, the model yields:

Ri −R0

R0

= ~SR
ᵀ

P

~Pi − ~P0

~P0

= ~SR
ᵀ

P
~Xi = ~SR

ᵀ

P Î ~Xi =

= ~SR
ᵀ

P B̂tB̂
ᵀ
t
~Xi = (B̂ᵀ

t
~SRP )ᵀB̂ᵀ

t
~Xi = ~SR

ᵀ

P,b~αi ,

(18)
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where B̂t is the truncated POD basis B̂ and ~αi is the i−th response projection
in the reduced space. Rearranging the terms, eq. (18) finally yields

Ri = R0

(
1 +

t∑
k=1

αikS
R
P,bk

)
. (19)

Thanks to eq. (19), the output response to an input perturbation ~Pi can
be computed in a fully consistent way with respect to the continuous-energy
Monte Carlo approach, disclosing the possibility of performing a first-order
uncertainty propagation from the raw nuclear data to the output homogenised
coarse-group constants.

It is important to notice that, according to the way the basis functions
are computed, eq. (19) may yield different approximations to the output
distribution. If the basis functions were extracted directly via SVD of the
covariance matrix, they would not contain any information on the input
parameter distribution. In this case, eq. (19) acts as a linear model that
approximates the output distribution of an input parameter that is implicitly
assumed to be normally distributed. This implies that also the output will
be normally distributed as well.

On the contrary, if the basis functions were computed applying POD to
the snapshot matrix [22], the basis functions would convey a richer statistical
information, since they would contain also an information related to the
distribution of the samples. In this last case, the model would behave as a
linearized TMC approach.

3. Application to the ALFRED reactor model

The methodology previously described is now applied to a Monte Carlo
model of the ALFRED reactor design. The geometry and material specifica-
tions are taken from [14] for the Lead-Cooled Fast Reactor design, developed
within the European project LEADER. We consider the Beginning of Life
(BoL) configuration, with all the safety and control rods withdrawn. The 3D
model also includes the barrel and the external lead.

The regions considered for the spatial homogenisation of the multi-group
data are reported, for the reader’s convenience, in figure 2. The left sketch
represents the different types of assemblies, which are discretised axially as
shown in the right sketch. The multi-group constants of this reactor discreti-
sation, collapsed over the groups described in table 1, were employed in the
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framework of a benchmark between the neutronic module of the FRENETIC
(Fast REactor NEutronics /Thermal-hydraulICs) code and Serpent, showing
a very good agreement with respect to keff and thermal power distribution
[25]. The reference thermodynamic condition considered in this paper to take
into account the Doppler effect is a uniform temperature equal to 1073 K for
the whole system. All the Monte Carlo calculations have been carried out
using the ENDF/B-VIII.0 nuclear data library.

Figure 2: Radial section (left) and axial regions (right) of ALFRED 3D model, as in [25].

Table 1: Six-group energy grid adopted to perform the macroscopic cross section energy
collapsing [25].

Group Upper boundary [MeV] Lower boundary [MeV]

1 2.000 · 101 1.353 · 100

2 1.353 · 100 1.832 · 10−1

3 1.832 · 10−1 6.738 · 10−2

4 6.738 · 10−2 9.119 · 10−3

5 9.119 · 10−3 2.000 · 10−5

6 2.000 · 10−5 1.000 · 10−11

3.1. Uncertainty quantification with GPT

In this section, the results of a UQ study using the GPT approach [26]
are presented and discussed. The Serpent code responses analysed in the
following are the effective multiplication factor keff and the six-group fission
and capture cross sections, Σf,g and Σc,g, homogenised over the inner and
outer fuel regions of ALFRED. The perturbations considered affect the total
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fission (σf or MT18 according to ENDF-6 format [27]) and radiative capture
(σγ or MT102) microscopic cross sections of the main fissile nuclides compos-
ing the fuel elements of the reactor. The nuclides and their atomic densities
are reported in table 2.

Table 2: Nuclides considered for the GPT UQ study.

Nuclide Inner fuel mass fraction % Outer fuel mass fraction %

U-234 2.07419 · 10−3 1.91216 · 10−3

U-235 2.79419 · 10−1 2.57515 · 10−1

U-236 6.91511 · 10−3 6.37300 · 10−3

U-238 6.88468 · 10+1 6.34847 · 10+1

Pu-238 4.41008 · 10−1 5.64897 · 10−1

Pu-239 1.07564 · 10+1 1.37778 · 10+1

Pu-240 5.10655 · 10+0 6.53959 · 10+0

Pu-241 1.15483 · 10+0 1.47901 · 10+0

Pu-242 1.45497 · 10+0 1.86386 · 10+0

Am-241 2.47320 · 10−1 3.16741 · 10−1

Figure 3 shows an example of the typical behaviour of the six-group
macroscopic cross section relative sensitivity, scored on the ECCO 33-group
structure for Pu-239 with a perturbation in the MT18 reaction. As one may
expect from physical intuition, the sensitivity per unit lethargy is very large
for the sub-groups belonging to the coarse group where the cross section is
collapsed, while it is negligible for the other sub-groups, with the relevant
exception of the thermal region. In these cases, it is interesting to notice that
both Σf,5 and Σf,6 are sensitive to perturbations occurring at higher energies
sub-groups outside the coarse groups within the thermal range.

The energy behaviour of the sensitivity profiles can be explained referring
to the different rôle played by the direct and indirect terms appearing in eq.
(5). In the fast and intermediate groups the direct sensitivity dominates the
overall sensitivity behaviour, while in the lowest-energy groups the indirect
contribution from higher energies is non-negligible. These graphs also report
the relative variance extracted from the covariance matrix evaluated on the
same 33-group grid, allowing to highlight by simple inspection that there are
cases in which the largest sensitivity corresponds to the lowest uncertainty
in the nuclear data.
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Figure 3: Sensitivity coefficients with respect to the total fission microscopic cross section
(MT18) of Pu-239 for Σf,g, scored on ECCO 33-group structure with GPT.
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It should be remarked that, in spite of its limitations, GPT still is the
best choice for the purpose of sensitivity analysis, since it allows a straight-
forward physical interpretation to the energy-dependent sensitivities. On the
contrary, the energy-integrated projected sensitivities provided by XGPT do
not have a physically intuitive interpretation.

The sensitivity coefficients have been computed simulating 109 active neu-
tron histories (106 neutrons per generation, 103 generations divided in 25
batches), starting from an already converged fission source, initialised with
5 · 108 inactive histories. The number of neutron latent generations used for
the adjoint estimator is 10, which seems an adequate number according to
the convergence trends depicted in figure 4. This graph shows the uncer-
tainties of Σc,1 and keff computed using the sensitivity coefficients evaluated
with different numbers of latent generations.

Figure 4: Latent generation convergence trend for Σc,1 (left) and keff (right). In the right
plot the error bars are very small and, thus, not visible.

Figures 5 and 6 show the contribution of each actinide present in the inner
and outer fuel compositions to the percentage uncertainty induced in Σf,g and
Σc,g, by the uncertainties in the MT18 and MT102 reactions. The largest
contributions are due to Pu-239 and U-238, which are also the most abundant
fissile and fissionable nuclides, respectively. Observing these graphs it is also
possible to conclude that the uncertainties in the two fuel regions are very
similar, in spite of the slightly different compositions and flux spectra.

3.2. Comparison between XGPT and GPT results

In this section a comparison between the uncertainty estimated with the
GPT and XGPT methods is carried out, in order to better highlight their dif-
ferent features in the framework of the Monte Carlo method. The comparison
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Figure 5: Nuclide contributions to the total % uncertainty on Σf,g homogenised over the
inner and outer fuel regions. The first group (the fastest) is on top-left, the sixth is on
bottom-right.
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Figure 6: Nuclide contributions to the total % uncertainty on Σc,g homogenised over the
inner and outer fuel regions. The first group (the fastest) is on top-left, the sixth is on
bottom-right.
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is performed focusing on the impact of two specific isotopes, namely Pu-239
and U-238, on keff and on the six-group capture and fission cross sections
homogenised over the inner fuel region of the ALFRED reactor. The moti-
vation of the isotopes choice is two-fold. Firstly, they are the most relevant
from the uncertainty point of view, as concluded in section 3.1. Secondly,
their covariance matrices have different features that evidence the impact of
the POD-SVD truncation error on the final calculation results. To the au-
thors’ knowledge, this is the first application of XGPT for the propagation
of the nuclear data uncertainty throughout the overall homogenisation and
collapsing procedure.

In order to analyse the impact of the different energy discretisations on
the final uncertainties, the XGPT calculations are carried out using two sets
of covariances. The first one is computed on the ECCO 33-group grid, the
same employed for the GPT analysis, while the second one is defined on a
fine-group structure composed of 1500 groups. It has to be noticed that the
current limitations in the ERRORR module of NJOY, used to process the
ENDF-6 files, restricts the maximum number of groups around 1500. Con-
sequently, the fine-group grid has been defined using the ECCO 1968-group
as a starting point and the 1500 groups have been distributed in order to
cover the energy range consistently, also considering the flux spectra of the
fuel regions and of the radial and axial reflectors, reported in figure 7. Due
to the poor statistics in the lower and upper energy range limits, which is a
consequence of the physics of LFRs, most of the bins have been distributed
in the epithermal region. The details of the fine-group structure are reported
in table 3, while figure 8 shows a graphical representation of the 6, 33 and
1500-group grids employed in this paper. The direct inspection of figure 9

Table 3: Energy groups specifications to construct the 1500-group grid employed for the
calculations.

Region Lower boundary [MeV] Upper boundary [MeV] Points in lethargy

Thermal 1 10−11 10−7 1
Thermal 2 10−7 10−5 20
Epithermal 10−5 101 1472

Fast 101 2 · 101 10

shows the typical decay of the singular values extracted from the covariance
matrices processed on the 33-group and the 1500-group structures. In the
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Figure 7: Inner fuel, outer fuel and radial reflector (dummy element) flux spectra. The red
dashed line represent the six-energy groups while the black dashed-dotted lines identify
the ECCO 33-group grid.

first case, a similar amount of basis functions, 56 and 65, is needed to ap-
proximate the Pu-239 and U-238 covariances, respectively, to the prescribed
tolerance (1−E ≤ 10−8). When the covariances are processed on 1500 groups,
191 and 1446 basis functions are needed for U-238 and Pu-239, respectively.
The large difference between the number of basis functions required by each
isotope covariance in the two cases can be better understood looking at the
associated correlation matrices presented in figure 1. In the U-238 case the
1500-group description does not add significant changes to the correlation
matrices appearance, while the higher resolution in the fast and intermedi-
ate regions is evident for the Pu-239 case. Figure 10 shows the impact of the
covariance truncation error on the final uncertainty estimated with eq. (17).
Even in the worst case scenario, represented by the Pu-239 MT18 uncertainty
on Σf,2, a number of basis functions around 200 yields a truncation error that
is far below the statistical one. This behaviour justifies the adoption of the
POD reduction technique, proving that even tolerances larger than the one
initially adopted are here acceptable.

It is clear that the number of energy points used to score the sensitivity
profiles should match the rank of the covariance matrix in eq. (1). Therefore,
in the case a continuous-energy (i.e. an ultra-fine group) covariance were
available, the sensitivities should be computed on the same grid. Obviously,
this would not be affordable, neither by a deterministic nor by a stochastic
code, because of the too demanding computational burden. On the contrary,
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Figure 8: Energy group structures employed for the sensitivity and uncertainty analyses.

Figure 9: POD eigenvalues decay for the covariance matrices of Pu-239 and U-238 eval-
uated on ECCO 33-group (left) and on the 1500-group energy structures (right). The
dashed-dotted black line represents the tolerance level.
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if eq. (17) were employed, a reduced number of energy-integrated projected
sensitivities would be needed, as the POD basis dimension t is usually much
smaller than the covariance rank m, due to the fast singular values decay.
This fact implies that there is no limit to the energy detail considered in the
sensitivity calculation, making this technique suitable for stochastic methods
or asymptotic theory [28].

Figure 10: POD truncation error on the relative Σf uncertainty due to Pu-239 MT18.
The statistical error is represented by the dashed-dotted red line.

Tables 4 through 7 show the group-wise percentage uncertainty on the
capture and fission homogenised cross sections due to the uncertainty of U-
238 and Pu-239 MT18 and MT102. All the results are presented with their
statistical uncertainty, propagated through eq. (17) using classical linear un-
certainty propagation and neglecting the cross-correlation among the terms.
Tables 4 and 5 present the results computed on the 33-group grid with GPT
and XGPT, respectively. The overall agreement between the results is accept-

Table 4: Percentage uncertainties evaluated scoring both the GPT sensitivities and the
covariances on the 33-group structure.

g
U-238 Pu-239

σf (MT18) σc (MT102) σf (MT18) σc (MT102)
Σf Σc Σf Σc Σf Σc Σf Σc

1 0.60903(39) 0.00460(24) 0.00225(42) 1.00988(81) 0.38327(79) 0.0220(14) 0.00270(95) 0.42913(68)
2 0.01813(13) 0.000161(94) 0.00414(18) 1.18629(27) 0.93934(38) 0.00658(29) 0.00659(43) 1.02227(29)
3 0.003286(33) 0.00024(13) 0.00240(20) 1.07346(27) 1.06370(41) 0.00557(36) 0.00242(35) 1.10009(38)
4 0.001834(20) 0.00097(17) 0.01290(17) 0.92626(34) 1.01347(39) 0.02507(42) 0.01231(38) 0.89525(54)
5 0.00557(33) 0.00246(39) 0.14641(67) 0.80428(92) 1.1121(16) 0.15478(96) 0.3103(18) 1.6214(22)
6 0.0055(42) 0.0055(43) 0.0149(67) 0.2118(99) 1.279(28) 0.103(17) 0.740(43) 1.297(33)

able within the statistical confidence interval, with some relevant exceptions,
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e.g. for the U-238 MT102 uncertainty on Σc. These discrepancies can be

Table 5: Percentage uncertainties evaluated scoring both the XGPT sensitivities and the
covariances on the 33-group structure.

g
U-238 Pu-239

σf (MT18) σc (MT102) σf (MT18) σc (MT102)
Σf Σc Σf Σc Σf Σc Σf Σc

1 0.83637(95) 0.00433(41) 0.00288(38) 2.1566(17) 0.7045(10) 0.0203(13) 0.00299(82) 1.0935(13)
2 0.003942(86) 0.00015(11) 0.00348(10) 0.87510(67) 0.68924(63) 0.00687(27) 0.00654(35) 0.87966(48)
3 0.002744(17) 0.00011(13) 0.00243(21) 1.6049(12) 1.2850(11) 0.00553(42) 0.00257(37) 1.7165(12)
4 0.0013672(59) 0.00094(16) 0.01136(20) 1.14865(41) 0.82977(69) 0.02489(43) 0.01207(34) 1.07996(65)
5 0.00725(22) 0.00246(37) 0.14365(66) 0.52445(91) 1.4452(28) 0.13179(90) 0.2971(20) 0.9774(20)
6 0.0064(82) 0.0117(77) 0.015(11) 0.156(11) 0.393(28) 0.097(21) 0.555(32) 0.441(32)

explained recalling eq. (13), where an approximation is introduced to eval-
uate the direct projected sensitivity. The integration error is reduced when
both the direct sensitivities and the basis functions are estimated on the
1500-group grid, yielding an overall good agreement, at least in the statisti-
cal sense (see table 6). If Serpent 2 would estimate also the direct sensitivity
inside the transport process, the two methods should produce a set of statis-
tically equivalent results, since the same multi-group structure is employed.
It should be remarked here that columns Σc for MT18 and Σf for MT102
are identical in tables 6 and 5 for both species, as the direct effect is exactly
zero.

Table 6: Percentage uncertainties evaluated with XGPT scoring the indirect sensitivities
on the 33-group structure and the direct effect (including the basis functions) on the
1500-group structure.

g
U-238 Pu-239

σf (MT18) σc (MT102) σf (MT18) σc (MT102)
Σf Σc Σf Σc Σf Σc Σf Σc

1 0.60075(62) 0.00433(41) 0.00288(38) 0.65441(87) 0.38291(79) 0.0203(13) 0.00299(82) 0.3229(10)
2 0.026123(90) 0.00015(11) 0.00348(10) 0.79698(47) 0.67001(51) 0.00687(27) 0.00654(35) 0.54147(31)
3 0.004379(12) 0.00011(13) 0.00243(21) 1.47092(83) 1.6264(10) 0.00553(42) 0.00257(37) 1.62678(95)
4 0.0016899(69) 0.00094(16) 0.01136(20) 1.15964(35) 1.01185(74) 0.02489(43) 0.01207(34) 1.05397(60)
5 0.00508(28) 0.00246(37) 0.14365(66) 0.63134(82) 1.5018(22) 0.13179(90) 0.2971(20) 1.0821(20)
6 0.0064(82) 0.0117(77) 0.015(11) 0.396(12) 1.191(38) 0.097(21) 0.555(32) 1.069(37)

Table 7 shows the results of the XGPT calculations where both direct and
indirect sensitivities are scored on the 1500-group grid. These results have
to be considered as the reference, since they are scored on the finest energy
grid. Their agreement with the GPT case is very good, except for the impact
of Pu-239 MT18 on Σf,6 and Σc,6, where GPT gives underestimated results.
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Table 7: Percentage uncertainties evaluated scoring both the XGPT sensitivities and the
covariances on the 1500-group structure.

g
U-238 Pu-239

σf (MT18) σc (MT102) σf (MT18) σc (MT102)
Σf Σc Σf Σc Σf Σc Σf Σc

1 0.61121(54) 0.00494(17) 0.00230(40) 0.95971(69) 0.38295(86) 0.0216(13) 0.00399(80) 0.42283(95)
2 0.01783(10) 0.000224(70) 0.00440(13) 1.18858(63) 0.94018(65) 0.00666(26) 0.00682(38) 1.02393(41)
3 0.003328(27) 0.000057(30) 0.00251(23) 1.07471(59) 1.06230(74) 0.00533(41) 0.00228(39) 1.09587(82)
4 0.001930(16) 0.00098(14) 0.01188(18) 0.91814(43) 1.00993(71) 0.02518(43) 0.01190(38) 0.89899(61)
5 0.00609(26) 0.00276(26) 0.14526(72) 0.80626(88) 1.0021(19) 0.14730(95) 0.2197(17) 1.6575(20)
6 0.0059(68) 0.0040(36) 0.0126(48) 0.202(16) 2.121(57) 0.075(27) 0.646(47) 1.240(47)

This difference is remarkable, and is due to the larger number of low-energy
groups employed in the 1500-group grid (XGPT) with respect to the ECCO
33-group grid (GPT), as it can be noticed in figure 8. On the contrary, table 8

Table 8: keff relative uncertainty in pcm.

Nuclide GPT 33 XGPT 33 XGPT 1500

U-238 101.55(11) 99.66(11) 101.53(12)
Pu-239 259.61(23) 259.63(23) 259.18(34)

shows that the total uncertainty due to MT18 and MT102 on keff computed
with GPT and XGPT using the two grids yield very similar results. This
agreement is a consequence of the absence of direct contributions, which may
introduce large discrepancies between GPT and XGPT, and of the integral
nature of the effective multiplication parameter, which is less sensitive to the
energy discretisation employed in the calculation.

The evidences observed in this section have two important implications:
i) from the methodological point of view, it is proven that XGPT allows
a higher energy resolution compared to Monte Carlo GPT, and this higher
precision do have indeed a non-negligible effect when the responses are not
integrated on the whole energy range ii) from the physical point of view, it
is of paramount importance to use an adequate number of low-energy groups
even in the case of a fast system analysis.

3.3. Multi-group constant distributions

The first-order model described by eq. (19) is applied to sample the
output responses of interest, e.g. the multi-group fission and capture cross
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sections homogenised over the inner fuel region. Figure 11 shows the best-
estimate and perturbed fission and capture cross sections for Pu-239, sampled
according to the covariance matrix scored on the 1500-group grid, while figure
12 shows the best-estimate homogenised and collapsed cross sections and
their uncertainties. These graphs should help the reader to visualise how

Figure 11: Best-estimate and set of perturbed MT18 (left) and MT102 (right) cross sec-
tions for Pu-239. The black band is obtained by superposition of 100 perturbed values.

Figure 12: Best-estimate (red) and 2-σ uncertainty (black) on 6-group values of fission
(left) and capture (right) cross sections for Pu-239.

the uncertainty in the raw nuclear data is propagated to the multi-group
cross sections through the homogenisation and collapsing procedure. Since
the raw nuclear data perturbations have been sampled assuming a multi-
variate normal distribution, also the final output are normally distributed,
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Figure 13: Sample distributions for Σf,6 (left) and Σc,6 (right) due to the uncertainty in
Pu-239 MT18 and MT102. The histograms have been constructed with 105 samples. The
superimposed black line follows the Gaussian function.

as visible in figure 13. For sake of conciseness, only the group featured by the
largest uncertainty is reported for both responses. The standard deviations
associated to the distributions shown are consistent with the ones presented
in table 7.

Finally, figure 14 reports the structure of the correlation matrices for the
input raw nuclear data, scored on the 1500-group grid, and of the Serpent 2
homogenised and collapsed cross sections, evaluated on the 6-group grid. The
output correlation matrix has been estimated with 105 samples, generated
with eq. (19).

4. Conclusions

In this paper, an assessment of the GPT and XGPT methods imple-
mented in the Serpent 2 Monte Carlo code is carried out. The attention
is focused on the uncertainty propagation from the raw nuclear data to the
energy collapsed and spatially homogenised cross sections for the ALFRED
reactor design.

In the first part of the paper, the main differences between the two meth-
ods are discussed and the calculation steps needed to estimate the direct
sensitivity contributions in the case of a linear reaction rate response are
outlined. Both GPT and XGPT allow to score first-order estimates of the
sensitivity coefficients, which are then employed in the sandwich rule to com-
pute the response variance. The most relevant difference between the two
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Figure 14: Structure of the correlation matrices for the Pu-239 raw nuclear data scored
on the 1500-group grid (left) and for the collapsed and homogenised cross section of the
inner fuel region (right). The energy range is the same for all graphs.

methods lies within the energy treatment: XGPT is an inherently continuous-
energy approach, whilst GPT requires the multi-group approximation.

Afterwards, GPT is adopted to carry out an uncertainty quantification
study involving all the heavy nuclides present in the inner and outer fuel
compositions of the ALFRED reactor core. This study has shown that the
two most abundant nuclides, i.e. Pu-239 and U-238, are the top contributors
to the overall uncertainty on the few-group cross sections Σf and Σc for both
the regions considered in the homogenisation process, i.e. the inner and outer
fuel assemblies.

The second part of the paper is devoted to compare the uncertainties
on Σf , Σc and keff obtained previously with GPT to the ones provided by
XGPT, focusing on the impact of the different energy structures employed to
score the sensitivities. The major outcome of this comparison is that a more
precise energy resolution can be achieved using the XGPT method, mak-
ing it the preferable choice among the perturbative methods for uncertainty
and sensitivity analyses in a Monte Carlo framework, due to its continuous-
energy feature. However, according to the specific system (e.g., a thermal
reactor) and to its output responses of interest, the use of a coarse-group
GPT approach could be sufficient if only a rough estimate of the uncertainty
is required or if the energy effects are less relevant. In order to draw some
general conclusions, different systems and responses should be compared in

28



future works.
Moreover, this comparison has also shown that the adoption of an ade-

quate number of low-energy groups is of paramount importance even in the
case of a fast system analysis. At last, the output correlation matrix for the
output responses Σf and Σc is compared to the correlation matrix of the
input Pu-239 nuclear data considered in the paper.

As a further development to this activity, it would be extremely interest-
ing to analyse the impact on XGPT calculations due to the adoption of fine-
group covariances, available in the legacy ENDF-6 format, and continuous-
energy covariances extracted from a set of random evaluations, e.g. per-
formed with the T6 package. Such an analysis would shed some light on the
influence of the input parameter distributions on the final output and could
highlight the importance for pointwise covariances with respect to fine-group
ones.

Data availability

The complete datasets and scripts employed to pre- and post-process the
Serpent calculations presented in this paper are available in the open access
Zenodo repository 10.5281/zenodo.4540785.
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