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Summary

Many essential and practical decision problems can be expressed as Combina-
torial Optimization Problems (COPs), aiming to find the best of an exponentially
large set of solutions. COPs occur in engineering, physics, mathematics, economics,
management, commerce, social sciences, and even politics. In many of such prob-
lems, scheduling the involved operations at the right time is of critical importance
(e.g., when to visit a customer for a delivery or to start processing a job on a
machine, which is the order for addressing tasks inside a complex project, and so
on).

According to the available knowledge on the problem and the length of its opti-
mization horizon, a decision-maker addresses decisions which may range from the
setting of targets for the entire enterprise (long- and medium-term), to detailed
operations regarding day-by-day activities (short-term), up to specific actions to
implement just as soon as particular events occur (e.g., a disruption). From this
perspective, the decisions can be broadly classified into strategic/tactical, opera-
tional, and real-time decisions. Strategic decisions are significant choices influencing
the whole business (or a major part of it), and tactical decisions relate to implement-
ing strategic ones. Operational decisions are taken for the day-by-day operations of
the enterprise and have a short-term horizon as they are implemented repetitively
at lower levels of management. Finally, real-time decisions must be made immedi-
ately against new incomes of information on the process and, in general, relate to
actions for adjusting the plan while it is executed.

COPs may explicitly or not consider data uncertainty. In deterministic settings,
all the problem parameters are precisely known over the decision-making horizon
and available in advance for decision-making. Conversely, in stochastic settings, the
problem parameters are only partially known and described by random variables
or distributions rather than approximated by a single value. Another settings,
known as the dynamic one, involve additional information that may arrive during
the decision-making process itself.

In this thesis, we consider deterministic, stochastic, and dynamic COPs contain-
ing critical scheduling decisions, which in turn involve possible inter-period relations
(precedence, time-dependent parameters, time windows, and so on). Focusing on
classical applications (such as optimal path problem, job scheduling, vehicle routing
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problems) and different planning decisions over the optimization horizon, we will
consider ad-hoc modeling and solving approach by deepening and sometimes push-
ing further modeling paradigms like Mixed-Integer Linear Programming (MILP),
Stochastic Programming (SP), Discrete Choice Models (DCM), and Online Opti-
mization (OO), as well as solving/algorithmic frameworks like Logic-Based Ben-
ders Decomposition (LBBD), Extreme Value Theory Deterministic Approximation
(EVTDA), Reinforcement Learning (RL) and meta-heuristic algorithms such as
Iterated Local Search (ILS) and Simulated Annealing (SA).

In the following, we briefly describe the deterministic, stochastic, and dynamic
problems addressed, together with their peculiarities and the methodology used to
approach them.

• Deterministic COPs
Concerning deterministic COPs with operational scheduling decisions, we study
some interesting variants of the Vehicle Routing Problem (VRP), which in-
volve scheduling decisions over the time horizon specifying the customers’ visit.
Motivated from some real-life applications, such as package delivery or order-
picker routing problems, we describe and model two VRP variants: the multi-
trip single-vehicle routing problem with AND-type precedence constraints and
vehicle routing problem with AND/OR type precedence constraints and time
windows.
In many real industrial or social service environments where a set of tasks or
services are performed, partial orders known as Precedence Constraints (PCs)
are defined to specify which nodes need to be visited before other ones. In
logistics, some customers/target locations may have priorities over the others
to be served/visited due to their interconnections, as in the Dial-A-Ride or
Pickup and Delivery problems. For instance, in the Dial-A-Ride problem, the
inhaul node is visited before the backhaul node. Again, the pickup node cannot
be visited after the delivery node in the Pickup and Delivery problem. Such
relations represent the so-called conventional PCs. In practice, however, there
are many cases in which conventional PCs are not suitable, while alternative
relations, such as AND-precedence, OR-precedence, SOFT-precedence, and S-
precedence, are defined. In particular, an AND-precedence constraint requires
that a node be reached only after visiting all of its defined predecessors. In
contrast, an OR-precedence constraint requires a node to be reached if at least
one of its predecessors has been met before. A problem containing both the
above types of relations is said to have AND/OR-precedence constraints.
An interesting example is the order picker routing problem. A picker walks
or drives through a warehouse to collect the requested items and put them
in a roll container considering fragility restrictions, stackability, shape, size,
and weight. To prevent damage to the more fragile items, pickers cannot
put heavy items on top of lighter ones that AND-PCs can ensure. Again,
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due to the stackability feature, an item can be collected when at least one
of its predecessors has been retrieved, represented by OR-PCs. Such physical
features and preferred loading or unloading sequences (to avoid extra effort on
sorting and packing the collected items at the end of the retrieving process)
can be represented as AND/OR type PCs. Moreover, to deal with various
storage and replenishment policies that describe the availability of items like
food or perishable products, time window limitations are defined for retrieving
the items in such an application.
The first proposed problem is optimally solved by an exact approach based on
the Logic-Based Benders Decomposition algorithm. Instead, given its higher
complexity, a hybrid meta-heuristic algorithm combining Iterated Local Search
and Simulated Annealing approaches is developed for the second problem. For
both problems, extensive computational experiments are conducted to evaluate
the developed solution approaches in CPU time and solution quality.

• Stochastic COPs
Many COPs which involve operational scheduling decisions are considered un-
der uncertainty. In this thesis, we try to interpret such problems as multi-stage
Random Utility Models. A decision-maker needs to choose alternatives among
a set of choices stage by stage to achieve a sequence of optimal decisions even-
tually. Due to the complexity of most optimization problems, it is crucial to
develop a multi-stage structure that would allow us to make decisions sequen-
tially, considering several criteria and requirements that describe the problem.
However, the stochasticity affecting the information for the future stages makes
the problems very hard to solve even under this new perspective.
However, for this kind of setting, an asymptotic Deterministic Approxima-
tion (DA) approach has been recently proposed by Tadei et al. [202], which
computes the total expected utility (or cost) of the optimal sequence of alterna-
tives. Unlike other paradigms for modeling multi-stage optimization problems
under uncertainty (e.g., Stochastic Programming or Stochastic Dynamic Pro-
gramming), the exact knowledge of the probability distribution of the random
variables is not needed to derive the DA approach. According to this approach,
the entire decision-making process collapses into a single-stage approximation
without revealing the uncertainty of the random oscillations over time. This
is particularly helpful also to overcome the curse of dimensionality linked to
stochastic problems.
In this thesis, the DA approach is validated through two different multi-stage
decision-making processes, a very general optimization problem and a more
specific and constrained one. In the first case, we address a generic optimal
path problem in a multi-stage stochastic decision-making network. The ob-
jective can be defined as a maximization of choice utilities or minimization
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of costs. This problem is modeled as sequential decision-making in a graph
layered into stages to find the optimal path of choices in a recursive fashion.
Apart from providing the approximated expected value of the path, we pro-
pose a way of deriving feasible solutions using a Nested Multinomial Logit
model, which returns the choices probabilities at different stages. In the sec-
ond case, we study a stochastic single-machine job scheduling problem that
involves operational decisions under features of learning effect on processing
times, sequence-dependent setup times, and machine configuration selection.
The objective is to find the sequence of jobs and configurations to process each
job to minimize the makespan. Here, the more constrained nature of the prob-
lem leads us first to derive a Mixed-Integer Non-Linear Programming model
based on the concept of accessibility for the alternative decisions at each stage.
Then, by defining a new, more flexible accessibility measure, we approximate
and linearize such a model by reducing the problem to search for the shortest
path throughout stages, which can be efficiently solved.
For both settings, the accuracy and efficiency of the proposed DA approach
are experimentally proved on a large set of randomly generated instances. In
the first application, the approximation approach is compared with the Ex-
pected Value Problem. At the same time, in the job scheduling case, classical
two-stage and multi-stage Stochastic Programming models are applied to eval-
uate the performance of the proposed approximation. It is shown that the DA
approach provides a powerful decision support tool that overcomes the compu-
tational burden of solving fat stochastic programs that depends on the number
of scenarios considered.

• Dynamic COPs
Differently from the static (deterministic or stochastic) case, in which all the
information is fully known in advance, Dynamic COPs involve additional infor-
mation that may arrive during the decision-making process (e.g., new orders,
changes of available resources). This creates the need for an optimization that
adapts while the situation changes on a real-time basis.
In the thesis, we study the online single-machine job scheduling problem. Some
recent developments suggest that Reinforcement Learning (RL) techniques can
effectively deal with online scheduling issues. So, we apply four of the essen-
tial RL techniques, namely Q-learning, Sarsa, Watkins’s Q(λ), and Sarsa(λ),
to address the problem to minimize two different and widely used objective
functions, i.e., the total tardiness and the total earliness plus tardiness of the
jobs. Our main goal is to provide insights into how such techniques perform
in the scheduling process under the different frequency of job arrivals and
compare their performance with two other approaches. Namely, a random as-
signment (Random) which selects a job randomly and one of the most popular
dispatching rules called the earliest due date (EDD) rule.
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Chapter 1

Introduction

1.1 Motivation to deterministic, stochastic, and
dynamic combinatorial optimization problems
with scheduling decisions

Combinatorial Optimization Problems (COPs) are widespread in computer sci-
ence and operations management areas. COPs are defined based on an objective
function and logical constraints. A feasible solution of COPs, satisfying all the con-
straints, is composed of discrete decisions. Every decision may affect the total value
of the objective function and the feasibility of the solution. The optimal solution is
the best feasible one, distinguished based on the objective function value of candi-
dates in a finite (and huge) discrete set. Depending on the problem, any COP can
be represented as a minimization or maximization problem. One of the two formu-
lations is often more natural, but algorithmically, minimization and maximization
problems can be equivalently treated.

Of course, an exhaustive search to solve COPs, which consists of enumerating
all possible solutions and choose the best one, is far to be suitable. In realistic
situations, this approach becomes intractable due to the combinatorial nature of
such problems. Several exact methods have been developed to provide an optimal
solution to COPs, and, in some cases, efficient exact algorithms can optimize the
problem in polynomial time. When efficient algorithms are not available for more
complex situations, the problem can be mathematically formulated and then solved
by a solver (e.g., Cplex, GAMS, Gurobi, AMPL, OPL, etc.). However, solving most
COPs by the solvers is computationally demanding as the CPU time may grow
exponentially.

Due to the inner complexity of most COPs (e.g., an NP-Hard problem) and being
computationally challenging to provide a solution, other approaches like heuristic,
metaheuristic, and approximation approaches can be advisable to apply instead of
exact methods. While the availability of optimal solutions is necessary in some
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cases, in many real applications, a good approximated solution obtained in accept-
able CPU time is enough, especially for large-size instances of a COP.

Many COPs are concerned with scheduling decisions on various activities and
resources, such as machines, airplanes, and people, to meet desired objectives. Such
problems occur in almost all management fields (e.g., finance, marketing, produc-
tion, scheduling, logistic, inventory control, and facility location). For example,
most airlines need to determine crew schedules that minimize the total operating
cost. Again, automotive manufacturers may want to determine the design of a fleet
of cars that will maximize their market share. Or again, a flexible manufacturing
facility needs to schedule the production for a plant without having much advance
notice as to what parts will need to be produced that day.

Dealing with COPs implies different levels of decisions such as strategic (long-
term), tactical (mid-term), operational (short-term). Let us consider the supply
chain problem. Decisions on the location of manufacturers or distributors and
defining transportation modes could be classified as strategic decisions. Produc-
tion planning, selection of suppliers are examples of tactical decisions, while short-
term decisions such as production scheduling, vehicle routing, etc., are considered
operational decisions.

The usual assumption in COPs is that all the problem elements are precisely
known, which provides a deterministic setting. Within this framework, it is assumed
that the perfect information about the problem inputs is known and available in
advance. In practice, the COPs may be expressed under uncertainty or dynamic-
ity since the data may be partially known or changed dynamically over the entire
decision horizon. Because of incomplete information or the dynamics of the envi-
ronment, the outcome of any specific plan is uncertain. It is easy to understand
that, in those cases, ignoring the parameter variability and uncertainty may lead
to inferior or, even worse, non-feasible decisions.

It is well-known that explicitly addressing uncertainty in optimization problems
generally increases the decision-making process’s complexity and poses significant
computational challenges. Therefore, it always makes sense to see whether it is pos-
sible to incorporate stochasticity in an approximated way, converting the stochas-
tic model into a deterministic one and, if so, how accurate this approximation is.
Stochastic Programming is one of the main existing paradigms in dealing with un-
certain data assuming that the random input data follow probability distributions
and pursues optimality in the average sense, adopting a risk-neutral perspective.
However, it is not easy to measure the probabilistic distribution of input data in
practice. Even if an estimate of such a distribution is available, many scenarios
are necessarily needed to approximate it accurately. Unfortunately, as the num-
ber of scenarios increases, the problem becomes more complex since the number of
decision variables and constraints grows.

In this spirit, three main parts corresponding to deterministic, stochastic and
dynamic COPs are proposed in this thesis. In the first part, we aim to address
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deterministic COPs motivated by two applications from Vehicle Routing Prob-
lems (VRPs). The objective of this part is twofold. The first one is describing
multi-trip single-vehicle routing problem with AND-type precedence constraints,
modeling and solving that using logic based benders decomposition algorithm. Our
second objective is describing vehicle routing problem with AND/OR precedence
constraints and time windows, mathematically formulating the problem and solving
that through a developed hybrid algorithm.

The second part of the thesis is associated to the stochastic COPs focusing
on solving multi-stage decision making problems under uncertainty. Two research
problems are proposed and addressed using the asymptotic deterministic approx-
imation approach. The first problem seeks an optimal path on a multi-stage
stochastic decision network, while the second research deals with stochastic sin-
gle machine scheduling problem considering learning effect on processing times,
sequence-dependent setup times, and machine configuration selection, simultane-
ously.

In the third part, online single machine scheduling problem as an application in
dynamic COPs is proposed and addressed using reinforcement learning approaches.

In the remainder of this chapter, we separately provide the aims and overviews
of the proposed COPs under deterministic, stochastic, and dynamic settings.

1.2 Aims and overview on deterministic COPs
In this thesis, we study an extension of vehicle routing problems that involve

inter-period relations such as AND-type precedence constraints, OR-type prece-
dence constraints, time windows, etc. Our proposed generalization is necessary for
problems in which the nodes associated with customers/target locations may have
priorities over the others to be served/visited by the vehicles due to their intercon-
nections in the Dial-A-Ride or Pickup and Delivery problems. In these problems,
each node is visited after just one predecessor. For instance, in the Dial-A-Ride
problem, for any backhaul node j, there is a particular inhaul node i where the
relation i < j must be met within a route. This is the so-called conventional prece-
dence constraint (PS). In practice, there are cases in which conventional PCs are
not suitable. So, alternative definitions, such as AND-precedence, OR-precedence,
are defined. AND-type PCs are defined when a node has multiple predecessors met
before, while the OR-type PCs mean that a node can be reached once at least one
of its predecessors has been met before.

Our motivation for the proposed problem comes from real applications such
as the order picker routing problem where a picker walks or drives through the
warehouse to collect the requested items and put them in a roll container considering
fragility restrictions, stackability, shape, size, and weight. Such physical features
and preferred loading or unloading sequences (to avoid extra effort on sorting and
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packing the collected items at the end of the retrieving process) can be represented
as AND/OR PCs.

In this sense, two problems are proposed in deterministic circumstances de-
scribed briefly in the following subsections.

1.2.1 Multi-trip single-vehicle routing problem with AND-
type precedence constraints

The first problem studied in this thesis is the multi-trip single-vehicle routing
problem with AND-type precedence constraints represented in Chapter 2. The
problem aims to determine a sequence of trips required to visit all the nodes, assign
nodes to the trips, and find the sequence of the nodes in each trip to minimize the
total traveling cost. The nodes are related to AND-type precedence relations that
must be respected within a route and among them by determining the order of
trips.

To address the proposed problem, three mathematical formulations are devel-
oped. The performance of the models is experimentally investigated on a set of gen-
erated instances. Moreover, a decomposition algorithm based on the Logic-Based
Benders Decomposition (LBBD) approach is developed, which partitions the orig-
inal problem into an assignment master problem and sequencing sub-problems. A
new extension of a valid optimality cut is developed, and its performance is exper-
imentally investigated. The cuts are generated from the solutions of subproblems
and added to the master problem to achieve faster convergence. Additionally, we
presented a relaxed version of LBBD by defining a limit for optimality gap and
CPU time in deriving master-problem solutions. In such a way, the algorithm’s ef-
ficiency improves. It allows the algorithm to find a feasible solution to the original
problem in less CPU time and larger instances.

The performance of proposed LBBD algorithms is evaluated and compared to-
gether through extensive computational experiments. The results show that the
two exact LBBDs can solve most instances, while the relaxed version of LBBD can
heuristically solve all the generated instances in a shorter computational time. The
results derived from this research have been submitted to an international journal
[171].

1.2.2 Vehicle routing problem with AND/OR precedence
constraints and time windows

The second deterministic problem, described in Chapter 3, is the vehicle rout-
ing problem with time windows in which the nodes are related together through
AND/OR precedence constraints. The proposed problem calls for determining op-
timal vehicles’ optimal routes to minimize the total traveling and service time while
serving all the customers.
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To deal with the problem, we formulate it as a Mixed Integer Linear Program-
ming (MILP) model to optimally solve small-sized instances by spending a lot of
CPU time. Furthermore, a meta-heuristic algorithm based on hybridization of It-
erated Local Search (ILS) and Simulated Annealing (SA) approaches is developed,
which complements the advantages of both ILS and SA in a single optimization
framework. The algorithm parameters are tuned using the Taguchi method to ad-
dress the instances in a reasonable time effectively. Moreover, we extend the well-
known Solomon’s benchmark to generate test instances for the proposed problem.
The computational result highlights the promising performance of our proposed
algorithm in terms of CPU time and solution quality. The results derived from this
research have been submitted to an international journal and Arxiv [172].

1.2.3 Thesis contributions on the proposed deterministic
COPs

The first part of this research is devoted to the deterministic COPs motivated
by applications from vehicle routing problems. This research contributes to the
state-of-the-art in the following principal aspects:

• we describe and provide three mathematical formulations for the multi-trip
single-vehicle routing problem with AND-precedence constraint. We conduct
computational experiments to compare the performance of the models in terms
of computational time and problem size;

• we develop and implement three algorithms based on the Logic-Based Benders
Decomposition approach to solving the proposed problem. In the first LBBD,
a recently proposed optimality cut in the literature is used. In the second
LBBD, our new valid optimality cut is applied. We present a relaxed version
of LBBD (the third one) by defining a limit for optimality gap and CPU time
in deriving master-problem solutions. We perform computational experiments
to assess the proposed LBBD algorithms;

• we describe and develop a model for the vehicle routing problem with AND/OR
precedence constraints and time windows to optimally solve small-sized in-
stances;

• we develop and implement a meta-heuristic algorithm based on Iterated Lo-
cal Search (ILS) and Simulated Annealing (SA) approaches. We adjust the
algorithm parameters using the Taguchi method and conduct computational
experiments to compare and evaluate the proposed MILP model and the al-
gorithm performances in dealing with different instances.
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1.3 Aims and overview on stochastic COPs
In COPs, many settings can be interpreted as a multi-stage decision-making

process in which decisions are made step by step to achieve an optimal sequence of
choices eventually. Many applications, such as control systems, finance, logistics,
network security, robotics, and traffic management, involve a sequential decision-
making process as a more general decision structure. In such applications, decisions
may be linked sequentially in nature.

Moreover, in many realistic situations, the decisions are taken under uncertainty
without perfect information about the problem inputs. Incorporating uncertainty
in the sequential decision-making process imposes significant computational com-
plexity. The Stochastic Programming (SP) approach is one of the main existing
paradigms in which uncertain parameters are expressed as random variables with
known probability distributions. However, in practice, the probability distribu-
tion of random variables is not easy to measure. Even if an estimate of such a
distribution is available, many scenarios are necessarily needed to approximate it
accurately. Unfortunately, as the number of scenarios increases, the problem be-
comes more complex since the number of decision variables and constraints grows.
So, it always makes sense to see whether it is possible to incorporate stochasticity
in an approximated way, converting the stochastic model into a deterministic one
and, if so, how accurate this approximation is.

A Deterministic Approximation (DA) approach has been recently proposed in
[202] which deals with the multi-stage dynamic stochastic decision-making process.
Knowing the probability distribution of random variables is not needed, and it
overcomes the computational burden of solving fat stochastic programs.

In this spirit, the objective of this part of the thesis is threefold. First, we de-
scribe the asymptotic deterministic approximation approach [202] and some back-
ground information to derive it. Second, we aim to address the search of optimal
paths in a multi-stage stochastic decision network as a general application of the
DA approach. Third, we interpret the stochastic single-machine scheduling prob-
lem as a more specific application of the multi-stage random decision process dealt
with by the DA approach.

1.3.1 Background on the Deterministic Approximation ap-
proach

As provided in Chapter 4, some information is needed before applying the de-
terministic approximation (DA) approach. The conceptual background knowledge
includes a review of the Discrete Choice Models (DCMs), Random Utility Models
(RUMs), the most common theoretical basis of DCMs, and the Multinomial Logit
models. Moreover, the asymptotic approximation of the probability distribution
of random utility of alternatives and the expected value of the total utility of the
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decision process for the static case, which includes only one stage of decisions, are
presented.

Then, the deterministic approximation derived for the multi-stage stochastic
decision-making process is presented in detail. It is described that, in many real-
life applications, the decision-maker is asked to solve several RUMs consecutively
over multiple discrete stages aiming at maximizing (minimizing) the expected value
of the total utility (cost). Since in such a structure, decisions are nested each other
(i.e., the utility of an alternative at each stage is affected by the utilities of the
selected alternatives in the subsequent stages), the decision process cannot be de-
composed into distinct stages. In particular, it is shown that under appropriate
assumptions and using some results of the Extreme Value Theory, a Gumbel dis-
tribution can asymptotically approximate the probability distribution of the best
alternative utility and, in turn, the total utility of the process can be analytically
derived. Moreover, the choice probability can be modeled as a Nested Multinomial
Logit model.

1.3.2 Optimal paths in multi-stage stochastic decision net-
works

Our first problem in the stochastic COPs area is searching optimal paths in
a multi-stage stochastic decision-making network, as presented in Chapter 5. The
problem is the first application in the literature of the Deterministic Approximation
approach, which validates this method’s performance.

The optimal path problem is modeled as a sequential choice of nodes in a graph
layered into stages to find the optimal path value recursively in this research. More
precisely, the decision network includes several stages, and each stage contains a
set of nodes. The decision-maker must select one node at each stage to eventu-
ally achieve an optimal path over the network. Incorporating uncertainty in the
problem, it is assumed that the utility of each node is composed of a deterministic
stage-dependent term and random term oscillations with an unknown probability
distribution. Using the DA approach, the total utility of the optimal path can be
approximately derived. Moreover, an optimal path solution can be heuristically
obtained using a Nested Multinomial Logit model, representing the choice proba-
bility at the different stages. The accuracy and efficiency of the proposed method
are experimentally proved on a large set of randomly generated instances.

The results derived from this research have been published in an international
journal [173].
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1.3.3 Stochastic single machine scheduling problem as a
multi-stage dynamic random decision process

In Chapter 6, we study the stochastic single machine scheduling problem. The
features of the learning effect on processing times, sequence-dependent setup times,
and machine configuration selection are considered simultaneously. More precisely,
the machine works under a set of configurations and requires stochastic sequence-
dependent setup times to switch from one configuration to another. Moreover, the
stochastic processing time of a job is a function of its position and the machine con-
figuration. The objective is to find the sequence of jobs and choose a configuration
to process each job to minimize the makespan.

We first propose classical two-stage and multi-stage Stochastic Programming
formulations of the problem. Then, a multi-stage deterministic approximation ap-
proach is proposed to solve the problem by looking at the problem as a multi-stage
dynamic random decision process. The method first derives a non-linear model
based on the accessibility of alternative decisions at each stage. Then, it approx-
imates and linearizes such a model by reducing the problem to the search for a
shortest path throughout the stages. Extensive computational experiments are
carried out on various sets of instances. We discuss and compare the results of
applying stochastic models with those obtained by the deterministic approxima-
tion approach. This approach shows excellent performance compared to stochastic
models both in terms of solution accuracy and computation time.

The results derived from this research have been published in an international
journal [174].

1.3.4 Thesis contributions on the proposed stochastic COPs
The main objective of this part of research is to validate the Deterministic Ap-

proximation approach recently proposed by Tadei et al. [202] as a tool to efficiently
deal with multi-stage stochastic decision-making problems in which the parameters
are uncertain with an unknown probability distribution and being changed stage
by stage over the entire decision stages. This part of the thesis contributes to the
state-of-the-art in the following principal aspects:

• we provide the first concrete application in the literature of the deterministic
asymptotic approximation approach to determine the total value (cost or util-
ity) of an optimal (shortest or longest) path over a network with a multi-stage
structure. The utility of alternatives is assumed to be a random variable with
an unknown probability distribution and being changed dynamically over the
stages of the decision horizon. The accuracy of the approach is tested versus
benchmarks obtained by optimally solving the expected value problem over a
great number of different instances;
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• we derive heuristically optimal path solutions using a Nested Multinomial
Logit model for the choice probability and investigating its quality in the
proposed optimal path problem;

• we apply the deterministic approximation approach to address a single ma-
chine scheduling involving simultaneously stochastic sequence-dependent setup
times and stochastic position-dependent processing times affected by learning
effect;

• two-stage and multi-stage stochastic programming formulation are formally
derived from modeling the proposed stochastic single machine job scheduling;

• approximated makespan, and optimal solutions of the proposed job scheduling
problem are found by adapting the deterministic asymptotic approximation
approach. This provides a powerful decision support tool that overcomes the
computational burden of solving fat stochastic programs that depend on the
number of scenarios considered;

• we provide a method to calibrate parameter β inside the deterministic approx-
imation approach, which is critical for its accuracy.

1.4 Aims and overview on dynamic COPs
COPs can be divided into two categories, static or dynamic problems. In the

static case, all the data are fully and deterministically known in advance. In con-
trast, dynamic settings involve real-time decisions based on up-to-date information
regarding the system’s state. In particular, a decision has to be taken because some-
thing relevant in the environment has changed. The decision-maker has to react to
the change by making a new decision. For instance, in the dynamic job scheduling
problem, the decision-maker has to assign new incoming jobs online. Also, when
a machine breaks down, some jobs have to be reassigned. In these situations, an
event corresponds to the new jobs arrival or the machines breakdown, and decisions
on scheduling new jobs or re-scheduling some existing jobs need to be made.

Dynamic production scheduling is one of the most important aspects to ad-
dress in many manufacturing companies. The manufacturing industries sometimes
include a machine bottleneck, which affects, in some cases, all the jobs. Even man-
ufacturing systems include multiple machines, improper usage of each machine can
slow down the whole production process as each one represents a chain’s primary
block. Studies on single machine scheduling problems have been gaining impor-
tance for a long time since this bottleneck’s management is crucial (see, [1], [111],
[160]. In online scheduling, a decision-maker regularly schedules jobs over time,
attempting to reach the overall best performance. Reinforcement Learning (RL)
is a continuing and goal-directed learning paradigm, and it represents a promising
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approach to deal with online scheduling as its potential has been revealed in several
works (see, e.g., [74], [185], [235]).

In this spirit, this part of the thesis aims to address the online single-machine
job scheduling problem using RL approaches. The research is described briefly in
the following subsection.

1.4.1 Online single-machine scheduling problem
This thesis study the online single machine job scheduling problem with release

dates, where preemption is allowed. The problem is to arrange the queue’s jobs to
minimize two different objective functions: total tardiness and the total earliness
plus tardiness of the jobs. They are among the most widely used objectives in
scheduling, focusing on meeting job due dates. In particular, the minimization of
the second objective characterizes the Just-In-Time principle in production. Our
motivation for this study comes from the Plastic and Rubber industrial project1,
transforming raw material into a final product, in which frequent occurrences of
unexpected events call for dynamic and flexible scheduling.

To address the problem, we apply four of the essential RL techniques, namely
Q-learning, Sarsa, Watkins’s Q(λ), and Sarsa(λ) and compare their performance,
under different operating conditions, with two other approaches: a random as-
signment (Random), which selects a job randomly, and one of the most popular
dispatching rules called the earliest due date (EDD) rule. Furthermore, we propose
some preliminary results obtained by using Deep Q Network (DQN), which utilizes
the power of neural networks to approximate the value function.

The results derived from this research have been published in a book chapter
[117].

1.4.2 Thesis contributions on the proposed dynamic COP
The final part of the thesis is devoted to the dynamic COP applying the online

single machine scheduling problem. The research contributes the literature on the
following aspects:

• we apply four RL approaches (namely Q-learning, Sarsa, Watkins’s Q(λ), and
Sarsa(λ)) to the online single machine scheduling problem under the different
frequency of job arrivals to minimize two different objective functions, namely,
total tardiness and the total earliness plus tardiness of the jobs;

1Plastic&Rubber 4.0. Piattaforma Tecnologica per la Fabbrica Intelligente (Technological
Platform for Smart Factories), URL: https://www.openplast.it/en/homepage-en/
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• we get insights on the compared methods (four RL approaches, random as-
signment and the earliest due date rule) and give practitioners suggestions on
selecting the best method against the specific situation;

• we also approximate the value function using Deep Q Network (DQN), which
utilizes the power of neural networks.

27



28



Chapter 2

Multi-trip single-vehicle
routing problem with
AND-type precedence
constraints

2.1 Introduction
The Capacitated Vehicle Routing Problem (CVRP) has been a research subject

for many years due to the economic importance of the problem and its methodologi-
cal challenges. The classical version of CVRP seeks an optimal nodes assignment to
vehicles and optimizes the sequence of nodes within each route. To better represent
real-world problems, additional attributes need to be considered leading to different
variants of the CVRP. In some of them, the fleet comprises one single vehicle with
limited capacity to perform multiple trips, like helicopters. An important reason
for this gain of interest can be of enormous economic importance to some com-
panies. The standard VRP assumes single use of vehicles over a planning period.
However, in several contexts, like home delivery of fresh goods, the duration of the
routes is short. Therefore they must be combined to form a complete workday. In
applications where the vehicle capacity is small (electrical vehicles or small-sized
vans) or the planning period is large, performing more than one route per vehicle
may be the only practical solution. This is the so-called Multi-Trip Vehicle Routing
Problem (MTVRP). The MTVRP has become increasingly important due to the
advent of electronic services, like e-groceries, where customers can order goods on-
line and have them delivered at home. In such applications, the vehicle is allowed
for multiple trips to avoid an oversized fleet.

In many real industrial or social service environments where a set of tasks or
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services are performed, partial orders known as Precedence Constraints (PCs) are
defined that specify which nodes need to be visited before which other ones. The
PCs play an essential role in a wide range of applications in various fields, such as
the assembly industry, distribution of services, products, or passengers, construc-
tion projects, production scheduling, and maintenance support. In general cases,
precedence constraints are represented by an arbitrary directed acyclic graph in
which each arc corresponds to a precedence constraint between a pair of nodes.

In logistics, it is also tough to suppose that the customer nodes are visited
independently. Some customers/target locations may have priorities over the others
to be served/visited due to their interconnections, as in the Dial-A-Ride or Pickup
and Delivery problems. In these problems, each node is visited at most after just
one predecessor. For instance, in the Dial-A-Ride problem, for any backhaul node
j, there is a particular inhaul node i where the relation i < j (we refer to it as
conventional precedence constraint) must be met within a route. In practice, there
are cases in which the conventional PCs are not suitable. So, alternative definitions,
such as AND precedence, OR precedence, and S-precedence, are defined. AND-type
precedence constraints are defined when a node has multiple predecessors which
have been met before. For example, given node i, a set of predecessors {j, k, l} is
considered which, consequently, result in a set of pairwise relations {(j < i), (k <
i), (l < i)}.

A practical application of AND-type precedence constraints can be visiting pa-
tients by medical personal during the evacuation of a special needs population in
anticipation of a disaster. In such a situation, some patients have priorities (due to
their urgency or importance) to be visited before others before being transported
to the shelters. Another application might be freight transportation by helicopter
or ship, where some locations need to be reached after some others.

Let’s consider a delivery problem in which a customer’s order includes various
items collected from different locations. In such a situation, the customer must be
visited in a route only after (not necessarily immediately) visiting the locations of
requested goods. This situation can also be seen in an order picker routing problem
where a picker walks or drives through the warehouse to collect the requested
items and put them in a roll container considering fragility restrictions, stackability,
shape, size, and weight. For example, to prevent damage to light items, pickers
are not allowed to put heavy items on top of light items. Such physical features
and preferred loading or unloading sequences (to avoid extra effort on sorting and
packing the collected items at the end of the retrieving process) can be represented
as AND-type PCs that specify which items should be collected before a given one
within a trip or among them.

To the best of our knowledge, there is no available research in the Literature of
VRP in which the nodes are visited satisfying AND-type PCs along and among the
trips. This chapter describes the Multi-Trip Capacitated Single-Vehicle Routing
Problem with AND-type Precedence Constraints. The main objective is to find the
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optimal sequence of routes with the minimum total traveling cost. The nodes are
related to AND-type precedence relations that must be respected within a route and
among them by determining the order of trips. To address the proposed problem,
three mathematical formulations are developed. The performance of the models
is experimentally investigated on a set of generated instances. Moreover, a de-
composition algorithm based on the Logic-Based Benders Decomposition (LBBD)
approach is developed, which partitions the original problem into an assignment
master problem and sequencing sub-problems. A new extension of a valid optimal-
ity cut is developed, and its performance is experimentally investigated. The cuts
are generated from the solutions of subproblems and added to the master problem
to achieve faster convergence. We also propose a relaxed version of LBBD, which
allows the algorithm to find a feasible solution in less CPU time and even larger
instances.

The contribution of the research is threefold in this chapter: (i) considering
AND-type precedence constraints in the multi-trip capacitated single-vehicle rout-
ing problem; (ii) three mixed-integer programming models are developed and ex-
perimentally compared on a set of generated instances; (iii) a logic-based benders
decomposition algorithm with a new valid optimality cut and its relaxed version
are designed and implemented capable of obtaining good solutions in terms of both
quality and computational time.

This chapter is organized as follows. Section 2.2 is dedicated to the literature
review of the problem. In Section 2.3, the proposed problem is described and three
mathematical formulations are provided. Moreover, the computational results of
the proposed models in solving a set of instances are represented in this part. In
Section 2.4, we develop the LBBD algorithm to solve the problem. In Section 2.5,
the computational results of the proposed algorithms are provided. Finally, we end
up with a summary and some future research suggestions in Section 2.6.

2.2 Literature review
The Literature on the proposed problem can be distinguished into three main

research areas. The first one deals with the precedence constraints, with the main
focus on the routing problem. The second part discusses the multi-trip single-
vehicle routing problem, while the last one includes the studies proposing the logic-
based benders decomposition algorithm.

2.2.1 Problems with precedence constraints
In many real operational research problems where a set of tasks or services are

performed, it is tough to suppose that the tasks are independent of each other. In
principle, the relative order between a couple of tasks is represented as a pairwise
relation named Precedence Constraint (PC). These relations make the problems
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have a more comprehensive range of applications in various fields. Given nodes
i and j, precedence constraint i < j, referred to a conventional precedence con-
straint, can be interpreted as activity i is performed before j. Different precedence
constraints are defined in practice, such as ’AND’, ’OR’, ’S’ types. The AND-type
precedence constraint means that a node can be reached only after visiting all of
its predecessors. The OR-type precedence constraint is defined when a node has
multiple predecessors, and it can be reached when at least one of its predecessors
has been met before. Under the S-type PC, a task can be started once all of its pre-
decessors have been started. So, the task does not need to wait for the completion
of its predecessors.

In the context of machine scheduling, Soft Precedence Constraints (SPC) have
been defined by a bipartite network at a transshipment port [234]. The SPCs
can be violated, but with a certain penalty. Goldwasser and Motwani [83] de-
rive inapproximability results for a specific single-machine scheduling problem with
AND/OR precedence constraints. Gillies and Liu [80] addressed single and paral-
lel machine scheduling problems to meet deadlines considering different structures
of AND precedence constraints. They proved NP-completeness of finding feasible
schedules in many polynomially solvable settings with only AND-type precedence
constraints. Moreover, they give priority-driven heuristic algorithms to minimize
the completion time on a multiprocessor. Mohring et al. [138] provided some algo-
rithms for the more general and complex model of AND/OR precedence constraints.
They showed that feasibility and questions related to generalized transitivity could
be solved using the same linear-time algorithm. Moreover, they discussed a nat-
ural generalization of AND/OR precedence constraints and prove that the same
problems become NP-complete in this setting. Lee et al. [108] focused on flexible
job-shop scheduling problems with AND/OR precedence constraints in the opera-
tions. They provided a MILP model able to find optimal solutions for small-sized
instances. They also developed a heuristic algorithm that results in a good solu-
tion for the problem regardless of its size. Moreover, a schedule builder who always
gives a feasible solution and genetic and tabu search algorithms based on the pro-
posed schedule builder were presented. Van Den Akker et al. [216] developed a
solution framework that provides feasible schedules to minimize the minimax type
on a set of identical parallel machines subject to release dates, deadlines, AND/OR
precedence constraints. They determined a high-quality lower bound by applying
column generation to the LP relaxation. Agnetis et al. addressed some special cases
of job shop, and flow shop scheduling problems with S-type precedence constraints
[2]. They provided exact polynomial algorithms for a two-machine job shop and a
two-machine flow shop, and an m-machine flow shop with two jobs.

In the context of routing problems, Moon et al. [140] addressed the Traveling
Salesman Problem with Precedence Constraints (TSPPC), defined as pairwise re-
lations between each couple of nodes. The PCs are represented as an order under
which the nodes must be visited. A genetic algorithm that involves a topological
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sort and a new crossover operation is proposed to solve the model. Mingozzi et
al. [135] dealt with the TSP with time windows and precedence constraints using
a dynamic programming approach. Fagerholt and Christiansen [67] considered a
TSPPC with a time window to solve the bulk ship scheduling problem. The model
is solved as a shortest path problem on a graph. Renaud et al. [165] proposed a
heuristic model to solve the pickup and delivery TSP formulated as the TSPPC.
Bredstrom and Ronnqvist [30] developed a mathematical model for the combined
vehicle routing and scheduling problem with time windows. The sets of pairwise
synchronization and precedence constraints are considered between customer vis-
its, independently of the vehicles. Also, they described some real-world problems
to emphasize the importance of the mentioned constraints, such as homecare staff
scheduling, airline scheduling, and forest operations. Bockenhauer et al. [29] stud-
ied a variant of TSP in which a given subset of nodes are visited in a prescribed
order in the computed Hamiltonian cycle. They presented a polynomial-time algo-
rithm to solve the problem. Haddadene et al. [162] modeled a home health care
structure as a variant of vehicle routing problem with time windows and timing
constraints. Some patients ask for more than one visit simultaneously or in given
priority order. A MILP model, a greedy heuristic, two local search strategies, and
three metaheuristics are proposed to solve the problem. Recently, the task assign-
ment problem for a team of heterogeneous vehicles has been investigated in which
packages are delivered to a set of dispersed customers subject to precedence con-
straints. Using graph theory, a lower bound on the optimal time is constructed.
Integrating with a topological sorting technique, several heuristic algorithms are
developed to solve it [17].

A closely related case of the VRP with PCs is the Dial-A-Ride problem, which
is an exhaustively studied problem. In this problem, the pairwise relations are
inherently represented between pickup and delivery points within a route, i.e., for
any backhaul node j, there is a particular inhaul node i where the PC (i < j)
must be met within a route. For a comprehensive survey of the developed models,
applications, and algorithms that address the Dial-A-Ride problems, the reader is
referred to [93], [139], and [45].

The order-picking problem is one of the main applications of AND-type PCs in
the context of routing problems. However, little works in order-picking problems
have focused on PCs. Zulj et al. [239] considered the PCs in a warehouse of a
German manufacturer of household products, where heavy items are not allowed
to be stored on top of delicate items to prevent damage to the delicate items. To
avoid the sorting effort at the end of the order-picking process, they propose a
picker-routing strategy respecting the precedence constraints. An exact algorithm
based on dynamic programming is used to evaluate the strategy and compared with
the simple s-shape routing strategy. Dekker et al. [51] investigated combinations
of storage assignment strategies and routing heuristics for a real case arising in
a warehouse of a wholesaler of tools and garden equipment. A guideline has to
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be considered indicating that fragile products have to be picked last. Matusiak
et al. [134] presented a simulated annealing method to address the joint order
batching and precedence-constrained picker-routing problem in a warehouse with
multiple depots. The shortest path through the warehouse is determined using an
exact algorithm. Chabot et al. [39] introduced the order-picking routing problem
underweight, fragility, and category constraints. They propose capacity-index and
two-index vehicle-flow formulations as well as four heuristics to solve the problem.
Furthermore, a branch-and-cut algorithm is applied to solve the two mathematical
models.

It should be noted that the proposed precedence relations in most picker rout-
ing problems (mentioned above) have been represented as a pre-specified sequence
of nodes. However, in our proposed problem, AND-type PCs are defined under
which the nodes assignments to trips and the sequence of nodes in each route are
determined in the model.

2.2.2 Multi-Trip Single-Vehicle Routing Problem
In the Multi-Trip Vehicle Routing Problem (MTVRP), each vehicle can perform

several trips during the planning horizon. In situations where the vehicle capacity
is small or applications, such as home delivery of perishable goods like food, the
duration of the routes is short. Therefore, the vehicles can travel several trips to
complete a workday. In 1990, this problem was introduced by Fleischmann (FLE
1990). A survey on this problem can be found in [36] and [37] which give a unified
view on mathematical formulations, exact and heuristic approaches, and variants
of MTVRP.

In the literature, some papers dealt with multi-trip single-vehicle routing prob-
lems. Following, we refer to a few ones. Martinez-Salazar et al. [133] studied a
customer-centric routing problem with multiple trips of a single vehicle to minimize
the total waiting time of customers (latency). They proposed two mixed-integer
formulations and a metaheuristic algorithm capable of obtaining good solutions in
quality and computational time. Azi et al. [14] addressed a multi-trip single-vehicle
routing considering time windows and deadline constraints. Considering that the
time windows constraints may prevent serving all customers, the objective was to
maximize the number of served customers and minimize the total distance. They
proposed a method based on an elementary shortest path algorithm with resource
constraints. Rivera et al. [168] worked on the multi-trip cumulative capacitated
single-vehicle routing problem inspired by disaster logistics. The objective is the
minimization of total arrival time. Two mixed-integer linear programming models,
a low-based formulation and a set partitioning problem, are proposed for small in-
stances. In contrast, an exact algorithm based on a resource-constrained shortest
path problem is developed for the larger instances. Angel-Bello et al. [8] consid-
ered a routing problem with multiple uses of a single vehicle and service time in
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demand points to minimize the sum of clients waiting time to receive service. They
present and compare two mixed-integer formulations for this problem based on a
multi-level network.

2.2.3 Logic-Based Benders Decomposition algorithm
The LBBD has mostly aroused interest among researchers in the planning and

scheduling field. However, few papers in the vehicle routing area have focused
on this approach. Here, we can imply some of the most cited studies that use
this approach in various optimization problems. Implementation of the LBBD on
parallel machine scheduling problem with sequence-dependent setup times and job
availability intervals has yielded outstanding results in comparison with integer
programming (IP), and constraint programming (CP) as proposed in [78]. A three-
level LBBD solves the outpatient scheduling problem efficiently, which involves
planning and scheduling decisions in [167]. The Multi-distributed operating room
scheduling (DORS) problem is addressed using LBBD proposed by Roshanaei et
al. [176]. The algorithm was enhanced using effective acceleration cuts led to
faster convergence. Their proposed problem tackles the allocation of patients as
well as scheduling of operating rooms. The study performed by Barzanji et al. [21]
showed that the proposed LBBD algorithm has outstanding results over the existing
heuristic-based search methods for the type-1 of integrated process planning and
scheduling (IPPS) problem named flexible job shop scheduling with process plan
flexibility problem. Simultaneous planning, lot sizing, and scheduling problem are
studied by Martinez-Salazar et al. [133]. They proposed an integrated branch-and-
check with a MIP heuristic based on the logic-based Benders platform. The LBBD
is deployed effectively in the export dry bulk terminals problem, which involves
two allocation problems: planning and scheduling parts (see, [214]). Recently,
the LBBD was applied to address the heterogeneous fixed fleet vehicle routing
problem with time windows with the aim of cost minimization [62]. Valid optimality
and feasibility cuts were devised to guarantee the convergence of the algorithm.
Extensive computational experiments illustrated the effectiveness of the suggested
approach.

2.2.4 Summarizing reviewed literature
In this section, we provide Table 2.1 to summarize the related Literature. As

shown, no available research in the Literature of vehicle routing and even picker
routing problems considers AND-type PCs.

As mentioned before, the most related research in logistics includes dial-a-ride
or pickup and delivery problems which only focus on the pairwise relations be-
tween a couple of nodes (inhaul and backhaul nodes) being satisfied within a route.
However, we want to stress that assuming such relations, under which at most one
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Table 2.1: Summarized literature reviewed in this section

Publication Problem Precedence Constraints Solution Approach
[168] multi-trip single-vehicle routing - exact algorithm
[14] multi-trip single-vehicle routing - exact algorithm
[8] multi-trip single-vehicle routing - Cplex solver
[133] multi-trip single-vehicle routing - meta-heuristic algorithm
[216] parallel machine scheduling AND/OR type PCs column generation
[234] machine scheduling Soft type PCs approximation algorithms
[108] flexible job-shop scheduling AND/OR type PCs heuristic algorithm
[80] machine scheduling AND type PCs heuristic algorithms
[2] machine scheduling S type PCs exact algorithms
[83] assembly sequencing AND/OR type PCs -
[140] travelling salesman problem conventional PCs genetic algorithm
[135] travelling salesman problem conventional PCs dynamic programming
[165] pickup and delivery TSP conventional PCs heuristic model
[30] combined vehicle routing and scheduling conventional PCs -
[29] travelling salesman problem pre-specified sequence heuristic
[162] vehicle routing problem given priority order meta-heuristics and heuristic
[17] assignment problem conventional PCs heuristic
[239] order-picking pre-specified sequence dynamic programming
[51] storage assignment and routing pre-specified sequence heuristics
[134] order batching and picker-routing pre-specified sequence meta-heuristic
[39] order-picking routing pre-specified sequence branch-and-cut and heuristics
[78] Machine scheduling - LBBD
[167] multi-modal outpatient scheduling - LBBD
[176] operating room scheduling - LBBD
[21] integrated planning and scheduling - LBBD
[133] planning, lot sizing and scheduling - LBBD
[214] planning and scheduling - LBBD
[62] vehicle routing - LBBD
current research multi-trip single-vehicle routing And type PCs LBBD

predecessor per node is defined which must be visited in the same route, can be
restrictive in many real-life situations. In this regard, we propose the AND-type
PCs represented on a directed acyclic graph, where given a node, a set of pair-
wise relations are met within and among the trips. Thus, our research contributes
to the Literature by describing, modeling, and providing solution approaches for
Multi-Trip Capacitated Single-Vehicle Routing Problem with AND-type PCs.

2.3 Problem description and mathematical for-
mulation

The proposed problem is a generalization of the CVRP in which the nodes are
related to each other using AND-type precedence constraints. The fleet is composed
of a single vehicle capable of traveling multiple trips per working day. The problem
aims to determine a sequence of trips required to visit all the nodes, assign nodes
to the trips, and find the sequence of the nodes in each trip to minimize the total
traveling cost.

36



2.3 – Problem description and mathematical formulation

The proposed problem is defined on a directed acyclic graph G = (N, A, c),
where N = {0,1,2, . . . , n} is a set of geographically located nodes including the
depot (node 0), and A = {(i, j) : i, j ∈ N, i /= j} is the set of arcs. For each
arc (i, j), a travel cost cij is associated. The cost matrix is symmetric, i.e., cij =
cji,∀i, j ∈ V, i /= j. Given node i, set ANDi is defined including the AND-type
predecessors of node i. The proposed PCs are respected between nodes within and
among the trips. Given PC i < j, if node i and j are, respectively, assigned to
trips s and k, then trip s is done before starting trip k by the vehicle. In such a
way, the PC i < j is met among the trips. For example, let’s consider the nodes
and the AND-type precedence constraints as depicted in Figure 2.1. It can be seen
that the vehicle travels three trips to visit all the nodes. According to the defined
PCs, the set of AND-type predecessors of node r includes {g, c}. As depicted, both
predecessors are visited before node r in the first trip of the vehicle. Concerning
AND predecessors of node a, it can be noticed that both nodes k and m are visited
before node a in such a way that node k is assigned to the same trip as node a,
while node m has been visited in the previous trip. Finally, two nodes h and p are
not allocated to the same trip as node u. However, the related PCS are met while
both nodes are visited before node u in the previous trip.

Figure 2.1: Illustration of an example with AND-type PCs respecting within and
among the trips

Let us assume the following restrictions:

• Each trip starts and ends at the depot,

• Each node is visited once,

• Total demand of each route does not exceed the capacity of the vehicle,
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• Number of trips cannot exceed the Maximum value p,

• PCs are met between nodes within and among the trips.

In the next subsections, three mathematical formulations are developed to ad-
dress the proposed problem. Let us introduce the following notations and parame-
ters:

• N = {0,1,2, ..., n}: set of nodes including depot;

• Ń = {0,1, ..., n, n + 1, ..., n + p}: set of nodes including p dummy depots;

• cij: travelling cost from node i to node j;

• p: upper bound for the number of trips;

• Q: capacity of the vehicle;

• di: demand of node i;

• M : a big scalar;

• ANDi: set of predecessors of node i ∈ N \ {0}.

2.3.1 Three-index MIP model
In this section, the Three-index MIP model of the proposed problem is repre-

sented. Let us introduce following decision variables:

xijr: binary variable takes value 1 if arc (i, j) is linked in trip r, 0 otherwise;
sir: integer variable indicating the position of node i in trip r;
ur: binary variable takes value 1 if the vehicle travels trip r, 0 otherwise.

Then, the problem can be stated as:

Z1 = min
p∑︂

r=1

n∑︂
j=0

n∑︂
i=0

i /=j

cijxijr (2.1)

subject to
n∑︂

j=1
x0jr = ur ∀r ∈ {1, ..., p}, (2.2)

n∑︂
i=0,i /=j

p∑︂
r=1

xijr = 1 ∀j ∈ N \ {0}, (2.3)
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n∑︂
i=0

xijr =
n∑︂

i=0
xjir ∀j ∈ N \ {0},∀r ∈ {1, ..., p}, (2.4)

n∑︂
i=0

n∑︂
j=1

i /=j

djxijr ≤ Q.ur ∀r ∈ {1, ..., p}, (2.5)

ur ≤ uŕ ∀r, ŕ ∈ {1, ..., p}r>ŕ, (2.6)
n∑︂

i=0

r∑︂
k=1

xiek ≥
n∑︂

i=0
xisr ∀e ∈ ANDs, r ∈ {1, ..., p}, (2.7)

sir + 1−M(1− xijr) ≤ sjr ∀i /= j ∈ N, r ∈ {1, ..., p}, (2.8)

sir + 1 ≤ sjr ∀i ∈ Prj, r ∈ {1, ..., p}, (2.9)

0 ≤ sir ≤
n∑︂

i=0

n∑︂
j=1

i /=j

xijr ∀i ∈ N, r ∈ {1, ..., p}, (2.10)

sir ≥ 0 ∀i ∈ N, r ∈ {1, ..., p}, (2.11)

xijr, ur ∈ {0,1} ∀i, j ∈ N, r ∈ {1, ..., p}. (2.12)

Equation (2.1) is the objective function that minimizes the total traveling costs.
Equations (2.2) state that each trip starts from the depot. Equations (2.3) rep-
resent that each node is visited exactly once in just one trip. Constraints (2.4)
declare that the vehicle, in each trip, enters and leaves a node exactly once. Vehicle
capacity is guaranteed by equations (2.5) in each trip. Using constraints (2.6), the
sequence of vehicle trips is determined so that trip r cannot be done unless trip r−1
has been performed before. Precedence constraints are met in the nodes allocations
to trips as restricted in (2.7). It indicates that every predecessor of node s in trip
r are assigned to the same trip or its previous ones. Constraints (2.8), which link
the position variable sir and the binary variable xijr together, insure the order of
nodes in each trip. Constraints (2.9) enforce the precedence constraints among the
nodes inside each route. Constraints (2.10) limit the upper bound of the position
variables. This constraint, along with (2.8), prevents the model from creating sub-
tours. Finally, constrains (2.11) and (2.12) define the integer and binary variables,
respectively.

2.3.2 Two-index MIP model
In this section, the Two-index MIP model for the proposed problem is devel-

oped. To assign the nodes to the trips, dummy depots are used as separators
between vertices. It means the nodes positioned between every two depots form a
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trip. Therefore, the size of the set N = {0,1,2, ..., n} increases by the maximum
number of trips which leads to set Ń = {0,1, ..., n, n + 1, ..., n + p} with n + 1 + p
nodes. It should be noted that all the traveling costs for these dummy depots are
assumed to be the same as the original depot, i.e., c0j = cn+rj, r ∈ 1,2, ..., p. In this
formulation, to respect the precedence constraints, continuous variables Poi,∀i ∈ Ń
are introduced, which indicate the nodes’ positions in the overall sequence of all
the nodes (including dummy depots) in the set Ń , no matter in which trip a node
is visited. The proposed variables and developed Two-index MIP model are repre-
sented as follows:

yij: binary variable takes value 1 if arc (i, j) is linked, 0 otherwise;
Poi: integer variable indicating the position of node i ∈ Ń ;
Cdi: integer variable indicating the cumulative demand of the trip at node i ∈ Ń .

Then, the problem can be stated as:

Z2 = min
n+p∑︂
i=0

n+p∑︂
j=0

i /=j

cijyij (2.13)

subject to
n+p∑︂

i=0,j /=i

yij = 1 ∀j ∈ Ń \ {0}, (2.14)

n+p∑︂
j=1,j /=i

yij = 1 ∀i ∈ Ń \ {n + p}, (2.15)

Cdi + dj −M(1− yij) ≤ Cdj ∀i /= j ∈ Ń , (2.16)

di ≤ Cdi ≤ Q ∀i ∈ Ń , (2.17)

Poj + M(1− yij) ≥ Poi + 1 ∀i /= j ∈ Ń , (2.18)

1 ≤ Poi ≤ |Ń | ∀i ∈ Ń , (2.19)

Poj ≥ Poi + 1 ∀i ∈ ANDj, (2.20)

Poi ≥ 0 ∀i ∈ Ń , (2.21)

Cdi ≥ 0 ∀i ∈ Ń , (2.22)

yij ∈ {0,1} ∀i, j ∈ Ń . (2.23)
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As usual objective function (2.13) minimizes the total travelling costs. Equations
(2.14) and (2.15) are the regular routing rules. Constraints (2.16) and (2.17),
derived from the well-known Miller-Tucker-Zemlin formulation, ensure the routes
connectivity and limit the number of nodes in a trip considering the vehicle capacity.
Constraints (2.18), which relate the two types of variables, ensure the order of linked
nodes in the overall sequence of the total nodes. The position value is bounded by
restriction (2.19). The precedence constraints are satisfied both inside and among
the trips simultaneously by imposing constraints (2.20) since the variables have no
index associated to the trips. Finally, constrains (2.21)-(2.23) define the integer
and binary variables, respectively.

2.3.3 Integrated assignment and sequencing MIP model
In this section, we represent an Integration model containing distinct assignment

and sequencing decisions. The variables and formulation are presented as follows:

xir: binary variable takes value 1 if node i ∈ N is assigned to trip r, 0 otherwise;
yijr: binary variable 1 if arc(i, j) is linked in trip r, 0 otherwise;
poir: integer variable indicating the position of node i ∈ N in trip r;
ur: binary variable takes value 1 if the vehicle travels trip r, 0 otherwise.

Since each trip starts from and ends at the depot, the first position of each trip
is associated with the depot while the last position is dedicated to the node, which
directly precedes the depot at the last linked arc(i,0) in the trip r.

Then, the problem can be stated as:

Z3 = min
p∑︂

r=1

n∑︂
j=0

n∑︂
i=0

i /=j

cijyijr (2.24)

subject to
p∑︂

r=1
xir = 1 ∀i ∈ N \ {0}, (2.25)

n∑︂
i=1

dixir ≤ Q.ur ∀r ∈ {1, ..., p}, (2.26)

xjr =
n∑︂

i=0,i /=j

yijr ∀j ∈ N, r ∈ {1, ..., p}, (2.27)

xir =
n∑︂

j=0,j /=i

yijr ∀i ∈ N, r ∈ {1, ..., p}, (2.28)

ur ≤ uŕ ∀r, ŕ ∈ {1, ..., p}r>ŕ, (2.29)
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r∑︂
k=1

xek ≥ xsr ∀e ∈ ANDs, r ∈ {1, ..., p}, (2.30)

pojr + M(1− yijr) ≥ poir + 1 ∀i /= j ∈ N, r ∈ {1, ..., p}, (2.31)

1 ≤ poir ≤
n∑︂

j=0,j /=i

xjr ∀i ∈ N, r ∈ {1, ..., p}, (2.32)

pojr ≥ poir + 1−M(2− xir + xjr) ∀i ∈ Prj, r ∈ {1, ..., p}, (2.33)

pojr ≥ 0 ∀j ∈ N, r ∈ {1, ..., p}, (2.34)

yijr, xir, ur ∈ {0,1} ∀i, j ∈ N, r ∈ {1, ..., p}. (2.35)

The objective function is represented by equation (2.24). Equations (2.25) guaran-
tee that each node is allocated to exactly one trip. The vehicle capacity is ensured
in each trip by equations (2.26). Equations (2.27) and (2.28) relate the two as-
signment and sequencing variables in a way that each node must be entered and
exited exactly once in each trip. Using constraints (2.29), the sequence of vehicle
trips is determined so that trip r cannot be done unless trip r − 1 has been per-
formed before. Precedence constraints are met in the nodes allocation to the trips
as restricted in (2.30). Constraints (2.31) relate the two types of the variables to
ensure the nodes’ positions for the linked arc in each trip. The position variables
are limited by restrictions (2.32). Equation (2.33) imposes precedence constraints
within each trip using assignment and position variables. Finally, constrains (2.34)
and (2.35) define the Integer and binary variables, respectively.

In the next subsection, a set of experiments are conducted to evaluate and com-
pare the performance of the three presented models on a set of generated instances.

2.3.4 Comparison of the three MIP formulations
In this section, the performance of the three developed models is evaluated

through an extended set of small instances proposed by Martinez-Salazar et al.
[133]. The instances having 10, 15, 20, 25, and 30 nodes are randomly generated
from points with real coordinates using a uniform distribution in the range [0,100].
Rounded Euclidean distances are taken as travel costs between each pair of nodes.
The maximum number of trips is fixed in 2 for 10-nodes instances and 3 for other
sizes. Depending on the size of the instance, Q was set to 120,120, 140, 180, 200.
Demand di is randomly assigned with a value of 10, 20, or 30 so that the sum of the
demands is between (p + 1)Q and pQ to ensure feasibility. There are 5 instances
for each value of n.

An upper triangular matrix without the diagonal called Precedence Matrix (PM)
is developed to represent the AND-type precedence constraints. Each element of
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PM denotes whether or not a precedence relation exists between the two corre-
sponding nodes. If node s have AND-type predecessors {i, j, k}, then PMis = 1,
PMjs = 1, PMks = 1. If there is no PC between the two nodes, the corresponding
element of the matrix is zero. The representation of precedence constraints as an
upper triangular matrix ensures the feasibility of the relations.

To generate the PCs, we somehow adopt the scheme proposed by Derriesel and
Monch [55] who addressed the parallel machines with sequence-dependent setup
times, precedence constraints, and ready times. The precedence relations are in-
serted using the factor τ = {0,0.4,0.8} to evaluate PCs’ impact by considering three
different scales. Given a column, if a chosen random number from U [0,1] is less than
τ , we do not consider any predecessors for the node associated with that column.
Otherwise, the number of predecessors is chosen according to U [0, n − 1th], where
nth is the number of that column. Then, the predecessors are randomly selected
from the set of already generated nodes {1th, ..., n− 1th}.

As a result, the total number of instances is 75 which is the combinations of
the number of nodes n ∈ {10,15,20,25,30}, the scale of precedence constraints
τ ∈ {0,0.4,0.8}, and 5 generated instances for each combination of n and τ . All the
models and codes are executed by GAMS 24.1 on corei5 pc with 2.50 GHz CPU
and 4 GB of RAM, and the time limit is set to 5400 seconds.

Table 2.2 presents the results of experiments for comparing the three models.
Column 1 displays the number of nodes of the instances, while column 2 indicates
the scale of precedence constraints. Minimum, maximum, and average CPU time
(in seconds) are shown from columns 3 to 5 for the three-index model, from columns
8 to 10 for two-index, and from columns 13 to 15 for integrated one. Columns 6,
11, and 16 show the number of instances (out of 5) which can be optimally solved
(denoted by opt). A dash in these columns means that the model could not find
optimal solutions for non of the 5 instances in the time limit. Values in columns
7, 12, 17 are the percentage of average optimality gap (denoted by ∆(%)) over
non-optimized instances.

The results highlight way better performance of the Two-index model than the
other two ones in terms of CPU time, the number of optimally solved instances, and
the gap in dealing with more than 20 nodes. As it can be observed, the three-index
and integrated formulations can not reach an optimal solution in the time limit 5400
seconds in dealing with instances with more than 25 and 20 nodes, respectively.
However, the two-index formulation can optimally solve all the instances, while the
three-index and integrated models can find optimal solutions for, respectively, 52
and 35 out of 75 instances.

Not surprisingly, by increasing the instances sizes, the percentage of averaged
optimality gap for non-optimized instances grows except for little discontinuities.
However, different behavior is noticed as the scale of PCs increases. It seems,
having more PCs does not necessarily lead to more complexity of the problem, and
consequently, growing optimality gap and the number of non-optimized instances.
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Despite the quality obtained by the models, we also want to point out its effi-
ciency. As expected, the CPU time grows as the size of the problem increases for
the three models. Moreover, the performance of the three models in dealing with
small-sized instances (up to 15 nodes) is similar. In contrast, for larger instances, it
is clear that the two-index formulation can solve all instances in far less time than
the two other ones.

Taking into account the various values for the scale of PCs, it can be seen that
the models in dealing with different sizes do not show an exactly similar trend. It
seems increasing or decreasing the number of PCs can not necessarily, affect the
problem complexity. In some cases, more PCs lead to less computational time, and
in some other cases, the opposite is observed, which means that not the number of
PCs but the structure of them on a graph may increase or decrease the problem
complexity. This topic has also been addressed in [161].

Table 2.2: Computational results of the three proposed MIP models.

Instance Three-index model Two-index model Integrated model

n τ
CPU time (s) opt ∆(%) CPU time (s) opt ∆(%) CPU time (s) opt ∆(%)

Min Max Avg Min Max Avg Min Max Avg
10 0 5 8 7 5 0 5 6 5 5 0 5 7 6 5 0
10 0.4 5 7 6 5 0 5 6 5 5 0 6 7 7 5 0
10 0.8 6 8 7 5 0 5 7 6 5 0 6 8 7 5 0
15 0 15 28 20 5 0 13 19 15 5 0 16 32 23 5 0
15 0.4 12 32 19 5 0 15 30 22 5 0 17 47 30 5 0
15 0.8 18 36 25 5 0 15 27 19 5 0 20 35 27 5 0
20 0 449 830 638 5 0 58 191 113 5 0 577 1005 849 4 8
20 0.4 315 961 746 4 12 66 219 181 5 0 490 490 490 1 33
20 0.8 388 827 673 5 0 73 327 202 5 0 - 5400 5400 - 28
25 0 3800 4729 4201 3 16 360 844 608 5 0 - 5400 5400 - 19
25 0.4 1931 3855 3128 4 22 392 797 575 5 0 - 5400 5400 - 18
25 0.8 3669 3669 3669 1 27 466 991 831 5 0 - 5400 5400 - 35
30 0 - 5400 5400 - 19 1377 2894 2159 5 0 - 5400 5400 - 23
30 0.4 - 5400 5400 - 35 1026 2603 1844 5 0 - 5400 5400 - 29
30 0.8 - 5400 5400 - 30 1369 3082 2762 5 0 - 5400 5400 - 36

2.4 Logic-Based Benders Decomposition algorithm
In this chapter, the Logic-Based Benders Decomposition algorithm is imple-

mented to address the original problem using a two-phase method called cluster-
first and route-second [71]. The LBBD decomposes the original problem into an
assignment master problem. The nodes are allocated to several required trips and
independent sequencing subproblems with the special structure of the traveling
salesman problem considering AND-type PCs. At each iteration of the LBBD, the
master problem is solved and provides a lower bound for the original problem since
it is a relaxation of the original problem. After solving the MP and specifying
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the node assignments to the trips, the subproblems (associated with the trips) are
derived, providing an upper bound. Using the solution of the subproblems, the
optimality cuts are developed to be added to the master problem. Such a method
converges to the optimum if and only if the master problem solution improves the
lower bound, and the added cuts exclude the current master problem solution. This
procedure goes on until an optimal solution is reached to the original problem or
an early stopping criterion is found.

In the master problem and subproblems, the decisions are taken while satisfying
the AND-type PCs among the trips and within them. More precisely, the nodes
are allocated to the trips in the assignment master problem so that the AND-type
PCs between the couples of nodes are respected among the trips. In contrast, the
PCs are met within each trip by the subproblem associated with that trip.

2.4.1 Master problem
The master problem aims at making decisions on the nodes’ assignment to sev-

eral required trips satisfying PCs among the trips. So, it involves the binary decision
variables xir, i ∈ N, r ∈ {1, ..., p} which takes value 1 if node i is assigned to trip r,
and the binary decision variables ur, r ∈ {1, ..., p} which takes value 1 if the vehicle
travels trip r. The proposed master-problem is derived from the Integrated model,
defined by constraints (2.25-2.35), and represented as follows:

Then, the problem can be stated as:

min ZMaster (2.36)

subject to
p∑︂

r=1
xir = 1 ∀i ∈ N \ {0}, (2.37)

N∑︂
i=1

di × xir ≤ Q.ur ∀r ∈ {1, ..., p}, (2.38)

ur ≤ uŕ ∀r, ŕ ∈ {1, ..., p}r>ŕ, (2.39)
r∑︂

k=1
xek ≥ xsr ∀r ∈ {1, ..., p}, e ∈ Prs, (2.40)

Sub-Problem Relation, (2.41)

Optimality Cuts, ∀l ∈ Iterations, (2.42)

xir, ur ∈ {0,1} ∀r ∈ {1, ..., p}, i ∈ N. (2.43)
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As it can be seen, the MP involves constraints on the nodes allocation, the
vehicle capacity, order of trips, AND-type PCs among the trips, and sub-problem
relaxation and benders cuts.

Recently, research proposed by Cire et al. [44] has shown that including the
master problem with a relation of subproblem can significantly decrease the number
of iterations as well as the computational time of LBBD as it provides a tighter
lower bound for the original problem. Thus, we propose the following variables and
the relaxed subproblem:

yijr ∈ [0,1]: continuous variable indicating the arc(i, j) in trip r;
σr: integer variable for the lower bound on the travelling cost of trip r.

Then

min
p∑︂

r=1
σr (2.44)

subject to
xjr =

n∑︂
i=0,i /=j

yijr ∀j ∈ N, r ∈ {1, ..., p}, (2.45)

xir =
n∑︂

j=0,j /=i

yijr ∀i ∈ N, r ∈ {1, ..., p}, (2.46)

σr ≥
n∑︂

i=0

n∑︂
j=0

i /=j

cijyijr ∀r ∈ {1, ..., p}, (2.47)

ZMaster ≥
p∑︂

r=1
σr (2.48)

xir ∈ {0,1} ∀i ∈ N, r ∈ {1, ..., p}, (2.49)

0 ≤ yijr ≤ 1 ∀i, j ∈ N, r ∈ {1, ..., p}. (2.50)

It should be noted that continuous variables yijr are enforced to take binary values
0 or 1 due to the constraints (2.45) and (2.46) which are related to the binary
assignment variables xir. Using constrains (2.47), (2.48), the lower bound for the
cost of each trip and the value of master problem are computed, respectively. Also,
constrains (2.49), (2.50) define the binary and continuous variables, respectively.

It should be noted that the MP solutions may not be globally feasible in terms
of the sequence of nodes in the trips since no constraints are imposed to eliminate
the possible sub-tours and the PCs among the nodes within each trip.
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2.4.2 Sub-problem
When the sub-optimal solution of the MP determines the number of required

trips and the nodes assigned to them, each sub-problem associated with each trip
can be seen as a traveling salesman problem with AND-type PCs. At each iteration,
the sum of subproblems values (associated with the trips) provides an upper bound
for the original problem. To formulate the subproblem, Altl

r and nbl
r are defined,

respectively, indicating the cluster (set) of nodes assigned to trip r and its total
number computed by the solution of the master problem in iteration l. The two pa-
rameters are updated as the algorithm proceeds. For each iteration l and each trip
r (with ur = 1), the sub-problem model and the variables are represented as follows:

yij: binary variable takes value 1 if arc (i, j) is linked, 0 otherwise;
poi: continuous variable indicating the position of node i ∈ N .

Z l
SP (r) = min

n∑︂
i=0

n∑︂
j=0

cijyij (2.51)

subject to
n∑︂

i=0
yij = 1 ∀j ∈ Altl

r, (2.52)

n∑︂
j=0

yij = 1 ∀i ∈ Altl
r, (2.53)

poj − poi + M(1− yij) ≥ 1 ∀i, j ∈ Altl
r, (2.54)

poj ≥ poi + 1 i, j ∈ Altl
r, i ∈ ANDj, (2.55)

1 ≤ poi ≤ nbl
r i ∈ Altl

r, (2.56)

poj ≥ 0 ∀j ∈ N, (2.57)
yij ∈ {0,1} ∀i, j ∈ N. (2.58)

As usual objective function (2.51) minimizes the total travelling costs for trip
r. Equations (2.52) and (2.53) are the regular routing rules. Constraints (2.54),
which relate the two types of variables, ensure the order of linked nodes in each
trip. The precedence constraints are satisfied by imposing constrains (2.55). The
position value is bounded by restriction (2.56). Constraints (2.54- 2.56) enforce the
continuous variable Poi,∀i ∈ N takes the integer values between 0 and nbl

r. We
empirically observed that considering Poi as continuous variable instead of integer
one can reduce the computational time of the subproblem. Finally, constrains
(2.57), (2.58) define the continuous and binary variables, respectively.
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2.4.3 Optimality Cuts
The cuts play a vital role in the convergence of the LBBD algorithm. Unfortu-

nately, there is no systematic procedure to derive such cuts as in classical Benders
Decomposition. Therefore, tailored cuts must be developed according to the stud-
ied problem. There is no need to add any feasibility cut during the search since the
subproblems are feasible for any master problem.

Let Z l
SP (r) and σr denote, respectively, the optimal cost of the sequencing sub-

problem associated with trip r and iteration l, and the cost of trip r. A simple
variant of optimality cut is

σr ≥ Z l
SP (r) −

∑︂
i|xl

ir=1
(1− xir), (2.59)

i.e., the MP gives the same solutions as before, (1− xir) for all i becomes zero. It
means a better result cannot be achieved as the objective function σr being limited
by Z l

SP (r). So, the master problem is enforced to change the nodes allocations till
a new set, which has not been repeated before, is found.

Several researchers have used (2.59) and its equivalent version in different op-
timization problems, like [176], [69] and [21]. Unfortunately, the above-mentioned
optimality cut (2.59) does not perform well in practice since the cut only affects a
small number of solutions in the MP. Recently, Faganello Fachini and Armentano
[62] have proposed an extended form of cut (2.59) in dealing with the heterogeneous
fixed fleet vehicle routing problem with time windows. Their developed cut can be
written as

σr ≥ Z l
SP (r) −

∑︂
i|xl

ir=1
(1− xir)(2 max

j /=i|xl
jr=1
{cij}). (2.60)

The cut indicates that if the current solution of the master problem does not
include a node of a previously obtained trip, it reduces by twice the maximum
travel cost over all pairs of nodes in this previously obtained route.

In this research, we try to strengthen cut (2.60) to affect more solutions instead
of excluding few ones. We propose the following optimality cuts for the master
problem

σr ≥ Z l
SP (r) −

∑︂
i|xl

ir=1
(1− xir)(max1{cij}

j /=i|xl
jr=1

+ max2{cij}
j /=i|xl

jr=1
) + (2.61)

∑︂
i|xl

ir=0
xir(min1{cij}

j /=i|xjr=1
+ min2{cij}

j /=i|xjr=1
),

where max1{cij} and max2{cij} are the two highest, and min1{cij} and min2{cij}
are the two lowest values of the traveling cost linked to node i. In comparison
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with cut (2.60), a stronger lower bound for σr can be obtained in (2.61). This is
due to considering not only the nodes are excluded from trip r (by subtracting the
two associated highest cost) but also the ones are newly included to that trip (by
adding the two associated lowest cost). In addition, considering the two highest
and the two lowest cost might drive tighter lower bound (2.61), since

max1{cij}
j /=i|xl

jr=1
+ max2{cij}

j /=i|xl
jr=1

≤ 2 max
j /=i|xl

jr=1
{cij}, (2.62)

and

min1{cij}
j /=i|xjr=1

+ min2{cij}
j /=i|xjr=1

≥ 2 min
j /=i|xjr=1

{cij}. (2.63)

To prove the cut validity, we somehow follow the same procedure proposed by
[62].

The Benders optimality cut communicates to the MP for two purposes: (1)
eliminating the current sub-optimal MP solution (Theorem 1), (2) not removing
the globally feasible solutions (Theorem 2).

Theorem 1. The optimality cut (2.61) remove the current sub-optimal solution.

Proof. Let σl
r, r ∈ {1, ..., p} be the travelling cost of trip r by the solution of master

problem in iteration l. Solving the subproblems associated with all trips, three
possible situations can be happened:

• ∑︁p
r=1 σl

r >
∑︁p

r=1 Z l
SP (r), which means that the LBBD terminates and the value

of upper bound is optimal for the original problem;

• ∑︁p
r=1 σl

r = ∑︁p
r=1 Z l

SP (r), which indicates that the LBBD terminates and the
solution of master problem is optimal for the original problem;

• ∑︁p
r=1 σl

r <
∑︁p

r=1 Z l
SP (r), i.e., the current solution of master problem is not

globally feasible (sub-optimal solution). In this case , the optimality cuts
derived from subproblems are added to the master problem. Lets suppose that
the same solution (nodes allocation to trips) of master problem is obtained
in the subsequent iteration, then for each trip r, ∑︁i|xl

ir=1(1 − xir) = 0 and∑︁
i|xl

ir=0 xir = 0. From (2.61), the optimality cut for each trip r is

σr ≥ Z l
SP (r). (2.64)

Then, we obtain
p∑︂

r=1
σr ≥

p∑︂
r=1

Z l
SP (r) >

p∑︂
r=1

σl
r, (2.65)

which means that the current solution obtained in iteration l is removed from
the master problem space.
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Theorem 2. The optimality cut (2.61) does not exclude any globally feasible solu-
tions in future iterations.

Proof. We assume that there exists a globally feasible trip not satisfying the opti-
mality cut and then showing a contradiction. Let Z∗ denote the optimal cost of
trip r associated with the cluster of customers H∗, which was assigned to that trip
through a globally feasible solution for the original problem. Let Z̄ be the optimal
cost of the same trip associated with cluster H̄, which was found in iteration l. We
define three sets of nodes:

• φ1 = {H∗ \ H̄}: nodes in H∗ not in H̄;

• φ2 = {H∗ ∩ H̄}: nodes in both H∗ and H̄;

• φ3 = {H̄ \H∗}: nodes in H̄ not in H∗.

An optimality cut (2.61) is generated for trip r associated with cluster H̄ in
iteration l. Let’s assume that trip r obtained from the cluster H∗ violate the
optimality cut. Then, we have

Z∗ < Z̄ −
∑︂
i∈H̄

(1− xir)(max1{cij}
j /=i∈H̄

+ max2{cij}
j /=i∈H̄

) +
∑︂
i /∈H̄

xir(min1{cij}
j /=i∈H∗

+ min2{cij}
j /=i∈H∗

).

(2.66)
For the nodes in set φ2,

∑︁
i∈φ2(1 − xir) = 0 in the globally feasible Route(H∗).

Since Route (H∗) dose not include the nodes in set φ3, therefore, xir = 0 for all
i ∈ φ3, and ∑︁i∈φ3(1−xir) = |φ3|. Moreover, set φ1 contains the nodes not included
in H̄. So, (2.66) can be presented as

Z∗ < Z̄ −
∑︂
i∈φ3

(max1{cij}
j /=i∈H̄

+ max2{cij}
j /=i∈H̄

) +
∑︂
i∈φ1

(min1{cij}
j /=i∈H∗

+ min2{cij}
j /=i∈H∗

). (2.67)

Note that if φ2 = ∅, then φ3 = H̄ and φ1 = H∗. We can define an upper bound
for Z̄ as

Z̄ ≤
∑︂
i∈φ3

(max1{cij}
j /=i∈φ3

+ max2{cij}
j /=i∈φ3

), (2.68)

including the two highest costs of node i ∈ φ3 linked to other nodes in that set,
and a lower bound for Z∗ as

Z∗ ≥
∑︂
i∈φ1

(min1{cij}
j /=i∈φ1

+ min2{cij}
j /=i∈φ1

), (2.69)
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involving the two lowest cost of node i ∈ φ1 linked to other nodes in that set.
So, equation (2.67) can be written as

Z∗ < Z̄ −
∑︂
i∈φ3

(max1{cij}
j /=i∈φ3

+ max2{cij}
j /=i∈φ3

) +
∑︂
i∈φ1

(min1{cij}
j /=i∈φ1

+ min2{cij}
j /=i∈φ1

). (2.70)

From (2.68), the value of Z̄−∑︁i∈φ3(max1{cij}j /=i∈φ3
+ max2{cij}j /=i∈φ3

) is equal
to or less than zero. Therefore, according to (2.70), Z∗ is less than a negative value
plus ∑︁i∈φ1(min1{cij}j /=i∈φ1

+ min2{cij}j /=i∈φ1
) which leads to a contradiction with

the lower bound of Z∗ defined in (2.69).

Otherwise (φ2 /= ∅), the contradiction (2.67) is more involved as we subsequently
represent.

Given the globally feasible trip derived from a cluster of nodes, it is possible
to reach a reduced or an extended route by removing or adding the nodes to that
cluster. Let’s consider the trip associated with cluster H∗ with cost Z∗. By re-
moving the nodes in φ1 from H∗, Trip(φ2) and the respective cost Zφ2 is obtained.
Removing the nodes i ∈ φ1 from Trip(H∗) results in a cost smaller than or equal
to Z∗, since travel costs satisfy the triangular inequality, therefore,

Zφ2 = ZH∗\φ1 ≤ Z∗ −
∑︂
i∈φ1

(min1{cij}
j /=i∈H∗

+ min2{cij}
j /=i∈H∗

). (2.71)

The above equation indicates that removing nodes in φ1, consequently, subtract-
ing the two lowest cost of node i linked to node j ∈ H∗ from the value of Z∗ defines
an upper bound for the cost Zφ2 .

Accordingly, (2.71), using the contradiction (2.67), becomes:

Zφ2 ≤ Z∗ −
∑︂
i∈φ1

(min1{cij}
j /=i∈H∗

+ min2{cij}
j /=i∈H∗

) ≤ Z∗

≤ Z̄ −
∑︂
i∈φ3

(max1{cij}
j /=i∈H̄

+ max2{cij}
j /=i∈H̄

)

+
∑︂
i∈φ1

(min1{cij}
j /=i∈H∗

+ min2{cij}
j /=i∈H∗

). (2.72)

Now let us extend Trip(φ2) to Trip(φ2 ∪ φ3) with cost Zφ2∪φ3 by inserting the
nodes belongs to φ3 into Trip(φ2). Consider Trip(φ2) represented by the sequence of
nodes (0, ..., g, o, ..., z,0). Let’s assume that the node i ∈ φ3 is inserted into Trip(φ2)
such that max1{cij}j /=i∈φ2

+ max2{cij}j /=i∈φ2
is the sum of the two highest cost of

ci0, ..., cig, cio, ..., ciz. The insertion cost of node i ∈ φ3 between nodes g and o is
given by cgi + cio − cgo. Moreover, observe that cgi − cgo ≤ coi, since the triangular
inequality holds. Therefore, the insertion cost of node i ∈ φ3 between nodes g and
o yields
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cgi + cio − cgo ≤ cgi + cio ≤ max1{cij}
j /=i∈φ2

+ max2{cij}
j /=i∈φ2

. (2.73)

Proceeding this way for all nodes in φ3, we obtain Trip(φ2 ∪ φ3) such that

Z(φ2∪φ3) ≤ Z∗ +
∑︂
i∈φ3

(max1{cij}
j /=i∈φ2

+ max2{cij}
j /=i∈φ2

)−
∑︂
i∈φ1

(min1{cij}
j /=i∈H∗

+ min2{cij}
j /=i∈H∗

). (2.74)

Since φ2 ⊂ (φ2 ∪ φ3) = H̄, for all i ∈ φ3, one has

max1{cij}
j /=i∈φ2

+ max2{cij}
j /=i∈φ2

) ≤ max1{cij}
j /=i∈H̄

+ max2{cij}
j /=i∈H̄

). (2.75)

Hence, (2.74) can be written as

Z(φ2∪φ3) ≤ Z∗−
∑︂
i∈φ1

(min1{cij}
j /=i∈H∗

+ min2{cij}
j /=i∈H∗

)+
∑︂
i∈φ3

(max1{cij}
j /=i∈H̄

+ max2{cij}
j /=i∈H̄

). (2.76)

Regarding (2.76), one gets

Z∗ ≥ Z(φ2∪φ3) +
∑︂
i∈φ1

(min1{cij}
j /=i∈H∗

+ min2{cij}
j /=i∈H∗

)−
∑︂
i∈φ3

(max1{cij}
j /=i∈H̄

+ max2{cij}
j /=i∈H̄

). (2.77)

As Route(H̄) is optimal for the cluster H̄ = φ2 ∪ φ3 with cost Z̄, then

Z(φ2∪φ3) ≥ Z̄. (2.78)

From (2.77) and (2.78) we obtain

Z∗ ≥ Z̄ +
∑︂
i∈φ1

(min1{cij}
j /=i∈H∗

+ min2{cij}
j /=i∈H∗

)−
∑︂
i∈φ3

(max1{cij}
j /=i∈H̄

+ max2{cij}
j /=i∈H̄

). (2.79)

Equation (2.79) contradicts (2.72) and, consequently, the optimality cut (2.61)
does not remove globally feasible solutions.

2.5 Computational experiments
This section evaluates the performance of the proposed LBBD algorithm against

the two-index MIP model, the best formulation among the three proposed ones as
shown in section 2.3.4. We test three different versions of the LBBD algorithm.
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The first one denoted by LBBD1 incorporates the optimality cut (2.60) proposed
recently by Faganello Fachini and Armentano [62]. In LBBD2, our developed cut,
represented as (2.61), is applied. The two algorithms LBBD1 and LBBD2 are the
exact approaches in which both the MP and the SP are optimally solved (optimality
gap of zero). LBBD3 is a heuristic version of LBBD2 in which the SP is optimally
solved, yet the MP is solved for at most 5 seconds or 5% optimality gap (whichever
comes first). This change to the master problem results in it no longer being a true
lower bound. Such a stopping criterion was first proposed in [211] under which
they speeded up the MP by allowing the solver to stop once a solution is found
within some predetermined gap from the best lower bound obtained. However,
they indicated that the quality of the solution found is within the chosen optimality
gap. Moreover, Barzanji et al. [21] has recently improved their proposed LBBD
by defining a gap of 5% for solving the SP in dealing with the integrated process
planning and scheduling problem. As suggested in [211] and [21] and, also according
to preliminary experiments, a gap of 5% is chosen in this research, which results in
a good trade-off between computational time and quality.

The model and the algorithms are coded in GAMS 24.1 on corei5 pc with 2.50
GHz CPU and 4 GB of RAM, and the time limit is set to a maximum of 5400
seconds. In section 2.5.1, we describe the instances generated as a testbed for our
assessment. Our computational experiment results are described and commented
on in section 2.5.2.

2.5.1 Instance generation
Since we could not find a standard benchmark for the proposed problem, our

testbed is generated by extending the same method described in [13] to deal with
the CVRP. To build our instances, we assume that there is a single vehicle with
the possibility of multiple trips. Then, we take the proposed number of vehicles as
the maximum number of trips in our problem. Twenty-seven instances have nodes
ranging from 32 to 80 randomly generated from points with real coordinates using
a uniform distribution in the range [0,100]. Rounded Euclidean distances are taken
as travel costs between each pair of nodes. The vehicle capacity Q is set to 100
for all instances. Demand di,∀i ∈ N \ {0} is picked from an uniform distribution
U(1,30), however n/10 of those demands are multiplied by 3.

For each instance, the Precedence Matrix (PM) is generated using three different
values of scale τ = {0,0.4,0.8} to evaluate the PCs’ impact on the complexity of
instances. The procedure is the same described in section 2.3.4. As a result, the
total number of instances is 27 × 3 = 81, as each instance is solved with three
proposed scales of precedence constraints τ ∈ {0,0.4,0.8}. All the instances are
solved using the Two-index MIP model and the three algorithms LBBD1, LBBD2,
and LBBD3.
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2.5.2 Comparison of the Two-index MIP model and the
three LBBD algorithms

In this section, we summarize and discuss our experimental results to evaluate
the performance of the proposed algorithms compared to the Two-index MIP model
on the sets of instances described in Section 2.5.1.

Tables 2.3-2.5 represents the results of experiments associated to the three pro-
posed scales of PCs. In all the tables, column 1 displays the number of nodes, while
column 2 indicates the proposed maximum number of trips for each instance. The
CPU time (in seconds) is shown in columns 3, 5, 7, and 9, respectively, for the Two-
index model, LBBD1, LBBD2, and LBBD3. A dash in these columns indicates the
proposed time limit under which the model was unable to find optimal solutions.
For each instance, the optimality gap is calculated with the following formula.

optimality gap = Upper bound− Lower bound
Upper bound × 100. (2.80)

Values in columns 4, 6, 8, and 10 represents the optimality gap (denoted by
∆(%)), respectively for the Two-index model, LBBD1, LBBD2, and LBBD3.

The first thing that should be noticed is that the results of the three tables
highlight way better performance of the LBBD3 comparing the other approaches
as it can heuristically solve all the instances in less computational time. Comparing
the two algorithms LBBD1 and LBBD2 indicates the higher efficiency of the LBBD2
capable of solving almost all instances in less time and even some instances which
can not be optimally dealt with the LBBD1. This is because of the cut (2.61) used
in LBBD2, which can provide a tighter lower bound for the master problem than
optimality cut (2.60) applied in the LBBD1. Not surprisingly, the Two-index model
can only solve smaller instances with more CPU time than the LBBD algorithms
for all the proposed PC scales.

Moreover, an increasing trend in the problem complexity can be observed as
the size of instances grows in all three tables. More precisely, raising the number
of nodes and the maximum number of trips may lead to more CPU time and the
optimality gap, except for a few cases where the size of instances is close together.
As expected, the maximum trip number parameter can affect the problem com-
plexity more than the number of nodes in most cases for all the proposed solution
approaches.

Considering different values of the PC scale, it can be observed that the com-
plexity of instances is not necessarily affected by increasing or decreasing the PC
scale value. In some instances, a larger value of PC scale leads to low computational
complexity, consequently less CPU time, and in some other ones, the opposite hap-
pens. This behavior is the same for all the proposed approaches. For instance,
let’s consider the instance with 48 nodes and at most 7 trips solved using algorithm
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Table 2.3: Computational results of the LBBD1, LBBD2, LBBD3 and the Two-
index model considering τ = 0.

Instances Two-index model LBBD1 LBBD2 LBBD3
n p CPU time (s) ∆(%) CPU time (s) ∆(%) CPU time (s) ∆(%) CPU time (s) ∆(%)

32 5 1804 0 835 0 746 0 470 0
33 5 2117 0 794 0 762 0 496 0
33 6 - 13 863 0 859 0 509 0
34 5 - 11 807 0 693 0 431 0
36 5 3943 0 783 0 754 0 457 0
37 5 - 10 915 0 833 0 524 0
37 6 - 11 986 0 875 0 648 0
38 5 - 12 887 0 835 0 502 0
39 5 4820 0 936 0 917 0 530 0
39 6 - 12 973 0 940 0 597 0
44 6 - 14 1035 0 987 0 661 0
45 6 - 13 1090 0 1006 0 735 0
45 7 - 14 1271 0 998 0 672 0
46 7 - 16 1183 0 1055 0 704 0
48 7 - 22 1256 0 1107 0 682 0
53 7 - 24 1319 0 1143 0 704 0
54 7 - 23 1338 0 1117 0 756 0
55 9 - 28 1952 0 1736 0 962 0
60 9 - 31 1844 0 1771 0 1035 0
61 9 - 29 1996 0 1550 0 964 0
62 8 - 27 1638 0 1300 0 711 0
63 9 - 34 - 12 2644 0 805 0
63 10 - 38 - 8 2930 0 946 0
64 9 - 35 1950 0 1733 0 1061 0
65 9 - 36 - 10 1852 0 1143 0
69 9 - 39 1826 0 1677 0 972 0
80 10 - 37 - 14 - 9 2605 0

LBBD2. As shown, the CPU time is equal to 1107 when no PC is considered,
while the time decreases once τ = 0.4 and increases when τ = 0.8. It seems, in
this case, the instance complexity reduces considering precedence relations in com-
parison with the non-PC problem. As mentioned in section 2.3.4, not the number
of PCs but their structure on the graph may affect the problem’s complexity dif-
ferently. This topic has also been addressed in [161]. According to their research,
many problems can be NP-hard when considering general precedence constraints,
while they become polynomially solvable for particular structures of precedence
constraints.

2.6 Summary
In this chapter, the multi-trip single-vehicle routing problem is studied. The

nodes associated with customers/target locations are related to each other through
AND-type precedence constraints. Our interest originates from problems, such as
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Table 2.4: Computational results of the LBBD1, LBBD2, LBBD3 and the Two-
index model considering τ = 0.4.

Instances Two-index model LBBD1 LBBD2 LBBD3
n p CPU time (s) ∆(%) CPU time (s) ∆(%) CPU time (s) ∆(%) CPU time (s) ∆(%)

32 5 2289 0 972 0 815 0 397 0
33 5 1837 0 858 0 739 0 466 0
33 6 3035 0 793 0 645 0 503 0
34 5 - 14 927 0 732 0 628 0
36 5 4273 0 740 0 712 0 413 0
37 5 - 9 856 0 784 0 475 0
37 6 - 10 891 0 839 0 536 0
38 5 3792 0 863 0 807 0 570 0
39 5 5008 0 957 0 840 0 637 0
39 6 - 14 1016 0 917 0 716 0
44 6 - 16 993 0 846 0 741 0
45 6 - 13 1072 0 968 0 780 0
45 7 - 17 1335 0 1152 0 833 0
46 7 - 20 1494 0 1305 0 1025 0
48 7 - 18 1039 0 876 0 668 0
53 7 - 22 1266 0 1115 0 916 0
54 7 - 25 1392 0 1248 0 1037 0
55 9 - 29 1773 0 1566 0 1243 0
60 9 - 33 1827 0 1681 0 1469 0
61 9 - 30 1875 0 1736 0 1370 0
62 8 - 28 1745 0 1624 0 1288 0
63 9 - 31 - 15 - 9 2726 0
63 10 - 35 - 6 2072 0 1655 0
64 9 - 29 1713 0 1405 0 1168 0
65 9 - 26 - 16 - 7 2339 0
69 9 - 35 1645 0 1490 0 1173 0
80 10 - 39 - 17 - 11 2902 0

package delivery or picker routing problems. Some nodes have priorities to be
visited after a set of other ones within and among the routes due to their emer-
gency, importance, or physical features. Despite the AND-type PCs applications
in real-life routing problems, non of the literature on logistics, even picker routing
problems, focuses on these relations.

First, we develop and experimentally compare three mathematical formulations
to address the problem. The computational results validate the significant superior-
ity of the developed Two-index model in terms of computational time and problem
size compared to the two other ones. Then, the problem is handled by proposing a
solution approach based on the logic-based benders decomposition algorithm. The
developed approach decomposes the original problem into an assignment master
problem and sequencing subproblems. Moreover, a new optimality cut is provided,
and its validity is proven. The performance of the optimality cut is experimentally
investigated by comparing that with a recently proposed cut in the Literature.
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Table 2.5: Computational results of the LBBD1, LBBD2, LBBD3 and the Two-
index model considering τ = 0.8.

Instances Two-index model LBBD1 LBBD2 LBBD3
n p CPU time (s) ∆(%) CPU time (s) ∆(%) CPU time (s) ∆(%) CPU time (s) ∆(%)

32 5 1998 0 950 0 923 0 551 0
33 5 2218 0 981 0 576 0 352 0
33 6 3249 0 883 0 806 0 714 0
34 5 - 16 956 0 851 0 693 0
36 5 4540 0 722 0 647 0 478 0
37 5 - 12 826 0 713 0 639 0
37 6 - 8 875 0 822 0 540 0
38 5 - 14 836 0 783 0 633 0
39 5 4712 0 972 0 852 0 689 0
39 6 - 17 990 0 964 0 616 0
44 6 - 15 1072 0 907 0 762 0
45 6 - 16 1039 0 932 0 750 0
45 7 - 19 1378 0 1105 0 961 0
46 7 - 20 1422 0 1213 0 1037 0
48 7 - 23 1156 0 1044 0 972 0
53 7 - 26 1437 0 1267 0 958 0
54 7 - 23 1335 0 1105 0 966 0
55 9 - 27 1822 0 1579 0 1203 0
60 9 - 38 1905 0 1601 0 1355 0
61 9 - 29 2016 0 1871 0 1290 0
62 8 - 28 1590 0 1358 0 1083 0
63 9 - 33 - 11 - 8 2295 0
63 10 - 30 3057 0 2472 0 1832 0
64 9 - 34 1582 0 1338 0 1172 0
65 9 - 30 - 15 - 8 2489 0
69 9 - 31 1937 0 1824 0 1362 0
80 10 - 36 - 13 - 9 2630 0

Additionally, we presented a relaxed version of LBBD by defining a limit for opti-
mality gap and CPU time in deriving master-problem solutions. In such a way, the
algorithm’s efficiency improves as it allows the algorithm to find a feasible solution
to the original problem in less CPU time and even larger instances. The perfor-
mance of proposed LBBD algorithms is evaluated and compared together through
extensive computational experiments. The results show that the two exact LBBDs
can solve most instances, while the relaxed version of LBBD can heuristically solve
all the generated instances in a shorter computational time.
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Chapter 3

Vehicle routing problem
with AND/OR precedence
constraints and time
windows

3.1 Introduction
The Vehicle Routing Problem (VRP) is a well-known problem in the Operations

Research field. A given set of customers is served by a fleet of vehicles minimizing
routing costs and respecting capacity constraints on vehicles. To better represent
real-world problems, additional features need to be considered leading to different
variants of the VRP. A popular extension of the VRP considers time window con-
straints, assuming that serving a given customer must occur in a limited range.
Time windows are either hard when it is prohibited to deliver outside the time
interval or soft, allowing deliveries outside the boundaries against a penalty cost.

In many real industrial or social service environments where a set of tasks or
services are performed, partial orders known as Precedence Constraints (PCs) are
defined to represent the dependency of tasks on each other. In general cases, prece-
dence constraints are represented by an arbitrary directed acyclic graph in which
each arc corresponds to a precedence constraint between a pair of nodes. In prac-
tice, there are cases in which alternative definitions for PCs, such as AND-type,
OR-type, SOFT-type and S-type are defined. The ’AND’ precedence constraint
means that a node can be reached only after all of its predecessors. The ’OR’
precedence constraint means that a node can be reached when at least one of its
predecessors has been met before. The problem containing both ’AND’ and ’OR’
types is said to have AND/OR precedence constraints.
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In many real-life routing problems, serving customers may include delivery or
picking up items that need to be performed in a particular order due to some
reasons. They could be physical restrictions such as fragility, stackability, shape,
size, and weight or preferred loading or unloading sequences to avoid extra effort
on sorting the collected items at the end of the retrieving process. These restric-
tions may impose constraints on the visiting sequence represented by the AND/OR
predecessors associated with each customer.

In this chapter, we introduce a new variant of the VRP referred to as the vehicle
routing problem subject to the AND/OR precedence constraints and time windows
to minimize the total traveling and service time. Our interest in this problem
originates from the picker routing problem, where the items are stored and retrieved
manually with the order-picking sequences represented as AND/OR precedence
constraints. In such a problem, to deal with various storage and replenishment
policies that describe the availability of items like food or perishable products,
time window limitations are defined for retrieving the items.

As mentioned in previous chapter, no research in logistics area refers to nodes
visited according to AND/OR precedence constraints to the best of our knowledge.
The Dial-a-Ride and the Pickup and Delivery problems are the most related routing
problems that includes the most straightforward form of PCs. They are represented
as a single pairwise relation between pickup and delivery (drop-off) points (we refer
to them as conventional PCs). For instance, in the Dial-A-Ride problem, for any
backhaul node j, there is a particular inhaul node i where (i < j) must be met
within any route. In such problems, any node has at most one predecessor that
must be visited before it.

We formulate the problem as a Mixed Integer Linear Programming (MILP)
model to optimally solve small-sized instances. A meta-heuristic algorithm based on
Iterated Local Search (ILS) and Simulated Annealing (SA) approaches is developed
and tuned using the Taguchi method [153] to effectively deal with problems in a
reasonable time.

The contribution of this study is threefold: (i) the Vehicle Routing Problem
with AND/OR Precedence Constraints and Time Windows is described; (ii) to
formulate the problem, a MILP model is developed to solve small-scale instances
optimally; (iii) we design and implement a meta-heuristic algorithm capable of
obtaining reasonable solutions in terms of both quality and computational time.

This chapter is organized as follows. Section 3.2 is dedicated to the literature re-
view of the problem. The proposed problem is described and formulated in Sections
3.3 and 3.4, respectively. In Section 3.5, we provide the meta-heuristic algorithm
to address the problem. The computational results of the MILP model and the
proposed algorithm are represented in Section 3.6. Finally, the chapter ends with
a summary and interesting future research suggestions in Section 3.7.
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3.2 Literature
Dantzig performed the first research on the VRP and Ramser [49]. Since then,

thousands of papers on different variations of this problem have appeared in the
logistics field literature. One of the extensions of this problem, encountered in many
real-life applications, is defined as the Vehicle Routing Problem with Time Windows
(VRPTW). Several customers are served within predefined time windows. Solomon
and Desorios initially proposed this problem [192]. The excellent surveys by Toth
and Vigo [210] and Kumar and Panneerselvam [105] have detailed the literature of
VRPTW solution approaches. Also, Dixit et al. [56] have reviewed some of the
recent advancements in solving VRPTW using various meta-heuristic techniques.
They are Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO),
Artificial Bee Colony algorithm (ABC), etc. Fan and Feng [68] applied the hill-
climbing algorithm to improve the genetic algorithm to address VRPTW. They
could effectively increase the speed and globally optimal solution quality of the
algorithm. Ye et al. [226] addressed the time-dependent vehicle routing problem
with time windows by developing a multi-type ant system algorithm hybridized
with the ant colony system and the max-min ant system. The nearest neighbor
selection mechanism, an insertion local search procedure, and a local optimization
procedure are applied to improve the efficiency of the insertion procedure. The
particle tabu search algorithm designed by Schneider et al. [183] can significantly
improve the computational efficiency of the VRPTW problem and give a complete
Pareto foreword. Yang et al. [224] proposed the chaotic particle swarm optimization
algorithm, which improves the speed, robustness, and speed of the solution of the
VRPTW problem.

In many real operational research problems where a set of tasks or services are
performed, it is tough to suppose that the tasks are independent of each other. In
principle, the relative order between a couple of tasks is represented as a pairwise
relation named Precedence Constraint (PC). These relations make the problems
have a more comprehensive range of applications in various fields. The PCs arise
whenever one activity or series of activities must be performed before beginning
another activity or set of activities. Many examples can be mentioned, such as
the assembly industry in which activities are carried out on products in different
stations, logistics, construction projects, production scheduling, and maintenance
support.

In the context of machine scheduling, Goldwasser and Motwani [83] derive
inapproximability results for a specific single-machine scheduling problem with
AND/OR precedence constraints. Gillies and Liu [80] addressed single and parallel
machine scheduling problems to meet deadlines considering different structures of
AND/OR precedence constraints. They proved NP-completeness of finding feasible
schedules in many polynomially solvable settings with only AND-type precedence
constraints. Moreover, they give priority-driven heuristic algorithms to minimize
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the completion time on a multiprocessor. Mohring and Skutella [138] provided
some algorithms for the more general and complex model of AND/OR precedence
constraints. They showed that feasibility and questions related to generalized tran-
sitivity could be solved using essentially the same linear-time algorithm. Moreover,
they discussed a natural generalization of AND/OR precedence constraints and
prove that the same problems become NP-complete in this setting. Lee et al. [108]
focused on flexible job-shop scheduling problems with AND/OR precedence con-
straints in the operations. They provided a MILP model, which can be used to
compute optimal solutions for small-sized instances. They also developed a heuris-
tic algorithm that results in a good solution for the problem regardless of its size.
Moreover, a schedule builder who always gives a feasible solution and genetic and
tabu search algorithms based on the proposed schedule builder were presented.
Van Den Akker et al. [216] developed a solution framework that provides feasi-
ble schedules to minimize some objective function of the minimax type on a set
of identical parallel machines subject to release dates, deadlines, AND/OR prece-
dence constraints. They determined a high-quality lower bound by applying column
generation to the LP relaxation.

In the context of routing problems, Moon et al. [140] addressed the traveling
salesman problem with precedence constraints (TSPPC). The pairwise PCs form
an order under which the nodes are visited. A genetic algorithm that involves
a topological sort and a new crossover operation is proposed to solve the model.
Savelsbergh and Sol [181] presented the TSPPC model to solve the Dial-A-Ride
problem where a vehicle should transport several passengers. Each passenger should
be transported from a given location to a given destination. Mingozzi et al. [135]
dealt with the TSP with time windows and precedence constraints using a dynamic
programming approach. Fagerholt and Christiansen [67] considered a TSPPC with
a time window to solve the bulk ship scheduling problem. The model is solved as the
shortest path problem on a graph. Renaud et al. [165] proposed a heuristic model
to solve the pickup and delivery TSP formulated as the TSPPC. Bredstrom and
Ronnqvist [30] developed a mathematical model for the combined vehicle routing
and scheduling problem with time windows. The sets of pairwise synchronization
and precedence constraints are considered between customer visits, independently
of the vehicles. Also, they described some real-world problems to emphasize the
importance of the mentioned constraints, such as homecare staff scheduling, airline
scheduling, and forest operations. Bockenhauer et al. [29] studied a variant of TSP
in which a given subset of nodes are visited in a prescribed order in the computed
Hamiltonian cycle. They presented a polynomial-time algorithm to solve the prob-
lem. Haddadene et al. [162] modeled a home health care structure as a variant of
vehicle routing problem with time windows and timing constraints. Some patients
ask for more than one visit simultaneously or in given priority order. A MILP
model, a greedy heuristic, two local search strategies, and three metaheuristics are
proposed to solve the problem. Recently, the task assignment problem for a team
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of heterogeneous vehicles has been investigated in which packages are delivered to
a set of dispersed customers subject to precedence constraints. Using graph theory,
a lower bound on the optimal time is constructed. Integrating with a topological
sorting technique, several heuristic algorithms are developed to solve it [17].

The order-picking problem is one of the main applications of PCs in the context
of routing problems. However, little works in order-picking problems have focused
on PCs. Zulj et al. [239] considered the PCs in a warehouse of a German manu-
facturer of household products, where heavy items are not allowed to be stored on
top of delicate items to prevent damage to the delicate items. To avoid the sorting
effort at the end of the order-picking process, they propose a picker-routing strategy
respecting the precedence constraints. An exact algorithm based on dynamic pro-
gramming is used to evaluate the strategy and compared with the simple s-shape
routing strategy. Dekker et al. [51] investigated combinations of storage assignment
strategies and routing heuristics for a real case arising in a warehouse of a wholesaler
of tools and garden equipment. A guideline has to be considered indicating that
fragile products have to be picked last. Matusiak et al. [134] presented a simulated
annealing method to address the joint order batching and precedence-constrained
picker-routing problem in a warehouse with multiple depots. The shortest path
through the warehouse is determined using the exact algorithm developed by Hart
et al. (1968). Chabot et al. [39] introduced the order-picking routing problem
underweight, fragility, and category constraints. They propose capacity-index and
two-index vehicle-flow formulations as well as four heuristics to solve the problem.
Furthermore, a branch-and-cut algorithm is applied to solve the two mathematical
models.

As noticed in the previous chapter, the proposed precedence relations in most
picker routing problems (mentioned above) have been represented as a pre-specified
sequence of nodes. However, in our proposed problem, AND/OR PCs are defined
under which the nodes assignments to vehicles and the sequence of nodes in each
route are determined in the model.

The background study shows no available research in the literature of VRPs
and even picker routing problems cover AND/OR precedence constraints. Thus,
our research contributes to the literature by describing, modeling and providing a
solution approach for the capacitated vehicle routing problem with AND/OR PCs
and time windows.

3.3 Problem description
The proposed problem is defined as a capacitated vehicle routing problem. A

set of nodes are visited using a fleet of homogeneous vehicles available at the depot
in time zero, with capacity Q. Each vehicle can make one single trip during the
planning time horizon. The problem can be represented on a directed graph G =
(N, A), where N = {0,1, ..., n, 0́} is a set of geographically located nodes including
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the depot (node 0) and a dummy depot (node 0́), and A = {(i, j)|i, j ∈ N} is a
set of arcs. Each arc (i, j) ∈ A is defined by a traveling time tij. For each node
i ∈ N \ {0, 0́}, demand qi, service time si, and a (hard) time window [ei, li] are
given where ei is the earliest possible arrival time and li is the latest possible one.
Arriving at node i before ei leads to a waiting time at this node. On the other
side, late arrival at the node (after li) is not allowed. A time horizon T is given
and establishes the working day. It can be viewed as a time window [e0, l0] = [0, T ]
associated with the depot, which means the routes cannot start before e0 and must
be back to the depot up to time l0.

Moreover, the nodes are related together by defining AND/OR precedence con-
straints. These relations must be met among the nodes visited by each vehicle.
Given node i, two sets denoted by ANDi and ORi are defined, including the AND-
type and OR-type predecessors of node i, respectively. All predecessors j ∈ ANDi,
visited by the same vehicle as node i, must be served in any positions before node
i on the trip. Regarding OR-type precedence constraints, at least one of the pre-
decessors j ∈ ORi needs to be served before node i by the same vehicle.

As an example, let’s consider the feasible solution depicted in Figure 3.1. It can
be seen that three vehicles are used to visit all the nodes. According to the defined
PCs, the set of AND-type predecessors of node r includes {g, c, j}. As depicted,
nodes g and c are visited before node r using vehicle 1, while node j is not, as it
is not assigned to the same vehicle as node r. Concerning OR-type predecessors
of node a, node k is visited before node a, while the corresponding precedence
constraints h < a and t < a are not met. This is due to the definition of OR-type
PCs, which denotes that given a node, at least one of its OR-type predecessors
needs to be met before.

Figure 3.1: Illustration of an example

The proposed problem calls for determining an optimal trip of each vehicle to
minimize the total traveling and service time to serve all the customers through
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network edges.
The assumptions of this problem are as follows:

• each vehicle starts and ends the trip at the depot;

• each node is visited exactly once within its time window;

• the vehicles must be back to the depot up to time T;

• maximum number of used vehicles is |K|;

• vehicle capacity Q cannot be exceeded in each trip;

• the arrival time of each node must meet the time window limitations;

• AND/OR PCs are met between the nodes within each route.

In the following section, the proposed notations and the MILP model are pre-
sented to address the problem.

3.4 Mathematical model
Let us introduce the following notation:

• N = {0,1,2, ..., n, 0́}: set of nodes, (each vehicle starts the route from depot
(node 0) and ends to the dummy depot (node 0́));

• tij: travelling time from node i to node j;

• T : time horizon;

• Q: vehicle capacity;

• qi: demand of node i;

• si: service time of node i;

• K = {1,2, ..., f}: set of available homogenous vehicles;

• ANDi: set of AND-type predecessors of node i;

• ORi: set of OR-type predecessors of node i;

• [ei, li]: time window associated with the arrival time of node i, (e.i., arriving
earlier than ei introduces a waiting time at node i; arriving after li leads to
infeasibility);

• M : an arbitrary large constant.
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The variables and the proposed MILP model are presented as follows:

• yijk: binary variable takes value 1 if node i is visited before node j (not
necessarily immediately) by vehicle k, 0 otherwise;

• zik: binary variable takes value 1 if node i is visited by vehicle k, 0 otherwise;

• uk: binary variable takes value 1 if vehicle k is used;

• aik: continuous variable indicating the arrival time of node i visited by vehicle
k;

• ck: continuous variable indicating the completion time of the route performed
by vehicle k.

Then, the MILP model becomes:

Z =
f∑︂

k=1
ck (3.1)

subject to
f∑︂

k=1
zik = 1 ∀i ∈ N \ {0, 0́}, (3.2)

n∑︂
i=1

qi.zik ≤ Q.uk ∀k ∈ K, (3.3)

zik = uk ∀i ∈ {0, 0́}, k ∈ K, (3.4)

uk ≤ uḱ ∀k, ḱ ∈ Kk>ḱ, (3.5)

a0k = 0 ∀k ∈ K, (3.6)

aik ≤M.zik ∀i ∈ N \ {0, 0́}, k ∈ K, (3.7)

ck ≥ a0́k ∀k ∈ K, (3.8)

aik ≥ ei.zik ∀i ∈ N \ {0}, k ∈ K, (3.9)

aik ≤ li.zik ∀i ∈ N \ {0}, k ∈ K, (3.10)

ajk + M(1− yijk) ≥ aik + tij + si −M(1− zik)−M(1− zjk) (3.11)
∀i /= j ∈ N, k ∈ K,

1 + M(zik + zjk − 2) ≤ yijk + yjik ∀i /= j ∈ N, k ∈ K, (3.12)

zik + zjk ≥ 2(yijk + yjik) ∀i /= j ∈ N, k ∈ K, (3.13)

yijk − 1 ≤M(2− zik − zjk) ∀i ∈ ANDj, k ∈ K, (3.14)
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1− yijk ≤M(2− zik − zjk) ∀i ∈ ANDj, k ∈ K, (3.15)∑︂
i∈ORj

yijk ≥ 1 + M(zjk − 1) ∀j ∈ N, k ∈ K, (3.16)

ck, aik ≥ 0 ∀i ∈ N, k ∈ K, (3.17)

zik, yijk, uk ∈ {0,1} ∀i, j ∈ N, k ∈ K. (3.18)

The objective function in equation (3.1) minimizes the total completion time. Equa-
tions (3.2) guarantee that each node (except depot and dummy depot) is visited by
exactly one vehicle. The vehicle capacity is ensured for each trip by equations (3.3).
Equations (3.4), which link variables z and u, indicate that depot and dummy depot
are both assigned to all the used vehicles. Using constraints (3.5), the sequence of
used vehicles is determined so that vehicle k cannot be used unless vehicle k−1 has
been started the route before. Equations (3.6) indicate that the depot’s arrival time
on each vehicle trip is equal to zero. Constraints (3.7) relate the two assignment and
arrival time variables z and a in a way that if node i is not assigned to vehicle k, the
corresponding arrival time of that node on that vehicle is zero. Constraints (3.8)
ensure that each vehicle trip’s completion time is larger than the arrival time of the
dummy depot on that vehicle. Constraints (3.9) and (3.10) ensure that the nodes
arrival time satisfy the time windows restrictions. As represented by constraints
(3.11), if nodes i is visited before node j on a route performed by the same vehicle
k, the arrival time of node j is larger than the sum of arrival time at node i, service
time at this node and the travel time tij. Constraints (3.12) and (3.13) ensure that
if node i and j are both assigned to the same vehicle k then node i is visited either
before or after node j not necessarily immediately. Otherwise, the corresponding
variables yijk and yjik are equal to zero. Constraints (3.14-3.15) ensure respecting
the AND-type precedence constraints among the nodes visited by each vehicle such
that if node i is an AND-type predecessor of node j and both nodes are assigned
to the same vehicle k, node i is visited before node j which indicates yijk = 1. The
OR-type precedence constraints are satisfied using constraints (3.16) which imply
that, given node j visited by vehicle k, at least one of its OR-type predecessors
must be visited before node j by the same vehicle. Finally, constrains (3.17) and
(3.18) define the continuous and binary variables, respectively.

3.5 Solution approach
In this section, our developed algorithm to address the proposed problem is in-

troduced. Because of the high complexity of optimization problems, often exact
algorithms are capable only for the smaller instances and spent a lot of computa-
tional time (see [112]). In contrast, meta-heuristics can find near-optimal solutions

67



Vehicle routing problem with AND/OR precedence constraints and time windows

for the instances with realistic sizes, generally with less computation time. There-
fore, we concentrate on designing an effective and efficient meta-heuristic algorithm
instead of exact methods.

In this research, the proposed approach is a hybridization of the Iterated Local
Search (ILS) and Simulated Annealing (SA), which complements the advantages of
both ILS and SA in a single optimization framework. Recently, ILS and SA have
been hybridized to cope with the search space of complex optimization problems.
Experimentally, it was found that the performance of the hybrid algorithm is better
than that of SA and ILS algorithms when implemented individually (see, e.g.,
[131], [163], and [88]). In the following, we start by describing the general schemes
of the proposed algorithm. Then, the different components of this approach are
represented in detail.

3.5.1 General scheme
The general scheme of the proposed hybrid approach is represented in algorithm

1. This algorithm starts with an initial solution, denoted by SOL, generated from
a constructive algorithm described in section 3.5.2. This starting point undergoes
the main loop (lines 4-22) repeated until a maximum number of iterations given by
Maxiter is reached. The loop contains four distinct parts: Perturbation Procedure
(PP), Local Search (LS), check Stack set, and updating the best solution SOL∗.

More specifically, the current solution is first perturbed at each iteration asso-
ciated with the algorithm’s destruction phase. This process starts by recognizing
some target routes and modifying the solution by transferring their nodes to the
not-target ones. Then, the remaining target vehicles are removed from the solution,
and the corresponding nodes are gathered in a set referred to as the Stack. More
details on PP are included in Section 3.5.3.

After the destruction phase, the resulting partial solution undergoes the local
search to reconstruct the solution to obtain a feasible one finally. This process
is performed by randomly exploring different neighborhoods and reinserting stack
nodes to the active vehicles. In this phase, the move acceptance criterion of Sim-
ulated Annealing is incorporated with LS, which provides another way of avoiding
the local optima to enhance the performance. The details on the LS are provided
in Section 3.5.4.

At the end of the local search loop, the current solution’s feasibility is investi-
gated by checking the stack set that contains the nodes removed from the solution
during the PP and have not been reinserted during the iterations of LS. In case of an
empty stack set, the current solution would be feasible and can be saved as the best
one if the current solution cost F (SOL) is lower than the cost of the best solution
F (SOL∗) already found in the algorithm. Otherwise, in the non-empty stack set,
a new vehicle may need to be added to the current partial solution. This process
is implemented, taking into account parameter vehicle number, which reports the
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total number of already used (active) vehicles. This parameter is updated during
the algorithm by adding or eliminating each vehicle. Constructing the new vehicle
route is carried out in a way that the nodes in the stack are randomly selected, one
by one, and checked to be assigned to the new vehicle till the route gets full (which
means considering all feasibility aspects, no additional stack node can be inserted
to that trip).

Algorithm 1 General procedure of the proposed hybrid algorithm
1: Generating an initial solution SOL
2: SOL∗ ← SOL
3: iter ← 1
4: while iter < Maxiter do
5: Perturbation Procedure
6: Local Search
7: if stack is not empty then ◃ Check Stack Set
8: if vehicle number < |K| then
9: add a new vehicle

10: vehicle number ++
11: Assign stack nodes to the new vehicle.
12: GO TO Local Search.
13: else
14: Keep the stack
15: Go to PP
16: end if
17: end if
18: if F (SOL) < F (SOL∗) then ◃ Update Best Solution
19: SOL∗ ← SOL
20: end if
21: iter ← iter + 1
22: end while

The algorithm then starts the local search process again to search the neighbor-
hoods and give the remaining stack nodes to be inserted into the current partial
solution. In case of non-empty stack set, if parameter vehicle number is larger than
the maximum number of vehicles (K), the algorithm preserves stack. It goes back
to the Perturbation Procedure to destruct the current partial solution and rebuilt
it through the LS process. The following subsections are devoted to the different
parts of the proposed algorithm.
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3.5.2 Building initial solution
In this section, the procedure for generating an initial solution (SOL) is intro-

duced. This approach constructs a solution sequentially by building the routes
associated with the vehicles one after another. This process is performed by initial-
izing an individual vehicle that travels a route during the time horizon [0, T ]. The
nodes from a sorted list of candidates are selected to be assigned to that vehicle one
by one. They are located in positions one after another to form a route up to time
T . Whenever inserting none of the unvisited nodes to the current position leads to
a feasible partial solution, the depot is used to end the current trip. A new vehicle
is initialized.

The partial solution is becoming complete over the stages as the number of
unvisited nodes is reducing. Finally, an initial solution is obtained, which contains
all the nodes that have been allocated to several vehicles (routes) that might be
larger than the maximum number of available vehicles. The nodes’ assignments to
the vehicles are performed, considering that the selection does not violate the time
horizon, vehicle capacity, time windows, and the proposed precedence constraints.
However, the initial solution’s feasibility in terms of the maximum number of active
vehicles is achieved during the next stages of the algorithm, as described in the next
sections.

In this context, we introduce parameter AllPREi, ∀i ∈ N \ {0, 0́} representing
the total number of AND/OR predecessors of node i. Moreover, a candidate set is
constructed made of all the unvisited nodes sorted in increasing order of parameter
AllPRE. By sorting this set, the predecessors are more likely assigned before the
successors. During the nodes insertion process, the value of parameters AllPRE,
the size and order of candidate set are updating. When a new vehicle is added, the
candidate set is reconstructed using the unvisited vertices and their corresponding
AllPRE. Also, this set is repeatedly updated as a node insertion is performed.
Every individual node from the beginning of candidate set is checked whether its
assignment to the current vehicle leads to a feasible solution or not. Whenever a
node is found whose insertion to the current position is feasible, the movement is
performed.

The feasibility of each node insertion is checked in three consecutive stages. In
the first stage, the partial solution’s feasibility in terms of the vehicle capacity and
the time horizon is investigated. In contrast, in the second and third stages, the
precedence constraints and time windows are taken into account, respectively. Two
parameters are defined for each vehicle, which specify the cumulative demand of
already assigned nodes to that vehicle (denoted by CD) and the trip’s completion
time (denoted by CT ).
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Algorithm 2 Constructing an initial solution
1: for all i ∈ N \ {0} do
2: AllPREi ← |ANDi|+ |ORi|
3: VISITED(i)← 0
4: end for
5: candidate set← N \ {0}
6: vehicle number← 1
7: current position← 1
8: while candidate set /= ∅ do
9: Sort candidate set in increasing order of AllPREi

10: insertion process← FALSE
11: for i = 1 to |candidate set| do
12: Choose node i ◃ Check feasibility of inserting node i
13: feasibility feedback = TRUE
14: stage 1:
15: if (CDcurrent position > vehicle capacity) and (CTcurrent position > T ) then
16: feasibility feedback = FALSE
17: GO to line 11 and choose the next node
18: end if
19: stage 2:
20: if AND/OR PCs corresponding to node i are not met then
21: feasibility feedback = FALSE
22: GO to line 11 and choose the next node
23: end if
24: stage 3:
25: if (ei < Ai) or (Ai > li) then
26: feasibility feedback = FALSE
27: GO to line 11 and choose the next node
28: end if
29: if feasibility feedback = TRUE then
30: Insert node i to current position
31: insertion process← TRUE
32: current position ++
33: VISITED(i)← 1
34: Remove node i from candidate set
35: for all j ∈ candidate set do ◃ Update candidate set
36: if PC(i < j) = AND/OR type PC then
37: AllPREj −−
38: end if
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Algorithm 2 Constructing an initial solution (continued)
39: if PC(j < i) = AND type PC then
40: Remove j from candidate set
41: end if
42: end for
43: Break and GO to line 8
44: end if
45: end for
46: if insertion process = FALSE then
47: Add a new vehicle
48: vehicle number + +
49: current position← 1
50: for all i ∈ N \ {0} do ◃ reconstruct candidate set
51: if VISITED(i) = FALSE then
52: Add i in candidate set
53: end if
54: end for
55: Go to line 8
56: end if
57: end while

For each new node insertion, the two parameters CD and CT are checked
whether this operation leads to a partially feasible solution in terms of the vehicle
capacity and time horizon. In case of a node insertion’s infeasibility, the depot is
placed at the end of the corresponding route, which means the vehicle ends the trip
by going back to the depot.

Other feasibility aspects include precedence constraints and time windows. For
each node j in the candidate set, the feasibility of corresponding precedence con-
straints is investigated in terms of the AND/OR PCs by considering the two fol-
lowing conditions:

• Inserting node j, an AND-type predecessor of any of the already assigned
nodes on the route, leads to an infeasible solution.

• Inserting node j when at least one of its OR-type predecessor has not visited
yet on the route leads to an infeasible solution.

Finally, the insertion of node j in the candidate set is checked by considering the
time windows limitations so that node j can be inserted to the current position if
its arrival time meets its associated time windows.

As a node insertion is performed, the candidate set needs to be updated. Given
node j insertion to vehicle k, all the AND-type predecessors of node j, which have
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not been visited yet, will be removed from the candidate set. This is due to the
definition of AND-type PCs, which indicates that a vehicle cannot visit a successor
before its predecessors. Also, all successors of node j, which have not been assigned
to any vehicles yet, are updated in the candidate set by subtracting constant value
one from their corresponding AllPRE. Then, the candidate set is sorted again,
which gives the nodes, whose predecessors have been allocated already, the chance
to be assigned sooner. This procedure stops when all the nodes are assigned to the
current vehicle, or no more nodes can be inserted (due to feasibility conditions).
In the second case, a new vehicle is added to the current partial solution. The
above explanations on the generation of the initial feasible solution are represented
as pseudo-code in algorithm 2.

3.5.3 Perturbation procedure
After constructing an initial solution, the algorithm starts a loop where the

current solution is first perturbed with the aim of escaping from local optima.
In the perturbation phase, the vehicles whose trips are not appropriate for the
proportion of total traveling and service time and the number of assigned nodes
are recognized and referred to as target vehicles. This process is performed using
parameter Ik = Traveling and service timek

Number of nodesk
representing the ratio of the total traveling

and service time to the number of assigned nodes associated to vehicle k. The
vehicles whose index Ik are higher than and equal to Ithreshold computed as equation
(3.19) are considered as target ones and may need to be modified.

Ithreshold = Average traveling and service time
Average number of assigned nodes (3.19)

In equation (3.19), the average values of total traveling and service time and
several nodes are taken over all active vehicles.

After recognizing the target routes, the perturbation procedure is performed in
two successive steps: pre-improvement and route removal. During the first step,
every individual node in target vehicles is randomly chosen and checked to transfer
to one of the not-target vehicles. Whenever a not-target vehicle is found to remove
the node from its current position and insert it to the new position is feasible, it
is performed. The pre-improvement step aims at emptying and finally eliminating
the target trips as their nodes are transferred to the not-target ones. This process
continues till transferring all the target nodes are investigated, and no improvement
in terms of reducing the total number of nodes in the target trips can be achieved.
Any time a movement is accepted according to the feasibility test described in
section 3.5.5, the entire solution, including the target and non-target vehicles and
their assigned nodes, is updated.
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Algorithm 3 Perturbation Procedure of the proposed hybrid algorithm
1: Perturbation Procedure
2: for k = 1 to vehicle number do
3: Compute Ik

4: if Ik > Ithreshold then
5: Vehicle k is a target vehicle
6: end if
7: end for
8: for all target vehicles do
9: for all target nodes do

10: Transferring target node to a not-target route
11: end for
12: end for
13: Sorting the vehicles in decreasing order of Ik

14: Eliminating the first |vehicle number− |K||+ 1 vehicles
15: Constructing stack set using the nodes of the removed vehicles

After modifying the solution in the pre-improvement step, the current solution
might contain several target vehicles. In the second phase (routes removal), the
algorithm destructs the solution by eliminating the first |vehicle number− |K||+ 1
vehicles from the set of all vehicles sorted in decreasing order of Ik. The corre-
sponding nodes of the removed vehicles are also gathered in the stack set. After
PP, the algorithm undergoes the local search iterations, described in subsection
3.5.4, where the current partial solution is improved as long as the stack nodes are
reinserted to the active vehicles or the newly added ones. The above explanations
on PP are represented as pseudo-code in algorithm 3.

3.5.4 Local search
In this section, the proposed local search approach attempts to construct a feasi-

ble solution by repeatedly searching several specified neighborhoods and reinserting
the stack nodes to the current partial solution simultaneously. This process stops
when either the stack set is empty or the maximum number of tries made with-
out success in improving the current solution (given by MaxnotImp) is reached. At
each iteration t of the LS, logical parameter Improve checks whether or not any
improvements in terms of the objective function or reinserting nodes from the stack
set to the current partial solution is achieved. If no improvement is obtained, the
parameter iternotImp is updated.

Most neighborhoods used in the vehicle routing problems are based on one or
usually more nodes exchanges or relocations inside or across the vehicles. In this
context, we apply five neighborhoods widely used in the vehicle routing problems
as follows (see [157]):
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• Transferring within a vehicle: where a node is transferred from its current
position to another position in the same vehicle.

• Transferring across the vehicles: where a node is transferred from its
current position to another vehicle.

• Exchange within a vehicle: where two nodes that belong to the same
vehicle are exchanged.

• Exchange across the vehicles: where two nodes that belong to different
vehicles are exchanged.

• Insert a vehicle: select a node from one vehicle and create a route associated
with a new vehicle with it if parameter vehicle number is less than K.

During the LS procedure, the proposed five neighborhoods of the current solu-
tion are explored iteratively in a random sequence provided by a list. For example,
the following sequence [3,1,5,2,4] implies that neighborhood 3 is the first and neigh-
borhood 4 is the final one to be explored at each iteration of LS.

Preliminary tests have indicated that looking for the best feasible move needs
much time with no real overall improvement of the solution cost than a first im-
provement strategy. It should be noted that only those moves cannot lead to an
infeasible solution concerning all the feasibility constraints.

To empower the LS in searching different space regions, Simulated Annealing
(SA) is implemented which allows non-improving moves and avoid being trapped
in a local minima. In the SA approach, a variable threshold value named SArate is
calculated as:

SArate = exp
(︄

F (ś)− F (s)
Temp

)︄
, F (ś) ≥ F (s) (3.20)

where F (s) and F (ś) are the objective function values of the current and the new
solutions, respectively. The initial temperature Temp is exponentially decreased by
a fraction α denoted by the cooling rate, where Tempt+1 = α× Tempt. In general,
the SA begins with a high-temperature value, and it gradually decreases during the
search. The SA performance depends on the two factors: initial temperature value
Temp and the cooling rate α calibrated in Section 3.6.2.

For each feasible move, the origin’s value and destination vehicles before and
after replacement are computed. The move is accepted if it results in the lower
value in terms of objective function, i.e. (F (ś) ≤ F (s)). Otherwise, the move does
not improve the current solution, and it is only accepted if a random value in the
range of (0,1) is less than the SArate.
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Algorithm 4 Local Search of the proposed hybrid algorithm
1: Local Search
2: t← 1
3: iternotImp ← 1
4: while (stack is not empty) and (iternotImp < MaxnotImp) do
5: Improve=FALSE
6: Generate a sequence of neighborhoods randomly
7: for n = 1 to 5 do
8: Explore the neighborhood nth

9: if F(current solution) > F(new solution) or random number < SArate
then

10: Move is accepted
11: Improve=TRUE
12: else
13: Move is not accepted.
14: end if
15: end for
16: for all stack nodes do
17: Choose a node randomly
18: for all vehicles do
19: Choose a vehicle randomly
20: for all positions in the route do
21: if Inserting the node in the position is feasible then
22: Insert the node
23: Improve=TRUE
24: Break and go to line 19
25: end if
26: end for
27: end for
28: end for
29: if Improve=FALSE then
30: iternotImp ← iternotImp + 1
31: end if
32: t← t + 1
33: Temp← α× Temp
34: end while

After navigating different search space regions, adding the stack nodes to the
current partial solution is performed at each iteration of the local search cycle. The
stack nodes are randomly chosen, one by one, and checked to be inserted into the
current partial solution. Given a stack node, a vehicle is randomly selected to be
allocated that node. This vehicle is chosen from all active vehicles that have not
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been checked before for that particular node. Chosen the vehicle, all the possible
positions are assessed to be assigned the node one after another. Whenever a
vehicle and a position inside it are found under which the node insertion is feasible,
the movement from the stack to that position is implemented. This procedure
aims at emptying the stack set to construct a feasible solution finally. The above
explanations on LS are represented as pseudo-code in algorithm 4.

3.5.5 Feasibility test
Since in many heuristic algorithms, millions of movements are evaluated during

the search process, their feasibility must be checked as efficiently as possible. In
our proposed problem, due to various side constraints such as AND/OR precedence
constraints, time windows, and vehicle capacity, checking the feasibility of moves
leads to prohibitive computation time. So, a critical factor of a heuristic algorithm
performance is assessing the feasibility of a solution quickly. In this section, we
will describe how to handle the side constraints for the considered neighborhoods
efficiently.

As introduced in section 3.5.4, five different moves are proposed as nodes trans-
ferring (forward or backward) or exchanging within or across the vehicles and
adding new vehicles. Each move may lead to one or more operations like node
removal (deletion), node insertion, forward and/or backward transfer on the corre-
sponding vehicles. Whenever a move’s feasibility is checked, a screening procedure
is performed on the partial solution to return either true or false feedback. It
should be noticed that when nodes transferring or exchanges are carried out within
or across the routes, the feasibility conditions are only checked for the partial solu-
tion, which includes the corresponding origin and destination trips.

The feasibility test screening procedure includes three consecutive stages corre-
sponding to checking the vehicle capacity restriction, AND/OR precedence rela-
tionships, and the time windows associated with the nodes and the depot. During
the feasibility test execution, whenever an infeasibility is detected, false feedback
is returned, and the procedure avoids checking other feasibility aspects in the re-
maining stages of the test. The proposed order has shown good performance in our
preliminary experiments since the test starts from the feasibility aspects with less
computational complexity to the most.

In the first stage, a partial solution’s feasibility is verified concerning vehicle
capacity. To do so, given a move that includes a node insertion or replacement
to a position on the specific vehicle’s trip, the cumulative demand of the already
assigned nodes and the new one on that particular trip cannot exceed the capacity
restriction.

The screening procedure checks a partial solution’s feasibility in the second stage
according to the precedence constraints. The cases must be considered to check the
feasibility of the proposed moves concerning the AND/OR precedence constraints
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for each proposed neighbourhoods are represented as:

• Transferring forward within a route: Node i placed in position p is trans-
ferred to a forward position ṕ on the route.
case 1: node i should not be an AND-type predecessor of any node between
location p and ṕ;
case 2: node i should not be only OR-type predecessor of any node between
location p and ṕ.

• Transferring backward within a route: Node i placed in position p is
transferred to a backward position ṕ on the route.
case 1: nodes between location p and ṕ should not be AND-type predecessor
of node i;
case 2: nodes between location p and ṕ should not be only OR-type predecessor
of node i.

• Transferring across routes: Node i placed in position p on route k is trans-
ferred to position ṕ on route ḱ.
case 1: node i should not be only OR-type predecessor of any nodes placed
after position p on route k ;
case 2: node i should not be AND-type predecessor of any node placed before
position ṕ on route ḱ;
case 3: node i should not be AND-type successor of any node placed after
position ṕ on route ḱ.

• Exchange within a route: Node i placed in position p is exchanged with
node j located in position p > p on the same route.
case 1: node i should not be the AND-type predecessor of node j.
case 2: node i should not be AND-type predecessor of any node placed between
position p and ṕ on the route;
case 3: node i should not be only OR-type predecessor of any node placed
between position p and ṕ on the route;
case 4: nodes between location p and ṕ should not be AND-type predecessor
of node j;
case 5: nodes between location p and ṕ should not be only OR-type predecessor
of node j.

• Exchange across routes: Node i placed in position p on route k is exchanged
with node j located in position ṕ on route ḱ.
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case 1: node i should not be AND-type predecessor of any node placed before
position ṕ on route ḱ;
case 2: node i should not be AND-type successor of any node placed after
position ṕ on route ḱ;
case 3: node i should not be only OR-type predecessor of any node placed
after position p on route k;
case 4: node j should not be AND-type predecessor of any node placed before
position p on route k;
case 5: node j should not be AND-type successor of any node placed after
position p on route k;
case 6: node j should not be only OR-type predecessor of any node placed
after position ṕ on route ḱ.

• Insert a vehicle: Node i placed in position p on route k is removed and
create a new route ḱ.
case 1: node i should not be only OR-type predecessor of any node placed
after location p on route k;
case 2: node i should not have any OR-type predecessor.

In the third stage, the partial solution’s feasibility is checked concerning the time
windows limitations. This procedure is based on the principle of push backward
and forward proposed by Kindervater and Savelsberg [102] for the Vehicle Routing
Problems with Time Windows (VRPTW) where the moves are direction preserving.

Consider a path (u, u + 1, ..., v) with associated arrival times of the nodes. Lets
suppose that the arrival time of the first node in the path is decreased. This defines
a push backward as

Bu = Au − Anew
u , (3.21)

Where Au and Anew
u define the current and new arrival time at vertex u. The

push backward at the next vertex on the path is calculated as

Bu+1 = min{Bu, Au+1 − eu+1}. (3.22)

As long as Bk > 0, all nodes on the path remain feasible, and their associated
arrival times need to be adjusted sequentially for k = u, ..., v.
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Algorithm 5 Time windows feasibility test of forward transferring within a route
Description: node i placed in position p is transferred to a forward position ṕ on
the route. The direct successor of node i is denoted by σ(i).
step 1: compute the values of push backward for the nodes placed between
positions p + 1 and ṕ− 1 and update their associated arrival times;
step 2: compute arrival time of node i at new position ṕ;
step 3: compute arrival time of node σ(i) and determine the type of push for the
successors of node i;
step 4: compute the arrival times of the successors of node i placed after position
ṕ + 1;
step 5: check if the new arrival times meet the time windows limitations;
step 6: check if the depot time window is met.

Algorithm 6 Time windows feasibility test of backward transferring within a route
Description: node i placed in position p is transferred to a backward position ṕ
on the route. The direct successor of node i is denoted by σ(i).
step 1: compute arrival time of node i at new position ṕ;
step 2: compute the values of push forwards for the nodes placed between posi-
tions ṕ + 1 and p− 1 and update their associated arrival times;
step 3: compute arrival time of node σ(i) and see the push is forward or backward.
Then, update arrival times for the successors of node i;
step 4: check if the new arrival times meet the time windows limitations;
step 5: check if the depot time window is met.

Algorithm 7 Time Windows Feasibility test of transferring across routes
Description: node i placed in position p on route k is transferred to position ṕ
on route ḱ.
step 1: update the arrival times of the nodes placed after position p + 1 on route
k using the backward push values;
step 2: compute arrival time of node i in position ṕ on route ḱ;
step 3: update the arrival times of the nodes placed after position ṕ + 1 on route
ḱ using the push forward values;
step 4: check if the new arrival times meet the time windows limitations;
step 5: check if the depot time window is met.
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Algorithm 8 Time windows feasibility test of exchange within a route
Description: node i placed in position p is exchanged with node j located in
position p > p on the same route. The direct successor of node i and j on route
k are denoted by σ(i) and σ(j), respectively.
step 1: compute arrival time of node j in new position p;
step 2: compute arrival time of node σ(i) and determine the type of push;
step 3: compute the arrival times of the nodes placed between positions p + 2
and ṕ− 1 using the push values;
step 4: compute arrival time of node i in new position ṕ;
step 5: compute arrival time of node σ(j) and determine the type of push;
step 6: compute the arrival times of the nodes placed after positions ṕ + 2 using
the push values;
step 7: check if the new arrival times meet the time windows limitations;
step 8: check if the depot time window is met.

Algorithm 9 Time windows feasibility test of exchange across routes
Description: node i placed in position p on route k is exchanged with node j
located in position ṕ on route ḱ. The direct successor of node i and j on route k
are denoted by σ(i) and σ(j), respectively.
step 1: compute arrival time of node j in position p on route k;
step 2: compute arrival time of node σ(i) on vehicle k and determine the type of
push for the next nodes on that route;
step 3: compute the arrival times of the nodes placed after positions p + 1 using
the push values;
step 4: compute arrival time of node i in position ṕ on route ḱ;
step 5: compute arrival time of node σ(j) on the vehicle ḱ and determine the
type of push for the next nodes on that vehicle;
step 6: compute the arrival times of the nodes placed after positions ṕ + 1 using
the push values;
step 7: check if the new arrival times meet the time windows limitations;
step 8: check if the depot time window is met.
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Algorithm 10 Time windows feasibility test of vehicle insertion
Description: node i placed in position p on route k is removed and create a new
route ḱ.
step 1: update the arrival times of the nodes placed after position p + 1 on route
k using the backward push values;
step 2: compute arrival time of node i in the first position on the route performed
by vehicle ḱ;
step 3: check if the new arrival times meet the time windows limitations;
step 4: check if the depot time window is met.

Similarly, when the arrival time of the first node on path (u, u + 1, ..., v) is
postponed, a push forward is defined

Fu = Anew
u − Au. (3.23)

The push forward at the next node on the path is calculated by

Fu+1 = min{Fu −Wu+1,0}. (3.24)

where Wu+1 represents the waiting time at node u + 1. The nodes on the path
have to be checked sequentially, in such a way that if Ak + Fk > lk, u ≤ k ≤ v, the
path is no longer feasible. In case that Fk = 0, the path from node k to node v
remains unchanged.

In this context, checking the feasibility of a partial solution concerning the time
windows is implemented using the nodes push forward and backward for each pro-
posed move. As mentioned before, the proposed moves may include various oper-
ations like node insertion, removal, and/or exchange with other nodes simultane-
ously. For example, exchanging nodes across the vehicles contains both operations
of removal and insertion for two nodes on two different vehicles. So, the type of
push (forward or backward) resulting from a move may not be known first. Given
a movement of node i on the first position of path (u, ..., v), it suffices only the
arrival time of the direct successor of node i is computed and compared with the
old value. If Anew

u < Au, the push is backward and dented by Bu, while in case of
Anew

u > Au the push is forward represented by Fu. Then, the next nodes push on
the path is sequentially computed according to (3.22) or (3.24) associated with the
backward and forward push, respectively. Finally, the nodes’ updated arrival times
on the path are checked whether the associated time windows are met.

Algorithms 5-10 provide the procedures implemented to check the feasibility of
the proposed neighbourhoods in terms of the time windows associated with the
related nodes and the depot (time horizon [0, T ]).
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3.6 Computational results
In this section, we present the results of the computational experiments carried

out to evaluate the MILP model and the proposed hybrid algorithm on a set of
instances. GAMS solve the MILP model. The algorithm is implemented in C + +
on an Intel(R) Core(TM)Processor i5− 6200U (CPU2.30GHz) with 16 GB RAM.

In section 3.6.1, we describe the instances generated as a testbed for our as-
sessment. In section 3.6.2, the value of parameters involved in the algorithm is
determined using the Taguchi tuning procedure. Our computational experiment
results are described and commented on in Section 3.6.3.

3.6.1 Design of experiments
In this section, we describe how we generate test instances for the proposed prob-

lem. Due to the novelty of the problem, no instances are available in the literature.
So, we modify the well-known Solomon’s benchmark instances (see [191]) used by
most papers on vehicle routing problems with time windows. These instances are
divided into six classes obtained by combinations of two criteria. The first crite-
rion concerns the spatial position of nodes, which includes three different options:
randomly generated by Uniform distribution (denoted by R), clustered (denoted
by C), and semi-clustered (denoted by RC). The second criterion is the tightness
of the planning horizon, which contains two types: a short time horizon (type 1)
and a long time horizon (type 2). All possible combination are therefore: "R1",
"C1", "RC1", "R2", "C2" and "RC2", making a total of 56 benchmark instances.
Instances are encoded as follows: C201-50 corresponds to the first instances of the
class "C2", where only the first 50 customers are considered. In this work, instances
with a tight planning time horizon (type 1) are discarded since the short horizon
does not define a significant number of AND/OR PCs for each node. Results are
thus reported for "R2" (11 instances), "C2" (8 instances), and "RC2" (8 instances)
for a total of 27 instances.

We classify the test problems into two categories in our experiments, referred to
the small and large-sized instances. Both instance sets are solved using the MILP
model and the proposed algorithm. The small-sized instances take the first 10, 20,
and 30 nodes, while the large-sized ones take the first 40 and 50 nodes from each
original instance. The nodes’ locations, demands, time windows, service times,
and the time horizon are set as in the original Solomon’s instances. Similar to the
previous literature, the travel time is the same as the Euclidean distance between
two node locations. The vehicle capacity and the maximum number of available
vehicles are set to specific values, all empirically determined as listed in Table 3.1.

An upper triangular matrix without the diagonal called Precedence Matrix (PM)
is developed to represent the precedence constraints. Each element of PM denotes
whether or not a precedence relation exists between the two corresponding nodes. If
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Table 3.1: Parameters setting

Number of Nodes Vehicle Capacity Maximum Vehicle
10 100 3
20 200 4
30 200 4
40 300 5
50 300 5

node s have AND-type predecessors {i, j, k} and OR-type predecessors {m, n}, then
PMis = AND, PMjs = AND, PMks = AND, PMms = OR, and PMns = OR. If
there is no PC between the two nodes, the corresponding element of the matrix is
zero. The representation of precedence constraints as an upper triangular matrix
leads to these relations’ feasibility. It is never possible to have nodes with a smaller
number than one of its predecessors.

In our proposed problem, to construct a precedence matrix, time window limi-
tations need to be taken into account in a way that if node i is a predecessor (no
matter the type of PC) of node j, the late time of node j needs to be larger than
that of node i. Otherwise, the PC (i < j) cannot be feasible in time windows. To
define a feasible precedence matrix corresponding to the time windows constraints,
the set of customer nodes needs to be sorted to increase the latest arrival time.
The nth row of the matrix represents all the node’s possible successors associated
with that row. The mth column includes all the possible predecessors of the node
corresponding to that column. For each column of the matrix, starting from the
second column (we do not consider any predecessors for the first node) to the final
one, the associated node’s predecessors are generated.

To do so, we somehow adopt the scheme proposed by Derriesel and Monch
[55] who addressed the parallel machines with sequence-dependent setup times,
precedence constraints, and ready times. The precedence relations are inserted
using the factor τ = {0.4,0.8} to evaluate PCs’ impact by considering two different
sizes. Given a column, if a chosen random number from U [0,1] is higher than
τ , we do not consider any predecessors for the node associated with that column.
Otherwise, the number of predecessors is chosen according to U [0, n−1th], where nth

is the number of that column. Then, the predecessors are randomly selected from
the set of already generated nodes {1th, ..., n − 1th}. To determine the AND/OR
types of precedence constraint between the randomly selected node in {1th, ..., n−
1th} and the one associated with the column, we use a random number from U [0,1].
The corresponding PC is an AND-type one if the chosen random number is less
than 0.5. Otherwise, the PC is an OR-type relation.

As a result, the total number of instances is 270 which is the combinations of the
type of instance {R2, C2, RC2} = 27, number of nodes {10,20,30,40,50}, and the
rate of precedence constraints {0.4,0.8}. The proposed meta-heuristic algorithm
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is run five times over 270 instances, and each run is stopped after 5 minutes of
computation time. The upper limit of the CPU time for solving the MILP models
is set to 14400 seconds.

3.6.2 Tuning
Because the choice of parameters has a remarkable influence on the meta-

heuristic algorithms’ efficiency, the Taguchi method for designing experiments is
utilized to adjust the parameters. The motivation to apply the Taguchi method in
this research is that it has been recognized as an effective approach that can simul-
taneously consider several factors and quickly distinguish the factors with principal
impacts on final solutions by performing minimal possible experiments. For more
information about the Taguchi method, the interested readers can refer to [153].

The proposed algorithm relies on four parameters, namely the maximum number
of iterations (Maxiter), the maximum number of tries in LS loop are made with-
out success to improve the current solution (notImpMax), the initial temperature
(Temp) and the cooling rate (α) that need to be tuned. The set of representa-
tive tuning instances consists of the first two instances in any combinations of the
type {R2, C2, RC2}, size N = {10,20,30}, and the PC scale τ = {0.4,0.8} for a
total number of 36 instances. Based on some initial screening tests, three levels are
selected for each parameter, as shown in Table 3.2.

Table 3.2: Parameters (factors) and their levels

Parameters Level
1 2 3

Maxiter 500 900 1200
notImpMax 50 70 90

Temp 80 100 120
α 0.7 0.9 0.95

Since the number of parameters and their associated levels are equal to 4 and 3,
respectively, we use the orthogonal array L9(34). Subsequently, the number of trials
and the combination of parameter levels in each trial can be specified. To enable
the comparison between the objective functions of the problems, the Relative Error
(RE) value is calculated for each instance

RE(%) = Fsol − Fopt

Fopt

× 100, (3.25)

where Fsol is the objective function value found by the algorithm and Fopt corre-
sponds to the optimal value for a given instance. Since MRE, i.e. the mean of
REs, is to be minimized and therefore it is of “the smaller the better” category,
S/N ratios are obtained using following equation
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S/N = −10 log( 1
n

n∑︂
i=1

F 2
i ), (3.26)

where n is the number of instances, and Fi is the objective function of instance i
obtained by the algorithm.

Table 3.3 shows the mean value of the S/N ratios and means in every level
of the parameters. In this table, the parameters are ranked according to ∆ =
max() − min(). It can be seen that the effect of Temp and Maxiter according
to both signals to noise ratios and the means are the largest and the smallest,
respectively, in comparison with the other factors. Main effects plots for S/N
ratios and means are depicted in Figure 3.2 and 3.3, respectively. According to
the signal to noise ratios, the level with maximum S/N value should be selected,
and then we will have Maxiter = 1200, notImpMax = 70, Temp = 100 and
α = 0.95; whereas considering the means, the level with a minimum value of mean
should be chosen and therefore, we have the same results in terms of the three
parameters notImpMax, Temp and α, with only except for Maxiter which should
be equal to 900. Finally, we conclude that to maintain the algorithm’s robustness,
the adjustment corresponding to signal-to-noise ratios should be selected.

Table 3.3: Response table for the algorithm

Level S/N Mean
Maxiter notImpMax Temp α Maxiter notImpMax Temp α

1 -6.471 -6.369 -6.827 -6.396 0.845 1.085 0.882 0.860
2 -5.972 -4.970 -4.739 -5.473 0.636 0.710 0.359 0.992
3 -5.383 -5.264 -6.285 -5.072 0.974 0.958 0.625 0.526
∆ 1.088 1.399 2.088 1.324 0.338 0.375 0.523 0.466

Rank 4 2 1 3 4 3 1 2

Figure 3.2: Main effects Plots for S/N ratios
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Figure 3.3: Main effects Plots for Means

3.6.3 Evaluation of the MILP model and the hybrid algo-
rithm

This section summarizes and discusses our experiments’ results to evaluate the
proposed MILP model and the algorithm performances on the different set of in-
stances generated and described in Section 3.6.1.

Both approaches (the MILP model and the algorithm) can optimally solve all
the small-sized instances. The developed algorithm’s performance in terms of the
computational time compared to the exact model in dealing with the first category
is reported in Table 3.4. The table shows the average time (in seconds) needed to
optimally solve instances for each combination of type {R2, RC2, C2}, size N =
{10,20,30}, and the PC scale τ = {0.4,0.8} for both solution approaches.

The first thing that should be noticed is that the proposed algorithm can find
optimal solutions in less average time for all combinations except for the smallest
size (N = 10). It can be seen that the difference in time for such instances is not
much as the average time over different types of size N = 10 and PC factor τ = 0.4
associated with the MILP model and the algorithm are equal to 16.76 and 21.01,
respectively.

Considering different sizes of instances, as expected, the two approaches spend
more computational time to obtain optimal solutions as the number of nodes in-
creases for all cases.

Comparing different types indicates that instances of types R2 and C2 need,
respectively, the least and the most average running time to reach an optimal
solution using the exact model. Instead, the developed algorithm spends average
time with a small discrepancy for such instances. It means that different types of
instances do not significantly affect the algorithm’s computational time for instances
of each size and PC factor.

Other trends can be noticed by looking at the PC scale. It seems that the larger
PC scale (τ = 0.8) results in less complexity of the MILP model as it spends a lower
average running time. On the contrary, as expected, the proposed algorithm needs
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Table 3.4: Computational average time of the MILP model and the algorithm on
small-sized instances.

Instance MILP Hybrid Algorithm
Type-N τ = 0.4 τ = 0.8 τ = 0.4 τ = 0.8

R2-10 22.51 16.77 18.92 24.65
RC2-10 17.47 15.92 17.38 19.59
C2-10 57.26 17.59 26.73 29.13

Average: 25.75 16.76 21.01 24.46
R2-20 218.39 170.62 38.72 41.68

RC2-20 378.62 326.35 27.94 44.80
C2-20 583.55 467.37 36.37 52.52

Average: 393.52 321.45 34.34 46.33
R2-30 692.07 583.55 84.99 127.60

RC2-30 1073.51 828.30 76.12 253.49
C2-30 3802.64 2480.73 92.86 180.24

Average: 1856.07 1297.53 84.66 187.11

more time to deal with instances with higher PC factors than those of the lower one.

We now want to assess the quality of solutions obtained by the second category’s
two approaches, including large-scale instances. The evaluation is performed by
comparing their solutions before exceeding the CPU time limit of 300 and 14400
seconds associated with the algorithm and the MILP model. The performance,
in terms of percentage gap, is evaluated through the calculation of the Relative
Percentage Error (RPE) as follows

RPE = Algsol −Msol

Msol

× 100, (3.27)

where Msol and Algsol represent the feasible solution found by the MILP model and
the solution obtained by the algorithm, respectively, for a given instance. It should
be noticed that an optimal solution of the large-sized instances cannot be found by
solving the exact model. So, the reported solution obtained by the MILP model is
an upper bound with the determined optimality gap for each instance.

Tables 3.5 and 3.6 report the feasible solution of the MILP model and its op-
timality gap (denoted by OptGap), the solution found by the algorithm, as well
as the factor RPE, to evaluate the performance of the algorithm concerning the
feasible solution of the MILP model within the proposed time limit for instances
with N = 40 and N = 50, respectively.

The first thing that should be noticed is that the algorithm’s solution values
are way less than those found by solving the MILP model for all instances of any
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Table 3.5: Performance results of the MILP model and the algorithm on the in-
stances with N = 40.

Type-N Instance
τ = 0.4 τ = 0.8

MILP Algorithm RPE MILP Algorithm RPEOptGap Sol Sol OptGap Sol Sol

R2-40

1 52.14 1382 951 31.19 48.02 1739 1226 29.50
2 31.05 1449 893 38.37 34.66 1977 993 49.77
3 18.12 1650 909 44.91 22.48 2049 1308 36.16
4 5.89 1734 786 54.67 9.25 1971 961 51.24
5 64.04 1250 991 20.72 37.61 1550 1370 11.61
6 56.37 1484 852 42.59 40.07 1786 1148 35.72
7 26.92 1451 1008 30.53 19.22 1879 1473 21.61
8 29.4 1359 661 51.36 17.39 1538 862 43.95
9 47.66 1355 946 30.18 29.58 2150 1244 42.14
10 33.37 1340 750 44.03 31.7 1624 959 40.95
11 69.03 1240 837 32.50 46.44 1733 1232 28.91

Average: 39.45 1426.73 871.27 38.28 30.58 1817.82 1161.45 35.60

RC2-40

1 50.62 1419 1103 22.27 40.32 1792 1052 41.29
2 36.48 1372 936 31.78 34.25 1885 1163 38.30
3 54.17 1590 1108 30.31 42.66 1942 1470 24.30
4 28.39 1648 950 42.35 32.72 1766 986 44.17
5 41.7 1520 825 45.72 37.49 1827 992 45.70
6 22.91 1428 736 48.46 24.18 1907 1373 28.00
7 40.57 1639 914 44.23 12.66 1945 1328 31.72
8 50.02 1376 738 46.37 47.83 1739 1014 41.69

Average: 40.61 1499.00 913.75 38.94 34.01 1850.38 1172.25 36.90

C2-40

1 66.38 1588 942 40.68 51.47 1837 1059 42.35
2 42.5 1226 880 28.22 36.8 1914 953 50.21
3 43.99 1740 1156 33.56 41.94 1955 1274 34.83
4 31.74 1972 971 50.76 29.17 2006 1368 31.80
5 43.16 1662 956 42.48 44.62 1950 1076 44.82
6 50.03 1759 1003 42.98 48.77 2173 1279 41.14
7 25.48 1801 1149 36.20 26.83 1988 1193 39.99
8 62.7 1839 944 48.67 52.9 2107 1109 47.37

Average: 45.75 1698.38 1000.13 40.44 41.56 1991.25 1163.88 41.56

combinations of types, sizes, and PC factors. This result shows the promising
performance of the developed algorithm in dealing with such instances where the
exact model cannot give optimal or even near-optimal solutions.

Considering the different types of instances, it can be seen that both OptGap
and RPE associated with the instances of types R2 and C2 are the smallest and
the largest value for all the cases of the two considered sizes (N = 40 and N = 50).
It means that type R2 instances contain the least complexity as their optimality
gap is the lower values than the two other types, while type C2 instances are more
complex since their corresponding feasible solutions have larger OptGap values.
Similar behavior can be seen for the RPE, which means that, for the instances of
type R2, the percentage gap between the feasible solution of the MILP model and
the one obtained by the algorithm is lower than those of the instances of the two
other types.

Considering the two different PC factors (τ = 0.4 and τ = 0.8), a fluctuating
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Table 3.6: Performance results of the MILP model and the algorithm on the in-
stances with N = 50.

Type-N Instance
τ = 0.4 τ = 0.8

MILP Algorithm RPE MILP Algorithm RPEOptGap Sol Sol OptGap Sol Sol

R2-50

1 39.62 1473 884 39.99 18.48 1672 962 42.46
2 48.5 1362 1038 23.79 51.72 1850 1425 22.97
3 27.31 1846 1003 45.67 22.37 1996 1346 32.57
4 61.17 1930 869 54.97 54.8 2173 990 54.44
5 42.84 1393 920 33.96 38.51 1630 1380 15.34
6 50.73 1560 1027 34.17 46.04 1782 1233 30.81
7 32.91 1528 940 38.48 30.18 1866 1302 30.23
8 57.62 1402 841 40.01 67.82 1751 939 46.37
9 40.88 1438 883 38.60 39.94 1849 1427 22.82
10 36.67 1567 852 45.63 41.03 1730 883 48.96
11 25.17 1346 733 45.54 23.74 1694 1193 29.57

Average: 42.13 1531.36 908.18 40.07 39.51 1817.55 1189.09 34.23

RC2-50

1 37.18 1583 1063 32.85 28.66 1846 1342 27.30
2 42.93 1649 1139 30.93 38.5 1973 1274 35.43
3 32.66 1662 826 50.30 30.82 1860 940 49.46
4 39.03 1879 955 49.18 47.2 2035 1075 47.17
5 46.82 1703 809 52.50 42.71 2082 969 53.46
6 50.24 1534 783 48.96 40.9 1755 895 49.00
7 56.9 1950 1094 43.90 52.52 2120 1266 40.28
8 52.42 1526 1138 25.43 48.35 1796 1357 24.44

Average: 44.77 1685.75 975.88 41.75 41.21 1933.38 1139.75 40.82

C2-50

1 68.27 1837 1149 37.45 55.27 2263 1296 42.73
2 44.62 1659 937 43.52 40.12 1970 1071 45.63
3 44.09 1930 1174 39.17 43.74 2159 1289 40.30
4 33.15 1984 1005 49.34 31.29 2324 1162 50.00
5 44.73 1760 959 45.51 42.89 1973 1293 34.47
6 66.49 1985 1340 32.49 57.18 2288 1371 40.08
7 30.75 1874 967 48.40 25.36 2230 1028 53.90
8 66.94 1936 1050 45.76 52.15 2166 1139 47.41

Average: 49.88 1870.63 1072.63 42.71 43.50 2171.63 1206.13 44.32

behavior can be seen for both OptGap and RPE values so that they can be increased
or decreased by considering the smaller or larger PC factor for each instance. The
problem complexity is not entirely dependent on the amount of imposed PCs, but
the generated PCs’ structure may significantly affect. However, the average value
of OptGap over the instances of each type and size follows an increasing trend when
the smaller PC factor is applied. The same behavior can be seen for RPE’s average
value over the instances except for instances of type C2 for both sizes.

Finally, comparing the results for the two instance sizes (N = 40 and N = 50)
shows that, as expected, the average value of solutions obtained by the model and
the algorithm and the OptGap increases as the size of instances grows. The average
RPE values over the instances also follow the same described behavior with little
discontinues associated with the instance of type R2 and PC factor τ = 0.8.
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3.7 Summary
In this chapter, we have studied for the first time, to the best of our knowl-

edge, a generalization of the vehicle routing problems with time windows. The
AND/OR precedence constraints are defined among the customers visited by each
vehicle. This generalization comes after considering the partial orders of servicing
the customers due to some physical restrictions or having the preferred loading
or unloading sequence and avoiding extra effort to sort the collected items at the
end of the retrieving process. To address the problem, we have formulated it as
a MILP model capable of solving only small-sized instances by spending a lot of
CPU time. We have also developed a meta-heuristic algorithm as the hybridization
of Iterated Local Search and Simulated Annealing approaches. The computational
result of the developed algorithm highlights this approach’s promising performance
in CPU time and its quality. This proves that the integration between SA and ILS
can balance exploration and exploitation and thus achieve reasonable optimization
results.
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Chapter 4

Background on the
Deterministic
Approximation approach

4.1 Introduction
In this chapter, the deterministic approximation approach, as well as some back-

ground information, are represented. The approach is based on looking at the op-
timization problem as a so-called Random Utility Models (we refer to the static
case) or its multi-stage version. Random Utility Models (RUMs) are typical of
operations management’s applications such as supply chain optimization, logistics,
and transportation, in which decisions (or a part of them) must be taken with lim-
ited knowledge of the alternatives and their attributes (see, e.g., [26], [47], [127],
[155],[204]).

When facing the static RUMs where the decision-maker is asked to choose an
alternative among a static set of choices, it is well-known that the choice probability
is modeled as a Multinomial Logit (MNL) model under the assumption that the
random term utilities are independent and identically distributed (i.i.d.) and the
common distribution is a Gumbel function (see [124], [24], [25], [57]).

Some contributions have shown that the assumption of a Gumbel distribution for
the random term utilities is too restrictive when the number of alternatives becomes
large and that an MNL model can be still derived under the milder assumption
that the common distribution of such i.i.d. random utilities has an asymptotically
exponential behavior in its right or left tail ([200], [201]). The effectiveness of
such an asymptotic approximation has been proved in several applications in the
context of routing, loading, packing, and other logistics operations ([200], [154],
[203], [155]).

In several decision processes, the decision-maker is asked to solve several RUMs
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consecutively over multiple discrete stages aiming to maximize (minimizing) the
expected value of the total utility (cost) originating from the overall decision pro-
cess. It means the decision-maker needs to select, at each stage, an alternative
among a finite set of choices. Each alternative is associated with a certain level
of utility (cost) depending on both stochastic variables with unknown probabil-
ity distributions and the utilities associated with the selected alternatives in the
subsequent stages. In such a way, the decisions are nested each other throughout
the multi-stage decision network. So, the decision process cannot be decomposed
into distinct stages, and, in turn, the approximation approach can not be applied
straightforwardly.

For this reason, Tadei et al. [202] recently generalized the approximation frame-
work to provide results for the multi-stage case too. In particular, under appro-
priate assumptions, the probability distribution of the best alternative can still be
asymptotically approximated by a Gumbel distribution. In turn, the total utility
of the process can be analytically derived. Moreover, the choice probability can be
modeled as a Nested Multinomial Logit model.

This chapter is organized as follows. In Section 4.2, a review of discrete choice
models, random utility models, and the multinomial logit models are represented.
After a brief discussion of general assumptions, in Section 4.3, the deterministic
approximation approach for the static RUM is provided. At the same time, its
applications in the literature are reviewed in Section 4.4. Then, the deterministic
approximation approach for the maximization problem to deal with the multi-stage
RUMs is discussed in Section 4.5. Moreover, the approach for the minimization
problem is presented in 4.6. Finally, a summary is provided in Section 4.7.

4.2 Preliminaries

4.2.1 Discrete Choice Models
Discrete Choice Models (DCM) are used to model the choices made between

well-defined alternatives. Typically a decision-maker might choose between a finite
set of alternate products or services. The set of all alternatives available is called the
choice set. If there are just two alternatives, it is called a binary choice. A discrete
choice model with more than two alternatives is called a multinomial discrete choice
model.

The framework of a discrete choice model is distinguished as

• decision-maker – defining the decision making entity and its characteristics;

• alternatives – determining the choices available to the decision-maker;

• attributes – measuring either utility or cost of alternatives to the decision-
maker;
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• decision rule – describing the process used by the decision-maker to choose an
alternative.

In the following, the above entities are better described.

Decision-maker: In discrete choice models (also referred to as disaggregate mod-
els), the decision-maker is assumed to be an individual. The individual entity
depends on the particular application. For instance, we may consider a group of
persons as the decision-maker. In doing so, we may ignore all internal interactions
within the group and consider only the group’s decisions as a whole.

Alternatives: Analyzing decision-making requires knowledge of what has been
chosen and what has not been chosen. Therefore, assumptions must be made
about alternatives that an individual considers during a decision-making process.
The set of available alternatives is called the choice set. A discrete choice set con-
tains a finite number of alternatives that can be explicitly listed. The set of travel
modes is a typical example of a discrete choice set. Identifying the list of alter-
natives is a complex process usually referred to as a choice set generation. The
most widely used method for choice set generation uses deterministic criteria of
alternative availability. The universal choice set contains all potential alternatives
in the application’s context. The choice set is the subset of the universal choice set
considered by, or available to, a particular individual. In addition to availability,
the decision-makers’ awareness of the alternative could also affect the choice set.
The behavioral aspects of awareness introduce uncertainty in modeling the choice
set generation process and motivate probabilistic choice set generation models that
predict the probability of each feasible choice set within the universal set.

Attributes: Each alternative in the choice set is characterized by attributes such
as utility, cost, etc. Note that some attributes may be generic to all alternatives,
and some may be alternative-specific. An attribute is not necessarily a directly
measurable quantity. It can be any function of available data. Alternative defini-
tions of attributes as functions of available data must usually be tested to identify
the most appropriate.

Decision Rule: The decision rule is the process used by the decision-maker to
assess the attributes of the alternatives in the choice set and make a choice. Most
models are based on utility theory, which assumes that a value, called utility, cap-
tures the decision-maker’s preference for a choice. The decision-maker selects the
alternative in the choice set with the highest utility. The complexity of human
behavior suggests that the decision rule should include a probabilistic dimension.
Some models assume that the decision rule is intrinsically probabilistic, and even
complete knowledge of the problem would not overcome the uncertainty. Others
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consider the individuals’ decision rules as deterministic and motivate the uncer-
tainty from the limited capability of the analyst to observe and capture all the
dimensions of the choice process due to its complexity. Specific families of mod-
els can be derived depending on the assumptions about the source of uncertainty.
Random utility models, described in the following subsection, are based on deter-
ministic decision rules, where random variables represent utilities.

4.2.2 Random Utility Models
Random Utility Models (RUMs) are behavioral models [130]. A decision-maker

chooses among mutually exclusive alternatives, each associated with a certain level
of utility. The basic assumptions of these settings are that the choice set is dis-
crete, and the decision-maker follows a rational utility-maximizing behavior. Also,
the utility associated with each choice alternative can be decomposed into a deter-
ministic part and a random term oscillation. Since the latter term is not known as
a priori, it is treated as a stochastic variable. In turn, this means that the possible
realizations (observations) of such a random variable hypothetically increase the
number of alternatives to choose from, i.e., the decision-maker would select the
best alternative if he knew the actual realizations of the utilities. It is important
to notice that we do not assume that the decision-maker can decide for the best
alternative having complete knowledge of the realizations in advance. Instead, we
want to focus on modeling the extreme behavior of such unknowns, i.e., the one
with the maximum utility (minimum cost), which theoretically corresponds to the
decision maker’s wish. In other words, it is assumed that the decision-maker has
an optimistic vision of the future. Not knowing what will happen in the future, he
assumes that he will have to pay as little as possible (or gain benefit as much as
possible).

Manski [129] identifies four different sources of uncertainty: unobserved alter-
native attributes, unobserved individual characteristics, measurement errors, and
proxy or instrumental variables. The utility is modeled as a random variable to re-
flect the uncertainty. More specifically, the utility that decision-maker n associates
with alternative i in the choice set Cn is given by

Uin = Vin + θin, (4.1)

where Vin is the deterministic part of the utility, and θin in is the random term
oscillation capturing the uncertainty. Among the alternatives in the choice set, the
one with the highest utility is selected. Therefore, the probability that alternative
i is chosen by decision-maker n from the choice set Cn is

P (i | Cn) = P [Uin ≥ Ujn,∀j ∈ Cn] = P [Uin = max
j∈Cn

Ujn]. (4.2)
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The deterministic term Vin is a function of the attributes of the alternative i and
the characteristics of decision-maker n. That is

Vin = h(Zin, Sn), (4.3)

where Zin is the vector of alternative i attributes as perceived by decision-maker
n, and Sn is the vector of individual n characteristics. Function h is defined as any
appropriate vector of attributes from both Zin and Sn. The choice of function h is
very general, and several forms may be tested to identify the best representation
in a specific application.

Many potential models are derived for the random parts of the utility func-
tions. The Logit family models are based on a probability distribution function of
the maximum or minimum of a series of random variables introduced by Gumbel
distribution. The models within the Logit family has been much more popular
because of its tractability, but it imposes restrictions on the covariance structure.
The derivation of other models in the Logit family is aimed at relaxing restrictions
while maintaining tractability.

4.2.3 Multinomial Logit Models
Among the discrete choice models, the multinomial logit model is the most

widespread and used in many different fields. This disaggregated model seeks to
study the decision of choice or the perception of the value of an event among a set
of mutually exclusive alternatives.

The Logit model was first introduced in the context of binary choices where the
logistic distribution is used. Its extension to more than two choices is referred to
as the Multinomial Logit Model. This model is derived from the assumption that
the random terms of the utility are independent and identically random variables
distributed as a Gumbel, i.e.,

F (θ) = exp[−e−µ(θ−η)], µ > 0, (4.4)

f(θ) = µe−µ(θ−η) exp[−e−µ(θ−η)], (4.5)

where η is a location parameter and µ is a strictly positive scale parameter. The
mean of this distribution is η + γ/µ where γ = 0.5772 is the Euler constant. The
variance of the distribution is π2/6µ2.

The probability that decision-maker n chooses alternative i within the choice set
Cn is given by

P (i | Cn) = eµVin∑︁
j∈Cn

eµVjn
. (4.6)

An important property of the Multinomial Logit Model is Independence from
Irrelevant Alternatives (IIA). This property can be stated as follows: The ratio
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of the probabilities of any two alternatives is independent of the choice set. That
is, for any choice sets C1 and C2 such that C1 ⊆ Cn and C2 ⊆ Cn, and for any
alternatives i and j in both C1 and C2, we have

P (i | C1)
P (j | C1)

= P (i | C2)
P (j | C2)

. (4.7)

An equivalent definition of the IIA property is: The ratio of the choice proba-
bilities of any two alternatives is unaffected by the systematic utilities of any other
alternatives.

4.3 Deterministic approximation for static Ran-
dom Utilities Models

The theory of extreme values is particularly appropriate for Random Utilities
Models, as it deals with the asymptotic behavior of maxima and minima over
sequences of variables [75]. When the decision-maker has a static set of alternatives
to choose from, it is well-known that the choice probability can be modeled as a
Multinomial Logit (MNL) under the assumption that the random term of utilities
are independent and identically distributed as a Gumbel distribution (see [124],
[24], [25], [57]).

Other contributions ([114], [113], [204]) have shown that the assumption of a
Gumbel distribution for the random utilities is too restrictive when the number of
alternatives becomes large. An MNL model can still be derived under the milder as-
sumption that the common distribution of the i.i.d. random utilities has an asymp-
totically exponential behavior in its right or left tail. Such a model can be seen as
an asymptotic deterministic approximation of the static decision-making process.
It can be theoretically derived only when the number of alternatives and, therefore,
possible realizations of the unknowns tend to infinity.

Recently, Tadei et al. [204] have shown that the Gumbel distribution assump-
tion for the i.i.d. random term utilities is unjustified to derive the MNL model for
choice probability. They reformulated the random utility choice theory in terms of
the asymptotic extreme values theory [75]. This theory deals with maxima (or min-
ima) properties of sequences of random variables with many terms. In particular,
they showed that under a milder assumption on a random term of utilities and con-
sidering many alternatives, the Gumbel distribution assumption is not necessary
anymore to derive the MNL model. In the following, we present all the results for
the maximization case, but the same results can be adapted to the minimization
case.

It is assumed that F (x) is asymptotically exponential in its right tail, i.e., there
is a constant β > 0 such that
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∃β > 0 | lim
y→+∞

1− F (x + y)
1− F (y) = e−βx. (4.8)

This property is widely used in the extreme value theory and defines the so-called
domain of attraction of the double exponential distribution.

Let us consider a set J of N = |J | alternatives. We assume that J is partitioned
into n nonempty disjoint subsets Jj, j = 1, ..., n, called clusters, of Nj = |Jj| al-
ternatives. Many choice processes face the partition into clusters of alternatives.
For instance, when a household is looking for a dwelling, it will select the district
where to live (this is the cluster) and, then, inside that district, it will choose the
actual dwelling among all the alternatives. Let ũz

ij be the utility for decision maker
i for choosing alternative z ∈ Jj. As already stated, in a random utility model we
assume that ũz

ij is the sum of a deterministic variable vij and a random variable
θ̃iz, i.e.,

ũz
ij = vij + θ̃iz. (4.9)

The deterministic variable vij of the utility includes variables representing at-
tributes of the cluster and the decision context. The random variable ũz

ij repre-
sents aspects of utility that the researcher does not observe, e.g., idiosyncrasies of
decision-maker i. The decision-maker i has an optimistic vision, and not know-
ing the observations, he assumes that the one with the maximum utility is chosen
among all alternatives.

Let us define the distribution of the maximum utility for decision-maker i among
all alternatives z in all clusters j as

ũi = max
j=1,..,n;z∈Jj

ũz
ij = max

j=1,..,n
(vij + max

z∈Jj

θ̃iz) = max
j=1,..,n

(vij + θ̃
j

i ). (4.10)

Moreover, let
Gi(x) = Pr(ũi < x), (4.11)

be the distribution of ũi and

Pij(x) = Pr(θ̃j

i < x), (4.12)

be the distribution of θ̃
j

i .
By the i.i.d. assumption of the random variables, the distribution Pij(x) becomes

Pij(x) =
∏︂

z∈Jj

Pr(θ̃iz < x) = [F (x)]Nj . (4.13)

99
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Now, because of (4.10) and (4.13), Gi(x) becomes

Gi(x) = Pr(ũi < x) = Pr( max
j=1,..,n

(vij + θ̃
j

i ) < x)

=
∏︂

j=1,..,n

Pr(vij + θ̃
j

i < x) =
∏︂

j=1,..,n

Pr(θ̃j

i < x− vij)

=
∏︂

j=1,..,n

Pij(x− vij) =
∏︂

j=1,..,n

[F (x− vij)]Nj . (4.14)

Following [154] and [155], It is shown that under assumption (4.8) the distribu-
tion Gi(x) tends towards a Gumbel function as the total number of alternatives N
becomes large. So, under these results, the MNL model for the choice probability
can be still derived. First, It is considered that we can fix the origin for the utility
scale arbitrarily, i.e., the choice probabilities are unaffected by a shift in the utility
scale, and any additive constant to the utilities can be ignored. Let’s choose this
constant as the root aN of the equation

1− F (aN |N) = 1/N, (4.15)
where we remind N is the total number of alternatives. By replacing ũi with ũi−aN

in (4.14) one has

Gi(x|N) =
∏︂

j=1,..,n

[F (x− vij) + aN |N ]Nj . (4.16)

Let us consider the ratio
αj = Nj/N, (4.17)

and assume that this ratio remains constant for each j while the values of N = 1,2, ...
vary, as needed later to compute the asymptotic behavior while N increases.

Because of (4.17), Eq. (4.16) can be written as

Gi(x|N) =
∏︂

j=1,..,n

[F (x− vij) + aN |N ]αjN . (4.18)

Let us assume that N is large enough to use limN−→+∞ Gi(x|N) as an approxi-
mation of Gi(x). Then, the following theorem holds.

Theorem 1. Under condition (4.8), the probability distribution Gi(x) becomes the
following Gumbel distribution

Gi(x) = lim
N−→+∞

Gi(x|N) = exp(−Aie
−βx), (4.19)

where
Ai =

∑︂
j=1,..,n

αje
βvij , (4.20)

is the accessibility in the sense of Hansen [89] to the overall set of alternatives.
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Theorem 2. The choice probability pij for decision maker i to choose cluster j is
given by

pij = Nje
βvij∑︁n

k=1 Nkeβvik
. (4.21)

Note that the choice probability in (4.21) still represents an MNL model.

Even if condition in (4.8) yet represents a mild assumption on the shape of the
distribution of the stochastic variables, Fadda et al. [66] have recently proved that
Theorem 1 still holds when (4.8) is relaxed to the following condition

∃β > 0 | lim
|N |→+∞

B(x + aN)|N | = exp(−e−βx), (4.22)

where B(x) is the probability distribution of x̃, i.e.,

B(x) = Pr{x̃ ≤ x}, (4.23)

and aN is chosen equal to the root of the equation

1−B(x) = 1
|N |

. (4.24)

Assumption (4.22) is equivalent to ask that the unknown distribution of the
stochastic maximum utility belongs to the domain of attraction of a Gumbel dis-
tribution. This new result further enlarges the applicability of the approximation
approach, which theoretically holds for any distribution of the form 1−e−p(x) where
p(x) is a polynomial function, such as the Normal, the Gumbel, the Weibull, the
Logistic, the Laplace, the Lognormal, and many others.

It is easy to see that the new condition is milder, since assumption in (4.8) implies
assumption in (4.22), while the converse is not true (e.g., the Normal distribution
does not satisfy (4.8)).

4.4 Related works on the deterministic approxi-
mation for static Random Utilities Model

The accuracy of the approximation has been experimentally shown in several
application domains.

As the first application, Tadei et al. [204] addressed the location of p facilities,
which minimize the expected total cost when the cost for using a facility is a
stochastic variable with an unknown probability distribution. They stated that
in several papers dealing with uncertainty in the p-median problem, assumptions
on the type of the cost probability distribution are given (either the probability
distribution is known or a finite number of possible states, each occurring with
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nonzero probability, is assumed). Unfortunately, in many real-life situations, the
exact shape of this distribution is unknown. In this paper, a set of customers
V , a set of potential facility locations U , partitioned into n nonempty disjoint
subsets called clusters U1, .., Un is assumed. The problem consists of finding p, with
p ≤ n, facility locations, no more than one per cluster. The stochastic costs rij of
customer i ∈ V pays for using facility j ∈ Uk, k = 1, ..., n are given by the sum of
a deterministic cost ck associated to each cluster plus a random term θij, with an
unknown probability distribution, which represents the cost heterogeneity inside
each cluster as

rij(θ) = ck + θij,∀i ∈ V, j ∈ Uk, k = 1, ..., n. (4.25)

In their proposed work, it is proved that under a quite mild and reasonable as-
sumption on the shape of the unknown random term θij probability distribution
(see, eq.(4.8)) and the number of the potential facility locations, the probability
distribution of the minimum cost becomes a Gumbel (or double exponential) one.
Moreover, using such a distribution, a multinomial Logit function for the allocation
variables of the p-median problem is derived.

As another application of the asymptotic approximation, Tadei et al. [200] pro-
posed a problem that aims to find a transshipment facilities location that maximizes
the total net utility when the handling utilities at the facilities are stochastic vari-
ables. In this work, the two main levels of a transshipment network, i.e., the network
design (upper level), which leads to a network flow formulation with origins, trans-
shipment facilities and destinations as nodes of the network, and the transshipment
facilities management (lower level), where the management variables considered as
stochastic handling utilities at the facilities are integrated. Also, the total net
utility is given by the expected total shipping utility minus the total fixed cost of
the located facilities. Shipping utilities are given by a deterministic utility sk

ij for
shipping freight from origin i to destinations j via transshipment facilities k plus
a stochastic handling utility at the facilities ũkl under scenario l, whose probabil-
ity distribution is unknown. They showed that using some results of the extreme
values theory, the probability distribution of the maximum stochastic utility is de-
rived, and the expected value of the optimum of the stochastic model is found. An
efficient heuristics for solving real-life instances was also given. Moreover, the i.i.d.
assumption for ũkl, which is necessary for deriving the asymptotic approximation,
was justified as follows. The stochastic utility of a handling operating scenario
at any facility k is extremely difficult to be measured in practice. Its probability
distribution is generally unknown, and it would be rather arbitrary to assume a
particular shape for it. Of course, the mildest hypothesis which can be made for
the shape of such unknown probability distribution is that it does not vary within
different scenarios and facilities, which corresponds to the "identically distributed"
assumption. Moreover, the alternative handling operating scenario inside a facility
do not obviously depend on the scenario of the remaining facilities, and inside the
same facility, they slightly interact with each other in practice, allows the stochastic
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utilities ũkl to be considered as independent variables too.
The stochastic Generalized Bin Packing Problem was dealt in Perboli et al. [154].

The problem consists of finding a subset of items to be loaded into a subset of bins,
which maximizes the expected total net profit, given by the difference between the
expected total profit of the loaded items and the total cost bins while satisfying
the volume and bin availability constraints. In this work, the item profits are
random variables to consider the profit oscillations due to the handling operations
for bin loading. They also assumed that such profit oscillations randomly depend
on the handling scenarios adopted for bin loading. The probability distribution of
these random variables is assumed to be unknown. They showed that using some
results of the asymptotic theory of extreme values, the probability distribution of
the maximum random profit of any item becomes a Gumbel (or double exponential)
probability distribution, and the total expected profit of the loaded items can be
easily calculated. By using this result, the deterministic approximation is derived.

The Multi-Handler Knapsack Problem under Uncertainty was proposed in Per-
boli et al. [155], a new stochastic variant of the knapsack problem. In this problem,
given a set of items, characterized by volume and random profit, and a set of poten-
tial handlers, a subset of items is found, which maximizes the expected total profit.
The profit is given by the sum of a deterministic profit and a stochastic profit os-
cillation, with an unknown probability distribution, due to the random handling
costs of the handlers. A specific application of this problem can be found in the
automotive sector. The delivery of cars from manufacturers to dealers is not man-
aged by the manufacturers themselves but is delegated to specialized companies.
These companies manage both the finishing operations on the cars and the logis-
tics operations linked to delivery to the dealers. To have a more flexible structure,
the fleet of auto-carriers used to deliver the cars is only partially owned by each
company. At the same time, a substantial part of the deliveries is sub-contracted
to micro-companies with highly variable random costs. Moreover, the auto-carriers
have different capacities due to the presence of specific technical features. From the
point of view of the cars that must be delivered, the net profit for the company is
affected by different factors, including delays in the finishing operations, additional
costs due to violations of the negotiated deadlines, or additional transportation
costs. This paper introduced a formulation of the stochastic problem where a de-
terministic approximation is derived. In particular, under a mild hypothesis on
the unknown probability distribution, the deterministic approximation becomes a
knapsack problem where the total expected profit of the loaded items is propor-
tional to the logarithm of the total accessibility of those items to the set of handlers.
Moreover, at optimality, the percentage of an item handled by any handler is given
by a Multinomial Logit model.

The multi-path Traveling Salesman Problem was introduced by Tadei et al.
[203] where given a set of nodes, several paths connect each pair of nodes, and
each path shows a stochastic travel cost with an unknown probability distribution.
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The problem aims at finding an expected minimum Hamiltonian tour connecting
all nodes. This is computed as the sum of the expected travel costs of the paths
interconnecting the pairs of nodes, where, for each pair of nodes, only one path
can be selected among the several ones. The travel cost is a generalized cost that
includes both fuel consumption and driving time. Additionally, each travel cost is
composed of a deterministic term plus a random term, representing the travel cost
oscillation due to traffic congestion, driving style, etc. The several combinations
between the powertrain and the travel cost oscillation generate different paths be-
tween two given nodes. The model chooses the path between two nodes according
to an efficiency-based decision, i.e., the path with the minimum expected travel
cost is chosen. Moreover, the probability distributions of the travel costs are as-
sumed to be unknown. In this work, the deterministic approximation becomes a
TSP problem where the minimum expected total travel cost is equivalent to the
maximum of the logarithm of the total accessibility of the Hamiltonian tours to
the path set. They also evaluate the quality of the deterministic approximation
by comparing it with the Perfect Information results obtained by a Monte Carlo
method. The comparison shows good accuracy of the deterministic approximation,
reducing the computational times of two orders of magnitude. Besides, computa-
tional results show how the derived model can be solved with difficulty within the
timing restrictions of the application with reasonable accuracy.

Recently, Fadda et al. [66] showed that the independence assumption on the path
travel costs could be relaxed, and a deterministic approximation of the stochastic
multi-path traveling salesman problem by assuming just asymptotically indepen-
dent travel costs is derived. They also show that this deterministic approximation
has strong operational implications because it deals with realistic traffic models.
Computational tests on extensive sets of random and realistic instances show very
good efficiency and accuracy of the deterministic approximation.

4.5 Multi-stage Random Utilities Models for max-
imization problem

Several stochastic decision-making problems can be interpreted as multi-stage
Random Utilities Models. A decision-maker selects, at each stage, an alternative
among a finite set of choices. Depending on the application, the objective may be
expressed in terms of utility maximization or cost minimization. In the current
section, we mainly focus on the former case. The multi-stage stochastic decision-
making process structure can be generally represented in Figure 4.1.

More precisely, let us introduce the following notation

• t = 1, . . . , T : stage;

• Nt: set of choice alternatives at stage t;
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Figure 4.1: Multi-stage stochastic decision process.

• N0 = {0}: initial start of the decision process, containing a singleton alterna-
tive 0;

• Lj(t): set of realizations for alternative j at stage t;

• lj(t) = |Lj(t)|: number of realizations for alternative j at stage t;

• L = ∪T
t=1 ∪j∈Nt Lj(t): total set of realizations of the decision process;

• l = |L| = ∑︁T
t=1

∑︁
j∈Nt

lj(t): total number of realizations of the decision process;

• vij(t): deterministic utility of alternative j at stage t when the decision process
starts from alternative i at stage t− 1;

• θ̃
l

j(t): random term utility oscillation of the alternative j at stage t under
realization l ∈ Lj(t).

As in Tadei et al. [202], it is assumed that random oscillations θ̃
l

j(t) are inde-
pendent and identically distributed (i.i.d.) stochastic variables for all j, l, and t,
with a common unknown probability distribution

F (x) = Pr{θ̃l

j(t) ≤ x}, j ∈ Nt, l ∈ Lj(t), t = 1, . . . , T, (4.26)

and θ̃j(t) is defined as the unknown maximum value of the random utility oscilla-
tions θ̃

l

j(t) among all the realizations l ∈ Lj(t), i.e.,

θ̃j(t) = maxl∈Lj(t)θ̃
l

j(t), j ∈ Nt, t = 1, . . . , T. (4.27)
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Since probability distribution F (x) is unknown, θ̃j(t) is still a random variable
with the unknown probability distribution as follows

Bj(x, t) = Pr
{︂
θ̃j(t) ≤ x

}︂
, j ∈ Nt, t = 1, ..., T. (4.28)

Since θ̃j(t) ≤ x⇐⇒ θ̃
l

j(t) ≤ x, l ∈ Lj(t) and θ̃
l

j(t) are independent, using (4.26),
(4.28) becomes

Bj(x, t) =
∏︂

l∈Lj(t)
Pr
{︃

θ̃
l

j(t) ≤ x
}︃

=
∏︂

l∈Lj(t)
F (x) = [F (x)]lj(t) , (4.29)

where lj(t) is the total number of scenarios for alternative j at stage t.

Let ṽij(t+1) is defined as the random utility of alternative j at stage t+1 when
alternative i has been chosen at previous stage t = 0, ..., T − 1. It is assumed that
the decision process is efficiency-based so that, for any alternative j ∈ Nt+1, t =
0, ..., T − 1, among the different realizations l ∈ Lj(t + 1) the one which maximizes
the random choice utility will be considered. In other words, the decision-maker
has an optimistic vision of the future. Not knowing the realizations and what
will happen in the future, he assumes that he will benefit as much as possible.
The random utility ṽij(t) is composed of three terms, including the deterministic
utility component vij(t + 1) of choosing choice j at stage t + 1 after alternative i,
random term θ̃

l

j(t + 1) assumed i.i.d. with unknown probability distribution, and
the expected utility alternative j at stage t + 1 denoted as Uj(t + 1). Because of
(4.27), the random utility ṽij(t) becomes

ṽij(t + 1) = vij(t + 1) + maxl∈Lj(t+1)θ̃
l

j(t + 1) + Uj(t + 1)
= vij(t + 1) + θ̃j(t + 1) + Uj(t + 1), (4.30)

i ∈ Nt, j ∈ Nt+1, t = 0, ..., T − 1.

with Ui(T ) = 0, i ∈ NT , where Ui(t) is defined as, i.e.,

Ui(t) = IEθ̃

[︃
max

j∈Nt+1
ṽij(t + 1)

]︃
, i ∈ Nt, t = 0, ..., T − 1. (4.31)

Equation (4.31) is based on the Bellman equation and indicates that the util-
ity of choice j at stage t + 1 is evaluated not only by its instantaneous utility
vij(t + 1) + θ̃j(t + 1) associated with the action made at current state but also
by the expected utility Uj(t + 1) of the future selected alternatives. It means the
decision-maker chooses an alternative (make an action) given the current state in
a process having the Markov property. In such a way, the decisions become nested
over stages. Also, it should be noted that a deterministic environment of decision
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making is assumed, such that a given state and action will result in a new state
deterministically in the next stage.

Now, by defining

ṽi(t) = max
j∈Nt+1

ṽij(t + 1), i ∈ Nt, t = 0, ..., T − 1, (4.32)

equation (4.31) becomes

Ui(t) = IEθ̃ [ṽi(t)] , i ∈ Nt, t = 0, ..., T − 1, (4.33)

and the maximum utility U of the whole multi-stage stochastic decision process is

U = U0(0) = IEθ̃ [ṽ0(0)] . (4.34)

However, the calculation of U0(0) requires the calculation of IEθ̃ [ṽ0(0)], which in
turn requires to know the probability distribution of ṽ0(0), or, because of the nested
structure of the utilities, of {ṽi(t), i ∈ Nt, t = 0, ..., T−1}. Let us call the probability
distribution of ṽi(t) as

Gi(x, t) = Pr{ṽi(t) ≤ x}, i ∈ Nt, t = 0, ..., T − 1. (4.35)

that is still unknown, since θ̃
l

j(t) have an unknown probability distribution. Never-
theless, the asymptotic approximation of Gi(x, t), i.e. an approximation valid when
the total number l of scenarios of the decision process becomes very large, will be
derived in the next session.

4.5.1 Deterministic approximation approach
From Tadei et al. [202], it is assumed that F (x), the probability distribution of

θ̃
l

j(t), is asymptotically exponential in its right tail, i.e.,

∃β > 0 such that lim
y→+∞

1− F (x + y)
1− F (y) = e−βx. (4.36)

Following [200], [203], and [155], by using some results of the asymptotic extreme
value theory [75], it can be shown that under assumption (4.36) the distribution
Gi(x, t) asymptotically converges to a Gumbel function as the total number of
scenarios l becomes large. This is a very mild condition, as we observe that many
probability distributions show such behavior, among them the Gamma, Gumbel,
Laplace, and Logistic distributions.
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First note that, because of (4.28), (4.29), (4.31), and (4.32), equation (4.35)
becomes

Gi(x, t) = Pr{ṽi(t) ≤ x} = Pr{ max
j∈Nt+1

ṽij(t + 1) ≤ x}

= Pr{ max
j∈Nt+1

[vij(t + 1) + θ̃j(t + 1) + Uj(t + 1)] ≤ x}

=
∏︂

j∈Nt+1

Pr{vij(t + 1) + θ̃j(t + 1) + Uj(t + 1) ≤ x}

=
∏︂

j∈Nt+1

Pr{θ̃j(t + 1) ≤ x− vij(t + 1)− Uj(t + 1)}

=
∏︂

j∈Nt+1

Bj(x− vij(t + 1)− Uj(t + 1), t + 1)

=
∏︂

j∈Nt+1

[F (x− vij(t + 1)− Uj(t + 1)]lj(t+1),

i ∈ Nt, t = 0, ..., T − 1. (4.37)

Moreover, note that it is possible to fix the origin for the utility scale arbitrarily,
i.e., the choice probabilities are unaffected by a shift in the utility scale, and any
additive constant to the utilities can be ignored. Lets this constant be as the root
al of the equation

1− F (al|l) = 1/l, (4.38)
where l is the total number of scenarios of the decision process.

By replacing ṽi(t) with ṽi(t)− al in (4.37) one has

Gi(x, t|l) =
∏︂

j∈Nt+1

[F (x− vij(t + 1)− Uj(t + 1) + al)|l]lj(t+1), (4.39)

where Gi(x, t|l) is used to underline the dependency of Gi(x, t) from l.
Let us consider the ratio

αj(t) = lj(t)/l, j ∈ Nt, t = 1, ..., T, (4.40)

and assume that this ratio remains constant for each pair (j, t) while the values of
l = 1,2, ... do increase.

Then, equation (4.39) can be written as

Gi(x, t|l) =
∏︂

j∈Nt+1

[F (x− vij(t + 1)− Uj(t + 1) + al)|l]αj(t+1)l. (4.41)

Now, let us assume that l is large enough to use liml→+∞ Gi(x, t|l) as an approx-
imation of Gi(x, t). Then, the following theorem holds.

Theorem 3. Under condition (4.36), the probability distribution Gi(x, t) becomes
the following Gumbel function

Gi(x, t) = lim
l→+∞

Gi(x, t|l) = exp
(︂
−Ai(t)e−βx

)︂
, i ∈ Nt, t = 0, ..., T − 1, (4.42)
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where

Ai(t) =
∑︂

j∈Nt+1

αj(t + 1)eβ[vij(t+1)+Uj(t+1)], i ∈ Nt, t = 0, ..., T − 1, (4.43)

is the accessibility in the sense of Hansen [89] to the overall set of alternatives at
stage(t+1).

Proof. By (4.39) and (4.40) one has

Gi(x, t) = lim
l→+∞

Gi(x, t|l) = (4.44)

lim
l→+∞

∏︂
j∈Nt+1

[F (x− vij(t + 1)− Uj(t + 1) + al|l)]αj(t+1)l =
∏︂

j∈Nt+1

lim
l→+∞

[F (x− vij(t + 1)− Uj(t + 1) + al|l)]αj(t+1)l .

As liml→+∞ 1/l = 0, from (4.38) we have

lim
l→+∞

1− F (al|l) = 0, (4.45)

then liml→+∞ F (al|l) = 1, i.e. liml→+∞ al|l = +∞.
From (4.36), where al|l plays the role of y, one obtains

lim
l→+∞

1− F (x− vij(t + 1)− Uj(t + 1) + al|l)
1− F (al|l)

= e−β(x−vij(t+1)−Uj(t+1)). (4.46)

By (4.46) and (4.38) one gets

lim
l→+∞

F (x− vij(t + 1)− Uj(t + 1) + al|l) = (4.47)

lim
l→+∞

(︂
1− [1− F (al|l)]e−β(x−vij(t+1)−Uj(t+1))

)︂
=

lim
l→+∞

(︄
1− e−β(x−vij(t+1)−Uj(t+1))

l

)︄
.

By substituting, after multiplying numerator and denominator by αj(t + 1), (4.48)
into (4.45) one has

Gi(x, t) =
∏︂

j∈Nt+1

lim
l→+∞

[︄
1− αj(t + 1)e−β(x−vij(t+1)−Uj(t+1))

αj(t + 1)l

]︄αj(t+1)l

, (4.48)

and, by reminding that liml→+∞(1 + x
l
)l = ex and by using (4.43), (4.48) becomes

Gi(x, t) =
∏︂

j∈Nt+1

exp
(︂
−αj(t + 1)e−β(x−vij(t+1)−Uj(t+1))

)︂
= exp

(︂
−Ai(t)e−βx

)︂
.

(4.49)
The probability distribution derived in (4.49) is a Gumbel distribution.
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Having now an explicit form for Gi(x, t), we can calculate IEθ̃ [ṽi(t)] in (4.33) as
follows

Ui(t) = IEθ̃ [ṽi(t)] =
∫︂ +∞

−∞
xdGi(x, t) = (4.50)∫︂ +∞

−∞
x exp

(︂
−Ai(t)e−βx

)︂
Ai(t)e−βxβdx, i ∈ Nt, t = 0, ..., T − 1.

By substituting z = Ai(t)e−βx, one gets

Ui(t) = −1/β
∫︂ +∞

0
ln(z/Ai(t))e−zdz =

= −1/β
∫︂ +∞

0
e−z ln zdz + 1/β ln Ai(t)

∫︂ +∞

0
e−zdz =

= γ/β + 1/β ln Ai(t) =
= 1/β(ln Ai(t) + γ), (4.51)

where γ = −
∫︁+∞

0 e−z ln z dz ≃ 0.5772 is the Euler constant.
Because of (4.51), the optimal utility U of the whole multi-stage stochastic

decision process in (4.34) becomes

U = 1/β ln A0(0) + γ/β. (4.52)

4.5.2 A Nested Multinomial Logit model for the choice
probability

As mentioned in the previous section, where the decision-maker has only a static
set of alternatives to choose from (i.e., when there is only one stage of the decision
making process), it is well-known that the choice probability reduces to a Multi-
nomial Logit (MNL) model under the assumption that the random term utilities
are independent and identically distributed (i.i.d.) and the common distribution
has an asymptotically negative exponential behavior in its tail as well as having a
large number of scenarios. Tadei et al. [202] has recently shown that the choice
probability pij(t + 1) for decision-maker i at stage t to select alternative j at stage
t + 1 can be determined as follows. The decision-maker will choose alternative j
at stage t + 1 if and only if alternative j will have the largest utility among all the
alternatives at that stage, i.e.,

vij(t + 1) + θ̃j(t + 1) + Uj(t + 1) ≥ vik(t + 1) + θ̃k(t + 1) + Uk(t + 1), (4.53)
i ∈ Nt, j, k ∈ Nt+1, k /= j, t = 0, ..., T − 1.

Then,

pij(t + 1) = Pr{vij(t + 1) + θ̃j(t + 1) + Uj(t + 1) (4.54)
≥ vik(t + 1) + θ̃k(t + 1) + Uk(t + 1)},
∀i ∈ Nt, j /= k ∈ Nt+1, t = 0, ..., T − 1,
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and

Pr{vij(t + 1) + θ̃j(t + 1) + Uj(t + 1) ≥ (4.55)
max

k∈Nt+1; k /=j
vik(t + 1) + θ̃k(t + 1) + Uk(t + 1)},

∀i ∈ Nt, j ∈ Nt+1, t = 0, ..., T − 1.

By using (4.28) one gets

Pr{vij(t + 1) + θ̃j(t + 1) + Uj(t + 1) ≤ x} (4.56)
= Pr{θ̃j(t + 1) ≤ x− vij(t + 1)− Uj(t + 1)}
= Bj[x− vij(t + 1)− Uj(t + 1), t + 1]),

and, since {θ̃k(t), k ∈ Nt+1, t = 0, ..., T − 1} are independent,

Pr{ max
k∈Nt+1; k /=j

vik(t + 1) + θ̃k(t + 1) + Uk(t + 1) ≤ x, i ∈ Nt, t = 0, ..., T − 1}

=
∏︂

k∈Nt+1; k /=j

Bk[x− vik(t + 1)− Uk(t + 1), t + 1]. (4.57)

Now, from the Total Probability Theorem, equation (4.56) becomes

pij(t + 1) =
∫︂ +∞

−∞

⎡⎣ ∏︂
k∈Nt+1; k /=j

Bk[x− vik(t + 1)− Uk(t + 1), t + 1]
⎤⎦

dBj[x− vij(t + 1)− Uj(t + 1), t + 1],
i ∈ Nt, j ∈ Nt+1, t = 0, ..., T − 1, (4.58)

and the following theorem holds.
Theorem 4. The choice probability pij(t + 1) for decision maker i at stage t to
select alternative j at stage t + 1 is given by

pij(t + 1) = lj(t + 1)eβ[vij(t+1)+Uj(t+1)]∑︁
k∈Nt+1 lk(t + 1)eβ[vik(t+1)+Uk(t+1)] , i ∈ Nt, j ∈ Nt+1, t = 0, ..., T − 1,

(4.59)
which is a Nested Multinomial Logit (NMNL) model.
Proof. By using (4.29) and (4.40), from (4.58) one obtains

pij(t + 1) =
∫︂ +∞

−∞

∏︂
k∈Nt+1; k /=j

{F [x− vik(t + 1)− Uk(t + 1)]}αk(t+1)l

d{F [x− vij(t + 1)− Uj(t + 1)]}αj(t+1)l. (4.60)

As per Theorem 3, by comparing (4.45) and (4.49), one can show that when
l −→ +∞

{F [x− vij(t + 1)− Uj(t + 1)]}αj(t+1)l −→ exp
[︂
−αj(t + 1)e−β(x−vij(t+1)−Uj(t+1)−al)

]︂
.

(4.61)
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Finally, by setting γ = eβal and z = e−βx, by (4.43) and (4.61), equation (4.60)
becomes

pij(t + 1) =

=
∫︂ +∞

−∞

∏︂
k∈Nt+1; k /=j

e[−αk(t+1)e−β[x−vik(t+1)−Uk(t+1)−al]]de[−αj(t+1)e−β[x−vij (t+1)−Uj (t+1)−al]] =

=
∫︂ +∞

−∞

∏︂
k∈Nt+1; k /=j

e[−γαk(t+1)e−β[x−vik(t+1)−Uk(t+1)]]de[−γαj(t+1)e−β[x−vij (t+1)−Uj (t+1)]] =

= γαj(t + 1)eβ[vij(t+1)+Uj(t+1)]
∫︂ +∞

−∞
βe−βxexp[−γAi(t)e−βx]dx =

= γαj(t + 1)eβ[vij(t+1)+Uj(t+1)]
∫︂ +∞

0
e−γAi(t)zdz =

= αj(t + 1)eβ[vij(t+1)+Uj(t+1)]

Ai(t)
=

= lj(t + 1)eβ[vij(t+1)+Uj(t+1)]∑︁
k∈Nt+1 lk(t + 1)eβ[vik(t+1)+Uk(t+1)] , i ∈ Nt, j ∈ Nt+1, t = 0, . . . , T − 1.

4.6 Deterministic approximation for a minimiza-
tion problem

The deterministic approximation approach computes the total expected value of
the shortest path on the multi-stage decision-making process for the minimization
problem. The procedure is similar to what was mentioned in the previous sections.
However, all the utilities, namely, the deterministic ones vt

ij, the random oscillations
θ̃j(t), and the expected utility U t

j must be interpreted as costs. This means that
U becomes the expected total cost of the decision process. Also, "max" must be
substituted by "min" in all the related equations.

In the case of the minimization problem, the theoretical results can be obtained
by assuming that F (x) represents the survival function of the probability distribu-
tion of θ̃

l

j(k), i.e.,

F (x) = Pr{θ̃l

j(t) > x}, ∀j ∈ Nt, l ∈ Lj(t), t = 0, ..., T, (4.62)

and it has an asymptotic exponential behavior in its left tail, i.e.,

∃β > 0such that lim
y→−∞

1− F (x + y)
1− F (y) = eβx. (4.63)
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Considering the above assumptions, the final equations in Theorem 3, but in the
minimization approach, are

Gi(x, t) = lim
l→+∞

Gi(x, t|l) = exp
(︂
−Ai(t)eβx

)︂
, i ∈ Nt, t = 0, ..., T − 1, (4.64)

where the accessibility measure Ai(t) and expected cost of alternative i at stage t
are, respectively, computed as

Ai(t) =
∑︂

j∈Nt+1

αj(t + 1)e−β[vij(t+1)+Uj(t+1)], i ∈ Nt, t = 0, ..., T − 1, (4.65)

and
Ui(t) = −1/β(ln Ai(t) + γ), i ∈ Nt, t = 0, ..., T − 1. (4.66)

So, the minimum total cost can be approximated by

U = −1/β ln A0(0)− γ/β. (4.67)

Moreover, the Nested Multinomial Logit model for modeling the choice proba-
bility in the cost minimization problem is

pij(t + 1) = lj(t + 1)e−β[vij(t+1)+Uj(t+1)]∑︁
k∈Nt+1 lk(t + 1)e−β[vik(t+1)+Uk(t+1)] , i ∈ Nt, j ∈ Nt+1, t = 0, ..., T − 1.

(4.68)

4.7 Summary
In this chapter, some background information and the deterministic approxima-

tion approach for both static and multi-stage Random Utilities Models proposed
by Tadei et al. [202], are represented. For the static case, the related literature that
contains the papers have applied the deterministic approximation approach in deal-
ing with various applications. Moreover, the DA approach for multi-stage RUMs is
derived with the main focus on the maximization problem. For the minimization
problems, the assumptions and the final theoretical results are presented. In addi-
tion, the choice probability formulated as the Nested Multinomial Logit model is
provided for both maximization and minimization multi-stage problems.
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Chapter 5

Optimal paths in multi-stage
stochastic decision networks

5.1 Introduction
Finding an optimal path is one of the most fundamental problems on networks

with broad applications in various fields like computer science, robotics, operations
research, and transportation planning. This problem can be interpreted as a multi-
stage decision-making process where decisions are taken step by step to achieve
an optimal sequence of choices over stages eventually. Most of the operations
management areas such as logistics, routing, scheduling, project management, and
finance face concrete settings that lead to finding an optimal sequence (path) of
decisions over a multi-stage structure. Depending on the applications, the concept
of stage may represent different discretization of the decision-making process and
not necessarily a discretization of the time horizon.

In these problems, the choice utility at each stage is affected by the subsequent
stages’ utilities associated with the selected choices. In this sense, the decision
process cannot be decomposed into distinct stages. So, the process finally leads to
an optimal path made by the choices selected stage by stage in a sequential fashion.
The idea of using a sequential decision-making model to describe a path has been
around for quite some time (see, e.g., [4], [18], and [72]).

Depending on the application, the objective function can be expressed in terms
of maximization of utilities (profits) or minimization of costs, which in turn may
lead to a search for the most profitable or the less-costly path on a network, respec-
tively. The most profitable path can be seen as the longest path when the arcs are
associated with the utilities, while the less-costly path corresponds to the shortest
path. In this chapter, we mainly provide a detailed approach to the maximization
problem.

When all parameters of the problem are deterministically known a priori, finding
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optimal paths is an easy problem to solve in general. However, in most real-
life applications, parameters are highly affected by uncertainty, and there might
be circumstances in which parameters are being changed dynamically over the
entire decision horizon. It is easy to understand that, in those cases, ignoring the
parameter variability and uncertainty may lead to inferior or, even worse, simply
wrong decisions. It is also well-known that explicitly addressing uncertainty in an
optimization problem generally increases the decision-making process’s complexity
and poses significant computational challenges. Therefore, it always makes sense
to see whether it is possible to incorporate stochasticity in an approximated way,
converting the stochastic model into a deterministic one and, if so, how accurate
this approximation is.

This chapter defines the optimal path problem as a multi-stage stochastic deci-
sion process where the choice utilities are varying over stages and are also assumed
to be stochastic variables with an unknown probability distribution.

This research provides the first application of the multi-stage dynamic stochastic
decision process approach proposed by Tadei et al. [202], which is somehow con-
sistent with a dynamic programming problem to determine the total utility of the
optimal path. In this approach, the total utility is assumed to be stage additive,
and each choice utility is the sum of three components. The first one represents a
deterministic stage-dependent term of utility. The second part is a stochastic oscil-
lation with unknown probability distribution. The third one is the expected utility
of the selected choices of future stages (value function). This definition of utility
is obtained by looking at the Bellman equation. In such a way, the decision-maker
chooses a choice (make an action) given the current state in a stochastic process
with the Markov property. So, the decisions become nested over the entire stages.
It should be noted that a deterministic environment of decision making is assumed,
such that a given state and action will result in a new state deterministically in the
next stage.

For example, in routing problems, the deterministic utility component (or cost
in this case) can be associated with a travel time between each pair of nodes,
which changes over periods (stages). This value can be deterministically changed
over various time stages due to different levels of traffic congestion. Also, we must
consider stochastic utility oscillations of the travel time due to several factors like
driving style, moving targets, or mobile obstacles in different periods. Finally, the
selection of the next node on the network is affected by the expected travel time
from that node on, making the random travel time at each stage be affected by the
future alternatives.

This chapter mainly focuses on (i) providing the first concrete application of
the deterministic asymptotic approximation proposed by Tadei et al. [202]. This
approximation is used to determine the total utility of an optimal longest path over
a network with a multi-stage structure. Its accuracy is tested versus benchmarks
obtained by optimally solving the expected value problem over a great number of
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different instances; (ii) deriving path solutions heuristically using a Nested Multino-
mial Logit model for the choice probability and investigates its quality; (iii) giving
a way to calibrate a parameter inside the deterministic approximation approach,
which is critical for its accuracy.

This chapter is organized as follows. In Section 5.2, a literature review of rel-
evant problems that can be approached by the proposed method is listed, while
Section 5.3 presents the mathematical model to find an optimal path in multi-stage
stochastic decision networks. In Section 5.4, we derive a deterministic asymptotic
approximation for the problem along the line of the approach proposed in [202]. In
Section 5.5, we propose a procedure for the calibration of a parameter that is crit-
ical for the accuracy of the approach and we compare the results coming from the
approximation with those of the expected value problem over several experiments.
Finally, a brief summary is given in Section 5.6.

5.2 Literature review
Most of the operational management problems under uncertainty involve sequen-

tial decision processes. A decision-making action is made stage by stage, taking
into account the state of the process and stage-dependent uncertain parameters.
This section includes different problems in the related literature (clustered into ap-
plication fields) that have been encapsulated in a multi-stage stochastic decision
structure. Often, but not necessarily always, stages represent different periods that
discretize the decision process.

It should be highlighted that some common optimization approaches in Op-
erations Research, like Stochastic or Dynamic Programming, generally provide a
conceptual framework based on multi-stage decision-making processes. Hence, all
these problems have the potential to be addressed by our proposed deterministic
asymptotic approximation approach since the inner problem they solve can be seen
as finding an optimal path of choices in a multi-stage stochastic decision process.

5.2.1 Routing problems
Various classes of routing problems such as the Vehicle Routing Problem (VRP),

Traveling Salesman Problem (TSP), and Travelling Purchaser Problem (TPP) have
been considered under the assumption that necessary information is being dynam-
ically changed at different stages of the horizon ([208], [159], [128]). Since time-
dependency arises naturally in various routing applications due to traffic congestion,
weather conditions, moving targets, or mobile obstacles, a huge body of research
has been conducted in this area. Interested readers may refer to the survey by [79]
for a comprehensive review of the works on different time-dependent routing prob-
lems and to [142] for a very good review on integrated transportation-inventory
models.
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A common feature of these problems is finding an optimal path or cycle, consider-
ing the variability of parameters like time, speed, and cost, which asks for a decision
process on a multi-stage network. For instance, [12] address a multi-period VRP in
which customers with due dates exceeding the planning period may be postponed
by paying a cost. The objective of the problem is to find vehicle routes for each
day (period) such that the overall cost of the distribution, including transportation
costs, inventory costs, and penalty costs for postponed service, is minimized. [220]
consider the dynamic multi-period VRP, which deals with the distribution of or-
ders from a depot to a set of customers over a multi-period time horizon. Customer
orders and their feasible service periods are dynamically revealed over time. The
goal is to minimize the total travel cost and customer waiting by balancing the
daily workload over the planning horizon. Other studies on dynamic multi-period
routing problems can be found in [11], [115] and [5].

5.2.2 Network design
Decisions in network design problems (associated with strategic, tactical, and op-

erational levels) concern with complex inter-relationships between suppliers, plants,
distribution centers, customer zones, location, capacity, inventory, and financial de-
cisions. In the past decades, a huge body of research has been conducted in various
classes of logistics network design. Particular attention has been devoted to stochas-
ticity and uncertainty, which lead to considering multi-period stochastic frameworks
([147], [152]). [178] and [53] develop capacitated multi-stage multi-product supply-
chain models for reverse logistics operations. [233] propose a multi-stage stochastic
model to deal with the design and planning problem of multi-period multi-product
closed loop supply-chains with both uncertain supply and demand. Other multi-
echelon similar models in closed-loop supply-chains can be found in [190] and [149].
A comprehensive review of studies in supply-chain network design under uncer-
tainty is provided by [85].

5.2.3 Scheduling
Scheduling problems generally focus on allocating resources to different jobs to

find an optimal sequence of jobs with minimum cost. In practice, parameters such
as task processing times ([76]), availability of resources ([90]), as well as demand
([148]) and prices ([34], [141]) can all be subject to considerable changes over the
horizon of scheduling decision. As an example, the uncertainty of job processing
times may stem from different possible sources such as learning effect ([41], [109]),
deterioration functions ([94], [217]), and resource allocation ([219], [118]). Consid-
ering variations in these parameters, scheduling problems can be converted into
a multi-stage decision process where the decision on allocation is taken at each
distinct stage.
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5.2.4 Financial planning
Financial optimization, involving asset allocation and risk management, is one

of the most attractive areas in decision-making under uncertainty. The problem
determines how an investor should allocate funds among possible investment choices
taking into account the optimal trade-off between return and risk. A comprehensive
review of the approaches developed to address the problem is provided by [103].
Investors deal with uncertainty in different financial parameters such as return,
risk, and turnover rates in the real world. Moreover, to construct a more realistic
model, it is often necessary to investigate a multi-period optimization model (as in
[20] and [82]). Therefore our decision process structure can be considered.

5.2.5 Project management
As already mentioned, project management problems often deal with the search

of optimal paths, and, in real applications, parameters are affected by uncertainty.
They may depend on the progress of the project itself. In these problems, a set of
tasks with a given duration must be performed to complete a project as soon as
possible (i.e., to minimize its make-span). Tasks can be represented as nodes of a
network that is clustered into ranks, according to the precedence constraints be-
tween tasks [101]. The well-known Critical Path Method can be applied to this lay-
ered graph to obtain the most critical sequence of decisions that affect the project’s
completion time. It is easy to see that, in this setting, ranks are the stages of
the problem, tasks are the different alternatives for each stage, and a critical path
finding resorts to find the longest path linking decisions throughout the stages.

5.3 Longest path problem formulation
This section provides a formal description of the decision process at hand and its

mathematical formulation as an optimal path problem under uncertainty. As men-
tioned before, the formulation proposed here is suitable for both the maximization
approach (longest/most-profitable path) and the minimization approach (shortest
path). Here, we will consider the maximization approach in detail.

5.3.1 Problem setting and notation
To achieve a more realistic representation of optimal path problems, we con-

sider a multi-stage stochastic decision network. An optimal path is created by
sequentially selecting nodes throughout the stages. Since utilities associated with
each node are affected by uncertainty, we can interpret the decision process as a
multi-stage Random Utility Model. At each stage, the decision-maker faces a set of
alternatives to choose from in the next stage. According to their similarities, these
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alternatives are grouped into clusters, which are represented by the nodes. Each
node is characterized by a deterministic utility of choosing the next stage nodes
(the deterministic arc weight) and the expected utility on the rest of the decision
process (future stages). Moreover, inside each node, several alternatives are associ-
ated with a random utility oscillation that depends on their own dispersion in the
cluster and the incomplete knowledge of the decision-maker.

Given the above interpretation, the deterministic approximation approach pro-
posed by [202] described in the previous chapter can be applied to this problem.
Please note that, in that work, the authors called “mutually exclusive alternatives”
the nodes of our problem, while our different alternatives inside each node were
called ”realizations”.

More precisely, let us introduce the following notation

• k = 0, . . . , K: stage;

• Nk = 1, . . . , nk: set of nodes at stage k = 0, . . . , K. Note that the set N0 at
the initial stage of the decision process contains only a singleton node 0, which
can be seen as the decision maker of the process, and therefore it does not
contains any alternative;

• N = ⋃︁K
k=1 Nk: the entire set of nodes in the network;

• Lj(k): set of alternatives inside node j ∈ Nk, k = 1, . . . , K;

• lj(k) = |Lj(k)|: number of alternatives inside node j ∈ Nk, k = 1, . . . , K;

• L(k) = ⋃︁
j∈Nk

Lj(k): total set of alternatives at stage k, k = 1, . . . , K;

• l(k) = |L(k)|: number of alternatives at stage k, k = 1, . . . , K;

• L = ⋃︁K
k=1

⋃︁
j∈Nk

Lj(k): total set of alternatives of the decision process

• wij(k): deterministic utility of node j ∈ Nk when it is reached from node
i ∈ Nk−1, k = 1, . . . , K;

• θ̃
l

j(k): random oscillation over the deterministic utility associated with alter-
native l ∈ Lj(k) inside node j ∈ Nk, k = 1, . . . , K;

• Wj(k): expected utility of node j ∈ Nk, k = 0, . . . , K − 1.

Then, the general structure of the considered multi-stage stochastic decision process
can be represented as a network shown in Figure 5.1, where nodes are layered in
stages and arcs connecting them have weights corresponding to the deterministic
utilities wij(k). Note that node j at stage k is zoomed-in to show the existence of
several alternatives associated with utilities within a certain radius of stochasticity.
Moreover, since each alternative l has a utility affected not only by its dispersion in
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Figure 5.1: Illustration of a multi-stage stochastic decision process.

the node j but also by the incomplete knowledge of the decision-maker, a further
oscillation θ̃

l

j(k) can be considered for each alternative l inside node j at stage k.
Finally, expected utilities of the nodes in future stages Wj(k) are represented as
large white arrows at node j.

5.3.2 Toward a mathematical formulation
Let w̃ij(k) be the random utility of node j ∈ Nk when it is reached from node

i ∈ Nk−1, k = 1, . . . , K. Since we assume an efficiency-based process, the decision-
maker would choose, among the different alternatives l ∈ Lj(k), the one which
maximizes the random choice utility. In other words, it is assumed that the deci-
sion maker has a totally optimistic vision of the future. Not knowing the alterna-
tives (random utility oscillations), he assumes that he will gain benefit as much as
possible, i.e.,

w̃ij(k) = max
l∈Lj(k)

(wij(k) + θ̃
l

j(k) + Wj(k)) = wij(k) + max
l∈Lj(k)

θ̃
l

j(k) + Wj(k), (5.1)

i ∈ Nk−1, j ∈ Nk, k = 1, . . . , K.

Now, by defining the maximum oscillation over the alternatives inside node j at
stage k

θ̃j(k) = max
l∈Lj(k)

θ̃
l

j(k), j ∈ Nk, k = 1, . . . , K, (5.2)

one obtains

w̃ij(k) = wij(k) + θ̃j(k) + Wj(k), i ∈ Nk−1, j ∈ Nk, k = 1, . . . , K, (5.3)
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where the expected utility of future nodes given stage k

Wi(k) =
{︄

IEθ̃

[︂
maxj∈Nk+1 w̃ij(k + 1)

]︂
, i ∈ Nk, k = 0, ..., K − 1

0, k = K
. (5.4)

Now by defining

w̃i(k) = max
j∈Nk+1

(w̃ij(k + 1)), i ∈ Nk, k = 0, . . . , K − 1, (5.5)

equation (5.4) becomes

Wi(k) =
{︄

IEθ̃[w̃i(k)], i ∈ Nk, k = 0, ..., K − 1
0, k = K

. (5.6)

The recursive formula (5.3) is interpreted as the Bellman equation. It shows
that the random utility of node j ∈ Nk, when it is reached from i ∈ Nk−1, is
composed of the instantaneous utility, which is the sum of the deterministic utility
wij(k) and the random utility oscillation θ̃j(k), and an expected utility of the future
selected nodes Wj(k). In such a way, the random utilities w̃ij(k) become nested over
stages. In the terminology of Dynamic Programming, node i ∈ Nk−1 is a state, and
selecting node j ∈ Nk is a potential action state, i already chosen at the previous
stage. At each stage, a node is chosen given the current state in a stochastic
process with the Markov property. In our setting the value function is defined
by W (k), which is computed in (5.6) as a Bellman equation ([23]). It should be
noted that, differently from other paradigms for modeling multi-stage optimization
problems under uncertainty (e.g., Stochastic Programming or Stochastic Dynamic
Programming), in our case, we assume that the uncertainty of random oscillations
is not revealed over the process. Such a recursive formula allows determining the
total utility of an optimal path without identifying the path (i.e., the sequence of
decisions) itself.

Because of the nested structure of the decision process, the maximum expected
total utility of the whole multi-stage stochastic decision process would be

W = W0(0) = Eθ̃[max
j∈N1

w̃0j(1)] = Eθ̃[w̃0(0)]. (5.7)

Therefore, the optimal longest path problem in a multi-stage stochastic decision
network can be formulated as follows

W = Eθ̃[max
j∈N1

w̃0j(1)x1
0j], (5.8)

subject to ∑︂
i∈Nk−1

xk
ih −

∑︂
j∈Nk+1

xk+1
hj = 0 h ∈ Nk, k = 1, . . . , K − 1, (5.9)
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∑︂
i∈Nk−1

∑︂
j∈Nk

xk
ij = 1 k = 1, . . . , K, (5.10)

xk
ij ∈ {0,1} i ∈ Nk−1, j ∈ Nk, k = 1, . . . , K, (5.11)

where xk
ij are Boolean variables taking value 1 if node j is selected at stage k

after node i ∈ Nk−1, k = 1, . . . , K, and 0 otherwise. The objective function (5.8)
expresses the expected value of the maximum total utility of the whole multi-stage
stochastic decision process. Please note that all the other variables xk

ij are embedded
into the variables x1

0j of the objective function. Constraint (5.9) ensure that the
computed result is indeed a path between a source and a designated destination
passing through stages. Constraint (5.10) indicates that only one decision is taken
at each stage (choosing the next node). Finally, binary conditions on the variables
are stated in (5.11).

5.4 Deterministic approximation
According to the model formulation above, in Section 5.4.1 we will derive in

detail a deterministic approximation for the longest/most-profitable path value
(maximization approach). In Section 5.4.2, we provide a way to derive a feasible
solution for the optimization perspective. In Section 5.4.3, we briefly discuss the
large applicability of the approximation approach.

5.4.1 Expected value of the longest path problem in maxi-
mization approach

Since we want to provide an approximation of the maximum total utility, let us
first consider just the objective function (5.8). In that case, i.e., without any path
constraint involved, the problem has the following trivial solution

x1
0j =

⎧⎨⎩1, if w̃0j(0) = maxq∈N1 w̃0q(1)
0, otherwise

j ∈ N1. (5.12)

Now, by defining
w̃0(0) = max

q∈N1
w̃0q(1), (5.13)

and because of (5.12), the objective function (5.8) becomes

W = E{θ̃}[w̃0(0)]. (5.14)

Note that the value of W in (5.14) cannot be calculated analytically since we do
not have precise information on the distribution of the random oscillations θl

j(k).
Let us call the probability distribution of θl

j(k) as
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F (x) = Pr{θ̃l

j(k) ≤ x}, j ∈ Nk, l ∈ Lj(k), k = 1, . . . , K, (5.15)
and the cumulative right distribution function of w̃i(k) as

Gi(x, k) = Pr{w̃i(k) ≤ x}, i ∈ Nk, k = 0, ..., K − 1. (5.16)
Then, we can use the following theorem
Theorem 5. It is assumed that

• the random oscillations θl
j(k) are independent and identically distributed (i.i.d)

random variables;

• F (x) has an asymptotic negative exponential behavior in its right tail, i.e.,

∃β > 0 | lim
y→+∞

1− F (x + y)
1− F (y) = e−βx. (5.17)

Then,
Gi(x, k) = lim

|L|→+∞
Gi(x, k | |L|) = exp

(︂
−Ai(k)e−βx

)︂
, i ∈ Nk, k = 0, ..., K − 1,

(5.18)
where β > 0 is a parameter to be calibrated,

Ai(k) =
∑︂

j∈Nk+1

αj(k + 1)eβ[wij(k+1)+Wj(k+1)], i ∈ Nk, k = 0, ..., K − 1, (5.19)

is the accessibility in the sense of [89] to the overall set of nodes at stage (k+1),
and αij(k) is the ratio

αj(k) = lj(k)/l(k), j ∈ Nk, k = 1, ..., K, (5.20)
which remains constant for each pair (j, k) while the number of alternatives do
increase [202].

Theorem 5 states that the probability distribution Gi(x, k) can be asymptotically
approximated by a double-exponential (Gumbel) distribution. So, when the total
number of alternatives of the decision process becomes very large, the expected
value of the maximum total utility (5.14) can be approximated by

W = 1/β(ln A0(0) + γ), (5.21)
where γ ≃ 0.5772 is the Euler constant, and

A0(0) =
∑︂

j∈N1

αj(1)eβ[wij(1)+Wj(1)], (5.22)

is the accessibility to the set of nodes at stage 1. Note that the parameter β is
interpreted as the dispersion of preferences among the different nodes at each stage
under different realization of random oscillations. More precisely, this parameter
aims at capturing the diversity of all the available nodes and their alternatives in
each stage of decision making process.
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5.4.2 Finding a feasible solution
It is important to highlight that the expected utility calculated in (5.21) repre-

sents just an approximation of the expected value of the maximum total utility. As
already stated, the approximation is obtained by following the recursive formula in
(5.3) that somehow also embeds the creation of a sequence of nodes, one selected
at each stage. However, given the nature of the approximation, it is clear that the
above sequence of nodes could not satisfy the path constraints (5.9)–(5.11).

Therefore, creating a feasible solution for the problem (besides the approxima-
tion of its objective function) is still an open issue, which can be addressed in the
following way. Let us first recall a theorem, which holds under the same conditions
discussed for Theorem 5 in Section 5.4.1.

Theorem 6. The probability pij(k) for choosing node j at stage k after node i has
been selected at stage k − 1 is given by

pij(k) = lj(k)eβ[vij(k)+Wj(k)]∑︁
q∈Nk

lq(k)eβ[viq(k)+Wq(k)] , i ∈ Nk−1, j ∈ Nk, k = 1, ..., K, (5.23)

which represents a Nested Multinomial Logit model [202].

Theorem 6 defines a model for the continuous probabilities of the choices and
does not address the construction of a feasible path made by one single node per
stage. However, let us consider a graph in a multi-stage structure, where to each
arc (i, j) at stage k a weight equal to the probability pij(k) (as defined in (5.23)) is
assigned. By finding the longest path on that graph, an approximated optimal path
solution over stages can be then determined. The rationale behind this choice is to
look for the most probable sequence of nodes that satisfies constraints (5.9)-(5.11).
We will also discuss the quality of this approach through various experiments in
Section 5.5.

5.4.3 Applicability of the approximation
In this section, we want to highlight the quite large applicability of the proposed

approximation. Even if condition in (5.17) yet represents a mild assumption on the
shape of the distribution of the stochastic variables, [66] have recently proved that
Theorem 5 still holds when (5.17) is relaxed to the following condition

∃β > 0 | lim
|L(k)|→+∞

F (x + a|L(k)|)|L(k)| = exp−e−βx

, (5.24)

where F (x) is the probability distribution of θ̃j(k), i.e.,

F (x, k) = Pr{θ̃j(k) ≤ x}, j ∈ Nk, k = 1, . . . , K, (5.25)
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and a|L(k)| is chosen equal to the root of the equation

1− F (x) = 1
|L(k)| . (5.26)

Assumption (5.24) is equivalent to ask the unknown distribution of the random
oscillations θ̃ to belong to the domain of attraction of a Gumbel distribution. The
Gumbel domain of attraction describes distributions with light tails, i.e., probability
distributions whose tails decrease exponentially. This assumption enlarges the set of
distributions for which the deterministic approximation approach can be deployed
in practice. It can be shown that such assumption is satisfied by widely used
distributions such as the Normal, the Gumbel, the exponential, the Weibull, the
Logistic, the Laplace, the Lognormal, and any cumulative distribution in the form
1 − e−p(x), where p(x) is a positive polynomial function. Thus, this is a very mild
assumption and does not significantly restrict the deployment of the deterministic
approximation approach. It is important to notice that some empirical results
presented in [203], [66], and [173] have demonstrated the effectiveness of the DA
framework even when the distribution of random oscillations does not satisfy the
assumption (5.24) like the Uniform distribution.

5.5 Computational results
In this section, we present the computational experiments’ results to evaluate the

effectiveness of the deterministic approximation approach to finding the solution
and value of optimal path in stochastic multi-stage networks. The evaluation is
performed by considering the expected value problem, in which their expected
values replace the random variables, and comparing its optimum value with that
of the proposed approach. The deterministic approximation has been coded using
MATLAB version R2016b, while the expected value problem has been implemented
in GAMS 24.5.6. All the computational tests have been performed on an Intel(R)
Core(TM) Processor i5-6200U (CPU 2.30 GHz) with 16 GB RAM.

In Section 5.5.1, we describe the instances set generated as a testbed for our
assessment. The calibration of β parameter is presented in Section 5.5.2, while the
results of our computational experiment are described and commented in Section
6.5.4.

5.5.1 Instance sets
To evaluate the performance of the proposed approximation approach, we ran-

domly generated networks with |Nk| = {5, 10, 20, 50, 100} nodes per stage k =
1, . . . , K. Without loss of generality, we assume Nk = N, k = 1, . . . , K, which in-
dicates the nodes associated with each Nk represent the entire set of nodes for the
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decision process at hand. This means that we can consider the same set of nodes
at each decision stage and, to make sure to take into account all possible paths in
the network, the number of stages K will be equal to the number of nodes (which
is the same at each stage). In all the experiments, 100 alternatives for each node
j ∈ Nk, k = 1, . . . , K, have been considered, i.e., |Lj(k)| = 100.

The utility observations associated to the selection of alternative l inside node
j coming from node i, i ∈ Nk−1, j ∈ Nk, l ∈ Lj(k), k = 1, . . . , K, are generated
using the Uniform, Normal, and Gumbel distributions in the range [1, δ], with
δ = {50, 100, 150}. The parameter δ simply allows us to control the behavior
of the approximation against different magnitude of utilities. The deterministic
utility wij(k) is calculated as a mean value of the utility observations over the
alternatives. For each one of the possible 45 combinations of some nodes per stage
|Nk|, δ value, and the three distribution types (Uniform, Normal, and Gumbel),
we generated ten random instances, which results in 450 instances in total. Note
that, in generating observations using the Gumbel and Normal distributions, the
location parameter µ = δ/2 is used. For the Gumbel distribution, a proportional
scale parameter σ = 0.5µ is adopted. As suggested in [127], the scale factor has been
chosen experimentally so that 98% of the probability lies in the considered truncated
domain [1, δ] for each possible instance. Similarly, for the Normal distribution, the
standard deviation σ = δ/6 is set to give a 99% confidence interval.

Besides being very common in many practical applications, the three above dis-
tributions have been chosen to represent quite extreme cases of possible unknown
distributions of observations to test throughout our experiments. Theoretically,
the Gumbel distribution represents the best case to be approximated, whereas the
Uniform distribution does not even satisfy the assumptions needed to derive the
approximation. The Normal distribution is somehow between the two extremes,
satisfying assumption (5.24) but not satisfying (5.17). A final remark is necessary
to justify the Uniform distribution in our tests, for which the theoretical framework
does not hold. In fact, in practical applications, it is often the case that a set of ob-
served scenarios are available. Still, it is impossible to derive precise or even partial
knowledge in terms of their probability distribution. Therefore, the experiments
with the Uniform distribution can give us insights on whether the approach results
accurate and robust even against unknown distributed scenarios, which may not
satisfy our approximation assumptions.

5.5.2 Calibration of parameter β

The effectiveness of deterministic approximation is mainly dependent on an ap-
propriate value of the positive parameter β. This parameter describes the disper-
sion of preferences among the different nodes and different realization of random
oscillations at each stage of the decision-making process. Taking into account the
concept of the expected utility of node j at stage k, the parameter β is computed
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in a way that Wj(k) should be equal to the maximum utility that can be achieved
by choosing the next node and then an alternative inside it at stage k + 1. Since
depending on the current node and stage, the maximum possible utility in the next
stage is different. The specific parameter βik should be calculated for any node i at
any stage k, which allows us to model the uncertainty better. i.e.,

Wi(k) = 1/βik(lnAi(k) + γ) = wmax
i (k), i ∈ Nk, k = 0, . . . , K − 1. (5.27)

Here, wmax
i (k) represents, given node i at stage k, the maximum utility that can

be achieved by making decision at stage k + 1, i.e.,

wmax
i (k) = max

j∈Nk+1
(wij(k+1)+θ̄j(k+1)+Wj(k+1)), i ∈ Nk, k = 0, . . . , K−1, (5.28)

where θ̄j(k + 1) is the average value of random oscillation utilities over the alterna-
tives inside node j, i.e.,

θ̄j(k + 1) =
Lj(k+1)∑︂

l=1

θl
j(k + 1)
|Lj(k + 1)| , j ∈ Nk+1, k = 0, . . . , K − 1. (5.29)

In our case, since we take the deterministic term of utility wij(k) as the average
value of observations over alternatives, it is possible to collapse stages into a single
one (containing all the possible alternatives) and to find just one β parameter value
which works for the entire network (in line with Theorem 5). More precisely, let
us consider only one decision making stage which contains all nodes of the network
and assign to each of them a new utility weight w̄j, j ∈ N , computed as a mean
value of deterministic utility wij(k), i.e.,

w̄j =
K∑︂

k=1

∑︂
i∈Nk−1

wij(k)
K · |N |

, j ∈ N. (5.30)

Hence, the unique value of parameter β is calculated such that the expected util-
ity of the decision making process (i.e., choosing one of these nodes) equals the
maximum utility that can be achieved, i.e.,

1/β(ln(A0(0) + γ)) = wmax. (5.31)

The left hand side of Eq. (5.31) represents the expected utility W , A0(0) is the
accessibility to all the nodes with new weights, and wmax is the maximum utility
that can be achieved by choosing a node in a one-stage decision making process
and is computed as

wmax = max
j∈N

(w̄j + θ̄j), (5.32)

in which θ̄j is the average value of random oscillation utilities over alternatives
inside node j in all stages, i.e.,

θ̄j =
K∑︂

k=1

Lj(k)∑︂
l=1

θl
j(k)

K · |Lj(k)| , j ∈ N. (5.33)
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Please note that this calibration approach is somewhat general and can be used
with any available dataset. The experiments reported in Section 6.5.4 over ran-
domly generated instances will show good confidence in this calibration method.

5.5.3 Results of the computational experiments
In this section, we summarize and discuss the results obtained from our exper-

iments on all the instance sets generated as discussed in Section 5.5.1 and using
the β value calibrated as presented in Section 5.5.2. The results contain two main
distinct parts. The first one aims to assess the accuracy of the deterministic ap-
proximation of the maximum total utility W . In contrast, the second part evaluates
the quality of the optimal path solutions derived by calculating an optimal path of
a probability-weighted network as described in Section 5.4.2.

For maximum total utility and path solutions, the results of the approxima-
tion approach are compared with the Expected Value Problem (EVP) considered
a benchmark. In the expected value problem, each arc’s weight is considered the
expected value over observations. Since the experiments are performed for the
maximization approach, the benchmark path solution is derived by finding the
longest/most profitable path in the network. The performance, in terms of per-
centage gap, is evaluated through the calculation of the Relative Percentage Error
(RPE) as follows

RPE := W − optEV P

optEV P

× 100,

where W and optEV P represent the optimum of the deterministic approximation
(see Equation (5.21)) and the optimum of the expected value problem, respectively.

Tables 5.1, 5.2, and 5.3 present the RPE associated with the instances generated
by using the Uniform, Normal, and Gumbel distributions, respectively. Each entry
of these tables reports statistics of the RPE over ten randomly generated instances,
given a specific combination of values of |Nk| and δ. In particular, the tables show
the average, the best, the worst RPE, and its standard deviation (columns RPEavg,
RPEbest, RPEworst, and RPEσ, respectively).

The first thing that should be noticed is that, as expected, the average RPE
increase as the size of the network grows for the three distributions with the worst
case of 1.30, 1.40, and 2.45 in the 100-node network (average over δ values) for
the Gumbel, Normal and Uniform distributions, respectively. Other trends can
be noticed by looking at the average RPE for various values of δ. It seems that
smaller intervals give better approximation results for the three distributions and
across all the sizes. It means the approximation approach behaves better with
smaller dispersion and magnitude of the realizations. The best RPEs also follow the
same described behavior with little discontinuities, while the worst ones have more
fluctuations for all the combinations of different network sizes and distributions.
Considering the standard deviation RPEs, it can be seen that the values are very
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Table 5.1: RPE of the maximum total utility between the deterministic approxi-
mation and expected value problem for the Uniform distribution.

Instance RPE(%)
|Nk| δ RPEavg RPEbest RPEworst RPEσ

5 50 0.97 0.02 2.44 0.75
5 100 1.25 0.18 2.25 0.67
5 150 1.30 0.14 2.30 0.79

Average: 1.17 0.12 2.33 0.74
10 50 1.33 0.21 2.18 0.68
10 100 1.38 0.14 2.15 0.62
10 150 1.40 0.35 2.69 0.68

Average: 1.37 0.24 2.34 0.66
20 50 1.37 0.54 2.20 0.49
20 100 1.41 0.74 2.07 0.46
20 150 1.47 0.86 2.23 0.40

Average: 1.41 0.71 2.17 0.45
50 50 1.99 1.44 2.32 0.26
50 100 2.06 1.56 2.71 0.37
50 150 2.16 1.54 2.56 0.30

Average: 2.07 1.51 2.53 0.31
100 50 2.41 2.09 2.74 0.19
100 100 2.43 2.19 2.77 0.19
100 150 2.52 2.22 2.80 0.21

Average: 2.45 2.17 2.77 0.20
Global Average: 1.69 0.95 2.42 0.47

similar together, i.e., less than 0.5% in the global average, which denotes good
stability in terms of variance.

Comparing the results for the three distributions highlights better performance,
as expected, of the Normal and Gumbel distribution concerning the Uniform distri-
bution for all considered sizes and dispersions in terms of the average, best, worst,
and standard deviation RPE.

We now want to assess the quality of the path solutions obtained using the
Nested Multinomial Logit (NML) model explained in Section 5.4.2. We again use
as a performance indicator the RPE, modified as follows

RPE := optNML − optEV P

optEV P

× 100,

where optNML represents the value of the feasible solution obtained through the
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Table 5.2: RPE of the maximum total utility between the deterministic approxi-
mation and expected value problem for the Normal distribution.

Instance RPE(%)
|Nk| δ RPEavg RPEbest RPEworst RPEσ

5 50 0.57 0.11 1.36 0.41
5 100 0.69 0.05 1.78 0.53
5 150 0.79 0.25 2.00 0.61

Average: 0.69 0.14 1.71 0.52
10 50 0.54 0.02 1.31 0.50
10 100 0.60 0.14 1.01 0.25
10 150 0.68 0.34 1.03 0.24

Average: 0.61 0.16 1.12 0.33
20 50 0.65 0.14 1.14 0.29
20 100 0.92 0.20 1.53 0.40
20 150 0.99 0.42 1.70 0.37

Average: 0.85 0.25 1.45 0.35
50 50 1.01 0.84 1.29 0.14
50 100 1.29 0.83 1.78 0.30
50 150 1.34 0.88 1.72 0.25

Average: 1.21 0.85 1.60 0.23
100 50 1.38 1.02 1.59 0.21
100 100 1.39 1.14 1.72 0.22
100 150 1.44 1.15 1.81 0.25

Average: 1.40 1.10 1.70 0.22
Global Average: 0.95 0.50 1.51 0.33

application of the NML model. Table 5.4 reports RPE averages and standard
deviations for the three distributions.

The results show promising performance of the Nested Multinomial Logit model
for deriving optimal path solutions in terms of average and standard deviation RPE,
indicating a good performance and overall robustness of the approach. As it can
be seen, the quality of the path solution is not dependent on the network size and
the distribution.

Finally, despite the quality obtained by the deterministic approximation ap-
proach in terms of accuracy, we also want to point out its efficiency. The compu-
tational times for deriving the maximum total utility (tDA) and the path solution
(tpath) are reported in Table 5.5. Since we have noticed that the computational
times were somehow independent of the distribution used and the range of ran-
domly generated utility weights, we report average computational times for the
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Table 5.3: RPE of the maximum total utility between the deterministic approxi-
mation and expected value problem for the Gumbel distribution.

Instance RPE(%)
|Nk| δ RPEavg RPEbest RPEworst RPEσ

5 50 0.43 0.08 1.06 0.36
5 100 0.48 0.13 1.30 0.35
5 150 0.70 0.03 1.55 0.55

Average: 0.53 0.08 1.30 0.42
10 50 0.62 0.01 1.45 0.44
10 100 0.76 0.09 1.63 0.42
10 150 0.79 0.33 1.68 0.43

Average: 0.72 0.14 1.59 0.43
20 50 0.68 0.18 1.33 0.39
20 100 0.79 0.40 1.24 0.26
20 150 0.86 0.31 1.27 0.31

Average: 0.77 0.29 1.28 0.32
50 50 0.98 0.06 1.85 0.66
50 100 1.01 0.67 1.35 0.19
50 150 1.13 0.88 1.40 0.19

Average: 1.04 0.54 1.53 0.35
100 50 1.22 0.95 1.46 0.15
100 100 1.33 1.05 1.60 0.17
100 150 1.36 1.20 1.58 0.13

Average: 1.30 1.07 1.55 0.15
Global Average: 0.87 0.42 1.45 0.33

various sizes of the network. First, note that finding the optimal path solutions
needs just slightly more time than the deterministic approximation calculation for
larger-size instances. Moreover, not surprisingly, the time increases as the size of
the network increases. The CPU time is in particular affected by the curse of
dimensionality due to the recursive formula in (5.3). However, considering the dif-
ficulty of solving the underlying problem under uncertainty for a suitable number
of scenarios, the approximation approach shows reasonably small CPU times. Few
seconds are needed for networks with up to 20 stages and 20 nodes per stage, while
about 10 minutes are needed for networks with up to 100 stages and 100 nodes
per stage. This gives the possibility to embed the approximation into the most
sophisticated optimization algorithms for multi-stage problems under uncertainty.
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Table 5.4: RPE of the optimal path between the approximation approach and
expected value problem for the Uniform, Normal and Gumbel distribution.

Instance Uniform distribution Normal distribution Gumbel distribution
|Nk| δ RPEavg RPEσ RPEavg RPEσ RPEavg RPEσ

5 50 0.13 0.09 0.05 0.08 0.06 0.10
5 100 0.05 0.09 0.06 0.12 0.05 0.03
5 150 0.08 0.06 0.06 0.11 0.07 0.06

Average: 0.09 0.08 0.06 0.10 0.06 0.06
10 50 0.12 0.04 0.05 0.12 0.06 0.06
10 100 0.07 0.07 0.03 0.04 0.05 0.10
10 150 0.11 0.12 0.04 0.03 0.04 0.05

Average: 0.10 0.08 0.04 0.06 0.05 0.07
20 50 0.04 0.02 0.05 0.07 0.06 0.10
20 100 0.08 0.07 0.03 0.04 0.04 0.04
20 150 0.05 0.06 0.04 0.05 0.03 0.02

Average: 0.05 0.05 0.04 0.05 0.05 0.06
50 50 0.05 0.05 0.04 0.07 0.05 0.07
50 100 0.04 0.03 0.05 0.05 0.03 0.04
50 150 0.04 0.05 0.05 0.06 0.04 0.05

Average: 0.04 0.04 0.05 0.06 0.04 0.05
100 50 0.06 0.04 0.04 0.04 0.04 0.04
100 100 0.04 0.03 0.03 0.03 0.05 0.04
100 150 0.05 0.03 0.04 0.03 0.03 0.03

Average: 0.05 0.03 0.03 0.03 0.04 0.04
Global Average: 0.06 0.05 0.04 0.06 0.04 0.05

Table 5.5: Computational time in seconds for calculating the deterministic approx-
imation and path solutions.

Nk tDA(s) tpath(s)
5 0.36 0.39

10 1.68 1.71
20 8.20 8.25
50 120 132

100 900 997
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5.6 Summary
This chapter has used a quite efficient and accurate approach to estimate the

value and structure of optimal paths in a multi-stage stochastic decision network.
In this network, decisions are made under uncertainty, and the oscillations of the
stochastic parameters follow an unknown probability distribution. The optimal
path is seen as a sequential decision making over stages, where the uncertain util-
ity of nodes at each stage is affected by both previous and next decisions. Using
some results from [202], we have determined a deterministic approximation for the
longest path value. Moreover, a feasible solution is obtained by heuristically us-
ing a Nested Multinomial Logit model, which gives the probability to choose each
node optimally. On many random generated networks, numerical tests have shown
accurate estimations concerning analogous results obtainable from solving the ex-
pected value problem. The performance of our deterministic approximation seems
particularly good as the size of networks increase, making the proposed approach
a valuable tool to support decision-making in stochastic multi-stage networks for
large and complex applications.
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Chapter 6

Stochastic single machine
scheduling problem as a
multi-stage dynamic random
decision process

6.1 Introduction
Single machine scheduling is a decision-making process that plays a critical role

in all manufacturing and service systems. This problem has been extensively inves-
tigated for a long time because of its practical importance in developing scheduling
theory in more complex job shops and integrated processes. Here, the machine can
be used for different jobs, but processing them depends on the configuration used.
In general, switching from one configuration to another one implies a so-called setup
time.

In machine scheduling problems, the setup times are considered either sequence-
independent or sequence-dependent. In the former case, the setup times are negli-
gible or assumed to be a part of job processing times, while in the latter case, the
setup times depend on the job currently being scheduled and the last scheduled
job. Sequence-dependent setup time between two different activities is encountered
in many industries such as the printing industry, paper industry, automotive in-
dustry, chemical processing, and plastic manufacturing industry. Dudek et al. [59]
reported that 70% of industrial activities include sequence-dependent setup times.

Another realistic aspect to consider is that the efficiency of workers or machines
increases depending on the time spent by the jobs or repetition of activities in many
manufacturing and service industries. Therefore, the actual processing time of a job
could be shorter if scheduled at the end of a queue. This phenomenon, known as
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learning effect, has been observed in various practical situations in several branches
of industry and for a variety of activities [227],[77].

Depending on the production system, learning effects can be based on position
or on the sum of processing times. In the former case, they depend only on the
number of jobs being processed, while in the latter case, they depend on the sum
of the processing times of the already processed jobs. In this chapter, the single
machine scheduling with position-dependent learning effects is considered.

Finally, it is important to notice that the manufacturing and service systems
operate under uncertainty in many realistic situations. The uncertain environment
stems from various random events, such as machine breakdown, job cancellation,
rush orders, and inaccurate expected jobs information. The majority of the liter-
ature on stochastic single machine scheduling mainly considers uncertain job pro-
cessing time. However, in some real-world situations, the setup times may also be
uncertain due to some random factors like crew skills, tools and setup crews, or
unexpected breakdown of fixtures and tools. Despite it is a common case in several
industries, we found only a few studies that consider stochastic sequence-dependent
setup times [6].

In this work, we focus on a scheduling problem on a single machine with con-
figurations that can perform all the jobs in various processing times. Each job has
a deterministic processing time affected by the job-dependent learning effect and
the selected machine configuration. The deterministic setup time of switching the
machine from a configuration mode to another is sequence-dependent. A random
variable associated with the job attributes, including processing time and setup
time between the machine configurations, is defined. The problem objective is to
determine the sequence of jobs and choose the configuration to process each job
such that the makespan is minimized. This measure (makespan) is proposed, one
of the most popular and critical objective functions for single machine scheduling
problems. Our proposed problem belongs to NP-hard class since the deterministic
single machine scheduling with sequence-dependent setup time is NP-hard [19].

This chapter addresses the proposed problem with three models, including two-
stage and multi-stage stochastic programming and deterministic approximation ap-
proach. Stochastic Programming (SP) is one of the main existing paradigms to deal
with uncertain data. It assumes that the random input data follow probability dis-
tributions and pursues optimality in the average sense, adopting a risk-neutral
perspective. However, it is difficult to measure the probabilistic distribution of in-
put data in practice. Even if an estimate of such a distribution is available, many
scenarios are necessarily needed to approximate it accurately. Unfortunately, as the
number of scenarios increases, the problem becomes more complex since the num-
ber of decision variables and constraints grows. To deal with these drawbacks, we
approximate the problem using the multi-stage dynamic random decision process
proposed recently by Tadei et al. [202], where the knowledge of the probabilistic dis-
tribution of uncertain data is not needed. According to this approach, the problem
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is seen as a multi-stage decision process in which jobs and configurations are cho-
sen step by step to achieve an optimal sequence eventually. A Gumbel distribution
can asymptotically approximate the probability distribution of the best alternative,
and, in turn, the makespan of the process can be analytically derived. Using this
approach, the problem is first reformulated as a non-linear integer programming
model. Then, it is converted into a simpler integer one to be solved.

In this chapter, we mainly focus on: (i) a single machine scheduling involving
simultaneously stochastic sequence-dependent setup times and stochastic position-
dependent processing times affected by learning effect is considered for the first
time; (ii) two-stage and multi-stage stochastic programming formulation are derived
from modeling the problem formally; (iii) approximated makespan and optimal so-
lutions are found by adapting a deterministic approximation approach from the
literature. This provides a powerful decision support tool that overcomes the com-
putational burden of solving fat stochastic programs that depend on the number
of scenarios considered.

This chapter is organized as follows. In Section 6.2, a literature review of the
problem is given. Section 6.3 describes the problem and formulates it using the
Two-stage and Multi-stage stochastic models. In Section 6.4, we propose a solution
approach based on a Deterministic Approximation recently introduced in the liter-
ature. We first derive the approximation and, based on that, we then formulate the
problem as a non-linear model. By defining a new accessibility measure, the model
is converted into a shortest path problem. In Section 6.5, the computational results
of the proposed models are provided. Finally, conclusions are given in Section 6.6.

6.2 Literature review
The first research on job scheduling problems was performed in the mid-1950s.

Since then, thousands of papers on different scheduling problems have appeared in
the literature. In the manufacturing industries, the machine environment is gen-
erally considered as the resource of scheduling problems. The production system
sometimes includes a machine bottleneck which affects, in some cases, all the jobs.
Since the management of this bottleneck is crucial, the single machine schedul-
ing problem has been gaining importance for a long time. Here, we explored the
scheduling literature within the single machine scheduling problems. The excel-
lent surveys by [228], [160], [1], and the work proposed by [111] have detailed the
literature on the theory and applications about this problem in the past several
decades.

The majority of papers assumed sequence-dependent setup times, which occur
in many different manufacturing environments. Angel Bello et al. [9] addressed the
single machine scheduling with sequence-dependent setup times and maintenance
with the aim of makespan minimizations. They developed a MIP model, its linear
relaxation model, and an efficient heuristic approach to solve the larger instances.
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Kaplanoglu [100] also addressed this problem but for the case of dynamic job ar-
rivals. He developed a collaborative multi-stage optimization approach. Bahalke
et al. [16] proposed a tabu search and genetic algorithm to deal with the single
machine scheduling with sequence-dependent setup times and deteriorating jobs.
Stecco et al. [196] deals with the single machine scheduling where the setup time is
not only sequence-dependent but also time-dependent. They developed a branch-
and-cut algorithm that solves the instances up to 50 jobs. Ying and Bin-Mokhtar
[231] addressed this problem with the secondary objective of minimizing the total
setup time where jobs dynamically arrive. They proposed a heuristic algorithm
based on the dynamic scheduling system. There are numerous studies on single
machine scheduling with sequence-dependent setup times and various performance
measures, such as minimizing total flow time, tardiness, lateness, waiting time. We
refer the reader to Allahverdi ([6], [7]) for the comprehensive survey of the models,
applications, and algorithms.

As Allahverdi [6] emphasizes, the literature on stochastic sequence-dependent
setup times is scarce. However, in some real-world situations, setup times may be
uncertain due to random factors such as crew skills, tools and setup crews, and
unexpected breakdown of fixtures and tools. In the literature of single machine
scheduling, we found only a few papers that consider sequence-dependent setup
times as random variables. Lu et al. [121] addressed a robust single machine
scheduling problem with uncertain job processing times and sequence-dependent
family setup times. They formulated the problem as a robust constrained shortest
path problem and solved it by a simulated annealing-based heuristic. The objective
was to minimize the absolute deviation of total flow time from the optimal solution
under the worst-case scenario. Also, the interval data were used to generate un-
certain parameters of sequence-dependent setup times. Ertem and O-T-Sarac [60]
focuses on the single machine scheduling with stochastic sequence-dependent setup
times to minimize the total expected tardiness. They proposed two-stage stochas-
tic programming and the sample average approximation (SAA) method to model
and solve the problem. The genetic algorithm is used to solve larger-size problems.
Soroush [194] deals with position and sequence-dependent setup times in the single
machine scheduling under uncertain job attributes, including processing time and
setup times.

Many researchers have been focused on various scheduling problems with learn-
ing effects on processing times. Biskup [28] demonstrated that the makespan min-
imization on single machine scheduling with position-based learning could be opti-
mally solved in polynomial time by using the shortest processing time (SPT) rule.
Since then, many researchers have focused on scheduling with a position-based
learning model and various performance measures. The most well-known ones in-
clude those of Mosheiov [143], Lee et al. [110], Zhao et al. [238], and Kuo and
Yang ([106], [146]). A comprehensive review on different kinds of learning effect
is proposed by Azzouz et al. [15]. Some extensions of the basic position-based
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learning model have been presented, including the consideration of job-dependent
position-based learning effects ([229], [42]), autonomous position-based and induced
learning effects ([237], [96]), position-based learning and deteriorating effects ([206],
[43], [197]), and both position-based and sum-of-the-processing-time-based learning
effects ([225], [41]).

In the above studies, the processing time is assumed to be a deterministic value.
However, real-world manufacturing and service systems usually work in the uncer-
tain environment due to various random interruptions. The ignorance of uncer-
tainty makes the schedules not executed as they are proposed and causes a gap
between scheduling theory and practice. Most works in the literature of stochastic
single machine scheduling mainly study uncertain processing time. Various objec-
tive functions have been considered, such as minimizing expected total tardiness,
earliness and tardiness penalty costs, expected number of tardy jobs, expected to-
tal weighted number of early and tardy jobs, the expected value of the sum of a
quadratic cost function of idle time and the weighted sum of a quadratic function
of job lateness, mean completion time and earliness and tardiness costs, worst-case
conditional value at risk of the job sequence total flow time, total weighted com-
pletion time or the total weighted tardiness [60]. Hu et al. [95] used uncertainty
theory to study the single machine scheduling problem with deadlines and stochas-
tic processing times with known uncertainty distributions. The aim is to derive
a deterministic integer programming model using the operational law for inverse
uncertainty distributions to maximize the expected total weight of batches of jobs.
Pereira [156] addressed single machine scheduling under a weighted completion time
performance metric in which the processing times are uncertain but can only take
values from closed intervals. The objective is to minimize the maximum absolute
regret for any possible realization of the processing times. An exact branch-and-
bound method to solve the problem has been developed. Seo et al. [184] studied
single machine scheduling to minimize the expected number of tardy jobs. The jobs
have normally distributed processing times and a common deterministic due date.
They proposed a non-linear integer programming model and some relaxations to
solve it approximately.

Limited work exists to address problems with both learning effect and uncer-
tainty on processing time in the single machine context. Li et al. [115] addressed the
single machine scheduling problem with random nominal processing time and/or
random job-based learning rate to minimize the expected total flow time and ex-
pected makespan. It has shown that the shortest expected processing time (SEPT)
rule is optimal for minimizing the expected total flow time or makespan in the
position-based learning model with only job processing time being random. The
job-based learning model has proved that minimizing the expected total flow time
or makespan is equivalent to solving a random assignment problem with uncertain
assignment costs. Zhang et al. [236] studied the single machine scheduling prob-
lem with both learning effect and uncertain processing time. They proved that
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the SEPT rule is optimal for minimizing the expected makespan and maximum
lateness. Also, they studied the case with stochastic machine breakdowns.

Concerning the need to consider uncertain data, researchers have applied vari-
ous methodologies to achieve optimal solutions, such as Robust Optimization and
Stochastic Programming [125]. In Robust Optimization (RO), uncertain data are
represented using continuous intervals, and the aim is to optimize the performance
measure in the worst-case scenario. Lu et al. [121] studied the robust single ma-
chine scheduling with uncertain processing time and sequence-dependent family
setup time represented by interval data. The objective is to minimize the absolute
deviation of total flow time from the optimal solution of the worst-case scenario.
They formulated the problem as a robust constrained shortest path problem and
solved it by simulated annealing algorithm, which embeds a generalized label cor-
recting method. Daniels and Kouvelis [48] addressed the single machine scheduling
with the uncertain processing time and objective of total flow time. They used a
branch-and-bound algorithm and two surrogate relation heuristics to find robust
schedules. Yang and Yu [223] studied the same problem, but with a discrete finite
set of processing time scenarios rather than interval data. They developed an ex-
act dynamic programming algorithm and two heuristics to obtain robust schedules.
Stochastic Programming is another approach to tackle machine scheduling. Job
attributes (e.g., processing time, release time, setup time, due dates) follow given
probability distributions and reach optimality in the average sense. Some stud-
ies indicate that the SP models of single machine scheduling are NP-hard under
certain distributional assumptions of job processing time. For example, Soroush
[193] addressed static stochastic single machine scheduling problem in which jobs
have random processing times with arbitrary distributions, known due dates with
certainty, and fixed individual penalties imposed on both early and tardy jobs. He
showed that the problem is NP-hard and developed certain conditions under which
the problem is solvable exactly. In the literature, optimizing various performance
measures, such as flow time [3], [122]), maximum lateness [32], the number of late
jobs ([215], [184], [212]), weighted number of early and tardy jobs [193], and the
total tardiness ([60], [170]) have been addressed.

It is well-known that explicitly addressing uncertainty in an optimization prob-
lem generally poses significant computational challenges. Therefore, another line
of research is to see whether it is possible to incorporate uncertainty in an approx-
imated way and convert the stochastic model into a deterministic one. Tadei et al.
[202] have recently proposed a deterministic approximation approach to deal with
uncertainty in a multi-stage decision-making process, where the knowledge of the
probability distribution of input data is not required. According to this approach,
under appropriate and mild assumptions, the probability distribution of the best
alternative can still be asymptotically approximated by a Gumbel distribution, and,
in turn, the makespan can be analytically derived. This method was experimen-
tally proved under a concrete application in Chapter 5 where we experimentally
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showed how the approximation approach performs in finding the optimal sequence
of choices in a multi-stage stochastic structure by comparing with the expected
value problem. The accuracy of this approximation in the case of single-stage has
been experimentally shown in several application domains (see, e.g., [154], [155],
[204]).

6.3 Problem definition and mathematical formu-
lation

The proposed problem aims to sequence a set of jobs that require processing on
a single machine to minimize the makespan. The machine can handle one job at a
time and works under a set of operating modes (from now on called configurations)
which affect the job processing times. No pre-emption is allowed, i.e., a job must
be completed without interruptions once it is started to be processed. Sequence-
dependent setup times are assumed when the machine switches from a configuration
to another one. Finally, considering the learning effect, the job processing times
also depend on the job positions in the sequence. Let us consider the following
notation

• I = {1,2, ..., n}: set of jobs;

• R = {1,2, ..., n}: set of positions in the job sequence;

• F = {0,1,2, ..., m}: set of possible machine configurations. Note that 0 indi-
cates an initial dummy configuration of the machine;

• α < 0: learning effect rate;

• P k
i : nominal processing time of job i under configuration k;

• P k
ir := P k

i · rα: deterministic processing time of job i processed at position r
under configuration k;

• Sjk
r : deterministic sequence-dependent setup time of the machine to switch

from configuration j to configuration k at position r.

A stochastic fluctuation associated to the machine setup time and job processing
time is considered to achieve a more realistic representation of manufacturing and
service systems. The fluctuation related to process job i at position r under config-
uration k after switching from configuration j is represented by a random variable
θ̃

jk

ir , defined over a given probability space. As commonly done in the literature (see,
e.g., [27]), we approximate the distribution of the random variable through a suffi-
ciently large set of realizations. Therefore, let us consider the following additional
notation:
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• Ljk
ir : set of realizations of time oscillations related to process job i at position

r under configuration k after switching from configuration j;

• πl: probability of each realization l ∈ Ljk
ir ;

• θ̃
jkl

ir : random oscillation of processing job i at position r and configuration k,
when the machine is switched from configuration j, under realization l ∈ Ljk

ir ;

• Lr: set of total realizations of the random oscillations at position r.

In the following, we provide two different mathematical formulations for the
problem described, using the well-known two-stage and multi-stage SP paradigms.

6.3.1 Two-stage Stochastic Programming formulation
The proposed problem can be formulated as a mixed-integer linear model using

a two-stage SP model. The first-stage variables have to be decided before the actual
realization of the uncertain parameters becomes available. Once the random events
occur, the value of the second-stage (or recourse) variables can be decided.

There are two different types of operational decisions: assigning jobs to posi-
tions and choosing a configuration machine to process each job. Two variables sets
corresponding to decisions before and after revealing information must be defined
in the two-stage SP model. The first-stage decisions, common to all realizations,
represent the jobs assignments to positions. The second-stage decisions, specific
to each realization and dependent on the first-stage decisions, represent the choice
of configuration to process each job. Obviously, in the two-stage model, the term
stage corresponds to the period before and after revealing information. Therefore,
the first stage is completed when all the jobs are assigned to positions. Then the
second stage starts as soon as the uncertainties are revealed.

We consider the following variables

• yir: boolean variable equal to 1 if job i is assigned to position r, 0 otherwise;

• xjkl
ir : boolean variable equal to 1 if job i is assigned to position r and processed

under configuration k after switching from configuration j and realization l, 0
otherwise.

Then, a two-stage SP model for the problem is as follows

min
x

∑︂
l∈Ljk

ir

πl
n∑︂

i=1

n∑︂
r=1

m∑︂
j=0

m∑︂
k=1

(Sjk
r + P k

ir + θ̃
jkl

ir ) xjkl
ir (6.1)

subject to
n∑︂

r=1
yir = 1 ∀i ∈ I, (6.2)
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n∑︂
i=1

yir = 1 ∀r ∈ R, (6.3)

m∑︂
j=0

m∑︂
k=1

xjkl
ir = yir ∀i ∈ I, r ∈ R, l ∈ Ljk

ir , (6.4)

n∑︂
i=1

m∑︂
j=0

xjkl
ir =

n∑︂
i=1

m∑︂
j=1

xkjl
i,r+1 ∀k ∈ F \ {0}, r ∈ R \ {n}, l ∈ Ljk

ir , (6.5)

m∑︂
k=1

x0kl
i1 = yi1 ∀i ∈ I, l ∈ L0k

i1 , (6.6)

yir ∈ {0,1} ∀i ∈ I, r ∈ R, (6.7)

xjkl
ir ∈ {0,1} ∀i ∈ I, r ∈ R, j, k ∈ F, l ∈ Ljk

ir . (6.8)

The objective function (6.1) expresses the minimum expected makespan. Con-
straints (6.2) and (6.3) ensure that each job must be selected to be processed in
exactly one position, and in each position, exactly one job is assigned. Constraint
(6.4) states that the machine is switched from a configuration to another one to
process each job (it should be noted that the two consecutive configurations are
not necessarily different from each other). These constraints are also linking the
two types of decisions. Constraints (6.5) form the sequence (flow) of configurations
to process all jobs over the positions. It establishes that it is possible to switch
from a certain configuration k to another if and only if the machine is already un-
der configuration k. Without this constraint, the sequence of configurations switch
over positions would not be continuous. Constraint (6.6) indicate that the machine
is switched from the initial configuration 0 to one of the configurations to process
the job in the first position. Finally, (6.7) and (6.8) are binary constraints on the
variables.

It is important to notice that the above two-stage vision of the problem could
be too simplistic since it assumes to collapse the implementation of the optimal
second-stage decisions (those relating to the assignment of configurations to jobs)
when all the uncertainty is revealed. In practice, for this kind of strongly-layered
operational problems, a multi-stage SP approach could be more suitable, which is
described in the next subsection.

6.3.2 Multi-stage Stochastic Programming formulation
The proposed scheduling problem can also be modeled using a Multi-Stage

Stochastic Programming formulation. The decisions are taken stage by stage, along
with the realizations of some random variables. Using the multi-stage stochastic
programming paradigm, the uncertainty of random oscillations is dealt with a sce-
nario tree as a branching structure representing the evolution of realizations over
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stages. In this context, we define a symmetric and balanced scenario tree. The
job positions in our proposed problem correspond to stages in the stochastic pro-
gramming approach in which the decisions on choosing jobs and configurations are
taken. In a scenario tree, a path of realizations from the root node to a leaf node
represents a scenario ω, occurring with probability πω. We call Ω the entire set of
scenarios, i.e., the set of the path realizations up to any leaf of the scenario tree.
Two scenarios ω, ώ are called indistinguishable at stage r if they share a common
history of realizations until that stage. At the same time, they are represented by
distinct paths. Also, each node o at stage r in the tree can be associated with a
scenario group, represented as Ωo

r, such that two scenarios that belong to the same
group have the same realizations up to that stage. Moreover, the set of all the
nodes at stage r is depicted as Φr.

Let us consider the following variables

• xjkω
ir : boolean variable equal to 1 if job i is assigned to position r and processed

under configuration k after switching from configuration j under scenario ω,
0 otherwise.

Then, a multi-stage SP model for the problem is as follows

min
x

∑︂
ω∈Ω

πω
n∑︂

i=1

n∑︂
r=1

m∑︂
j=0

m∑︂
k=1

(Sjk
r + P k

ir + θ̃
jkω

ir ) xjkω
ir (6.9)

subject to
n∑︂

r=1

m∑︂
j=0

m∑︂
k=1

xjkω
ir = 1 ∀i ∈ I, ω ∈ Ω, (6.10)

n∑︂
i=1

m∑︂
j=0

m∑︂
k=1

xjkω
ir = 1 ∀r ∈ I, ω ∈ Ω, (6.11)

n∑︂
i=1

m∑︂
j=0

xjkω
ir =

n∑︂
i=1

m∑︂
t=1

xktω
i,r+1 ∀k ∈ F \ {0}, r ∈ R \ {n}, ω ∈ Ω, (6.12)

xjkω
ir = xjkώ

ir ∀i ∈ I, j, k ∈ F, r ∈ R \ {n}, ω, ώ ∈ Ωo
r, o ∈ Φr, (6.13)

n∑︂
i=1

m∑︂
k=1

x0kω
i1 = 1 ∀ω ∈ Ω, (6.14)

xjkω
ir ∈ {0,1} ∀i ∈ I, r ∈ R, j, k ∈ F, ω ∈ Ω. (6.15)

The objective function (6.9) expresses the minimum expected makespan. Con-
straint (6.10) ensure that each job must be selected to be processed in exactly one
position under a switched configuration. In contrast, constraint (6.11) indicates
that exactly one job and switched configurations are assigned to each position. Con-
straints (6.12) imposes the continuity of the sequence of configurations switch, as
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explained for constraint (6.5). Constraints (6.13) indicate explicit non-anticipative
conditions, which ensure that, for any pair of scenarios with the same history of
realizations up to the stage (position) r, the decisions must be the same. These
constraints imply that the decisions taken at any stage do not depend on future
realizations of uncertainty. Still, they are affected by the previous realizations of
uncertainty and the knowledge of previous decisions. Constraint (6.14) indicate
that the machine is switched from the initial configuration 0 to one of the configu-
rations to process the job assigned to the first position. Finally, (6.15) are binary
conditions on the variables.

To sum up, in this section, we proposed a couple of formulations according
to the two-stage and multi-stage stochastic programming paradigms. However,
those models are highly computationally demanding. So, in the following section,
relying on the multi-stage dynamic random decision process proposed by Tadei et
al. (2019), we derive a deterministic approximation of the problem to allow the
resolution of large-scale instances.

6.4 Deterministic Approximation (DA)-based so-
lution approach

In the proposed problem, two types of operational decisions are taken: assigning
jobs to positions and choosing configurations to process each job. This problem
can be interpreted as a multi-stage stochastic decision-making process in which
jobs and machine configurations are chosen stage by stage to create a sequence
of jobs and configurations. Recently, Tadei et al. [202] proposed a Determinis-
tic Approximation (DA) approach which computes the total expected cost of the
optimal sequence of alternatives in a multi-stage network representing a random
decision-making process. It should be noted that, differently from other paradigms
for modeling multi-stage optimization problems under uncertainty (e.g., Stochastic
Programming or Stochastic Dynamic Programming), the knowledge of the proba-
bility distribution of the random variables is not needed to derive the DA approach.
The method also implies a static vision of the entire decision-making process. The
uncertainty of the random oscillations is not revealed over time, and where decisions
collapse to a single-stage approximation.

6.4.1 DA for multi-stage dynamic random decision pro-
cesses

The DA approach can be applied in this case since we can interpret the proposed
problem as a multi-stage Random Utility Model (RUM) as explained in [173]. In
this problem, the positions where the jobs are processed form a multi-stage frame-
work. At each stage (i.e., in each position), the decision-maker faces a set of choices,
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including the combinations of jobs and machine configurations to choose from for
the next stage. Each combination of job i and configuration k switched from con-
figuration j at position r is characterized by a deterministic configurations setup
Sjk

r and processing time P k
ir, as well as an expected completion time of the remain-

ing choices (combinations of jobs and machine configurations) in future positions.
Moreover, for each choice, several realizations are associated with a random time
oscillation that depends on its own dispersion around the deterministic times of a
future decision and the incomplete knowledge of the decision-maker.

More formally, let t̃
jk
ir be the random completion time of job i processed under

configuration k at position r when the machine is switched from configuration j.
To derive a deterministic approximation of the stochastic problem, the frame-

work from Tadei et al. [202] assumes that the decision-maker has an optimistic
vision of the future. Not knowing what will happen in the future, he assumes that
he will have to pay as little as possible. Then, from this assumption, it is derived an
estimate of the expected future cost, which depends on a parameter whose appro-
priate calibration allows to mitigate the risk associated with the initial optimistic
attitude. Therefore, in our context, it is optimistically assumed that we have to
incur in a random choice cost t̃

jk
ir represented by

t̃
jk
ir = min

l∈Ljk
ir

[Sjk
r + P k

ir + θ̃
jkl

ir + T k
ir], (6.16)

where T k
ir indicates the expected completion time of the future schedules (job h and

configuration j́) when they are reached from job i and configuration k at position
r, i.e.,

T k
ir =

⎧⎨⎩ IEθ̃

[︃
minj́∈F,h∈I t̃

kj́
h,r+1

]︃
, i ∈ I, k ∈ F \ {0}, r ∈ R \ {n}

0, r = n
. (6.17)

T k
ir is unknown because it depends on future realizations of the random oscilla-

tions and future scheduling decisions. From Tadei et al. [202], some approximation
results for the expected values of T k

ir can be derived under the following assump-
tions:

1. the random oscillations θ̃ are independent and identically distributed (i.i.d.)
according to an unknown probability distribution;

2. the survival function F (x) of the probability distribution of θ̃ has an asymp-
totic exponential behavior in its left tail, i.e.,

∃β > 0 such that F (x) = lim
y→−∞

1− F (x + y)
1− F (y) = eβx. (6.18)

Then, two main results can be derived
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• T k
ir can be approximated by

T k
ir = − 1

β
(ln Ak

ir + γ) ∀i ∈ I, k ∈ F \ {0}, r ∈ R \ {n}, (6.19)

where γ ≃ 0.5772 is the Euler constant and Ak
ir is the accessibility in the sense

of [89] to the overall set of choices at position r + 1 when it is reached from
job i and configuration k at position r, i.e.,

Ak
ir =

n∑︂
h=1

m∑︂
j=1

αkj
h,r+1 exp−β(Skj

r+1+P j
h,r+1+T j

h,r+1) (6.20)

∀i ∈ I, j, k ∈ F \ {0}, r ∈ R \ {n},

where αkj
ir = |Lkj

ir |
|Lr| indicates the proportion of the number of realizations of

job i and configuration k at position r with respect to the total number of all
available choices realizations at position r;

• the expected makespan of all jobs on the single machine is represented by T0
determined as:

T0 = − 1
β

(ln A0 + γ), (6.21)

where A0 is the accessibility to all the choices and realizations in the first stage
of decision making process.

Note that the parameter β can be interpreted as the dispersion of preferences
among the different choices (each combination of job i and configuration k) at
position (stage) r under realization l of random oscillations. More precisely, this
parameter aims to capture the diversity of all the available choices and their random
oscillations in each decision-making process stage. Also, this parameter allows
to model more effectively and exhaustively the effect of uncertainty on the final
decision while minimizing any risks associated with the optimistic nature of the
approach.

However, in practice, it is not straightforward to calibrate this parameter reliably.
So, despite a single β appears in the above equation, as highlighted in [173], the
specific beta values βk

ir for different triples of indexes (i, r, k) can be used associated
with each job processing time. The configurations switch at any stage of the decision
process. It allows us to model the uncertainty better since, depending on the current
schedule and stage, the possible minimum expected completion time in the next
stage is different. More details will be provided on βk

ir calibration in section 6.5.2.
According to [173], the job positions on the machine are equivalent to the various

stages of the decision-making process in which each stage includes a set of nodes
corresponding to choices (combinations of jobs and configurations) in our problem.
Also, the realizations which we consider for each choice correspond to the various
alternatives inside each node.
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6.4.2 DA-based Mixed Integer Non-Linear Programming
formulation

Both the sequence of jobs and configurations and the expected makespan can
be determined by using a non-linear model that embeds the Deterministic Approx-
imation results.

Let us consider the following decision variables

• yk
ir: boolean variable equal to 1 if job i is processed at position r under con-

figuration k, 0 otherwise;

• Ak
ir: accessibility of job i and configuration k at position r to the set of available

choices at position r + 1;

• A0: accessibility to the set of available choices at the first position;

• T k
ir: expected total completion time of future schedules when they are reached

from job i and configuration k at position r;

• T0: expected makespan.

Then, a Mixed Integer Non-Linear Programming (MINLP) model for the problem
is as follows

min T0 (6.22)

subject to
n∑︂

r=1

m∑︂
k=1

yk
ir = 1 ∀i ∈ I, (6.23)

n∑︂
i=1

m∑︂
k=1

yk
ir = 1 ∀r ∈ R, (6.24)

T k
ir = − 1

βk
ir

(ln Ak
ir + γ) ∀i ∈ I, k ∈ F \ {0}, r ∈ R \ {n}, (6.25)

Ak
ir =

n∑︂
h=1

m∑︂
j=1

(︃
αkj

h,r+1 exp−βk
ir(Skj

r+1+P j
h,r+1+T j

h,r+1)
)︃

(1−
r∑︂

ŕ=1

m∑︂
j́=1

yj́
hŕ) (6.26)

∀i ∈ I, k ∈ F \ {0}, r ∈ R \ {n},

T k
in = 0 ∀i ∈ I, k ∈ F \ {0}, (6.27)

A0 =
n∑︂

i=1

m∑︂
j=1

(︂
α0j

i1 exp−β0(S0j
1 +P j

i1+T j
i1)
)︂

, (6.28)

T0 = − 1
β0

(ln A0 + γ), (6.29)
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yk
ir ∈ {0,1} ∀i ∈ I, r ∈ R, k ∈ F \ {0}, (6.30)

T k
ir, T0, Ak

ir, A0 ≥ 0 ∀i ∈ I, k ∈ F \ {0}, r ∈ R. (6.31)

The objective function (6.22) expresses the minimum expected makespan. Con-
straints (6.23) and (6.24) ensure that each job must be selected to be processed
under one configuration in exactly one position each position exactly one job and
one configuration are assigned, respectively. Using constraints (6.25) and (6.26),
the expected completion time and the accessibility of job i and configuration k at
position r to the set of available choices at position r + 1 are computed, respec-
tively. It should be noted that, in computing Ak

ir, the part (1 − ∑︁r
ŕ=1

∑︁m
j́=1 yj́

hŕ)
indicates that the set of available choices at position r contains the jobs that have
not yet been processed at any positions before r. According to constraint (6.27),
the expected completion time of all choices at the last position is equal to zero.
The accessibility to all choices at the first position and the expected makespan
are calculated in (6.28) and (6.29). Clearly, in calculating A0, the set of available
choices include all the combinations of jobs and configurations since no job has
been assigned before. Finally, the binary and non-negative variables are indicated
in (6.30) and (6.31).

6.4.3 Linearizing DA-based model
The mixed-integer non-linear formulation presented in the previous section is

computationally challenging. This complexity is mainly due to the non-linearity
of the model and the nested structure of some of its constraints. For instance, in
constraints (6.25) and (6.26), the expected completion time T k

ir is computed using
the accessibility Ak

ir that in turn is depending on the expected completion time T k
ir+1

of the chosen schedule (job and configuration) in the next position. In the following,
to make possible an efficient resolution of realistic instances of the problem, a linear
model inspired by the non-linear formulation in (6.22)–(6.31) is developed.

As yet mentioned, the constraint (6.26) expresses the accessibility in the sense of
Hansen. In the context of this work, such accessibility measures the attractiveness
of a given schedule at the position r by computing a weighted sum of the expo-
nential cost associated with the choices that would still be available at the position
r+1 is the case such schedule is chosen. Unfortunately, the deployment of Hansen’s
accessibility leads to the deterministic approximation model in (6.22)–(6.31) that
is computationally demanding. For this reason, by maintaining the model struc-
ture derived from the DA approach framework, we consider a different measure of
accessibility that allows us to obtain a new formulation of the problem that can
be effectively linearized. In particular, rather than taking a convex sum of the
exponential cost of the alternative available at the next position as suggested by
Hansen’ measure of accessibility, the new measure assesses the attractiveness of a
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given schedule at the position r by looking at the exponential cost of the best al-
ternative (lowest processing plus switching time) among those still available at the
position r + 1 if such schedule is chosen. Therefore, the new accessibility measure
Ak

ir which determines the attractiveness of choosing job i and configuration k at
position r is computed as

Ak
ir =

n∑︂
h=1

m∑︂
j=1

(︃
exp−βk

ir(Skj
r+1+P j

h,r+1+T j
h,r+1)

)︃
yj

h,r+1 (6.32)

∀i ∈ I, k ∈ F \ {0}, r ∈ R \ {n},

Let us suppose, job h under configuration j is the most profitable choice at
position r + 1 when it is chosen after job i and configuration k at stage r, which
means yj

h,r+1 = 1. Hence, the accessibility Ak
ir in equation (6.32) is represented as

Ak
ir = exp−βk

ir(Skj
r+1+P j

h,r+1+T j
h,r+1) ∀i ∈ I, k ∈ F \ {0}, r ∈ R \ {n}, (6.33)

So, the expected completion time T k
ir can be reformulated as

T k
ir = − 1

βk
ir

(ln Ak
ir + γ) = Skj

r+1 + P j
h,r+1 + T j

h,r+1 −
γ

βk
ir

(6.34)

∀i ∈ I, k ∈ F \ {0}, r ∈ R \ {n}.

Now, by considering the new accessibility measure, a simpler non-linear model
can be derived as follows

min T0 (6.35)
subject to

T k
ir =

n∑︂
h=1

m∑︂
j=1

(︄
Skj

r+1 + P j
h,r+1 + T j

h,r+1 −
γ

βk
ir

)︄
yj

h,r+1 (6.36)

∀i ∈ I, k ∈ F \ {0}, r ∈ R \ {n},
(6.37)

T0 =
n∑︂

i=1

m∑︂
j=1

(︄
S0j

1 + P j
i1 + T j

i1 −
γ

β0

)︄
yj

i1, (6.38)

T k
ir, T0 ≥ 0 ∀i ∈ I, k ∈ F \ {0}, r ∈ R. (6.39)

and constraints (6.23), (6.24), and (6.30).
The objective function (6.35) expresses the minimum expected makespan. Us-

ing constraints (6.36), the expected completion time of job i and configuration k
at position r are computed. The expected makespan is calculated in (6.38).
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By comparing equations (6.17) and (6.34), we can notice that − γ
βk

ir
is equivalent

to the expected minimum random oscillation of job í processed at position r + 1
under configuration j over the realizations, i.e.,

− γ

βk
ir

≡ IEθ̃

⎡⎣ min
l∈Lkj

h,r+1

θ̃
kjl

h,r+1

⎤⎦ , ∀i ∈ I, r ∈ R, k ∈ F \ {0}. (6.40)

where the switch from configuration k to configuration j is performed at position
r + 1 to process job h. Having βk

ir value, the value of IEθ̃

[︃
minl∈Lkj

h,r+1
θ̃

kjl

h,r+1

]︃
can be

approximated using (6.40).
Given the above reasoning, we can convert the non-linear formulation into a

deterministic linear model. In particular, the optimal sequence of jobs and con-
figurations as well as the makespan are computed by finding a shortest path on
the multi-stage network (as done in [173]), through the following model where the
expected minimum random oscillation is represented as θ̄

min
x

⎡⎣ n∑︂
i=1

n∑︂
r=1

m∑︂
j=0

m∑︂
k=1

(Sjk
r + P k

ir + θ̄
jk

ir )xjk
ir

⎤⎦ (6.41)

subject to
n∑︂

r=1

m∑︂
j=0

m∑︂
k=1

xjk
ir = 1 ∀i ∈ I, (6.42)

n∑︂
i=1

m∑︂
j=0

m∑︂
k=1

xjk
ir = 1 ∀r ∈ I, (6.43)

n∑︂
i=1

m∑︂
j=0

xjk
ir =

n∑︂
i=1

m∑︂
t=1

xkt
i,r+1 ∀k ∈ F, r ∈ R \ {n}, (6.44)

n∑︂
i=1

m∑︂
k=1

x0k
i1 = 1, (6.45)

xjk
ir ∈ {0,1} ∀i ∈ I, r ∈ R, j, k ∈ F. (6.46)

The objective function (6.41) expresses the minimum makespan. Constraints (6.42)
ensure that each job must be selected to be processed at exactly one position under
a switched configuration. In contrast, constraints (6.43) indicate that exactly one
job and switched configurations are assigned to each position. Constraints (6.44)
ensures the continuity of configurations switch over the positions. Constraints
(6.45) indicate that the machine is switched from the initial configuration 0 to one
of the configurations to process the job assigned to the first position. Finally, (6.46)
are binary conditions on the variables.
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6.5 Computational results
In this section, we present the results of the computational experiments to evalu-

ate the effectiveness of the DA approach compared to the two-stage and multi-stage
recourse models to address the proposed problem. In section 6.5.1 we describe the
instances set generated as a testbed for our assessment. The calibration of parame-
ter β is presented in Section 6.5.2, while the value of stochastic solutions including
both two-stage and multi-stage recourse models are discussed in Sections 6.5.3 and
6.5.3, respectively. The results of our computational experiment are described and
commented on in Section 6.5.4.

Because of the computational complexity of the non-linear DA-based model
presented in Section 6.4.2, the derived equivalent shortest path model described in
Section 6.4.3 is applied to solve the instances. All the models are implemented in
GAMS1 on an Intel(R) Core(TM) i5-6200U (CPU2.30GHz) computer with 16GB
RAM.

6.5.1 Instance generation
To evaluate the performance of the proposed approximation approach, we ran-

domly generated instances classified into small and large-scale groups. The small-
scale group involves instances with 3 and 5 jobs processed on a machine with two
configurations, while the larger ones include 10, 20, 30, and 40 jobs scheduled on a
machine with 3, 4, 4, and 5 configurations. The equivalent shortest path model is
compared to the two-stage and multi-stage stochastic models in dealing with large
and small-scale instances.

Our test generating procedure is somehow similar to the work proposed by Ertem
and O. T. Sarac [60]. The nominal processing times are generated from the Uni-
form distribution in the range [1,100]. In contrast, the sequence-dependent setup
times between machine configurations are produced using the Uniform distribution
in the range [50,150]. The learning effect is assumed to be α = log2(0.8). The
random oscillations are generated according to the Uniform, Normal, and Gum-
bel distributions in two ranges [−0.5d,0.5d] and [−0.9d,0.9d], where d is the sum
of job processing time and the machine setup time associated with each combina-
tion of job, configuration switch, and position. Besides being common in many
practical applications, the three above distributions have been chosen to represent
quite extreme cases of possible unknown distributions of observations. Also, the
two smaller and larger ranges allow us to control the behavior of the proposed ap-
proaches against the different magnitude of random oscillations. For each problem,
10 random instances are generated, which result in 360 instances in total.

1https://www.gams.com/
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Note that, in generating realizations using the Gumbel and Normal distributions,
the location parameter µ = 0 is used for small and large ranges. For the Gumbel
distribution, the proportional scale parameter σ = 0.125d and σ = 0.220d are
adopted for the smaller and larger ranges, respectively. As suggested by Manerba
et al. [127], the scale factor has been chosen experimentally so that 96% of the
probability lies in the considered truncated domains [−0.5d,0.5d] and [−0.9d,0.9d]
for each possible instance. Similarly, for the Normal distribution, the standard
deviation σ = 0.166d and σ = 0.3d is set to give a 99% confidence interval for the
smaller and larger ranges, respectively.

6.5.2 Calibration of parameter β

The effectiveness of the deterministic approximation model is highly dependent
on the appropriate value of the positive parameter β. As shown by [173], the
parameter β represents the dispersion of preferences among all choices and their
realizations at each stage of the decision-making process. They proposed a method
to calibrate this parameter per choice and stage, considering that each choice’s
expected utility (cost) at each stage should be equal to the maximum utility (mini-
mum cost) that can be achieved by choosing the next stage. Moreover, as described
by [202], β is a parameter of a Nested Multinomial Logit model under which the
choice probability of each alternative is determined in each stage of the decision-
making process. The analytical results derived from the choice probability model
highlight that when β tends to zero, the choices probabilities are equal, which
means that all the choices are equivalent. On the other hand, when the magnitude
of uncertainty increases, the effect of random oscillations on the deterministic cost
of choices becomes large. In this case, all the choices tend to be equivalent since it
is difficult to decide which choice is the best. The above explanations suggest that
parameter β should be inversely proportional to the range of random oscillations
of the choices in the next position. Based on the above discussion, we decided to
calibrate this parameter as

βk
ir = γ

δ STDh∈I,j∈F \{0},l∈Lkj
h,r+1

(θ̃kjl

h,r+1)
i ∈ I, r ∈ R, k ∈ F \ {0}, (6.47)

where the nominator represents the Euler constant, while the denominator in-
dicates a proportion δ < 1 of the standard deviation of the realizations associated
with all the jobs and the configurations (switched form k) in the next position. We
define δ = σ

2 , which indicates that this parameter is depending on the standard
deviation of the estimated probability distribution derived from the realizations.
The values of this parameter used in this paper are summarized in Table 6.1. As
it can be seen, the δ value associated with the smaller range is less than that of
the larger interval for the three distributions. Also, the δ value in the Uniform
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distribution is larger for both small and large ranges than the two other ones,
which implies the larger dispersion of this distribution. The experiments reported
in Section 6.5.4 over randomly generated instances will show the accuracy of this
calibration method.

Table 6.1: Value of parameter δ for problem sets.

Distribution Small range Large range
Uniform 0.25 0.45
Normal 0.09 0.20
Gumbel 0.08 0.18

6.5.3 Value of the stochastic solutions
Stochastic programs, in general, have the reputation of being computationally

difficult to solve. Before solving a stochastic model, the user must investigate and
solve several deterministic models, each corresponding to one particular scenario
or to a group of them to see if the scenarios, stages, and other aspects of the
model are well defined, and the solution of the stochastic model (Recourse Problem)
is justified. In the following two subsections, the value of stochastic solutions is
determined for both two-stage and multi-stage recourse models.

Value of two-stage stochastic solutions

The Value of Stochastic Solution (V SS) is a concept to compare the recourse
problem (RP ) and the expected values approach (EEV ) to see whether or not
the approximation of the stochastic program by the program with expected values
instead of random variables is a good one. This measure in the two-stage recourse
model is calculated as

V SS = EEV −RP, (6.48)

where EEV is obtained as follows: (1) solve the related average value problem (EV);
(2) fix the first stage solution for each scenario (in the recourse problem) at the
optimal one obtained for the first stage of the EV problem; (3) solve the resulting
problem for each scenario; (4) calculate the expectation over the set of scenarios of
the value at the objective function of these modified recourse problems.

To compute the V SS, the number of observations considered in the model plays
a key role. There is a trade-off between the optimality of the results and the
computational complexity caused by increasing the realizations number. Here,
to assess the required number of observations to solve the recourse problem in
larger-sized instances, we implement a set of experiments and vary the number
of realizations from 30 to 50 with the same probability. For all the instances in
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the larger-sized group, 50 realizations show that the upper and lower bounds are
converging well enough. But, due to the computational complexity in the instances
with 30 and 40 jobs (with 4 and 5 configurations), we fix the number of realizations
to 30 for these instances. It should be noted that this number still shows well-
enough results in a reasonable time. Table 6.2 reports the average value of the
percentage V SS concerning the RP value for the large-scale instances computed
as

V SS = EEV −RP

RP
× 100. (6.49)

It can be observed, as expected, the V SS of instances associated with the larger
range of random variables is higher than those obtained in the smaller one. Also,
this parameter is affected by the type of probability distributions. It seems, the
Uniform distribution results in larger average V SS in comparison with the two
other distributions.

Table 6.2: Average value of the percentage VSS with respect to the RP value for
large-scale instances.

Instance Uniform Normal Gumbel
|I| |F | Range V SSavg V SSavg V SSavg

10 3 small 6.68 1.47 1.39
10 3 large 42.64 8.08 7.86
20 4 small 8.95 1.48 1.44
20 4 large 52.43 10.87 10.09
30 4 small 9.36 1.43 1.07
30 4 large 57.71 10.95 10.20
40 5 small 10.34 1.50 1.13
40 5 large 60.22 11.05 10.61

Value of multi-stage stochastic solutions

In this work, the value of the multi-stage stochastic solution is calculated using
the generalization of parameter V SS proposed by Escudero et al. [61]. They
defined the value of stochastic solution at stage r, denoted by V SSr, as

V SSr = EEVr −mRP ∀r ∈ R, (6.50)

where

• EEVr for r = 2, ..., n, is the optimal value of the recourse problem in which
the decision variables until stage r−1 are fixed at the optimal values obtained
in the solution of the average value model, i.e.,
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EEVr =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(6.9)− (6.15)
s.t.

xjkω
i1 = x̄jk

i1 ∀ω ∈ Ω
...

xjkω
ir−1 = x̄jk

ir−1 ∀ω ∈ Ω

(6.51)

in which x̄jk
ir denotes the optimal solution of the EV problem;

• mRP is the value of the multi-stage SP model (6.9)-(6.15).

It has been proved ([61]) that the following relations for any multi-stage stochastic
program hold

0 ≤ V SSr ≤ V SSr+1 ∀r ∈ R. (6.52)

This sequence of non-negative values represents the cost of ignoring uncertainty
until stage r in multi-stage models’ decision-making.

Because of the branching structure in the scenario tree, even with a small number
of realizations and stages, the tree becomes extremely large and difficult to manage
and solve. Therefore, only small-scale instances have been solved using the multi-
stage recourse model. Here, we fix the number of realizations to 7 and 3 associated
with the instances with 3 and 5 jobs, respectively, which leads to the trees with
73 = 343 and 35 = 243 scenarios. These numbers of realizations are the values that
can be handled in a reasonable computational time. Tables 6.3 and 6.4 report the
average values of percentage V SSr with respect to the mRP value for instances
with 3 and 5 jobs, respectively, computed as

V SSr = EEVr −mRP

mRP
× 100. (6.53)

As it can be observed, the V SS average values increase over stages. The average
V SS per stage associated with the small range is less than those of the large interval
for the three considered distributions. Moreover, comparing the results for the three
distributions shows that the uniform distribution has a higher value than average
V SS for both small and large ranges concerning the two other distributions.

6.5.4 Results for the DA-based solution approach
This section summarizes and discusses the results obtained from our experiments

on the instance sets generated as discussed in Section 6.5.1. The results contain
two distinct parts associated with the small and large-scale instances. The first
part aims to assess the accuracy of the shortest path model derived from the de-
terministic approximation approach compared to the two-stage stochastic model
for large-scale problems. In contrast, in the second part, the multi-stage stochastic
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Table 6.3: Average values of percentage V SSr with respect to the mRP value for
instances with |I| = 3 jobs and |F | = 2 configurations.

Distributions Range V SS1 V SS2 V SS3
Uniform small 7.51 12.22 13.76
Uniform large 11.90 39.43 43.39
Normal small 1.34 2.24 2.70
Normal large 5.26 8.62 11.71
Gumbel small 0 1.49 4.19
Gumbel large 4.46 8.15 10.18

Table 6.4: Average values of percentage V SSr with respect to the mRP value for
instances with |I| = 5 jobs and |F | = 2 configurations.

Distributions Range V SS1 V SS2 V SS3 V SS4 V SS5

Uniform small 4.77 7.56 10.14 11.21 11.26
Uniform large 11.88 34.95 43.93 53.34 63.85
Normal small 1.37 2.32 2.39 3.34 3.34
Normal large 4.06 10.16 11.64 14.16 14.20
Gumbel small 0.95 2.54 3.67 3.67 3.69
Gumbel large 6.50 14.43 17.79 20.90 21.94

programming formulation is used in dealing with small-scale instances. The per-
formance, in terms of percentage gap, is evaluated through the calculation of the
Relative Percentage Error (RPE) as follows

RPE = T0 − optSP

optSP

× 100, (6.54)

where T0 and optSP represent the optimum makespan of the shortest path model
(see Eq. (6.41)) and the optimum of either two-stage or multi-stage stochastic
model, respectively.

Tables 6.5–6.7 represent the RPE associated with the large-scale instances gen-
erated using the Uniform, Normal, and Gumbel distributions, respectively. Each
entry of these tables reports statistics of the RPE over 10 randomly generated
instances, given a specific combination of the size of the instance and the range
of random variables. In particular, the tables show the average, the best, the
worst RPE, and its standard deviation (columns RPEavg, RPEbest, RPEworst,
and RPEσ, respectively).

The first thing that should be noticed is that, as expected, the average RPE
associated with the larger range of observations is bigger than those of the smaller
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range across all instances sizes and the three distributions. It means the approx-
imation model behaves better with smaller dispersion and magnitude of the re-
alizations. The best, worst, and standard deviation RPE also follows the same
described behavior with few discontinuities.

Comparing the results of the three distributions highlights better performance,
as expected, of the Normal and Gumbel distributions concerning the Uniform dis-
tribution in terms of the global average, best, worst, and standard deviation RPE.

Taking into account different sizes of instances, it can be seen that the average
RPEs become larger as the scale of instances increases for the three distributions.
It means the quality of the approximation approach is also affected by the scale
of instances. The best, worst, and standard deviation RPE also follow a similar
behavior with little discontinuities.

Table 6.5: RPE of the makespan between the deterministic approximation and
two-stage stochastic model for the Uniform distribution.

Instance RPE(%)
|I| |F | Range RPEavg RPEbest RPEworst RPEσ

10 3 small 0.70 0.05 2.00 0.69
10 3 large 1.19 0.27 3.90 1.09

Average: 0.94 0.16 2.95 0.89
20 4 small 1.48 0.50 2.88 0.67
20 4 large 2.04 0.78 3.13 0.77

Average: 1.76 0.64 3.00 0.72
30 4 small 1.58 0.26 3.55 1.23
30 4 large 2.11 0.23 5.35 1.78

Average: 1.84 0.24 4.45 1.50
40 5 small 1.68 0.30 3.57 0.99
40 5 large 2.51 0.41 6.11 1.60

Average: 2.09 0.35 4.84 1.29
Global Average: 1.64 0.34 3.81 1.10

We now want to evaluate the quality of the shortest path model concerning the
multi-stage model in dealing with the small-scale instances. Table 6.8 reports the
average, best, worst, and standard deviation RPE of the small-scale instance for
the three considered distributions. Although we use a small number of realizations
in dealing with these small-sized instances, the results show promising performance
of the shortest path model.

Similar to the results obtained from the two-stage model in dealing with the
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Table 6.6: RPE of the makespan between the deterministic approximation and
two-stage stochastic model for the Normal distribution.

Instance RPE(%)
|I| |F | Range RPEavg RPEbest RPEworst RPEσ

10 3 small 0.42 0.04 0.88 0.27
10 3 large 0.79 0.06 2.25 0.75

Average: 0.60 0.05 1.56 0.51
20 4 small 0.53 0.13 1.14 0.37
20 4 large 1.64 0.82 2.11 0.52

Average: 1.08 0.47 1.62 0.44
30 4 small 0.79 0.40 1.04 0.23
30 4 large 1.67 0.34 2.81 1.06

Average: 1.23 0.37 1.92 0.64
40 5 small 0.90 0.36 1.52 0.41
40 5 large 1.93 0.18 3.97 1.09

Average: 1.41 0.27 2.74 0.75
Global Average: 1.08 0.29 1.96 0.58

large-scale instances, the average RPE associated with the small range of realiza-
tions is less than those of the larger support for the considered distributions. As
it can be seen, the average RPE values of the Uniform distribution are more than
those of the Normal and Gumbel distributions. It means, as expected, these two
distributions perform better in comparison with the Uniform distribution. The
best, worst, and standard deviation results do not show an exactly similar trend
in some cases. These fluctuations are due to the very small number of realizations
applied in the multi-stage stochastic model. As mentioned before, by computing
the appropriate value of the parameter β using the considered observations, the
performance of the deterministic approximation model is maintained. Here, due to
the complexity of the multi-stage stochastic model, a few realizations are applied,
which may not be enough to derive the appropriate value of β.

Considering the various sizes shows that the average RPE grows as the scale
of instances increases for the three distributions. This behavior is also similar to
what we noticed in the large-sized instances solved by the two-stage model.

Finally, despite the quality obtained by the deterministic approximation ap-
proach in terms of accuracy, we also want to point out its efficiency. The computa-
tional times for obtaining the minimum makespan of the shortest path model (tSP M)
and the stochastic problem (tSP ) are reported in Table 6.9. As we pointed out be-
fore, the small-scale instances are dealt with in the multi-stage recourse model with
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Table 6.7: RPE of the makespan between the deterministic approximation and
two-stage stochastic model for the Gumbel distribution.

Instance RPE(%)
|I| |F | Range RPEavg RPEbest RPEworst RPEσ

10 3 small 0.38 0.07 0.97 0.33
10 3 large 0.64 0.04 1.51 0.43

Average: 0.51 0.05 1.24 0.38
20 4 small 0.42 0.12 1.18 0.42
20 4 large 1.26 0.13 2.17 0.79

Average: 0.84 0.12 1.67 0.60
30 4 small 0.75 0.02 1.39 0.52
30 4 large 1.42 0.06 2.84 0.88

Average: 1.08 0.04 2.11 0.70
40 5 small 0.89 0.20 1.49 0.41
40 5 large 1.75 0.32 3.53 0.91

Average: 1.32 0.26 2.51 0.66
Global Average: 0.93 0.11 1.88 0.58

a few realizations, while the larger ones are solved using the two-stage problem with
a suitable number of observations. Since we have noticed that the computational
times were not affected by the distribution and the range of observations, we re-
port average computational times for the various sizes of the instances. First, note
that the CPU time increases as the size of the problem increases for both shortest
path formulation and stochastic models. Comparing these two approaches, it is
clear that the shortest path model derived from the deterministic approximation
approach can solve all instances in far less time than the stochastic models. Few
seconds are needed for even the largest size (40 jobs and 5 configurations), while it
takes 42700 seconds to deal with this scale using the stochastic model.

6.6 Summary
This chapter has addressed the stochastic single machine scheduling problem

where learning effects on processing time, sequence-dependent setup times, and
machine configuration selection are considered simultaneously. Also, random vari-
ables are assumed to represent uncertainty associated with job processing time and
machine setup times. The problem aims to find the sequence of jobs and choose
a configuration to process each job, which minimizes the makespan under uncer-
tainty. First, we formulate the proposed problem as two-stage and multi-stage
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Table 6.8: RPE of the makespan between the deterministic approximation and
multi-stage stochastic model in dealing with small-scale instances for the Uniform,
Normal, and Gumbel distributions.

Instance RPE(%)
Distribution |I| |F | Range RPEavg RPEbest RPEworst RPEσ

Uniform 3 2 small 2.12 0.49 4.76 1.25
3 2 large 3.61 0.06 6.67 1.79

Average: 2.86 0.27 5.71 1.52

Uniform 5 2 small 2.20 0.26 4.85 1.66
5 2 large 4.13 0.28 6.76 2.47

Average: 3.16 0.27 5.80 2.06

Normal 3 2 small 1.75 0.26 3.72 1.17
3 2 large 2.69 0.38 5.04 1.34

Average: 2.22 0.32 4.38 1.25

Normal 5 2 small 1.83 0.09 3.86 1.21
5 2 large 2.81 0.30 5.63 2.03

Average: 2.32 0.19 4.74 1.62

Gumbel 3 2 small 1.60 0.27 3.33 1.03
3 2 large 2.67 0.16 4.59 1.39

Average: 2.13 0.21 3.96 1.21

Gumbel 5 2 small 1.78 0.11 4.21 1.34
5 2 large 2.85 0.42 4.94 1.81

Average: 2.31 0.26 4.57 1.57
Global Average: 2.50 0.25 4.86 1.53

Table 6.9: Computational time in seconds for calculating the minimum makespan
using the deterministic approximation and stochastic models.

|I| |F | tSP M tSP

3 2 1 345
5 2 1 378

10 3 2 46
20 4 5 630
30 4 16 11130
40 5 35 42700

stochastic models, which are computationally demanding. In addition, a determin-
istic approximation formulation is developed using the multi-stage dynamic random
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decision process, which has been proposed recently by [202], where the knowledge
of the probability distribution of the random variables is not needed. Using this
approach, the problem is formulated as a mixed-integer non-linear programming
model. Then, by defining a new measure of accessibility, the model is converted to
a shortest path problem on a multi-stage network solvable in a few seconds, even
for large-sized instances. Finally, the extensive computational experiments showed
particularly good performance of the deterministic approximation model concerning
the stochastic models in terms of accuracy of solutions and computational time.
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Chapter 7

Online single-machine
scheduling problem

7.1 Introduction
Scheduling of operations is one of the planning functions in the manufacturing

companies (see [31]). Due to disruptions or arrival of new information, the in-
cumbent schedule can become suboptimal or even infeasible thus motivating the
need for rescheduling. Online scheduling is a generalization of ongoing rescheduling
process in which decisions are taken and revised in real-time during the course of
production process (see [87]). This is in contrast to static case where all the speci-
fications and requirements are fully and deterministically known in advance, before
any execution begins.

In this research, we will consider online scheduling, mainly fostered by our ex-
perience on an industrial project (Plastic and Rubber 4.01) in which frequent oc-
currences of unexpected events call for more dynamic and flexible scheduling (see
[116]).

In particular, we focus on online scheduling of a set J of jobs on a single machine,
where preemption is allowed. The jobs are released over time, and as soon as a new
job arrives, it is added to the end of a waiting queue. For each job j ∈ J , let dj

be its due date and cj its completion time. A job is early if its completion time is
shorter than its due date. On the contrary, a job is tardy if its completion time is
larger than its due date. When the completion time is equal to the due date, the
job is on time. The goal of the problem is to arrange the queue’s jobs to minimize
two different objective functions: total tardiness (Γ1) and the total earliness and
tardiness (Γ2) of the jobs. The two objectives are calculated as

1Plastic&Rubber 4.0. Piattaforma Tecnologica per la Fabbrica Intelligente (Technological
Platform for Smart Factory), URL: https://www.openplast.it/en/homepage-en/
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• Γ1 = ∑︁
j∈J Tj,

• Γ2 = ∑︁
j∈J (Ej + Tj),

where Tj and Ej represent the tardiness and the earliness, respectively, and are
computed as Tj := max{0, cj − dj} and Ej := max{0, dj − cj}. The two objective
functions are the most widely used ones in scheduling, focusing on meeting jobs
due dates. In particular, the minimization of the second objective characterizes the
Just-In-Time principle in production.

The motivation of the research comes from plastic and rubber manufacturing,
transforming raw material into a final product goes through one or two machines.
On the other hand, even those manufacturing require multiple-machine scheduling
problems. Each machine represents a chain’s primary block. Thus improper usage
of a machine can slow down the whole production process.

The dispatching rules are the easiest approach to deal with scheduling in a
dynamic context. These rules prioritize jobs waiting for being processed and then
select the job with a greedy evaluation whenever a machine gets free. While most
dispatching rules schedule on a local view basis, other smarter approaches can
provide better results in the long run. For instance, Reinforcement Learning (RL)
is a continuing and goal-directed learning paradigm, and it represents a promising
approach to deal with online scheduling. The potential of RL on online scheduling
has been revealed in several works (see, e.g., [74], [185], [235]). However, while most
works compare a single RL algorithm with commonly-used dispatching rules, they
do not compare different RL algorithms.

In this research, we investigate the applicability of four RL algorithms (namely
Q-learning, Sarsa, Watkins’s Q(λ), and Sarsa(λ)) on online single-machine schedul-
ing in comparison with a random assignment (Random) which simply selects a job
randomly and the most popular dispatching rules, namely the earliest due date
(EDD) rule. Furthermore, the algorithms are tested under different operating con-
ditions (e.g., the frequency of job arrivals).

Therefore, we contribute the literature on two different aspects: getting insights
on the compared methods and giving practitioners suggestions on selecting the best
method against the specific situation.

Finally, we also propose some preliminary results obtained by the use of Deep Q
Network (DQN ), which utilizes the power of neural networks to approximate the
value function (see [137] for a review about DQN).

The current chapter is structured as follows. Section 7.2 is dedicated to a general
overview of RL techniques, while Section 7.3 introduces and reviews some previous
works using RL approaches on scheduling problems. Section 7.4 describes the
algorithmic framework for the online single-machine problem. Section 7.5 defines
the simulation procedure, and the simulation results from three different types of
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experiments (Section 7.6). Finally, in Section 7.7, the chapter concludes with a
summary of the findings and some future lines.

7.2 Reinforcement Learning
RL is a subfield of Machine Learning which involves learning the optimal be-

havior in an environment to obtain maximum reward. This optimal behavior is
learned through interactions with the environment and observations of how it re-
sponds. It comes from three main research branches: the first relates to learning by
trial-and-error, the second relates to optimal control problems, and the last links to
temporal-difference methods (see [198]). The three approaches converged together
in the late eighties to produce the modern RL.

In particular, RL approaches are concerned with how a goal-directed decision-
maker called agent to interact with a set of states called environment by means of a
set of possible actions. A reward is given to the agent in each specific state. In this
research, we consider a discrete time system, i.e. defined over a finite set T of time
steps with its cardinality being called time horizon. As shown in Figure 7.1, at each
time step t ∈ T , an agent in state St takes action At, then, the environment reacts
by changing into state St+1 and by rewarding the agent of Rt+1. The interaction
starts from an initial state, and it continues until the end of the time horizon. Such
a sequence of actions is named an episode. In the following, E will represent the set
of episodes.

Each state of the system is associated with a value function that estimates the
expected future reward achievable from that state. Each state-action pair (St, At)
is associated with a so-called Q-function Q(St, At) that measures the future reward
achievable by implementing action At in state St. The agent’s goal is to find the best
policy, which is a function mapping the set of states to the set of actions, maximizing
the cumulative reward. If exact knowledge of the Q-function is available, the best
policy for each state is defined by maxa Q(St, a).

Figure 7.1: The agent-environment interaction in RL [198].

Almost all reinforcement learning algorithms are based on estimating value func-
tions that estimate how good it is for the agent to be in a given state and discover
the optimal policies. To do so, three main classes of RL techniques exist: Monte
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Carlo (MC)-based, Dynamic Programming (DP)-based methods, and temporal-
difference (TD)-based methods. Unlike DP-based methods, which require complete
knowledge of all the possible transitions, MC-based techniques only require some
experience and the possibility to sample from the environment randomly. TD-based
methods are a sort of combination of MC-based and DP-based ones: they sample
from the environment like in MC-based methods and perform updates based on
current estimates like DP-based ones. Moreover, TD-based techniques are also
appreciated for being flexible, easy to implement, and computationally fast. For
these reasons, in this research, we will consider only RL algorithms belonging to the
TD-based methods. Even if several TD-based RL algorithms have been introduced
in the literature, the most used are Sarsa (an acronym for State-Action-Reward-
State-Action), Q-learning and their variations, e.g. the Watkins’s Q(λ) method
and the Sarsa(λ) (see [218]).

7.3 Literature Review
Since the first research on scheduling problem was performed in the mid-1950s,

many articles have been published in the literature, considering different problem
variants and solution approaches.

The manufacturing industries sometimes include a machine bottleneck, which
affects, in some cases, all the jobs. Studies on single machine scheduling problems
have been gaining importance for a long time since this bottleneck’s management
is crucial. The excellent surveys by Pinedo [160], Adamu and Adewumi [1], and the
work proposed by Leksakul and Techanitisawad [111] have detailed the literature
on the theory and applications about this problem in the past several decades.

In the manufacturing environment, various objectives can be considered to use
the resources and provide good customer service efficiently. Scheduling against due
dates has received considerable attention to meet principles like Lean Management,
Just-in-Time, Simultaneous Engineering, etc. For example, the Just-in-Time prin-
ciple states that jobs are expected to be on time since both late and early processing
may negatively influence the manufacturing costs. While late processing does not
meet customer expectations, early processing increases inventory costs and causes
possible wastes since some products have a limited lifetime. One of the pioneers ad-
dressing minimizing the sum of earliness and tardiness (also referred to as the sum
of deviations from a common due date) was [99]. Ying [230] addressed a single-
machine problem against common due dates concerning earliness and tardiness
penalties. He proposed a recovering beam search algorithm to solve this problem.
Behnamian et al. [22] considered the problem of parallel machine scheduling to
minimize both makespan and total earliness and tardiness. Fernandez-Viagas et
al. [70] studied the problem of scheduling jobs in a permutation flow shop to min-
imize the sum of total tardiness and earliness. They developed and compared four
heuristics to deal with the problem. More recently, the two-machine permutation
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flow shop scheduling problem to minimize total earliness and tardiness has been ad-
dressed by two branch-and-bound algorithms utilizing lower bounds and dominance
conditions [182].

Total tardiness minimization is another common criterion in the scheduling lit-
erature where only the tardiness penalties are considered. Koulamas [104] sur-
veyed theoretical developments, exact and approximation algorithms for the single-
machine scheduling problem with the aim of total tardiness minimization. In [91],
single machine scheduling with family setup and resource constraints to minimize
total tardiness minimization was addressed. A mathematical formulation and a
heuristic solution approach were presented. Recently, Silva et al. [187] studied
the single machine scheduling problem that minimizes the total tardiness. They
presented two algorithms to deal with the situation in which the processing time is
uncertain.

As for the scheduling modes, research on online scheduling is one of the popular
streams. Since this problem has been an active field for several decades, an in-depth
analysis of the literature review is beyond the present paper’s scope. Thus, in this
section, we recall some of the most traditional approaches to online scheduling, and
we review the main applications of RL to this problem.

Differently from tailored algorithms (heuristic and exact methods), which might
require effort in implementation and calibration over a broad set of parameters,
dispatching rules are widely adopted for online scheduling for their simplicity (see,
e.g., [97]). For instance, the earliest due date (EDD) dispatching rule is one of the
most commonly used ones in practical applications [199]. EDD schedules first the
job with the earliest due date. Again, in [86], the authors propose a deterministic
greedy algorithm known as list scheduling (LS), which assigns each job to the ma-
chine with the smallest load. For more details, we refer the reader to the work [151]
that classified over one hundred dispatching rules. In [46], the authors designed a
deterministic algorithm and a randomized one for online machine sequencing prob-
lems using Linear Programming techniques. At the same time, in [123], the authors
proposed an algorithm to make jobs artificially available to the online scheduler by
delaying the release time of jobs.

In online scheduling, a decision-maker is regularly scheduling jobs over time,
attempting to reach the overall best performance. Therefore, it is reasonable that
RL represents one of the possible techniques to exploit such a setting.

In [74], the authors interpreted job-shop scheduling problems as sequential de-
cision processes. They try to improve the job dispatching decisions of the agent
by employing an RL algorithm. Experimental results on numerous benchmark in-
stances showed the competitiveness of the RL algorithm. More recently, in [235], the
authors modeled the scheduling problem as a Markov Decision Process and solved
it through a simulation-based value iteration and a simulation-based Q-learning.
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Their results clearly showed that such RL algorithms could achieve better perfor-
mance concerning several dispatching heuristics, disclosing RL application’s poten-
tial in the field. In the context of an online single-machine environment, in [222],
the authors compared the performance of neural fitted Q-learning techniques using
combinations of different states, actions, and rewards. They proved that taking
only the necessary inputs of states and actions is more efficient.

While all the discussed works revealed RL’s competitiveness on scheduling prob-
lems, a further comparison of the performance among various RL algorithms is still
missing in the scheduling literature. With the knowledge of the available studies
showing RL’s potential and the demand from the industrial application, we are
motivated to compare different RL approaches’ performance on online scheduling
for getting more insights. In particular, we carry out experimental studies on four
of the most commonly used model-free RL algorithms, namely Q-learning, Sarsa,
Watkins’s Q(λ), and Sarsa(λ). Our comparison methodology is inspired by [222],
in which the best configuration for minimizing maximal lateness is pursued. In
our work, instead, we propose two different objective functions to minimize: the
total tardiness and the total earliness and tardiness. Moreover, another significant
difference with their work lies in the way we evaluate the results. While they used
the result from one run, our results come from 50 runs with different random seeds,
and two different time step sizes are tested (the interaction between agent and en-
vironment is checked in each step). We further test a neural network-based RL
technique showing that it is unnecessary to use such a combination when the state
space is limited.

7.4 Reinforcement Learning Algorithms for On-
line Scheduling

In this section, we describe the algorithmic framework used to deal with our
online single-machine scheduling problem. Our problem setting are defined as

• state: a state is associated with each possible length of the jobs in the waiting
queue;

• action: if not all the jobs are finished, the action is either to select one new
job from a specific position of the waiting queue and start processing it (we
recall that preemption is allowed) or to continue processing the job which has
been already assigned to the machine in the previous step;

• reward: since RL techniques aim at maximizing rewards while our problem
seeks to minimize its objective function (either the total tardiness or the total
earliness and tardiness), we set the reward of a state as the opposite value of
the considered measure.
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When the action implies selecting a job from a certain position in the wait-
ing queue, it is important to decide the order in which jobs are stored inside the
queue. Therefore, we implemented three possible ordering of jobs that provide very
different scheduling effects

• jobs are unsorted (UNSORT ), i.e., they have the same order as the arrivals;

• jobs are sorted by increasing value of due time (DT );

• all unfinished jobs are sorted by increasing the value of the sum of due time
and processing time (DT+PT ).

For instance, by using DT, if the action is to select a job in the second position
of the queue, the job with the second earliest due time will be processed.

We have decided to implement four different RL algorithms, namely Q-learning,
Sarsa, Watkins’s Q(λ), and Sarsa(λ). They are described in the following. Here
are the notation used

• s: state;

• a: action;

• S: set of non-terminal states;

• A(s): set of actions possible in state s;

• St: state at time step t;

• At: action at time step t;

• Rt: reward at time step t.

Q-learning

Q-learning is a technique that learns the value of an optimal policy indepen-
dently of the agent’s action. It is largely adopted for its simplicity in the analysis
of the algorithm and for the possibility of early convergence proofs by directly ap-
proximating the optimal action-value function (see [218] and [198]). The updating
rule for the estimation of the Q-function is

Q(St, At) ← Q(St, At) + α[Rt+1 + γ max
a

Q(St+1, a) − Q(St, At)]. (7.1)

The Q(St, At) function estimates the quality of state-action pair. At each time
step t, the reward Rt+1 from state St to St+1 is calculated and Q(St, At) is updated
accordingly. The coefficient α is the learning rate (0 ≤ α ≤ 1); it determines
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the extent that new information overrides the old information. Furthermore, γ
is the discount factor determining the importance of future reward and finally,
maxa Q(St+1, a) is the estimation of best future value.

The values of the Q-function are stored in a look-up table called Q-table. Figure
7.2 displays an example of Q-table storing Q-function values for states from 0 to
10 (in row) and actions from selecting Job 1 to Job 5 (in column). By overlooking

Figure 7.2: An example of Q table.

the actual policy being followed in deciding the next action, Q-learning simplifies
the analysis of the algorithm and enabled early convergence proofs.

Sarsa

Sarsa is a technique that updates the estimated Q-function by following the
experience gained from executing some policies (see [188] and [198]). The updating
rule for the estimation of the Q-function is

Q(St, At) ← Q(St, At) + α[Rt+1 + γQ(St+1, At+1) − Q(St, At)]. (7.2)

The structure of formula (7.2) is similar to (7.1). The only difference is that (7.2)
considers the actual action implemented in the next step At+1, instead of the generic
best action maxa Q(St+1, a).

As for Q-learning, also in Sarsa the values of the Q-function are stored in a
Q table. Despite the more expensive behaviour with respect to Q-learning, Sarsa
may provide better online performances in some scenarios (as shown by the Cliff
Walking example in [198]).

Watkins’s Q(λ)

Watkins’s Q(λ) is a well-known variant of Q-learning. The main difference with
respect to classical Q-learning is the presence of a so-called eligibility trace, i.e. a
temporary record of the occurrence of an event, such as the visiting of a state or
the taking of an action. The trace marks the memory parameters associated with

170



7.5 – Simulation Setting

the event as eligible for undergoing learning changes. A trace is initialized when
a state is visited or an action is taken, and then the trace gets decayed over time
according to a decaying parameter λ (with 0 ≤ λ ≤ 1). Let us call et(s, a) the
trace for a state-action pair (s, a). Let us also define an indicator parameter 1xy

that takes value 1 if and only if x and y are the same, and 0 otherwise. Then, for
any (s, a) pair (for all s ∈ S, a ∈ A), the updating rule for the estimation of the
Q-function is

Qt+1(s, a)← Qt(s, a) + αδtet(s, a) (7.3)

where
δt = Rt+1 + γ max

a′
Qt(St+1, a′)−Qt(St, At) (7.4)

and

et(s, a) = γλet−1(s, a) + 1sSt1aAt (7.5)

if Qt−1(St, At) = maxa Qt−1(St, a), and 1sSt1aAt otherwise.
As the reader can notice, by plugging equation (7.4) into equation (7.3), we

obtain an equation similar to (7.1) but with the additional eligibility term that
increments the value of δt if the state and action selected by the algorithm are one
of the eligibility states. In the rest of the paper we use Q(λ) referring to Watkins’s
Q(λ).

Sarsa(λ)

Similarly to Q(λ), the Sarsa(λ) algorithm represents a combination between
Sarsa and eligibility traces to obtain a more general method that may learn more
efficiently. Here, for any (s, a) pair (for all s ∈ S, a ∈ A), the updating rule for the
estimation of the Q-function is

Qt+1(s, a)← Qt(s, a) + αδtet(s, a) (7.6)

where
δt = Rt+1 + γQt(St+1, At+1)−Qt(St, At) (7.7)

and
et(s, a) = γλet−1(s, a) + 1sSt1aAt (7.8)

Unlike equation (7.5), there is no other condition (set the eligibility traces to 0
whenever a non-greedy action is taken) added. A more in-depth discussion about
the interpretation of the formulas is given in [198].
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Algorithm 11 Online scheduling simulation through RL algorithms
Require: |E| number of episodes; |T | number of time-steps;

1: Initialize Q(s, a) = 0,∀ s ∈ S, a ∈ A;
2: for η ← 1 to |E| do
3: Initialize S
4: for t← 1 to |T | do
5: if new jobs arrive then
6: Update waiting list L
7: end if
8: if L is not empty then
9: Take At in St, observe Rt, St+1

10: Calculate At+1 and update Qt

11: St ← St+1, At ← At+1
12: end if
13: end for
14: end for

7.5 Simulation Setting
In this section, an online scheduling simulation procedure is described in Algo-

rithm 11.
We first update Q tables through a training phase then use the Q tables to select

actions in the test phase.
The arrival time of job j are distributed according to an exponential distribution,

i.e., Xj ∼ exp(r) with the rate parameter valued r = 0.1. It is simulated in this
way: at the first time step, a random number of jobs (from 1 to 6 jobs) and an
interval time (following the exponential distribution) are generated. Once a job is
generated (simulating the job’s arrival), it will immediately be put into the waiting
queue. Then at the next time step, if the interval time is passed, new jobs will
be generated and put into the waiting queue; meanwhile, a new interval time will
be created. Otherwise, nothing is created. Then the same procedure repeats till
reaching a final state.

In an episode, we start a new schedule by initializing state S and terminates
when either reaching the maximum steps or no jobs to process. To simulate real-
time scheduling, for each episode, we check the arrivals of new jobs and update the
waiting queue if there are, then we choose the action A, and calculate the reward
R and the next state S ′ accordingly. The Q-functions are updated according to the
exact RL algorithms used. The same procedure is carried out in both training and
test phases except that in the test, the Q-table is not initialized with empty values
but obtained from the training phase.

It is worth noting that all the algorithms considered are heuristics. They focus on
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finding a good solution quickly by finding a balance between the solution space’s
intensified and diversified explorations. Nevertheless, the direct implantation of
the algorithms above does not ensure enough diversification. For this reason, it
is common to use a ϵ-greedy method. Thus, with probability ϵ, exploration is
chosen, which means the action is chosen uniformly at random between the available
ones. Instead, with probability 1 − ϵ, exploitation is chosen by taking the actions
with the highest values greedily. After knowing how to balance exploration and
exploitation, we need to define a learning method for finding out policies leading
to higher cumulative rewards.

For the settings regarding RL algorithms

• In the policy, ϵ = 0.1 enabling highly greedy actions while keeping some ran-
domness in job selections;

• In the value function, α = 0.6, i.e., there is a bit higher tendency to ex-
plore more possibilities while a bit lower in keeping exploiting old information,
whereas γ = 1.0, which means it strives for a long-term high reward;

• In the eligibility traces, λ is 0.95, a high decaying value leads to a longer-lasting
trace.

Let us show how the total tardiness value evolves, for an example in which
Q-learning is used to schedule the jobs. In Figure 7.3, the graph on the bottom
shows that the reward increases and reaches the maximum and holds steady after 80
episodes. Accordingly, the objective value (the total tardiness) decreases with more
noticeable fluctuations and drops more slowly after 80 episodes. While the reward
keeps stable, total tardiness continues dropping to around 40000. To summarize,
using total tardiness as a goal is useful, but it is still challenging to represent the
trend of this objective value adequately.

7.6 Experimental Results
In this section, we propose three different experimental results. Section 7.6.1

compares the performance among random assignment (Random), EDD, and the
four RL approaches implemented for both minimizing the total tardiness and the
total earliness and tardiness. Section 7.6.2 investigates the possible impact of dif-
ferent operating conditions (i.e., frequency of jobs arrivals) on the RL approaches.
Finally, Section 7.6.3 compares Q(λ) and DQN.

The algorithms have been implemented in Python 3.6. To avoid possible ambi-
guities, we locate the related code in a public repository2. All the experiments are

2https://github.com/Yuanyuan517/RL_OnlineScheduling.git
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Figure 7.3: The changes to reward and the objective value (total tardiness) of 100
episodes.

carried out on an Intel Core i5 CPU@2.3GHz machine equipped with 8GB RAM
and running MacOS v10.15.4 operating system.

7.6.1 RL algorithms vs Random and EDD
To check if considering different time horizons leads to different results, we con-

sider two experiments in which the time horizon T is set to 2500 and 5000, re-
spectively. For each of the settings, we ran 50 tests with different random seeds.
For each algorithm Θ, we call ΓζΘ the objective value achieved in simulation ζ .
Furthermore, we define ρζΘ to be the percentage gap between the objective value
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achieved by the best algorithm and algorithm Θ during run ζ, i.e.,

ρζΘ = ΓζΘ

minζΘ ΓζΘ
. (7.9)

To compare the different algorithms, we consider the average value of ρζΘ concerning
all the runs.

The simulation results with the algorithms (under different job orders, time
horizons) for the total tardiness and the total earliness and tardiness minimization
are displayed in Table 7.1 and 7.2, respectively. Note that avg(ρζΘ) and std(ρζΘ)
represent respectively the mean value and standard deviations of ρζΘ.

Table 7.1: Simulations of the algorithms with different settings and considering the
total tardiness minimization.

Algorithm Jobs order |T |=2500 |T |=5000
avg(ρζΘ) std(ρζΘ) avg(ρζΘ) std(ρζΘ)

Random - 2.59 0.50 3.06 0.69
EDD - 7.67 1.76 9.19 1.47

Q-learning UNSORT 2.15 0.43 2.04 0.35
Q-learning DT 1.45 0.28 1.29 0.20
Q-learning DT+PT 1.44 0.30 1.25 0.18

Sarsa UNSORT 2.55 0.53 2.47 0.39
Sarsa DT 1.65 0.40 1.76 0.36
Sarsa DT+PT 1.66 0.47 1.68 0.33

Sarsa(λ) UNSORT 4.42 0.93 5.04 0.93
Sarsa(λ) DT 7.04 1.35 7.73 1.34
Sarsa(λ) DT+PT 3.08 1.03 7.70 1.33

Q(λ) UNSORT 2.04 0.42 2.01 0.40
Q(λ) DT 1.11 0.18 1.13 0.17
Q(λ) DT+PT 1.19 0.26 1.09 0.14

The best value among all the combinations of algorithms and jobs order policies
for each time horizon is highlighted in bold font.

While in [222] the authors show that EDD gets a better result than RL in
minimizing the maximum tardiness, as shown in Table 7.1, all the implemented
RL algorithms outperform EDD in minimizing the total tardiness. This result is
exciting and probably depends on whether the learning paradigm is more tailored
to optimize min-sum problems than min-max ones. Also, it can be seen that the
size of running time steps influences the result on job order but does not affect the
algorithm. For the case with 2500 steps, the configuration Q(λ) plus DT gets the
best result, instead for 5000 steps, the configuration Q(λ) plus DT+PT outperforms
the others.

Besides, we find with the sorting choice DT+PT that all algorithms get smaller
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Table 7.2: Simulations of the algorithms with different settings and considering the
total tardiness and earliness minimization.

Algorithm Jobs order |T |=2500 |T |=5000
avg(ρζΘ) std(ρζΘ) avg(ρζΘ) std(ρζΘ)

Random - 5.85 9.95 19.34 42.96
EDD - 4.17 1.86 6.24 2.99

Q-learning UNSORT 5.33 9.33 12.62 30.34
Q-learning DT 3.95 6.71 10.20 23.10
Q-learning DT+PT 3.72 6.20 9.91 22.20

Sarsa UNSORT 5.72 9.62 17.45 39.43
Sarsa DT 4.43 7.87 16.34 37.85
Sarsa DT+PT 4.46 8.13 13.77 33.89

Sarsa(λ) UNSORT 10.77 17.78 36.59 75.93
Sarsa(λ) DT 13.29 23.84 49.71 111.14
Sarsa(λ) DT+PT 6.04 9.87 55.77 116.36

Q(λ) UNSORT 4.68 8.25 15.45 34.97
Q(λ) DT 3.89 6.66 10.21 23.98
Q(λ) DT+PT 3.29 5.62 9.23 21.36

average values except for the configuration Q(λ) with 2500 steps. Comparatively,
a randomly sorting job leads to a much worse result.

Instead, as reported in Table 7.2, EDD outperforms the other algorithms in
minimizing the total earliness and tardiness, in terms of both the mean and the
standard deviation for the larger time horizon. Moreover, it achieves the smallest
standard deviation for both time horizons. However, the configuration using Q(λ)
and DT+PT gets the smallest mean for the case with 2500 time steps. Taking
into account the three job’s ordering, it can be noticed that all the algorithms in
combination with UNSORT have the worst results in terms of both the mean and
the standard deviation, except for the algorithm Sarsa(λ) (which instead performs
very poorly with the sorting choice DT ).

Finally, it can be noticed that the mean and the standard deviation obtained by
the algorithms in minimizing the total earliness and tardiness are larger than those
achieved in Table 7.1. Unlike the total tardiness minimization’s objective, the total
earliness and tardiness may not be well addressed by the proposed RL algorithms.
Considering the measure of jobs, earliness can negatively affect the effectiveness of
RL algorithms. A possible reason can be found in the test environment settings. In
the experiments, the due date is calculated by first taking a random value, namely
the processing time of the job, from an exponential distribution X ∼ Exp(ι) where

ι = 1
7×maxj∈J {processingT imeJobj}

,
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and adding that value to the current simulation time. Reminding that the tar-
diness of a job j is defined as Tj := max{0, cj − dj} where cj = startT imej +
processingT imeJobj, then the more the jobs accumulated as time running, the
bigger the difference between the start time and due date for a job. Hence, more
delays will occur, which might cause the simulation results in favor of tardiness
calculation.

7.6.2 Q(λ) performance against different job arrival rates
We carried out another test against different frequencies of job arrivals (con-

trolled by the rate parameter r) by considering the two best RL algorithm combi-
nations resulted from the previous tests, i.e., Q(λ) plus DT and Q(λ) plus DT+PT.
To understand whether the value of r affects the performance, we experimented
with 2 more values, i.e. r = {0.05, 0.2} in addition to the previous one r = 0.1.
Tables 7.3 and 7.4 show the results of this test in the case of minimization of total
tardiness and total earliness and tardiness, respectively. Note that the results have
been normalized by following Eq. (7.9) with 50 tests and |T | = 2500 for each test.

Table 7.3: Experiments on the rate parameter with best settings from Q(λ) con-
cerning the total tardiness minimization.

Jobs order r avg(ρζΘ) std(ρζΘ)
DT 0.05 1.14 0.18

DT+PT 0.05 1.17 0.55
DT 0.10 1.10 0.17

DT+PT 0.10 1.17 0.26
DT 0.20 1.17 0.28

DT+PT 0.20 1.12 0.24

Table 7.4: Experiments on the rate parameter with best settings from Q(λ) con-
cerning the total earliness and tardiness minimization.

Jobs order r avg(ρζΘ) std(ρζΘ)
DT 0.05 1.74 0.83

DT+PT 0.05 1.94 0.90
DT 0.10 3.89 6.66

DT+PT 0.10 3.29 5.62
DT 0.20 5.97 6.66

DT+PT 0.20 5.75 6.37

As shown in the Table 7.3, with small values of r (e.g., 0.05, 0.10), i.e., when
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jobs arrive much less frequently than the last one, the version with jobs ordered by
DT performs better. When jobs arrive much more frequently, the version sorted
by DT+PT wins. Hence, a careful selection of algorithms and settings according
to the operating conditions matters.

Table 7.4 shows results on comparing the total earliness and tardiness with the
same settings as the ones of Table 7.3. However, even with a different objective, the
results for r = 0.05 and r = 0.20 are similar: the version using DT (for the former)
and DT + PT (for the latter) perform better. The difference lies on r = 0.10,
which gets better performance with DT + PT instead of DT in Table 7.3. Thus,
a combination of factors (settings, operating conditions, and objective) is clearly
necessary to be considered when selecting the RL algorithm.

7.6.3 Comparison between Q(λ) and DQN
Finally, in this section, we compare a four-layer DQN and Q(λ) plus DT+PT,

which is the best performing RL algorithm. Figure 7.4 shows such a comparison
in the total tardiness minimization, while Figure 7.5 is dedicated to the case min-
imizing the total earliness and tardiness. We run 50 tests and |T | = 5000 in each
test. The horizontal axis represents the total tardiness and the vertical axis shows
the probability the objective value falls in. Note that the brown area indicates the
overlapping between Q(λ) and DQN .

Figure 7.4: Comparison between Q(λ) and DQN on the total tardiness of 50 runs
with different seeds representing different schedules.

From Figure 7.4, we can see Q(λ) has much higher probability with smaller
objective value, which indicates Q(λ) outperforms DQN . Taking into account the
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Figure 7.5: Comparison between Q(λ) and DQN on the total earliness and tardi-
ness of 50 runs with different seeds representing different schedules.

time spent in training DQN is almost 10 times of Q(λ), Q(λ) is a better option,
especially for guaranteeing a flexible and adaptive scheduling in realtime.

The results in Figure 7.5 are very similar to the previous ones. Compared to
Q(λ), DQN has a much higher probability with a bigger objective, which stands
for its poor performance.

7.7 Summary
In this paper, we compared four RL methods, namely Q-learning, Sarsa, Watkins’s

Q(λ), and Sarsa(λ), with EDD and random assignment on an online single-machine
scheduling problem with two different objectives, as the total tardiness and the total
earliness and tardiness minimization. The experiments show that

• better scheduling performance in minimizing the total tardiness is achieved
by the RL method Watkins’s Q(λ), especially when the action concerns the
selection of jobs sorted by due date for the smaller time horizon (|T | = 2500)
and the selection of jobs sorted by due date and processing time for bigger
time horizon (|T | = 5000);

• considering the measure of earliness may negatively affect the performance of
RL algorithms. In minimizing the total earliness and tardiness, Watkins’s Q(λ)
with the sorting choice DT+PT performs better for the small-time horizon in
terms of mean values. In contrast, EDD can get better results for the large-
time horizon;
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• when considering different frequencies of jobs arrival, the combination of Q(λ)
and job orders have different performances in various operating conditions with
different objectives;

• slight differences in algorithms and objectives can profoundly change the re-
sults.

Besides, with limited input, using DQN is too costly for extended running time
and energy spent adjusting parameters to guarantee a good result. In addition to
the numerical results explicitly presented in the paper, according to our previous
experience, RL algorithms also do not perform well on a single job-related objective
(e.g., maximum tardiness [222]). These indicate careful analysis should be done
from different viewpoints (running time, operating conditions, average results from
multiple experiments) for making a wiser selection of algorithms.
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Chapter 8

Conclusions and future
research

In the following, for each problem addressed in the thesis (two deterministic, two
stochastic, and one dynamic COPs involving scheduling decisions), we summarize
the main conclusions and sketch some possible future lines of research.

8.1 Multi-trip single vehicle routing problem with
AND-type precedence constraints

The first proposed COP under the deterministic environment is the multi-trip
single-vehicle routing problem. The nodes associated with customers/target loca-
tions are related to each other through AND-type precedence constraints. Our
motivation comes from realistic settings, such as package delivery or picker routing
problems. Some nodes have priorities to be visited after a set of other ones within
and among the routes. For instance, in picker routing problems where a picker
walks or drives through the warehouse to collect the requested items, AND-type
PCs need to be considered due to physical features like fragility restrictions, stack-
ability, shape, size, and weight. For example, to prevent damage to light items,
pickers cannot put heavy items on top of light items. Moreover, preferred loading
or unloading sequences (to avoid extra effort on sorting and packing the collected
items at the end of the retrieving process) can be represented as PCs that specify
which items should be collected before other ones.

Despite the AND-type PC applications in real-life routing problems, none of
the studies in the literature of logistics, even picker routing problems, focuses on
these relations. Closely related research to the VRP with PCs is the Dial-A-Ride or
pickup and delivery problem where the pair-wise relations (known as conventional
PC) are inherently represented between pickup and delivery (drop-off) points within
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a route, i.e., for any backhaul node j, there is a particular inhaul node i where the
PC (i < j) must be met within a route.

In this thesis, we develop and experimentally compare three mathematical for-
mulations to address the proposed problem. The computational results validate the
significant superiority of the developed two-index model in terms of both computa-
tional time and problem size in comparison with the two other ones on an extended
set of small instances proposed by Martinez-Salazar et al. [133].

Then, the problem is handled by developing a solution approach based on the
logic-based Benders decomposition (LBBD) algorithm. The proposed approach
decomposes the original problem into an assignment master problem. The nodes
are allocated to some required trips and independent sequencing subproblems with
the particular structure of the traveling salesman problem considering AND-type
PCs.

Moreover, a new optimality cut is provided to obtain faster convergence, and
its validity is proven. The performance of the optimality cut is experimentally
investigated by comparing that with a recently proposed cut in the literature. Ad-
ditionally, we present a relaxed version of LBBD by defining a limit for optimality
gap and CPU time in deriving master-problem solutions. In such a way, the algo-
rithm’s efficiency improves. It allows the algorithm to find a feasible solution to the
original problem in less CPU time and even larger instances. The performance of
proposed LBBD algorithms is evaluated and compared together through extensive
computational experiments. The results show that the two exact LBBDs can solve
most instances, while the relaxed version of LBBD can heuristically solve all the
generated instances in a shorter computational time.

Since this research is the first attempt to propose AND-type PCs in the routing
area, various future topics can be explored, including different vehicle routing prob-
lems and even real-life applications. Designing and developing other exact solution
approaches, well-known heuristic, meta-heuristic algorithms, and enhancements in
both parts of the master and subproblem of the proposed LBBD algorithm are
highly recommended for future research studies.

8.2 Vehicle routing problem with AND/OR prece-
dence constraints and time windows

The second proposed COP under the deterministic environment is an extension
of the vehicle routing problems with time windows in which AND/OR precedence
constraints are defined among the customers’ visits. This generalization comes
after considering the customers’ partial orders due to their priorities or physical
restrictions.

Let us consider a delivery problem in which a customer’s order includes various
items collected from different locations. In such a situation, the customer must be
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visited in a route only after (not necessarily immediately) visiting the locations of
requested goods. A similar situation can also be seen in order picker routing prob-
lems where a picker walks or drives through the warehouse to collect the requested
items and put them in a roll container considering fragility restrictions, stackability,
shape, size, and weight. For example, to prevent damage to light items, pickers are
not allowed to put heavy items on top of light items. Such physical features and
preferred loading or unloading sequences (to avoid extra effort to sort and pack the
collected items at the end of the retrieving process) can be represented as AND/OR
PCs.

Despite the applicability of such constraints, no available research in the liter-
ature of VRPs and even the picker routing problems consider AND/OR PCs. As
mentioned before, the precedence relations have been represented as a pre-specified
sequence of nodes in most picker routing problems.

To address the proposed problem, we formulate it as a MILP model capable of
solving only small-sized instances by spending a lot of CPU time. We have also
developed a meta-heuristic algorithm as the hybridization of Iterated Local Search
(ILS) and Simulated Annealing (SA) approaches which complement the advantages
of both ILS and SA in a single optimization framework. The computational exper-
iments highlight the promising performance of the developed algorithm in terms of
CPU time and solution quality. This proves that the integration between SA and
ILS can balance exploration and exploitation and achieve reasonable optimization
results.

Future works could be devoted to different routing problems like stochastic dy-
namic models considering AND/OR precedence constraints. Considering the so-
lution approaches, exact methods and other algorithms can be developed to be
compared with our proposed meta-heuristic algorithm in dealing with larger in-
stances.

8.3 Optimal paths in multi-stage stochastic deci-
sion networks

As a first application of the multi-stage Deterministic Approximation (DA) ap-
proach, we propose a problem that aims at finding the optimal path value in a
multi-stage stochastic decision-making network. In this problem, decisions are
made under uncertainty, and the random term oscillations of the stochastic pa-
rameters follow an unknown probability distribution. The optimal path is seen as a
sequential decision-making process over stages, where the uncertain utility of nodes
at each stage is affected by the subsequent decisions. In such a way, the decisions
are nested, and the decision process cannot be decomposed into distinct stages.

We show how, under appropriate assumptions and using some results of the
extreme value theory, the probability distribution of the best alternative can still
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be asymptotically approximated by a Gumbel distribution and, in turn, the total
utility of the optimal path can be analytically derived.

Moreover, using a Nested Multinomial Logit model, which gives the probabil-
ity to choose each node at each stage optimally, a feasible solution is heuristically
derived. The solution is obtained by finding the longest path (the most probable
sequence) on the graph in which arcs are characterized with their choice probabili-
ties.

Extensive numerical tests on a significant number of randomly generated in-
stances have shown accurate estimations concerning analogous results obtainable
from solving the expected value problem. The performance of the deterministic
approximation seems particularly good as the size of networks increases, making
the proposed approach a valuable tool to support decision-making in stochastic
multi-stage networks for large and complex applications.

Future works could consider using the given deterministic approximation in dif-
ferent and more specific operational management problems involving multi-stage
stochastic decision processes. Finally, from a more methodological point of view,
one might embed this approach into a shifting-window framework that iteratively
considers a restricted horizon to mitigate the approximation errors in finding opti-
mal paths over stages.

8.4 Stochastic single machine scheduling prob-
lem as a multi-stage dynamic random deci-
sion process

As a more specific application of the deterministic approximation approach
in a multi-stage stochastic decision-making process, a single machine scheduling
problem is addressed. The problem is defined as the stochastic single machine
job scheduling problem where the learning effect on processing time, sequence-
dependent setup times, and machine configuration selection are considered simul-
taneously. Also, random variables are assumed to represent uncertainty for job
processing times and machine setup times. The machine can handle one job at
a time and works under configurations that affect the job processing times. The
problem aims at finding the sequence of jobs and configurations that minimizes the
makespan under uncertainty.

We formulated the problem as two-stage and multi-stage stochastic models to
compare with the deterministic approximation model, where knowing the probabil-
ity distribution of the random variables is not needed. In the two-stage SP model,
two variable sets, corresponding to decisions before and after revealing information,
are defined. The first-stage decisions, common to all realizations, represent the jobs
assignments to positions. The second-stage decisions, specific to each realization
and dependent on the first-stage decisions, represent the choice of configuration to
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process each job.
The two-stage vision of the problem could be too simplistic since it assumes

to collapse the implementation of the optimal second-stage decisions when all the
uncertainty is revealed. In practice, a multi-stage SP approach could be more
suitable for this kind of strongly-layered operational problem. The decisions are
taken stage by stage, along with the realizations of some random variables.

However, both two-stage and multi-stage SP models are highly computationally
demanding. So, we apply the deterministic approximation approach proposed in
[202] to address the problem and make possible the resolution of large-scale in-
stances. Using the approximation approach, the problem was first reformulated as
a non-linear integer programming model. Then, by defining the new measure of ac-
cessibility, it was converted to the shortest path problem on a multi-stage network,
which can be solved in a few seconds, even for large-sized instances.

In conclusion, the extensive computational experiments showed outstanding per-
formance of the deterministic approximation model vs. the stochastic models in
terms of accuracy of solutions and computational time.

Future works could consider using the Deterministic Approximation in differ-
ent scheduling problems involving multi-stage random decision processes. From
a methodological point of view, it could be interesting to develop and assess a
moving-window DA-based framework that iteratively considers a restricted horizon
to provide optimal decisions over stages.

8.5 Online Single-Machine Scheduling via Rein-
forcement Learning

In the context of dynamic COPs, the online single machine scheduling problem
has been studied. To deal with the problem, we compared four of the most used
RL methods, namely Q-learning, Sarsa, Watkins’s Q(λ), and Sarsa(λ), with EDD
and random assignment method. Two different objective functions are considered
as total tardiness and total earliness and tardiness minimization.

The result of computational experiments indicates that the slight differences in
algorithms, jobs order, objective functions, and time horizon can profoundly change
the results. In particular, the RL method Watkins’s Q(λ) show better scheduling
performance in minimizing the total tardiness, especially when the action concerns
the selection of jobs sorted by the due date for the smaller time horizon (|T | = 2500)
and the selection of jobs sorted by the due date and processing time for larger time
horizon (|T | = 5000).

Considering the measure of earliness may negatively affect the performance of RL
algorithms. In minimizing the total earliness and tardiness, Watkins’s Q(λ) with
the sorting choice DT+PT performs better for the small-time horizon in terms of
mean values. In contrast, EDD can get better results for the large-time horizon.
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Moreover, the computational tests against different frequencies of job arrivals
show that the combination of Q(λ) and job orders have different performances in
various operating conditions with different objectives. Besides, with limited input,
using DQN is too costly for extended running time and energy spent adjusting
parameters to guarantee a good result.

In addition to the numerical results explicitly presented in the paper, according
to some previous experience, RL algorithms also do not perform well on a single
job-related objective (e.g., maximum tardiness [222]). This indicates that, in the
future, a careful analysis could be done from different viewpoints (running time,
operating conditions, average results from multiple experiments) for making a wiser
selection of algorithms.

In multiple machines scheduling, more transitions must be considered, which
need more representational state information. Thus it will be impossible to store
values of all state-action pairs in a Q-table. DQN may take a leading role then.

As indicated by the work [73], unpredictable changes may happen at different
places in the state-action space, and more care should be taken to avoid instabilities
of DQN . One technique that can achieve this goal is the so-called kernel function
(see [38]), which builds a future research avenue. Another possibility is creating an
algorithm selection framework, as explored in work by Rice [177]. In particular, by
mapping from the problem characteristics to the appropriate algorithms considered
in the framework, we can achieve an automatic selection of the best one to use.
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