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3D-1D coupling on non conforming meshes via a
three-field optimization based domain decomposition

Stefano Berronea, Denise Grappeina, Stefano Scialòa,∗

aDipartimento di Scienze Matematiche, Politecnico di Torino, Corso Duca degli Abruzzi 24,
10129 Torino, Italy. Member of INdAM research group GNCS.

Abstract

A new numerical approach is proposed for the simulation of coupled three-
dimensional and one-dimensional elliptic equations (3D-1D coupling) arising
from dimensionality reduction of 3D-3D problems with thin inclusions. The
method is based on a well posed mathematical formulation and results in a
numerical scheme with high flexibility in handling geometrical complexities.
This is achieved by means of a three-field approach to split the 1D problems
from the bulk 3D problem, and then resorting to the minimization of a properly
designed functional to impose matching conditions at the interfaces. Thanks
to the structure of the functional, the method allows the use of independent
meshes for the various subdomains.

Keywords: 3D-1D coupling, three-field, domain-decomposition, non
conforming mesh, optimization methods for elliptic problems
2010 MSC: 65N30, 65N50, 68U20, 86-08

1. Introduction

This work presents a new numerical approach to manage the coupling of
three-dimensional and one-dimensional elliptic equations (3D-1D coupling). This
kind of problems emerges, for example, in the numerical treatment of domains
with small tubular inclusions: in these cases, indeed, it might be computation-
ally convenient to approximate the small inclusions by one-dimensional (1D)
manifolds, in order to avoid the building of a three-dimensional grid within the
inclusion. Clearly this topological reduction can be a viable approach only if
one-dimensional modeling assumptions can be applied to the problem at hand.
Examples of application are: capillary networks exchanging flux with the sur-
rounding tissue [1, 2], the interaction of plant roots with the soil [3, 4], a system
of wells in geological applications [5, 6, 7], or the modeling of fiber-reinforced
materials [8, 9].
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The definition of coupling conditions between a three-dimensional (3D) and
a 1D problem is not straightforward, as no bounded trace operator is defined in
standard functional spaces on manifolds with a dimensionality gap higher than
one. This problem was recently studied in [10, 11], where suitably weighted
Sobolev spaces were introduced and a bounded trace operator from the 3D space
to the 1D space was defined, thus allowing to formulate a well posed coupled
problem, also resorting to the results in [12]. In [13] regularizing techniques are
proposed for singular terms. Three dimensional problems with singular sources
defined on lines are also studied in [14], where the nature of the irregularity is
analyzed and a method based on the splitting of the solution in a low regularity
part plus a regular correction is proposed. Problems with a source term on
manifolds with high dimensionality gaps are also studied in [15], where a lifting
technique of the irregular datum is used to reduce the dimensionality gap. In
[16], regularized singular source terms are introduced and scaling factors are
used to select the scale at which such source terms are activated, independently
from the mesh resolution. In the method proposed in [17], instead, the singu-
lar source terms arising from 3D-1D coupled problems are approximated in a
neighbourhood of the inclusions by custom kernel functions. In [18] a 3D-1D
coupled approach is derived starting from the fully 3D-3D coupled problem and
applying a topological model reduction through the definition of proper averag-
ing operators. Mixed dimensional PDEs on 3D-1D domains are also addressed
in [19], using Lagrange multipliers to enforce the coupling. A stabilization is
required to ensure well posedness of the discrete problem for some choices of
the space of multipliers.

In the present work a new numerical approach to this problem is proposed,
starting from modeling assumptions similar to those proposed in [18]. A re-
duced 3D-1D model approximating the original equi-dimensional 3D-3D prob-
lem is here obtained by introducing proper assumptions on the solution inside
the small inclusions and by defining suitable subspaces of the Sobolev spaces
typically employed in the variational formulation of partial differential equa-
tions. In this respect, the proposed approach differs from the others available in
literature, and in particular from the approach in [18]. Indeed, here a continuous
well posed 3D-1D coupled problem is obtained by assuming that the solution is
constant in the cross sectional area of the inclusions and introducing suitable ex-
tensions and trace operators. Thanks to this, the problem is treated, in practice,
as a 3D-1D reduced problem, but it can still be written as an equi-dimensional
problem, thus skipping the difficulties related to the 3D-1D coupling. The prob-
lems in the bulk 3D domain and in the small inclusions are splitted resorting
to a three-field based domain decomposition method, originally formulated in
[20] and already applied for domain decomposition in networks of fractures [21].
Suitable matching conditions are then enforced at the interface to recover the
solution on the whole domain. Here pressure continuity and flux conservation
constraints are assumed at the interfaces. This kind of interface conditions are
also considered in the approaches proposed in [19] and [8], for example, and are
relevant for applications, as, e.g., the simulation of leaky vessels in angiogene-
sis [22], thin membranes [23], or fiber-reinforced materials [8]. The advantages
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of the three-field based approach with respect to other domain decomposition
methods lie in the possibility of defining stable locally conservative numerical
schemes on non conforming meshes [21], on the direct computation of the in-
terface variables, and on the definition of a well posed discrete problem on non
conforming meshes independently of the choice of the space of the discrete vari-
ables. Matching conditions at the interfaces are enforced by means of a PDE
constrained numerical scheme, already proposed for simulation of the flow in
poro-fractured media [24, 25, 26] and here proposed for 3D-1D coupling. The
method is based on the minimization of a cost functional expressing the error in
the fulfillment of interface conditions, constrained by constitutive laws on the
various subdomains. The advantages of such an approach lie in the possibility
of enforcing continuity and flux balance at the interfaces using completely inde-
pendent meshes on the sub-domains. This provides to the scheme an extreme
flexibility and robustness to geometrical complexities, which are critical features
for the applicability to real problems, where the nearly one dimensional inclu-
sions might form complex networks, possibly generated from random parameters
[27, 28]. Exploiting the properties of the functional spaces chosen for the solu-
tion, the functional can be reduced to the centrelines of the tubular inclusions
and used to control the continuity of the solution, whereas flux conservation
is strongly enforced thanks to the three-field formulation. High jumps of the
coefficients across the interfaces are also permitted by the proposed approach.

The manuscript is organized as follows: in Section 2 notation is introduced
and the strong formulation of the 3D-3D problem is presented, along with the
hypotheses allowing its reduction to a 3D-1D problem. In Section 3 the weak
formulation of the 3D-1D coupled problem is worked out, while in Section 4 the
problem is re-written into a PDE-constrained optimization formulation. The
corresponding discrete approach is discussed in Section 6. Finally, in Section 7,
some numerical examples are described.

2. Notation and problem formulation

Let us here briefly recall the basic formulation of the problem of interest in
a simplified setting, the ideas here proposed being easily extendable to more
general cases. We refer to [18] for a broader presentation of the problem. Let
us consider a convex domain Ω ⊂ R3 in which a generalized cylinder Σ ⊂ R3 is
embedded. The centreline of this cylinder is denoted by Λ = {λ(s), s ∈ (0, S)},
where λ(s) is here assumed, for simplicity, to be a rectilinear segment in the
three-dimensional space. The symbol Σ(s) denotes the transversal section of
the cylinder at s ∈ [0, S]. We assume that each section, whose boundary is
denoted by Γ(s), has an elliptic shape, denoting by R the maximum axes length
of the ellipses as s ranges in the interval [0, S]. The lateral surface of Σ is
Γ = {Γ(s), s ∈ [0, S]}, while Σ0 = Σ(0) and ΣS = Σ(S) are the two extreme
sections. The portion of the domain that does not include the cylinder is denoted
by D = Ω \ Σ, with boundary ∂D = ∂Ω ∪ {Γ ∪ Σ0 ∪ ΣS}, where ∂Ω is the
boundary of Ω. We refer to ∂De as the external boundary of D, coinciding with

3



∂Ω when the extreme sections of Σ are inside Ω. In case Σ0 and ΣS lie on the
boundary ∂Ω we define ∂De = ∂Ω \ {Σ0 ∪ ΣS}.

Let us consider, in Ω, a diffusion problem, with unknown pressures u in D
and ũ in Σ:

3D-problem on D:

−∇ · (K∇u) = f in D (1)

u = 0 on ∂De (2)
u|Γ = ψ on Γ (3)
K∇u · n = φ on Γ (4)

3D-problem on Σ:

−∇ · (K̃∇ũ) = g in Σ (5)
ũ = 0 on Σ0 ∪ ΣS (6)
ũ|Γ = ψ on Γ (7)

K̃∇ũ · ñ = −φ on Γ (8)

Vectors n and ñ are the outward pointing unit normal vectors to Γ, respectively
for D and Σ, such that ñ = −n, K and K̃ are positive scalars, and f and g are
source terms. The symbol ψ denotes the unknown unique value of the pressure
on the interface Γ while φ is the unknown flux through Γ, entering in D. For
the sake of simplicity we suppose here that the extreme sections Σ0 and ΣS lie
on ∂Ω, and we consider homogeneous Dirichlet boundary conditions on both of
them and on ∂De, the extension to more general cases being straightforward.
Equations (3)-(4) and (7)-(8) enforce pressure continuity and flux conservation
constraints on the lateral surface Γ of the cylinder, thus allowing us to couple the
two problems. We remark that different coupling conditions could be considered,
as the ones proposed in [18].

If the cross-section-size R of the cylinder Σ becomes much smaller than both
the longitudinal length L and the characteristic dimension of Ω, a model can be
introduced in order to reduce the computational cost of simulations. The key
point is that, as R� L, it is possible to assume that the variations of ũ on the
transversal sections of the cylinder are negligible, i.e., in cylindrical coordinates,

ũ(r, θ, s) = û(s) ∀r ∈ [0, R], ∀θ ∈ [0, 2π). (9)

This allows us to simplify problem (5)-(6) reducing it to a 1D problem defined
on the cylinder’s centerline Λ as

−
d

ds

(
K̃|Σ(s)|

dû

ds

)
= g̃ for s ∈ (0, S) (10)

û(0) = û(S) = 0, (11)

where the new forcing term g̃ now accounts for the original volumetric source g
and for the incoming flux from the boundary Γ of the equi-dimensional problem.
Details of this geometrical reduction are provided in the next session. The clear
advantage of the reduced problem (10)-(11) is that solving a problem defined on
a segment instead of a problem defined on a small cylinder is computationally
much cheaper, and avoids the necessity of a 3D-1D trace operator.

In the next section an original formulation of the coupled 3D-1D problem
is derived, starting from a variational formulation of the fully dimensional 3D-
3D problem (1)-(2) and (5)-(6), and defining the proper functional spaces and
operators required to reduce this formulation to a well posed 3D-1D coupling.
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3. Variational formulation

In this section we will adopt the following notation:

H1
0 (D) =

{
v ∈ H1(D) : v|∂De = 0

}
H1

0 (Σ) =
{
v ∈ H1(Σ) : v|Σ0

= v|ΣS = 0
}

H1
0 (Λ) =

{
v ∈ H1(Λ) : v(0) = v(S) = 0

}
and we will suppose that ∂De = ∂Ω \ {Σ0 ∪ ΣS}, i.e. the extreme sections of
the cylinder lie on ∂Ω. As aforementioned this assumption is introduced for the
sake of simplicity, the formulation being extendable to more general cases. Let
us define a trace operator

γ
Γ

: H1(D)∪H1(Σ)→ H
1
2 (Γ), such that γ

Γ
v = v|Γ ∀v ∈ H

1(D)∪H1(Σ) (12)

and two extension operators

EΣ : H1(Λ)→ H1(Σ) and EΓ : H1(Λ)→ H
1
2 (Γ)

defined such that, given v̂ ∈ H1
0 (Λ), E

Σ
(v̂) is the uniform extension of the point-

wise value v̂(s), s ∈ [0, S], to the cross section Σ(s) of the cylinder and EΓ(v̂)
the uniform extension of v̂ to the boundary Γ(s) of the cross section, i.e.

EΣ v̂(x) = v̂(s) ∀x ∈ Σ(s) and EΓ v̂(x) = v̂(s) ∀x ∈ Γ(s).

Let us observe that EΓ = γΓ ◦ EΣ . Setting V̂ = H1
0 (Λ), let us further consider

the spaces:

Ṽ = {v ∈ H1
0 (Σ) : v = EΣ v̂, v̂ ∈ V̂ },

HΓ = {v ∈ H 1
2 (Γ) : v = E

Γ
v̂, v̂ ∈ V̂ },

VD =
{
v ∈ H1

0 (D) : γΓv ∈ HΓ
}
.

such that Ṽ ⊂ H1
0 (Σ) contains functions that are extensions to the whole Σ

of functions in V̂ , HΓ ⊂ H
1
2 (Γ) contains functions that are extensions to Γ of

functions in V̂ , and VD ⊂ H1
0 (D) only contains functions whose trace on Γ is a

function of HΓ. Denoting by (·, ·)? the L2-scalar product on a generic domain
?, and by X ′ the dual of a generic space X, the variational problem arising
from the coupling of (1)-(2) and (5)-(6) through the continuity constraint can
be written as: find (u, ũ) ∈ VD × Ṽ such that

(K∇u,∇v)D + (K̃∇ũ,∇ṽ)Σ = (f, v)D + (g, ṽ)Σ ∀(v, ṽ) ∈ VD × Ṽ (13)

〈γ
Γ
u− γ

Γ
ũ, η〉HΓ,HΓ′ = 0, ∀η ∈ HΓ′ (14)

Remark 1. Let us consider the space V =
{

(v, ṽ) ∈ VD × Ṽ : γ
Γ
v = γ

Γ
ṽ
}
.

Then, problem (13)-(14) is equivalent to: find (u, ũ) ∈ V such that

(K∇u,∇v)D + (K̃∇ũ,∇ṽ)Σ = (f, v)D + (g, ṽ)Σ ∀(v, ṽ) ∈ V
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The well-posedness of the problem easily follows from Lax-Milgram theorem,
considering || · ||V = || · ||H1(D) + || · ||H1(Σ)

Equation (13) can be split into two coupled equations introducing the un-
known flux φ through Γ, obtaining thus

(K∇u,∇v)D − 〈φ, γΓ
v〉HΓ′,HΓ = (f, v)D ∀v ∈ VD, φ ∈ HΓ′ (15)

(K̃∇ũ,∇ṽ)Σ + 〈φ, γ
Γ
ṽ〉HΓ′,HΓ = (g, ṽ)Σ ∀ṽ ∈ Ṽ , φ ∈ HΓ′ (16)

Moreover, the continuity condition (14) can be rewritten introducing a new
variable ψ ∈ HΓ as:

〈γ
Γ
u− ψ, η〉HΓ,HΓ′ = 0 ∀η ∈ HΓ′, ψ ∈ HΓ (17)

〈γΓ ũ− ψ, η〉HΓ,HΓ′ = 0 ∀η ∈ HΓ′, ψ ∈ HΓ. (18)

The set of equations (15), (16), (17) and (18) represent an application of the
three-field formulation presented in [20] and similarly applied in [21].
Thanks to the assumptions on the introduced functional spaces, this problem
can be reduced to a 3D-1D coupled problem without encountering the aforemen-
tioned issues in the definition of a trace operator. In fact we only need to use
the trace operator γ

Γ
(·), which is well-posed as defined from a three-dimensional

manifold to a two dimensional one. Let us observe that

〈φ, γ
Γ
v〉HΓ′,HΓ =

∫
Γ

φ γ
Γ
v dΓ =

∫ S

0

(∫
Γ(s)

φ γ
Γ
v dl

)
ds ∀v ∈ VD

and let us denote by φ(s) the mean value of φ on the border Γ(s) of each
section. As v ∈ VD we know that γ

Γ
v ∈ HΓ, i.e. ∃v̌ ∈ V̂ : γ

Γ
v = E

Γ
v̌. Thus∫

Γ(s)
γ

Γ
v dl = |Γ(s)|v̌(s) and∫ S

0

(∫
Γ(s)

φ γ
Γ
v dl

)
ds =

∫ S

0

|Γ(s)|φ(s)v̌(s) ds =
〈
|Γ|φ, v̌

〉
V̂ ′,V̂

,

where |Γ(s)| is the section perimeter size at s ∈ [0, S]. The same holds if we
consider 〈φ, γ

Γ
ṽ〉HΓ′,HΓ . As ṽ ∈ Ṽ we know that ∃v̂ ∈ V̂ : ṽ = E

Σ
v̂ and

consequently γ
Γ
ṽ = γ

Γ
E

Σ
ṽ = E

Γ
v̂, so that

〈φ, γ
Γ
ṽ〉HΓ′,HΓ =

〈
|Γ|φ, v̂(s)

〉
V̂ ′,V̂

.

Similarly, ∀η ∈ HΓ′ and ∀ρ : ρ = E
Γ
ρ̂ with ρ̂ ∈ V̂ , we can write

〈ρ, η〉HΓ,HΓ′ =

∫ S

0

(∫
Γ(s)

ρηdl
)
ds =

∫ S

0

|Γ(s)|ρ̂(s)η(s)ds = 〈ρ̂, |Γ|η〉V̂ ,V̂ ′ (19)

where we have used
∫

Γ(s)
ρ dl = |Γ(s)|ρ̂ and η(s) is the mean value of η on the

border Γ(s) of each section. Exploiting (19) we can rewrite conditions (17) and
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(18) as

〈γΓu− ψ, η〉HΓ,HΓ′ =
〈
|Γ|(ǔ− ψ̂), η

〉
V̂ ,V̂ ′

= 0

〈γ
Γ
ũ− ψ, η〉HΓ,HΓ′ =

〈
|Γ|(û− ψ̂), η

〉
V̂ ,V̂ ′

= 0

where ǔ, ψ̂ ∈ V̂ are such that γ
Γ
u = E

Γ
ǔ, ψ = E

Γ
ψ̂ and γ

Γ
ũ = γ

Γ
E

Σ
ũ = E

Γ
û, as

ũ ∈ Ṽ . Finally let us observe that

(K̃∇ũ,∇ṽ)Σ =

∫
Σ

K̃∇ũ∇ṽ dσ =

∫ S

0

K̃|Σ(s)|
dû

ds

dv̂

ds
ds

where û, v̂ ∈ V̂ are such that ũ = EΣ û, ṽ = EΣ v̂ and |Σ(s)| is the section area at
s ∈ [0, S]. Problem (15)-(18) can now be rewritten as a reduced 3D-1D coupled
problem: Find (u, û) ∈ VD × V̂ , φ ∈ V̂ ′ and ψ̂ ∈ V̂ such that:

(K∇u,∇v)D −
〈
|Γ|φ, v̌

〉
V̂ ′,V̂

= (f, v)D ∀v ∈ VD, v̌ ∈ V̂ : γ
Γ
v = E

Γ
v̌ (20)(

K̃|Σ|dû
ds
,
dv̂

ds

)
Λ

+
〈
|Γ|φ, v̂

〉
V̂ ′,V̂

= (|Σ|g, v̂)Λ ∀v̂ ∈ V̂ (21)〈
|Γ|(ǔ− ψ̂), η

〉
V̂ ′,V̂

= 0 γΓu = EΓǔ, ∀η ∈ V̂ ′ (22)〈
|Γ|(û− ψ̂), η

〉
V̂ ′,V̂

= 0 ∀η ∈ V̂ ′ (23)

with g(s) = 1
|Σ(s)|

∫
Σ(s)

g dσ, being g sufficiently regular.

Remark 2. Even if we started from the same modeling assumptions as in [18],
the formulation of the problem here proposed is different, for the choice of the
functional spaces of the solution. Indeed, here we assume that the solution is
constant on the cross-sections of the inclusion, and this regularity assumption
is actually used to allow for the dimensional reduction.

4. PDE-constrained optimization problem

The fulfillment of conditions (22) and (23) can be obtained through the
minimization of a cost functional. Since we want to formulate independent
problems on the various sub-domains, in order to guarantee the well posedness of
each problem independently from the imposed boundary conditions, we modify
equations (20)-(21) as follows:

(K∇u,∇v)D + α(|Γ|ǔ, v̌)Λ −
〈
|Γ|φ, v̌

〉
V̂ ′,V̂

= (f, v)D + α(|Γ|ψ̂, v̌)Λ (24)
∀v ∈ VD, v̌ ∈ V̂ : γΓv = EΓ v̌,(

K̃|Σ|
dû

ds
,
dv̂

ds

)
Λ

+ α̂(|Γ|û, v̂)Λ +
〈
|Γ|φ, v̂

〉
V̂ ′,V̂

= (|Σ|g, v̂)Λ + α̂(|Γ|ψ̂, v̂)Λ (25)

∀v̂ ∈ V̂ .
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with α, α̂ > 0 being arbitrary parameters. Let us now define the following
functional

J(φ, ψ̂) =
1

2

(
||γ

Γ
u(φ, ψ̂)− ψ||2HΓ + ||γ

Γ
ũ(φ, ψ̂)− ψ||2HΓ

)
=

1

2

(
||γΓu(φ, ψ̂)− EΓ ψ̂||2HΓ + ||γΓEΣ û(φ, ψ̂)− EΓ ψ̂||2HΓ

)
(26)

to be minimized constrained by (24) and (25). In order to rewrite the PDE-
constrained optimization problem in a compact form, we consider the linear
operators A : VD → V ′D, Â : V̂ → V̂ ′, B : V̂ ′ → V ′D, B̂ : V̂ ′ → V̂ ′, C : V̂ → V ′D
and Ĉ : V̂ → V̂ ′ such that:

〈Au, v〉V ′D,VD = (K∇u,∇v)D + α(|Γ|ǔ, v̌)Λ v ∈ VD, v̌ ∈ V̂ : γΓv = EΓ v̌ (27)〈
Âû, v̂

〉
V̂ ′,V̂

=
(
K̃|Σ|

dû

ds
,
dv̂

ds

)
Λ

+ α̂(|Γ|û, v̂)Λ v̂ ∈ V̂ (28)

〈
Bφ, v

〉
V ′D,VD

=
〈
|Γ|φ, v̌

〉
V̂ ′,V̂

v ∈ VD, v̌ ∈ V̂ : γ
Γ
v = E

Γ
v̌ (29)〈

B̂φ, v̂
〉
V̂ ′,V̂

=
〈
|Γ|φ, v̂

〉
V̂ ′,V̂

v̂ ∈ V̂ (30)〈
Cψ̂, v

〉
V ′D,VD

= α(|Γ|ψ̂, v̌)Λ v ∈ VD, v̌ ∈ V̂ : γ
Γ
v = E

Γ
v̌ (31)〈

Ĉψ̂, v̂
〉
V̂ ′,V̂

= α̂(|Γ|ψ̂, v̂)Λ v̂ ∈ V̂ . (32)

The respective adjoints will be denoted as A∗ : VD → V ′D, Â
∗ : V̂ → V̂ ′,

B∗ : VD → V̂ , B̂∗ : V̂ → V̂ , C∗ : VD → V̂ ′, Ĉ∗ : V̂ → V̂ ′. Let us further define

F ∈ V ′D s.t. F (v) = (f, v)D, v ∈ VD (33)

G ∈ V̂ ′ s.t. G(v̂) = (|Σ|g, v̂)Λ, v̂ ∈ V̂ . (34)

Equations (24)-(25) can thus be written as:

Au−Bφ− Cψ̂ = F (35)

Âû+ B̂φ− Ĉψ̂ = G. (36)

If we now consider the space V = VD × V̂ and we set W = (u, û) ∈ V and
V = (v, v̂) ∈ V, we can introduce the following operators:

A : V→ V′ s.t. A(W,V) = A(u, v) + Â(ũ, ṽ)

B : V̂ ′ → V′ s.t. B(φ,V) = B(φ, v)− B̂(φ, v̂)

C : V̂ → V′ s.t. C(ψ̂,V) = C(ψ̂, v) + Ĉ(ψ̂, v̂)
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and the PDE-constrained optimization problem can be written as

min
(φ,ψ̂)

J(φ, ψ̂) subject to (37)

AW −Bφ− Cψ̂ = F , (38)

with F ∈ V′ s.t. F(V) = F (v) +G(v̂).
Let us now provide some results about the optimal control and the stepsize of
the steepest descent method for Problem (37)-(38). These results are given in
terms of propositions, for the proof of which we refer to the Appendix.

Proposition 1. Let us consider the trace operator γ
Γ

: VD → HΓ and the
extension operators E

Σ
: V̂ → Ṽ and E

Γ
= γ

Γ
◦ E

Σ
: V̂ → HΓ, whose respective

adjoints are γ∗
Γ

: HΓ′ → V ′D, EΣ

∗ : Ṽ ′ → V̂ ′ and E
Γ

∗ : HΓ′ → V̂ ′ and let
ΘV̂ : V̂ → V̂ ′ and ΘHΓ : HΓ → HΓ′ be Riesz isomorphisms. Then the optimal
control (φ, ψ̂) that provides the solution to (37)-(38) is such that

ΘV̂ (B∗p− B̂∗p̂) = 0 (39)

Θ−1

V̂
(C∗p+ Ĉ∗p̂− E

Γ

∗ΘHΓ(γ
Γ
u(φ, ψ̂) + E

Γ
û(φ, ψ̂)− 2E

Γ
ψ̂)) = 0 (40)

where p ∈ VD and p̂ ∈ V̂ are the solutions respectively to

A∗p = γ∗
Γ
ΘHΓ(γΓu(φ, ψ̂)− E

Γ
ψ̂) (41)

Â∗p̂ = EΓ

∗ΘHΓ(EΓ û(φ, ψ̂)− EΓ ψ̂) (42)

Starting from the derivatives computed in Proposition 1, let us define the quan-
tities

δφ = ΘV̂ (B∗p− B̂∗p̂) ∈ V̂ ′ (43)

δψ̂ = Θ−1

V̂
(C∗p+ Ĉ∗p̂− E

Γ

∗ΘHΓ(γ
Γ
u(φ, ψ̂) + E

Γ
û(φ, ψ̂)− 2E

Γ
ψ̂)) ∈ V̂ . (44)

Then the following proposition holds:

Proposition 2. Given the variable χ = (φ, ψ̂), let us increment it by a step ζδχ,
where δX = (δφ, δψ̂). The steepest descent method corresponds to the stepsize

ζ = −

(
δφ, δφ

)
Λ

+
(
δψ̂, δψ̂

)
Λ〈

Bδφ+ Cδψ̂, δp
〉
V ′D,VD

+
〈
−B̂δφ+ Ĉδψ̂, δp̂

〉
V̂ ′,V̂
−
〈
EΓ

∗ΘHΓ(γΓδu+ EΓδû− 2EΓδψ̂), δψ̂
〉
V̂ ′,V̂

where

δu = u(δφ, δψ̂) = A−1(Bδφ+ Cδψ̂) ∈ VD,

δû = û(δφ, δψ̂) = Â−1(−B̂δφ+ Ĉδψ̂) ∈ V̂
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and δp ∈ VD, δp̂ ∈ V̂ are such that:

A∗δp = γ∗
Γ
ΘHΓ(γ

Γ
δu− E

Γ
δψ̂)

Â∗δp̂ = E
Γ

∗ΘHΓ(E
Γ
δû− E

Γ
δψ̂)

5. Managing multiple cylinders and their intersections

The previous discussion can be readily adapted to the case of multiple, say
I, small cylindrical inclusions Σi, with lateral surface Γi and centreline Λi,
i = 1, . . . , I. Let us first assume that the inclusions are disjoint, i.e. Σk∩Σj = ∅
for k 6= j = 1, . . . I. Function spaces V̂ , Ṽ , HΓ are introduced on each segment
and denoted by V̂i, Ṽi, HΓi , while trace operator γ

Γ
, extension operator E

Γ

and E
Σ
are easily re-defined for each segment and denoted by γ

Γi
, E

Γi
and E

Σi
,

respectively. Operators (27)-(32) are re-written as:

〈Au, v〉V ′D,VD = (K∇u,∇v)D + α

I∑
i=1

(|Γi|ǔi, v̌i)Λi

∀v ∈ VD, v̌i ∈ V̂i : γ
Γi
v = E

Γi
v̌i,∀i = 1, . . . , I〈

Âiûi, v̂i

〉
V̂ ′i ,V̂i

=
(
K̃i|Σi|

dûi

ds
,
dv̂i

ds

)
Λi

+ α̂(|Γi|ûi, v̂i)Λi ∀v̂i ∈ V̂i

〈
Biφi, vi

〉
V ′D,VD

=
〈
|Γi|φi, v̌i

〉
V̂ ′i ,V̂i

∀v ∈ V : γΓi
v = EΓi

v̌i, v̌i ∈ V̂i〈
B̂iφi, v̂

〉
V̂ ′i ,V̂i

=
〈
|Γi|φi, v̂

〉
V̂ ′i ,V̂i

∀v̂ ∈ V̂i〈
Ciψ̂i, v

〉
V ′D,VD

= α(|Γi|ψ̂, v̌)Λi ∀v ∈ VD, v̌i ∈ V̂i : γΓi
v = EΓi

v̌〈
Ĉiψ̂i, v̂

〉
V̂ ′i ,V̂i

= α̂(|Γi|ψ̂i, v̂)Λi v̂ ∈ V̂i.

Problem (35)-(36) can be finally re-written for an arbitrary set of I centrelines
as:

Au−Biφi − Ciψ̂i = F (45)

Âiûi + B̂iφi − Ĉiψ̂i = Gi, (46)

in which we consider different 1D variables ûi, φi, ψ̂i on the different 1D domains.
The definition of Gi follows from the definition of an operator in the form of
(34) for each segment.

In case cylindrical inclusions with centrelines intersecting in a point, i.e.
such that Λ̄i∩ Λ̄j = Pζ , i, j ∈ [1, . . . , I], we can still adopt formulation (45)-(46)
by splitting the intersecting centrelines into non intersecting sub-segments and

10



Extended
intersection volume

Figure 1: Two intersecting cylinders Σ1 and Σ2

then adding continuity conditions at the intersection points Pζ . The considered
situation is depicted in Figure 1, in which an extended intersection volume is
highlighted. According to model assumptions, in this volume the solution has
a unique constant value, coinciding with the value in Pζ , and the extension
and trace operators γ

Γi
, E

Γi
and E

Σi
are still well defined for the two original

cylinders. Faces Σ′k,0, k = 1, . . . , 4, belonging to the boundary of the extended
intersection volume, can be considered as the extreme sections of the four sub-
cylinders. We need however to assume that the diameter of the extended inter-
section volume, defined as the maximum distance between two points belonging
to the volume, is small if compared to the minimum length of the intersecting
inclusions. Different intersection modes, such as, e.g. cylinders with intersect-
ing lateral surfaces and non-intersecting centrelines, or cylinders with (partially)
overlapping centrelines, are, instead, excluded.

Finally, the cost functional is re-written as:

J =

I∑
i=1

Ji :=

I∑
k=1

1

2

(
||γ

Γi
u(φi, ψ̂i)− ψi||2HΓ + ||γ

Γ
ũi(φi, ψ̂i)− ψi||2HΓ

)
(47)

where ũi = E
Σi
ûi and ψi = E

Γi
ψ̂i.

6. Discrete matrix formulation

Here the discrete matrix form of problem (37)-(38) is presented. The 3D-
1D coupling is trivial in the discrete approximation spaces, given the regularity
properties of the function spaces commonly used for discretization. Nonetheless,
the present approach has the advantage of having a well posed mathematical
formulation, and it even allows the use of non conforming meshes at the inter-
faces of the subdomains. Indeed, thanks to the optimization framework, it is
possible to use completely independent meshes for the various domains and also
for the interface variables, without any theoretical constraint on mesh sizes.
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For the sake of generality we will consider, from the beginning, the presence
of multiple segments crossing domain Ω. Let us consider I segments of different
length and orientation, defined ad Λi = {λi(s), s ∈ (0, Si)}, i = 1, ..., I. Let us
extend the domain D to the whole Ω and let us consider a tetrahedral mesh T
of domain Ω, and let us define, on this mesh, Lagrangian finite element basis
functions {ϕk}Nk=1, such that U =

∑N
k=1 Ukϕk is the discrete approximation of

pressure u. Let us then build three partitions of each segment Λi, named T̂i, τφi
and τψi , defined independently from each other and from T . Let us further define
the basis functions {ϕ̂i,k}N̂ik=1 on T̂i, {θi,k}

Nφi
k=1 on τφi and {ηi,k}

Nψi
k=1 on τψi , with

N̂i, N
φ
i and Nψ

i denoting the number of DOFs of the discrete approximations
of the variables ûi, φi and ψ̂i respectively, having set:

Ûi =

N̂i∑
k=1

Ûi,kϕ̂i,k, Φi =

Nφi∑
k=1

Φi,kθi,k, Ψi =

Nψi∑
k=1

Ψi,kηi,k

We then define the following matrices:

A ∈ RN×N s.t. (A)kl =

∫
Ω

K∇ϕk∇ϕl dω + α

I∑
i=1

∫
Λi

|Γ(si)|ϕk|Λiϕl|Λids

Âi ∈ RN̂i×N̂i s.t. (Âi)kl =

∫
Λi

K̃i|Σ(si)|
dϕ̂i,k
ds

dϕ̂i,l
ds

ds+ α̂

∫
Λi

|Γ(si)|ϕ̂i,kϕ̂i,l ds

Bi ∈ RN×N
φ
i s.t. (Bi)kl =

∫
Λi

|Γ(si)|ϕk|Λi θi,l ds

B̂i ∈ RN̂i×N
φ
i s.t. (B̂i)kl =

∫
Λi

|Γ(si)|ϕ̂i,k θi,l ds

Cα
i ∈ RN×N

ψ
i s.t. (Cαi )kl = α

∫
Λi

|Γ(si)|ϕk|Λi ηi,l ds

Ĉα
i ∈ RN̂i×N

ψ
i s.t. (Ĉi

α
)kl = α̂

∫
Λi

|Γ(si)|ϕ̂i,k ηi,l ds,

and the vectors

f ∈ RN s.t. fk =

∫
Ω

fϕk dω

gi ∈ RN̂i s.t. (gi)k =

∫
Λi

|Σ(si)|g ϕ̂i,k ds.

Setting N̂ =
∑I
i=1 N̂i, N

ψ =
∑I
i=1N

ψ
i and Nφ =

∑I
i=1 Nφ

i , we can group the
matrices as follows for all the segments in the domain:

B = [B1,B2, ...,BI ] ∈ RN×N
φ

B̂ = diag
(
B̂1, ..., B̂I

)
∈ RN̂×N

φ

Cα = [Cα
1 ,C

α
2 , ...,C

α
I ] ∈ RN×N

ψ

Ĉα = diag
(
Ĉα

1 , ..., Ĉ
α
I

)
∈ RN̂×N

ψ

12



and, for non intersecting segments, we have:

Â = diag
(
Â1, ..., ÂI

)
∈ RN̂×N̂ ,

whereas, for groups of intersecting segments, we proceed as described in Sec-
tion 5 and we enforce continuity through Lagrange multipliers. For each con-
nected group of segments we thus have:

Â?ζ =

[
diag

(
Âζ1 , ..., Âζn

)
QT

Q 0

]
where matrix Q simply equates the DOFs at the extrema of connected sub-
segments. Matrices Â?ζ , for ζ spanning the whole number of connected groups
of segments, are assembled block diagonally to form matrix Â. Please note that,
for disconnected segments, each matrix Â?ζ coincides with matrix Âζ . Finally
we can write

AU −BΦ−CαΨ = f (48)

ÂÛ + B̂Φ− ĈαΨ = g (49)

with

Û =
[
ÛT1 , ..., Û

T
I

]T
∈ RN̂ ; g = [gT1 , g

T
2 , ..., g

T
I ]T ∈ RN̂

Φ =
[
ΦT1 , ...,Φ

T
I
]T ∈ RN

φ

; Ψ =
[
ΨT

1 , ...,Ψ
T
I
]T ∈ RN

ψ

.

In order to get a more compact form of the previous equations, let us set
W = (U, Û) and

A =

[
A 0

0 Â

]
, B =

[
B

−B̂

]
, Cα =

[
Cα

Ĉα

]
F =

[
f
g

]
, (50)

so that the discrete constraint equations become:

AW −BΦ− CαΨ = F . (51)

Concerning the cost functional in (26), first we define matrices

Gi ∈ RN×N s.t. (Gi)kl =

∫
Λi

ϕk|Λi
ϕl|Λi

ds

Ĝi ∈ RN̂i×N̂i s.t. (Ĝi)kl =

∫
Λi

ϕ̂i,k ϕ̂i,l ds

Gψi ∈ RN
ψ
i ×N

ψ
i s.t. (Gψi )kl =

∫
Λi

ηi,k ηi,l ds

Ci ∈ RN×N
ψ
i s.t. (Ci)kl =

∫
Λi

ϕk|Λi
ηi,l ds

Ĉi ∈ RN̂i×N
ψ
i s.t. (Ĉi)kl =

∫
Λi

ϕ̂i,k ηi,l ds

13



and then

G =

I∑
i=1

Gi ∈ RN×N Ĝ = diag
(
ĜT

1 , ..., Ĝ
T
I

)
∈ RN̂×N̂ G =

[
G 0

0 Ĝ

]
(52)

Gψ = diag
(
Gψ1 , ...,G

ψ
I

)
∈ RN

ψ×Nψ

C = [C1,C2, ...,CI ] ∈ RN×N
ψ

Ĉ = diag
(
Ĉ1, ..., ĈI

)
∈ RN̂×N

ψ

C =

[
C

Ĉ

]
.

The discrete cost functional then reads:

J̃ =
1

2

(
UTGU − UTCΨ−ΨTCTU + ÛT ĜÛ − ÛT ĈΨ−ΨT ĈT Û + 2ΨTGψΨ

)
=

=
1

2

(
WTGW −WTCΨ−ΨTCTW + 2ΨTGψΨ

)
. (53)

The discrete matrix formulation of the 3D-1D problem finally takes the form:

min
(Φ,Ψ)

J̃(Φ,Ψ) subject to (51). (54)

First order optimality conditions for the above problem correspond to the saddle-
point system:

S =


G 0 −C AT

0 0 0 BT

−CT 0 2Gψ (−Cα)T

A B −Cα 0

 (55)

S


W
Φ
Ψ
−P

 =


F
0
0
0

 (56)

Proposition 3. Matrix S in (55) is non-singular and the unique solution of
(56) is equivalent to the solution of the optimization problem (54).

The proof of Proposition 3 derives from classical arguments of quadratic
programming once the following lemma is proven:

Lemma 1. Let matrix A? ∈ R(N+N̂)×(N+N̂+Nφ+Nψ) be as

A? =
[
A B −Cα

]
and let G? ∈ R(N+N̂+Nφ+Nψ)×(N+N̂+Nφ+Nψ) be defined as

G? =

 G 0 −C
0 0 0

−CT 0 2Gψ


Then matrix A? is full rank and matrix G? is symmetric positive definite on
ker(A?).
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Proof. The proof is adapted from the one provided in [21], we report here the key
steps. Matrix A is full rank and matrix G? is symmetric positive semi-definite
by construction. We thus need to show that ker (G?) ∩ ker (A?) = {0}. Let us
consider the canonical basis for RNΦ+NΨ

and let ek denote the k-th element of
such basis, k = 1, . . . , NΦ +NΨ. Let zk ∈ ker (A?) be defined as:

zk =

[
A−1

[
B −Cα

]
ek

ek

]
.

Let us assume that 1 ≤ k ≤ NΦ, thus corresponding to a non null value of the
variable Φ on one segment. This in turn gives a non null value U and Û on the
traces and thus a non null value of the functional, or zTk G

?zk > 0. If instead
NΦ + 1 ≤ k ≤ NΨ, this corresponds to a non-null variable Ψ := ek. Since the
solution to (56) is the same for every value of α and α̂, included α = α̂ = 0 (the
consistent terms depending on α and α̂ are only required for the independent
resolution on the sub-domains [24]), we choose here α = α̂ = 0, so that:

zk =

[
A−1

[
B 0

]
ek

ek

]
:=

[
0
ek

]
thus U , Û are null, and therefore we can conclude that zTk Gzk > 0 also in
this case (see [21] for the proof with α, α̂ > 0). Summarizing we have shown
that zk 6∈ ker (G?) for any k = 1, . . . , NΦ + NΨ. The vector space ker (A?) =

span{z1, . . . , z
NΦ+NΨ} is a subspace of Im(G?), and ker (G?) ∩ ker (A?) = {0}.

System (56) can be used to obtain a numerical solution to problem (54). For
very large problems instead, the above system might become computationally
expensive to solve, and thus an alternative resolution strategy is proposed, as
described below, which allows the use of iterative solvers and is ready for parallel
implementation. By formally replacing W = A−1(BΦ − CαΨ + F) in the
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functional (53), we obtain

J?(Φ,Ψ) =
1

2

(
(A−1BΦ + A−1CαΨ + A−1F)TG(A−1BΦ + A−1CαΨ + A−1F)+

− (A−1BΦ + A−1CαΨ + A−1F)TCΨ+

−ΨTCT (A−1BΦ + A−1CαΨ + A−1F)
)

=

=
1

2
[ΦT ΨT ]


BTA−TGA−1B BTA−TGA−1Cα+

−BTA−TC

(Cα)TA−TGA−1B+

−CTA−1B

(Cα)TA−TGA−1Cα+

−CTA−TCα+
−(Cα)TA−1C+2Gψ




Φ

Ψ

+

+ FT
[
A−TGA−1B A−TGA−1Cα −A−TC

] [Φ
Ψ

]
+

+
1

2

(
FTA−TGA−1F

)
=

=
1

2

(
X TMX + 2dTX + q

)
. (57)

Matrix M is symmetric positive definite as follows from the equivalence of this
formulation with the previous saddle point system (56), and thus the minimiza-
tion of the unconstrained problem (57) can be performed via a gradient based
scheme. It is however to remark that the computation of gradient direction at
point X ], i.e. ∇J?(X ]) = MX ] + d, can be performed in a matrix free format
and involves the independent factorization of the 1D matrices Âi, i = 1, . . . , L
and of the 3D elliptic matrix A, which are all non singular as long as α, α̂ > 0,
thus allowing for parallel computing. It is to remark that saddle point matrices
as the one in (55) can be ill conditioned. The use of a resolution strategy based
on a gradient based scheme for the minimization of the unconstrained func-
tional is expected to result in a problem with a mitigated condition number,
actually coinciding with the application of a null-space based preconditioning
technique [29]. The analysis of this solving strategy and of its potential for
parallel computing is deferred to a forthcoming work.

7. Numerical results

In this section we propose some numerical test to validate the proposed ap-
proach and to show its applicability to the problem of interest. Three numerical
tests are proposed. A first problem called Test Problem 1 (TP1) takes into
account a single cylindrical inclusion and has a smooth analytical solution, thus
allowing to evaluate convergence trends for the error. The second test, called
Test Problem 2 (TP2), takes into account a different problem with no known
analytical solution on a similar geometry. In this case, the obtained solution is
compared to a 3D-3D simulation with standard conforming finite elements, and
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Induced δ̂u=1 δ̂u=0.5

Figure 2: Highlight on the tetrahedra intersected by a segment and consequently induced
mesh; on the right equispaced partitions of the segment for δ̂u = 1 and for δ̂u = 0.5.

different values of the coefficient K̃ are considered. Finally an example with
multiple intersecting inclusions is proposed, to test the behavior of the method
in more general settings. In this case, a qualitative evaluation on the behavior
of the numerical solution is proposed, along with a quantitative evaluation of a
proposed error indicator.

All the simulations are performed using finite elements on 3D and 1D non-
conforming meshes, independently generated on the sub-domains. A mesh pa-
rameter h is used to denote the maximum diameter of the tetrahedra for the 3D
mesh of Ω, whereas the refinement level of the 1D meshes T̂i, τφi , τ

ψ
i , i = 1, ...I,

is provided in relation to the mesh-size of the 1D mesh induced on the segments
Λi by the tetrahedral mesh, i.e. the 1D mesh given by the intersections of Λi
with the tetrahedra in T , see Figure 2. This is done in order to better high-
light the relative sizes of the various meshes. In particular the non-dimensional
number δ̂u,i denotes the ratio between the number of elements of the mesh in
T̂i with respect to the number of elements of the induced mesh on Λi, whereas
δφ,i and δψ,i the ratio between the number of elements in τφi , τ

ψ
i , respectively,

and the induced mesh. Figure 2 shows the induced mesh, in the middle, and
two 1D meshes, e.g. for T̂ corresponding to values of δ̂u = 1 and δ̂u = 0.5
and equally-spaced nodes. In the simulations, for simplicity, we will always use
equally-spaced nodes for the 1D meshes and unique different values of δ̂u, δφ
and δψ for the various segments, thus dropping, in the following, the reference to
segment index for these parameters. Even when it is not used for the description
of any 1D variable, the induced mesh is used for the computation of the integrals
between the basis functions of the 1D variables and the trace on each segment
of the 3D basis functions. Linear Lagrangian finite elements are used on T , T̂i,
τψi , whereas piece-wise constant basis functions are used to describe variables
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D

Σ

Figure 3: TP1: on the left, section view of the starting 3D-3D domain for the TestProblem1
experiment; on the right solution obtained inside the cube and on the segment for h = 0.086,
δ̂u = 1, δφ = 0.5 and δψ = 0.5.

φi on τ
φ
i , i = 1, ...I. All numerical tests are performed using α = α̂ = 1, even if

it is to remark that the value of such parameters has no impact on the solution,
and, as long as formulation (56) is used, α = α̂ = 0 could have been also chosen.

7.1. Test Problem 1 (TP1)

Let us consider a cube Ω of edge l inscribed in a cylinder of radius R̂ = l
√

2
2

centered in the axis origin and with axis x = y = 0, and a cylinder Σ of radius
Ř < R̂ and height h = l whose centreline Λ lies on the z axis (see Figure 3).
Let us denote by ∂Ωl, ∂Ω+ and ∂Ω− respectively the lateral, the top and the
bottom faces of the cube. Given a, b, c, k1, k2 ∈ R, let us consider a problem in
the form of (20)-(23), obtained by reducing Σ to its centerline, with K = K̃ = 1
and

f = −
b√

x2 + y2
− 4a, g = 0.

The problem is completed with the appropriate boundary condition to have
the exact solution given by:

uex(x, y, z) = a(x2 + y2) + b
√
x2 + y2 + c in Ω (58)

ûex(x, y, z) = k1 on Λ (59)

with

a =
k2 − k1

(R̂− Ř)2
, b =

− 2Ř(k2 − k1)

(R̂− Ř)2
, c = k1 +

(k2 − k1)Ř2

(R̂− Ř)2

This reduced problem corresponds to an equi-dimensional problem satisfying
our modeling assumptions and having a constant solution equal to k1 inside
the cylinder. Further, the flux through the interface is zero, as the solution is
C1 in the whole domain. Results are obtained considering a cube of edge l = 2
(R̂ =

√
2) and choosing Ř = 0.01, k1 = 0.5 and k2 = 5. Homogeneous Neumann
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Figure 4: TP1: trend of the L2 and H1-norms of the relative errors under mesh refinement.
On the left: error committed on the cube with respect to (58); on the right: error committed
on the segment with respect to (59). Other parameters: δ̂u = 1, δψ = δφ = 0.5.

boundary conditions are imposed on ∂Ω+ and ∂Ω−, whereas Dirichlet boundary
conditions are imposed on ∂Ωl. Dirichlet boundary conditions equal to k1 are
imposed on segment endpoints. Figure 3 on the right shows the approximated
solutions U , Û obtained inside the cube and on the segment for h = 0.086 and
δ̂u = 1, corresponding to N = 3715 DOFs in the cube and N̂ = 57 DOFs on the
segment. The other parameters are δφ = 0.5 and δψ = 0.5. Convergence curves
of the error can be computed and, given the regularity of the solution, optimal
convergence trends are expected for the used finite element approximation. Let
us introduce the errors EL2 , EH1 , for the 3D problem and ÊL2 and ÊH1 for the
1D problem, defined as follows:

EL2 =
||uex − U ||L2(Ω)

||uex||L2(Ω)
, EH1 =

||uex − U ||H1(Ω)

||uex||H1(Ω)
,

ÊL2 =
||ûex − Û ||L2(Λ)

||ûex||L2(Λ)
, ÊH1 =

||ûex − Û ||H1(Λ)

||ûex||H1(Λ)
.

Figure 4 displays the convergence trends for the above quantities against mesh
refinement. Four meshes are considered, characterized by mesh parameters h =
0.215, 0.136, 0.086, 0.054 respectively, corresponding toN = 229, 933, 3715, 14899
DOFs and N̂ = 20, 31, 57, 79 DOFs (δ̂u = 1, δφ = δψ = 0.5), confirming the ex-
pected behaviors, with a convergence trend close to 0.33 and 0.66 for EL2 and
EH1 , respectively, and of about 2 and 1 for ÊL2 and ÊH1 , respectively. For what
concerns the analysis of the behavior of the interface variables Φ and Ψ under
mesh refinement let us introduce two further error estimators, i.e.

Êφ =
√
h||φex − Φ||L2(Λ), Êψ =

||ψex −Ψ||L2(Λ)

||ψex||L2(Λ)
.

While Êψ is in the same form of the error indicators given for the pressure
variables, the expression for Êφ is chosen to approximate the behavior of a H−

1
2

norm. According to the considered problem we have φex = 0 and ψex = ûex.
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Figure 5: TP1: trend of the error indicators for Φ and Ψ under mesh refinement. On the left
Êφ, on the right Êψ . Other parameters: δ̂u = 1, δψ = δφ = 0.5.

The values of these two error indicators are shown in Figure 5 against mesh
refinement: Êφ (Figure 5, left) and Êψ (Figure 5, right) are plotted against Nφ

and Nψ respectively, denoting the number of DOFs for the interface variables
φ and ψ. We remark that both Nφ and Nψ increase as the 3D mesh is refined
since they are linked to the size of the induced mesh through δφ and δψ. We can
observe that Êψ shows a convergence behavior very similar to the one of ÊL2 ,
as expected. Also the indicator Êφ converges to the known solution even if not
monotonically and with a rate of about −0.42, due to the fact that we look for
a solution in H−

1
2 .

For this simple problem it is possible to compute the condition number of
the KKT optimality conditions (55), and analyze how it is affected by different
choices of the meshsize of the 1D meshes. Figure 6, on the left, reports the
condition number of the KKT system matrix as δφ varies between 0.1 and 1.5,
for values of δ̂u between 0.6 and 2, being instead δψ = 0.5 fixed. We can see
that δφ has a relatively small impact on the conditioning of the system as long
as δφ < δ̂u is chosen, otherwise a large rapid increase is observed as δφ ≥ δ̂u
grows. It is therefore advisable to choose a quite coarse mesh for variable Φ
with respect to the mesh for Û , even if no theoretical constraints emerged in
the analysis. It is however worth highlighting that finer meshes for Φ can be
considered, by just increasing the value of δ̂u. In particular, if δ̂u > 1, then
δφ = 1 becomes a feasible choice with respect to the conditioning. This means
that, increasing properly δ̂u, we can choose a mesh for the flux variable that has
the same dimension of the induced mesh, without an excessive growth of the
conditioning. Let us observe that this strategy to avoid high condition numbers
is not particularly computationally expensive, since only the refinement of a
1D partition, independent from the surrounding 3D mesh, is required. Finally
Figure 6, on the right, shows the conditioning of the KKT system matrix as δψ
varies between 0.1 and 1.5, keeping this time δφ = 0.5 fixed. It can be seen that,
in this case, the conditioning is almost independent of δψ, for all the considered
values of δ̂u.

20



Figure 6: TP1: trend of the conditioning of the KKT system under the variation of the 1D
mesh parameters. On the left variable δφ and different values of δ̂u, while δψ = 0.5. On the
right varibale δψ and δφ = 0.5. In both cases h = 0.086.

7.2. Test Problem 2 (TP2)
The second example is set on a domain equal to the one of TP1. We consider

three different problems defined as in (20)-(23), characterized by three different
values of the coefficient K̃, equal to 1, 102 and 105 respectively, whereas K = 1,
f = 1, g = 0 are fixed for all the problems. Even the boundary conditions are
shared: being ∂Ω+, ∂Ω−, and ∂Ωl defined as previously, homogeneous Dirichlet
boundary conditions are prescribed on ∂Ω+, ∂Ω− and at segment endpoints,
while homogeneous Neumann boundary conditions are set on ∂Ωl.

The accuracy of the solution is evaluated by means of a comparison with
an equi-dimensional problem having a cylindrical inclusion of radius 0.01, with
centreline coinciding with the 1D domain of the reduced problem. Dirichlet
homogeneous boundary conditions are prescribed on the top and bottom faces
of the 3D domains and homogeneous Neumann boundary conditions are set on
the outer surface. A unitary forcing term is prescribed in the 3D domain outside
of the cylindrical inclusion, where, instead a null forcing is set. As K̃ grows,
we move from a problem with a smooth solution to a problem with a strong
jump of the gradient across the interface between the bulk 3D domain and the
inclusion.

The equi-dimensional problem is solved on a fine mesh, refined around the
inclusion in order to match the geometry. The lateral surface of the cylindrical
inclusion is represented as an extruded regular polygon with 24 edges. The
used mesh, along with a detail near the inclusion, is shown in Figure 7, top.
As this picture shows, the mesh is strongly refined close to the inclusion, where
h ≈ R/5, locally, in order to correctly catch the geometry and counts about 1.8
million elements and 307299 DOFs.

The reduced 3D-1D problem is solved on four different meshes: first a non
conforming mesh, slightly refined close to the inclusion area, is considered,
termed adapted mesh and having 2.8 × 104 elements and 4890 DOFs. This
mesh has h ≈ R close to the inclusion and is thus much coarser than the refer-
ence mesh. It is shown in Figure 7, at the bottom, along with a detail of the zone
around the 1D domain to highlight the non conformity. Further, three uniformly
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Figure 7: TP2: Top: mesh used for the reference equi-dimensional problem, conforming to the
cylindrical inclusion. Bottom: adapted non conforming mesh for the 3D-1D reduced problem
with the proposed approach

Figure 8: TP2: Uniformly refined mesh with h = 0.086.
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Figure 9: TP2: comparison of the results obtained along the centerline of the cylinder in the
3D-3D conforming setting and by using the 3D-1D reduced model. Other parameters for the
3D-1D setting: δ̂u = 1 and δφ = δψ = 0.5.

Figure 10: TP2: comparison of the solution obtained on the adapted mesh for the 3D-1D
problem with the reference solution on a plane parallel to y− z and containing the centreline
of the inclusion. K̃ = 105.
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refined meshes are considered, with mesh parameters h = 0.136, 0.086, 0.054,
respectively, corresponding to N = 1287, 4609, 17164 DOFs. The intermediate
uniform mesh is shown in Figure 8.

The solution on the centreline of the inclusion obtained on the various consid-
ered meshes are compared to the reference solution on the centreline in Figure 9,
for K̃ = 1 on the top left, K̃ = 100 on the top right, and for K̃ = 105 on the
bottom. We can clearly see that, as long as the jump in the coefficient between
the bulk domain and the inclusion is relatively small, the proposed approach
correctly reproduces the solution on all the considered meshes. Instead, for
large jumps, as it is for K̃ = 105, the solution on the uniformly refined meshes
are less accurate, whereas, the use of a slightly adapted mesh, even if still non
conforming, is capable of producing a solution in very good agreement with the
reference. This issue is related to the use of a non conforming mesh and is ob-
served also in other works, as e.g. [16, 2], requiring a mesh size of the order of
R near the inclusions. The proposed approach can be thus of help in mitigating
the overhead in mesh generation and to reduce problem size. A comparison
between the reference solution and the solution of the reduced 3D-1D problem
on the adapted mesh and with K̃ = 105 is finally shown in Figure 10, on a slice
parallel to the y − z plane and containing the centreline. The plot of the two
solutions match well.

7.3. Test with multiple intersecting inclusions (MI)
As for the previous cases, let us consider a cube of edge l = 2 centered in the

axes origin. Let us then consider a set of 19 inclusions of radius Ř = 10−2, whose
centerlines intersect in 9 points. We impose homogeneous Dirichlet boundary
conditions on all the faces of the cube and at the dead ends of the network
intersecting cube top and bottom faces, as shown in Figure 11. Homogeneous
Neumann boundary conditions are imposed at segment endpoints lying inside
the cube. We consider a problem in the same form of (45)-(46), with i =
1, ..., I = 19, spanning the segments, that form a unique connected component,
as discussed in Section 6. Further, we consider K = 1, f = 0 and K̃i = 100,
gi = 100 ∀i = 1, ..., 19.

The problem is solved with both the proposed approach and with a different
method, in which the continuity condition U = Û on all the segments is enforced
through the use of Lagrange multipliers, similarly to what suggested in [19] or
[8]. We denote this method, used as a comparison, the LM approach, whereas,
the three field optimization method is labeled TF. A 3D mesh, non conforming
to the inclusions, with h = 0.056 and N = 12873 and a 1D mesh with δ̂u = 1,
corresponding to N̂ = 309 DOFs are used for both the methods. Parameters
δφ = δψ = 0.5 are then used for the three field approach, whereas piece-wise
constant basis functions are chosen for the Lagrange multipliers for the LM
approach, on a 1D mesh of equally spaced-nodes counting one half of the nodes
of the mesh for Û .

Figure 11 reports the solutions obtained with the two approaches on the
whole network of segments, whereas a comparison of the solutions on two se-
lected segments (as indicated in Figure 11) is reported in Figure 12 on the left,
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Figure 11: MI: Solution obtained on the centerlines of the inclusions for h = 0.054, δ̂u = 1
and δφ = δψ = 0.5. Homogeneous Dirichlet boundary conditions are imposed at the points
marked in blue.

Figure 12: MI: On the left: comparison of the solution on two selected segments with the TF
and the LM methods; On the right: solutions with TF and LM obtained inside the cube on
three different planes parallel to the x− y plane and located at z = −0.5, z = 0 and z = 0.5.
Solution amplified by a factor 10 with respect to domain size.

showing a very good agreement. In Figure 12 on the right, instead, the solution
U obtained inside the cube is shown on three different planes, all parallel to the
x− y plane and located at z = −0.5, z = 0 and z = 0.5. The solutions with the
LM and TF methods are both reported and almost perfectly overlapped, even
if the solution is amplified by a factor 10, with respect to domain size in this
picture.

Figure 13 displays the behavior of the vector field −K∇U , obtained with
the proposed three field approach.

A quantitative evaluation of the numerical solution provided by the proposed
method is provided through an error indicator, denoted by ∆L2

u , measuring
how well the continuity condition, enforced through the minimization of the
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Figure 13: MI: Behavior of the −K∇U vector field. The chosen mesh parameters are h =
0.054, δ̂u = 1, δφ = δψ = 0.5.

functional (53), is satisfied. We thus introduce the quantity:

∆L2

u =

√∑I
i=1 ||U|Λi − Ûi||

2
L2(Λi)

|max(U, Û)|
√
ltot

(60)

resulting in a non dimensional number, with ltot denoting the total length of
the segments in the domain.

The trend of ∆L2

u against δφ and δψ, both ranging between 0.1 and 1, is
shown in Figure 14 on the left, still considering h = 0.054 and δ̂u = 1. As
expected, the error indicator decreases as the two parameters increase. The
impact of δφ appears to be stronger: for values of δψ close to 1, almost two
orders of magnitude are swept by ∆L2

u as δφ varies. The impact of δψ on the
continuity condition appears to be weaker, even if it can be seen that it becomes
more relevant for high values of δφ, with almost one order of magnitude swept
by the error indicator as δψ increases. Figure 14, on the right, shows instead
the trend of ∆L2

u against δ̂u, ranging between 0.6 and 2, for four values of
the mesh size h, namely h = 0.215, 0.136, 0.086, 0.054, corresponding to N =
126, 646, 2951, 12873. The other parameters are δφ = δψ = 0.5. We can see that
the continuity error indicator is only marginally affected by the value of δ̂u,
whereas, it can be arbitrarily reduced by mesh refinement. It should be noted,
however, that, for a fixed value of δ̂u, a refinement of the 3D mesh also implies
a refinement of the 1D mesh for û, whereas, changes in δ̂u, at fixed h only refine
the mesh of û, leaving the 3D mesh unchanged.
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Figure 14: MI: Value of ∆L2

u (60) under the variation of the mesh parameters. On the
left variable δφ and δψ , h = 0.054; on the right, variable δ̂u and four different values of h,
δφ = δψ = 0.5.

8. Conclusions

A novel approach for 3D-1D coupled problems has been proposed. The
method derives from a mathematical formulation in proper functional spaces
that allows the definition of a well posed trace operator from functions in the
three dimensional space to one dimensional manifolds. The 1D problems are
decoupled from the problem on the bulk 3D domain and two interface vari-
ables are introduced in this domain decomposition process, thus resulting in a
three field formulation of the original problem. A cost functional is introduced
and minimized to impose matching conditions at the interfaces. The method
allows to enforce continuity conditions and flux balance at the interfaces be-
tween sub-problems on non-conforming meshes, thus strongly alleviating the
mesh generation process. Indeed meshes on the various sub-domains can be
independently generated. Numerical results on two simple test problem and on
a more complex configuration show the viability of the proposed approach and
are used to analyze the effect of method parameters on the condition number
of the discrete problem and on solution accuracy.

A formulation suitable for efficient resolution through iterative gradient-
based schemes is also envisaged and should be further investigated to allow
simulation on problems of high geometrical complexity.
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Appendix

We report in the following Appendix the proof of Proposition 1 and 2, whose
statement was provided in Section 4.
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Proof of Proposition 1
Proof. Let us compute the Frechet derivatives of the functional with respect to
the control variables φ and ψ̂. To this end, we introduce increments δφ ∈ V̂ ′ of
φ and δψ̂ ∈ V̂ of ψ̂ and we recall that ∃ δψ ∈ HΓ : δψ = E

Γ
δψ̂. We have:

∂J

∂φ

(
φ+ δφ, ψ̂

)
=
(
γ

Γ
u(φ, ψ̂)− ψ, γ

Γ
u(δφ, 0)

)
HΓ

+
(
γ

Γ
ũ(φ, ψ̂)− ψ, γ

Γ
ũ(δφ, 0)

)
HΓ

=

=
(
γ

Γ
u(φ, ψ̂)− E

Γ
ψ̂, γ

Γ
u(δφ, 0)

)
HΓ

+
(
γ

Γ
E

Σ
û(φ, ψ̂)− E

Γ
ψ̂, γ

Γ
E

Σ
û(δφ, 0)

)
HΓ

=

=
〈
γ∗

Γ
ΘHΓ(γ

Γ
u(φ, ψ̂)− E

Γ
ψ̂), u(δφ, 0)

〉
V ′D,VD

+
〈
E

Γ

∗ΘHΓ(E
Γ
û(φ, ψ̂)− E

Γ
ψ̂), û(δφ, 0)

〉
V̂ ′,V̂

=

=
〈
A∗p,A−1Bδφ

〉
V ′D,VD

−
〈
Â∗p̂, Â−1B̂δφ

〉
V̂ ′,V̂

=

=
〈
B∗p, δφ

〉
V̂ ,V̂ ′

−
〈
B̂∗p̂, δφ

〉
V̂ ,V̂ ′

=
(

ΘV̂ (B∗p− B̂∗p̂), δφ
)

Λ
;

∂J

∂ψ̂
(φ, ψ̂ + δψ̂) =

(
γ

Γ
u(φ, ψ̂)− ψ, γ

Γ
u(0, δψ̂)− δψ

)
HΓ

+
(
γ

Γ
ũ(φ, ψ̂)− ψ, γ

Γ
ũ(0, δψ̂)− δψ

)
HΓ

=

=
(
γ

Γ
u(φ, ψ̂)− E

Γ
ψ̂, γ

Γ
u(0, δψ̂)

)
HΓ
−
(
γ

Γ
u(φ, ψ̂)− E

Γ
ψ̂, E

Γ
δψ̂
)
HΓ

+

+
(
γ

Γ
E

Σ
û(φ, ψ̂)− E

Γ
ψ̂, γ

Γ
E

Σ
û(0, δψ̂)

)
HΓ
−
(
γ

Γ
E

Σ
û(φ, ψ̂)− E

Γ
ψ̂, E

Γ
δψ̂
)
HΓ

=

=
〈
A∗p,A−1Cδψ̂

〉
V ′D,VD

−
〈
E

Γ

∗ΘHΓ(γ
Γ
u(φ, ψ̂)− E

Γ
ψ̂), δψ̂

〉
V̂ ′,V̂

+

+
〈
Â∗p̂, Â−1Ĉδψ̂

〉
V̂ ′,V̂

−
〈
E

Γ

∗ΘHΓ(E
Γ
û(φ, ψ̂)− E

Γ
ψ̂), δψ̂

〉
V̂ ′,V̂

=

=
〈
C∗p, δψ̂

〉
V̂ ′,V̂

−
〈
E

Γ

∗ΘHΓ(γ
Γ
u(δφ, ψ̂)− E

Γ
ψ̂), δψ̂

〉
V̂ ′,V̂

+

+
〈
Ĉ∗p̂, δψ̂

〉
V̂ ′,V̂

−
〈
E

Γ

∗ΘHΓ(E
Γ
û(φ, ψ̂)− EΓ ψ̂), δψ̂

〉
V̂ ′,V̂

=

=
(

Θ−1

V̂
(C∗p+ Ĉ∗p̂− EΓ

∗ΘHΓγΓu(φ, ψ̂)− EΓ

∗ΘHΓEΓ û(φ, ψ̂) + 2EΓ

∗ΘHΓEΓ ψ̂), δψ̂
)

Λ
,

which yield the thesis.

8.1. Proof of Proposition 2

Proof. It is sufficient to set to zero the derivative ∂J(χ+ζδχ)
∂ζ . In order to get a

lighter notation let us set

u = u(φ, ψ̂); δu = u(δφ, δψ̂); û = û(φ, ψ̂); δû = û(δφ, δψ̂);
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J(χ+ ζδχ) = J(φ+ ζδφ, ψ̂ + ζδψ̂) =

=
1

2

(
γ

Γ
u(φ+ ζδφ, ψ̂ + ζδψ̂)− ψ − ζδψ, γ

Γ
u(φ+ ζδφ, ψ̂ + ζδψ̂)− ψ − ζδψ

)
HΓ

+
1

2

(
γ

Γ
ũ(φ+ ζδφ, ψ̂ + ζδψ̂)− ψ − ζδψ, γ

Γ
ũ(φ+ ζδφ, ψ̂ + ζδψ̂)− ψ − ζδψ

)
HΓ

=

=
1

2

(
γ

Γ
u+ ζγ

Γ
δu− E

Γ
ψ̂ − ζE

Γ
δψ̂, γ

Γ
u+ ζγ

Γ
δu− E

Γ
ψ̂ − ζE

Γ
δψ̂
)
HΓ

+

+
1

2

(
γΓEΣ û+ ζγΓEΣδû− EΓ ψ̂ − ζEΓδψ̂, γΓEΓ û+ ζγΓEΓδû− EΓ ψ̂ − ζEΓδψ̂

)
HΓ

=

= J(φ, ψ̂) + ζ
(
γΓu− EΓ ψ̂, γΓδu− EΓδψ̂

)
HΓ

+ ζ
(
EΓ û− EΓ ψ̂, EΓδû− EΓδψ̂

)
HΓ

+

+
ζ2

2

(
γ

Γ
δu− E

Γ
δψ̂, γ

Γ
δu− E

Γ
δψ̂
)
HΓ

+
ζ2

2

(
E

Γ
δû− E

Γ
δψ̂, E

Γ
δû− E

Γ
δψ̂
)
HΓ

∂J(χ+ ζδχ)

∂ζ
=
(
γΓu− EΓ ψ̂, γΓδu− EΓδψ̂

)
HΓ

+
(
EΓ û− EΓ ψ̂, EΓδû− EΓδψ̂

)
HΓ

+

+ ζ
(
γ

Γ
δu− E

Γ
δψ̂, γ

Γ
δu− E

Γ
δψ̂
)
HΓ

+ ζ
(
E

Γ
δû− E

Γ
δψ̂, E

Γ
δû− E

Γ
δψ̂
)
HΓ

= 0

⇒ ζ = −

(
γ

Γ
u− E

Γ
ψ̂, γ

Γ
δu− E

Γ
δψ̂
)
HΓ

+
(
E

Γ
û− E

Γ
ψ̂, E

Γ
δû− E

Γ
δψ̂
)
HΓ(

γΓδu− EΓδψ̂, γΓδu− EΓδψ̂
)
HΓ

+
(
EΓδû− EΓδψ̂, EΓδû− EΓδψ̂

)
HΓ

Rearranging properly the terms we get

ζ = −

〈
A∗p,A−1(Bδφ+ Cδψ̂)

〉
V ′
D
,VD

+
〈
Â∗p̂, Â−1(−B̂δφ+ Ĉδψ̂)

〉
V̂ ′,V̂
−
〈
EΓ∗ΘHΓ (γΓu+ EΓ û− 2EΓ ψ̂), δψ̂

〉
V̂ ′,V̂〈

A−1 (Bδφ+ Cδψ̂), A∗δp
〉
V ′
D
,VD

+
〈
Â−1(−B̂δφ+ Ĉδψ̂), Â∗δp̂

〉
V̂ ,V̂ ′
−
〈
EΓ∗ΘHΓ (γΓδu+ EΓδû− 2EΓδψ̂, δψ̂)

〉
V̂ ′,V̂

=

= −

〈
B∗p, δφ

〉
V̂ ,V̂ ′

+
〈
C∗p, δψ̂

〉
V̂ ′,V̂
−
〈
B̂∗p̂, δφ

〉
V̂ ,V̂ ′

+
〈
Ĉ∗p̂, δψ̂

〉
V̂ ′,V̂
−
〈
EΓ∗ΘHΓ (γΓu+ EΓ û− 2EΓ ψ̂), δψ̂

〉
V̂ ′,V̂〈

Bδφ+ Cδψ̂, δp
〉
V ′
D
,VD

+
〈
−B̂δφ+ Ĉδψ̂, δp̂

〉
V̂ ′,V̂
−
〈
EΓ∗ΘHΓ (γΓδu+ EΓδû− 2EΓδψ̂), δψ̂

〉
V̂ ′,V̂

=

= −

(
δφ, δφ

)
Λ

+
(
δψ̂, δψ̂

)
Λ〈

Bδφ+ Cδψ̂, δp
〉
V ′
D
,VD

+
〈
−B̂δφ+ Ĉδψ̂, δp̂

〉
V̂ ′,V̂
−
〈
EΓ∗ΘHΓ (γΓδu+ EΓδû− 2EΓδψ̂), δψ̂

〉
V̂ ′,V̂

that yields the thesis.
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