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Discontinuous Neural Networks and Discontinuity Learning

Francesco Della Santa ∗†‡§, Sandra Pieraccini ¶†

September 17, 2021

Abstract

In the framework of discontinuous function approximation and discontinuity interface de-
tection, we consider an approach involving Neural Networks. In particular, we define a novel
typology of Neural Network layers endowed with new learnable parameters and discontinuities
in the space of the activations. These layers allow to create a new kind of Neural Networks,
whose main property is to be discontinuous, able not only to approximate discontinuous func-
tions but also to learn and detect the discontinuity interfaces. A sound theoretical analysis
concerning the properties of the new discontinuous layers is performed, and some tests on
discontinuous functions are proposed, in order to assess the potential of such instruments.

Keywords: Discontinuous functions; neural networks; deep learning; automatic detection
of discontinuity interface.

MSC: 68T07, 65D40, 65D99

1 Introduction

In this work, we introduce a new typology of layers for Neural Networks (NNs); the novelty is given
by the introduction of discontinuities in the layer’s characterizing function and, consequently, in the
Neural Network. In the framework of NNs, discontinuities were involved in the first mathematical
models of biological neurons, dating back to the 1940s [19], and the first Neural Networks proposed
in the 1950s and 1960s [24, 27]. In these models, the activation functions of the NN units were
mainly inspired by the mechanisms of the biological neurons and, therefore, were modeled using
the Heaviside step function, or suitable variants. Then, the activation functions evolved into the
continuous (and often smooth) ones used nowadays in almost all the deep learning algorithms (see
[8, ch. 6.2.2, 6.3] and [2]), thanks to the advantages that they grant in adapting the parameters of a
NN. To the best of authors’ knowledge, recent literature does not report examples of practical use
of discontinuous NN layers or discontinuous NNs; nonetheless, a renewed interest on discontinuous
activation functions, at least from the theoretical point of view, is witnessed by very recent works,
see e.g. [25], considering the floor function f(x) = bxc as activation function, and [21], using the
Heaviside function.

We are interested in introducing discontinuities in NN learning models, aiming at using feedfor-
ward NNs to approximate discontinuous functions and, at the same time, detect the discontinuity
interfaces. This latter problem is quite a challenging task, especially for functions with a high-
dimensional domain. Moreover, the information can be quite relevant in several applications. To
mention an example, the smoothness of the target function can critically affect the behavior of
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numerical methods for stochastic collocation in the framework of uncertainty quantification; thus,
knowing the discontinuity interfaces and being able to partition the function domain in several
regions in which the function is smooth, can be of paramount importance (see, e.g., [13] and
references therein).

In the past decades, feedforward NNs have been used mainly for classification-type tasks [16,
9, 26] but they can perform very well also regression tasks, as guaranteed by the universal ap-
proximation theorems [17, 23, 14, 21]. In particular, we recall that the universal approximation
theorem of Leshno et al. [17] is guaranteed also for discontinuous activation functions, while Park
et al. recently showed (see [21, Th. 3]) that a NN with relu and Heaviside activation functions is
dense in the space of continuos functions from a compact set K ⊂ Rn to Rm.

Concerning the approximation of discontinuous functions with NNs, interesting results have been
recently obtained in [22, 11]. A precursor of the use of NN in this framework can be found in [5]. In
such a paper the author, leveraging the interpretation of shallow NNs as the superposition of ridge
functions, uses a general construction based on ridgelets to build shallow NNs, thus presenting
a tool for approximating target functions with spatial inhomogeneities. Functions with linear
discontinuity interfaces are well approximated with such an approach, but the method is yet not
satisfying for curvilinear interfaces, as stated by the author. Overall, the existing approximation
methods based on NNs are not suitable to effectively tackle general discontinuous functions and
simultaneously detecting their discontinuity interfaces; indeed, approximating a discontinuous
function with a NN is quite a simple task, but the function represented by the NN will actually
be continuous, due to the continuous activation functions of the NN layers.

As far as the discontinuity detection problem is concerned, it is a quite challenging task; the
main results have been proposed in the last decades, see e.g. [4, 3, 12, 28]. In [4] a polynomial
edge detection method is proposed: the discontinuous interfaces of a piece-wise smooth function
F : Rn → R, n ≤ 2, are identified through the reconstruction of the jump function, given a set of
function evaluations; the method proposed in [4] is extended in [3] to higher dimensions by applying
the detection method for each input dimension to a generalized polynomial chaos approximation
of the target function. Nonetheless, the method in [3] suffers the curse of dimensionality, setting
practical restrictions on the dimensionality that can be handled; an improvement of [3] is proposed
in [12], that exploits sparse grids to develop an adaptive method that increases the possibilities
to be used in higher dimensions. The method proposed in [28] is based on the approximation of
the hypersurface representing the discontinuity interface with hyper-spherical coordinates, and it
is well suited also for large n, but the method is designed for decting a single interface, which is
assumed to satisfy the star-convexity assumption. In general, a discontinuity interface detection
method can be generalized to the case of functions F : Rn → Rm with m > 1, through the
common practice of applying m times the method for functions with codomain of dimension one.

The present work aims at building new discontinuous NNs able to approximate discontinuous
functions with other discontinuous functions, whose discontinuity interfaces are relatively easy to
be detected. More specifically, the new NNs are endowed with trainable discontinuity jump param-
eters that allow the model to learn the discontinuity interface of the target function F : Rn → Rm;
then, analyzing the function compositions that define the NN, the discontinuity interfaces and the
continuity regions of F in the domain can be characterized. The main advantages of this method
are that the NN both returns an approximation of F and an approximation of its discontinuity
interfaces. Moreover, by a theoretical point of view, there are no restrictions on the applicability of
the method proposed, indeed: i) the method does not require assumptions about the regularity of
F (at least, F must be approximable according to one of the universal approximation theorems);
ii) there are no theoretical restrictions on the dimensions (there are only practical restrictions, due
to the curse of dimensionality problem suffered by the regression task).

The work is organized as follows. In the next subsection, the main notations used herein are
listed. In Section 2, the new discontinuous layer for NNs is presented. In Section 3, all the theo-
retical results that characterize a discontinuous NN are described. Section 4 illustrates numerical
results on some examples assessing the potential of the new discontinuous NNs. We end with some
conclusions drawn in Section 5.
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1.1 Notation and basic results

In this subsection we introduce some useful notations and simple results for the following sections.
First, we introduce the notation adopted for the description of the inner operations taking place
in a fully-connected layer of a Multi Layer Perceptron (MLP). Then, we introduce some notations
that will be useful in Section 3 to analyze discontinuities in NNs.

1.1.1 Notation for Neural Networks

Let N be an H-layers perceptron; i.e., N is an MLP characterized by H ∈ N hidden layers. We
use the following notation to describe its architecture and the related mathematical entities:

• L1, . . . , LH denote the hidden layers; L0 and LH+1 are the input and output layers, respec-
tively;

• for each h = 0 , . . . ,H + 1, Nh ∈ N is the number of units of layer Lh;

• for each h = 0 , . . . ,H, W (h+1) ∈ RNh×Nh+1 is the matrix of weights between layers Lh and
Lh+1 and b(h+1) ∈ RNh+1 is the vector of biases of layer Lh+1;

• fh : RNh → RNh denotes the element-wise application of the activation function fh : R→ R
used in layer Lh;

• for each h = 0, . . . ,H, Lh+1 : RNh → RNh+1 denotes the characterizing function of the
fully-connected layer Lh+1, i.e. the map from the outputs of layer Lh to the ones of layer
Lh+1, defined as

Lh+1(x(h)) = fh+1

(
W (h+1)Tx(h) + b(h+1)

)
, with x(h) ∈ RNh . (1)

• we generalize the notation used for maps between pairs of layers to sequences of layers as
follows:

Lh2

h1
:= Lh2

◦ Lh2−1 ◦ · · · ◦ Lh1+1 ◦ Lh1
,

for each 1 ≤ h1 < h2 ≤ H+1. Note that, following this notation, LH+1
1 is the characterizing

function F̂ of the perceptron N and Lh2

h1
is the function characterizing a sub-NN of N given

by layers Lh1−1, Lh1
, . . . , Lh2−1, Lh2

.

Remark 1.1. Equation (1) characterizes the action of the so-called fully-connected layers; however
it is easy to prove that it can describe also the action of convolutional layers (e.g., see [18]) or the
connection of layers that are not fully-connected, setting to zero specific elements of the weight
matrix. Then, formula (1) can be used as representative of the general characterizing function of
a NN layer. Analogously, almost any feedforward (i.e., non-recurrent) NN can be represented by
an equivalent MLP or, at most, by a composition of MLPs; then, in this work, we use the H-layers
perceptron N as representative of a generic feedforward NN.

1.1.2 Notation for hyperplanes and corresponding partitions

Let Π = {Π1 , . . . ,Πm} be a set of hyperplanes in Rn, each one characterized by the equation
xTwj + bj = 0, for j = 1, . . . ,m. Then, we will use the following notation to denote some special
subsets of Rn characterized by Π1 , . . . ,Πm:

• for each pair of disjoint subsets of hyperplanes {Πi1 , . . . ,Πis}, {Πk1 , . . . ,Πkt} ⊂ Π we denote
by C({Πi1 , . . . ,Πis}; {Πk1 , . . . ,Πkt}) the subset of vectors x ∈ Rn such that{

xTwi + bi ≥ 0 ∀ i = i1 , . . . , is

xTwk + bk < 0 ∀ k = k1 , . . . , kt
.

We observe that, if C({Πi1 , . . . ,Πis}; {Πk1 , . . . ,Πkt}) is not empty, then it is convex.
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• the set Π generates a partition C(Π) of convex subsets of Rn defined as

C(Π) =
{
C(P ;PC) |P ∈ P(Π)

}
\ {∅} , (2)

where PC is the complement of P in Π and P(Π) is the power set of Π.

Remark 1.2 (Special cases). Let Π = {Π1 , . . . ,Πm} be a set of hyperplanes in Rn and C(Π) the
partition (2). Then, the following special cases may occur:

1. Let Πi,Πj ∈ Π, i 6= j, be such that Πi = Πj and wi = awj , bi = abj , for an a ∈ R \ {0}. If
a < 0, for each P ∈ P(Π) such that Πi,Πj ∈ P , we have that the set C(P ;PC) lies on the
hyperplane Πi = Πj , while the set C(PC ;P ) is empty.

2. Let us admit as possible elements of Π also the degenerate hyperplanes Π0 = Rn and Π∅ = ∅
defined by equations xT0 + 0 = 0 and xT0 + b∅ = 0, respectively, where b∅ 6= 0. Then, if
Π0 ∈ Π and/or Π∅ ∈ Π, we have that C(Π) is still a partition of Rn in convex subsets and,
in particular, C(Π) = C(Π \ {Π0,Π∅}).

Each element X ∈ C(Π) can be identified by a unique vector with elements in {0, 1}, as high-
lighted by the following definition.

Definition 1.1 (Region Vectors and Region Function). Let Π = {Π1 , . . . ,Πm} be a set of m
hyperplanes in Rn, possibly including the degenerate cases Π0 and Π∅, each one characterized by
the equation xTwj + bj = 0, for j = 1, . . . ,m. Let g : Rn → {0, 1}m be the function

g(x) := H
(
WTx + b

)
, (3)

where H denotes the component-wise application of the Heaviside function

H(x) =

{
1 , if x ≥ 0

0 , otherwise

and W = [w1, . . . ,wm] ∈ Rn×m and b = [b1, . . . , bm]T ∈ Rm. The function g defined in (3) is
called region function associated to Π, and g(x) ∈ {0, 1}m is called region vector of x.

The region function g introduced in Definition 1.1 characterizes uniquely the subsets of Rn of
the partition C(Π), as stated in the following Lemma, whose proof is straightforward.

Lemma 1.1. Let Π be a set of m hyperplanes as in Definition 1.1. Then, for each pair of vectors
x1,x2 ∈ Rn such that x1 ∈ X1,x2 ∈ X2 with X1, X2 ∈ C(Π), it holds that X1 = X2 if and only
if g(x1) = g(x2).

Due to Lemma 1.1, each Xi ∈ C(Π) is uniquely identified by a vector ki ∈ {0, 1}m such that
ki = g(x), for each x ∈ Xi.

Definition 1.2 (Region Vectors of Subsets). Let Π be as in Definition 1.1, and let g be the region
function associated to Π. Let ki ∈ {0, 1}m be a vector such that ki = g(x) for each x ∈ Xi, given
a fixed Xi ∈ C(Π). Then ki is called Region Vector of Xi with respect to the hyperplanes of Π.

We end this section with an example of a partition C(Π) of R2 and the corresponding region
vectors; this example is illustrated in Figure 1. Six hyperplanes Π = {Π1, . . . ,Π6} are considered,
and some special cases are also included, as we have Π1 = Π2 and Π3 = −Π4; these situations
correspond to the one discussed in Remark 1.2, item 1, with a > 0 and a < 0, respectively.

In this example, for each Xi, Xj ∈ C(Π), we observe that the region vectors ki, kj , are strictly
related to subsets connection. For example, looking at X1 and X3 we observe that their boundaries
do intersect in the point given by the intersection

⋂4
k=1 Πk, which are the hyperplanes identified

by elements of k1 and k3 that are different. In other cases, such as X3 and X6 or X1 and X10, we
observe that the intersection of the boundaries is contained in the intersection of the hyperplanes
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identified by the region vector elements that are different. More in general, still focusing on this
example, let ki and kj differ for 1 ≤ t ≤ 6 components of indices `1, . . . , `t: if the shared boundary
∂Xi ∩ ∂Xj is not empty (the union of the closures X̄i ∪ X̄j is therefore a connected set), then

(∂Xi ∩ ∂Xj) ⊆ (Π`1 ∩ · · · ∩Π`t) ;

otherwise, the set Π`1 ∩ · · · ∩Π`t does not intersect anyone of the boundaries ∂Xi, ∂Xj .
The relationship between the elements of the region vectors ki,kj and connectivity of X̄i ∪ X̄j ,

observed in the example of Figure 1, is generalizable to partitions in Rn. However, the example is
not intended to be exhaustive of all possible cases which may occur.

(a) Hyperplanes Π1, . . . ,Π6 and the corresponding sets
X1, . . . , X12.

region vector (ki)

reg. Π1 Π2 Π3 Π4 Π5 Π6

X1 1 1 0 1 0 1

X2 0 0 0 1 0 1

X3 0 0 1 0 0 1

X4 1 1 1 0 0 1

X5 0 0 0 1 1 1

X6 0 0 1 0 1 1

X7 0 0 1 0 1 0

X8 1 1 1 0 1 0

X9 1 1 1 0 0 0

X10 1 1 1 1 0 1

X11 0 0 1 1 0 1

X12 0 0 1 1 1 1

(b) Region vectors of the sets
X1, . . . , X12 with respect to the
hyperplanes Π1, . . . ,Π6.

Figure 1: Left: example of partition of R2 by six hyperplanes Π1, . . . ,Π6. Dotted lines denote the
part of the plane with xTwj + bj < 0, for each j = 1, . . . , 6. Right: region vectors ki ∈ {0, 1}6
corresponding to each subset Xi, i = 1, . . . , 12, of the partion.

2 Discontinuity for Neural Networks

Let N be an H-layers perceptron. We recall that the map Lh+1, characterizing the transformations
performed by layer Lh+1 on the outputs of layer Lh, is defined by (1).

From this formula, it is straightforward to note that the characterizing function F̂ = LH+1
1 :

RN0 → RNH+1 of N is a continuous function if f1, . . . ,fH+1 are all continuous functions. In the
earliest works on Neural Networks [19, 24], the first models for artificial neurons did not consider
continuous activation functions but the Heaviside function (or suitable variations of it), mainly
used to model the “on/off” activation of the neurons.

In the subsequent development of artificial intelligence, the Heaviside function H has been
abandoned, as the subderivative constantly equal to zero prevents the use of the gradient descent
during NN training; this phenomenon is equivalent to the asymptotic end of the so-called vanishing
gradient problem (see [8, ch. 8.2.5]). In place of H, many other continuous functions have been
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introduced; as a consequence, all recent NNs described in literature are characterized by continuous
functions since they are given by the composition of continuous functions.

In this work, we describe a novel approach to reintroduce discontinuities in NNs in such a way
that NNs can not only approximate discontinuous functions but also learn discontinuities. In the
sequel, we will refer to this property of the NN as the ability of learning discontinuity interfaces,
and such discontinuity interfaces will be called “learnable discontinuities”.

2.1 Adding Heaviside to Activation Functions

The main idea behind learnable discontinuities for NNs is to apply the effects of a bias “outside”
the activation function f only when the inputs satisfy certain conditions, for example to be not
smaller than zero. Thanks to this new bias, the NN has a new trainable parameter that introduces
a discontinuity in the function of the NN. The discontinuity introduced depends both on the new
parameters and on the weights and biases of the NN; for this reason we will refer to learnable
discontinuities.

Herein, in order to introduce possible discontinuites in the layers, we add to the activation
functions a jump, whose size is expressed by a parameter ε. In details, we add to each element
of the right-hand-side of (1) a multiple of the Heaviside function applied component-wise to

W (h+1)Tx(h) + b(h+1), namely we set:

x(h+1) = fh+1

(
W (h+1)Tx(h) + b(h+1)

)
+ ε(h+1) �H

(
W (h+1)Tx(h) + b(h+1)

)
, (4)

where the symbol � denotes the Hadamard (element-wise) product and ε(h+1) ∈ RNh+1 is the
vector collecting the Nh+1 jumps introduced (see Figure 2).

Figure 2: Examples of activation functions plus a multiple of H.

Definition 2.1 (Discontinuous Layer). A discontinuous fully-connected layer L with input in
Rc, output in Rd, and activation function f for the continuous part, is a layer with incoming
connections and output signals defined by the characterizing function L : Rc → Rd such that:

L(x) = f
(
WTx + b

)
+ ε�H

(
WTx + b

)
, (5)

where ε ∈ Rd is the vector of trainable discontinuity jumps and where f , W , and b are the
element-wise application of f , the weight matrix, and the bias vector, respectively.

In the following, a discontinuous layer L of a NN and the corresponding characterizing function
L, defined by (5), will be denoted by δL and δL, respectively.

Definition 2.2 (Discontinuous Neural Network). Let N be a NN with at least one discontinuous
layer. Then N is called a discontinuous Neural Network and will be denoted by δNN.

We remark that the d parameters ε1, . . . , εd appearing in (5) are learnable parameters, since
the derivatives of δL(x) with respect to them are not constantly equal to zero, as stated in the
following Proposition.
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Proposition 2.1. Let yj be the j-th element of δL(x) =: y ∈ Rd given by (5). Then it holds
∂ yj/∂ εj 6≡ 0 for each j = 1, . . . , d.

Proof. The proof is straightforward since, for each j = 1, . . . , d, we have that

∂ yj/∂ εj = H
(
WT
· , jx + bj

)
,

that is not constantly equal to zero.

From the previous proposition, we can easily deduce also the following one.

Proposition 2.2. Let N be an H-layers perceptron. Assume that for a fixed h ∈ {0, . . . ,H}, the
(h+ 1)-th layer of N is a discontinuous one (therefore, denoted by δLh+1). For each x(0) ∈ RN0 ,
let yj be the j-th element of y = LH+1

1 (x(0)) and let x(i) denote the vector Li1(x(0)) ∈ RNi , for
each i = 1, . . . ,H + 1. Let J denote the jacobian of LH+1

h+2 .

For each input vector x(0), if the derivatives corresponding to the j-th row Jj , · of J exist
at x(h+1), if the (j, k)-th function Jj,k of J is not constantly equal to zero at x(h+1), and if

W
(h+1)T
· , k x(h) + b

(h+1)
k is not constantly negative, then

∂ yj

∂ ε
(h+1)
k

6≡ 0 ,

where j ∈ {1, . . . , NH+1}, k ∈ {1, . . . , Nh+1}, and ε
(h+1)
k is the k-th element of ε(h+1) of δLh+1

(see (4)).

Proof. The proof is straightforward since y = (LH+1
h+2 ◦L

h+1
1 )(x(0)). Indeed, for each j = 1, . . . , NH+1

and k = 1, . . . , Nh+1, we have that

∂ yj

∂ ε
(h+1)
k

=

(
∇
(
LH+1
h+2 (x(h+1))

)
j

)T
· ∇

ε
(h+1)
k

x(h+1) =

= JTj , ·(x
(h+1)) · ∇

ε
(h+1)
k

x(h+1) =

= Jj,k(x(h+1)) ·
∂x

(h+1)
k

∂ε
(h+1)
k

= Jj,k(x(h+1)) · H
(
W

(h+1)T
· , k x(h) + b

(h+1)
k

)
,

and from the assumptions the thesis follows.

Generalizing Propositions 2.1 and 2.2, we observe that the derivatives with respect to the discon-
tinuity parameters of the loss function can’t be constantly equal to zero (excluding special cases)
and, therefore, the discontinuity parameters are trainable. To the best of the authors’ knowledge,
in literature there are no discontinuous NNs characterized by trainable discontinuity jumps.

Remark 2.1 (Theoretical justification for discontinuous activation functions). Concerning the
universal approximation properties of NNs, we recall the theoretical results of [17, 21], that involve
also discontinuous activation functions. These result legitimate the development of discontinuous
layers. Indeed, even if there are no clear universal approximation results for H-layers percep-
trons with discontinuous activation functions, there are clues suggesting that discontinuities may
enhance the approximation (e.g., see [21, Th. 3] or [25]).

Remark 2.2 (Training discontinuous Neural Networks). Introducing discontinuous layers inside
a NN implies that the loss function can be piece-wise continuous. Then, during the training, the
loss can be non-differentiable and/or discontinuous with respect to the current weights and biases.
Actually, non-smoothness is already quite frequent in the working environment of NNs and, due to
the discrete representations of functions in a computational domain, the non-differentiability can
be “safely disregarded” [8, ch. 6.3]. We can extend the same reasoning when a derivative is needed
at a discontinuity point x0; indeed, it is likely that the underlying value is x̃0 = x0±ε, with a small
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ε > 0 (say, less than the machine precision) [8, ch. 6.3]. Furthermore, we observe that derivative-
based methods typically perform sufficiently well on piece-wise continuous functions, generally
converging to local minima (see the case studies in [29]). Then, we can “safely disregard” the
discontinuity of the activation functions during the gradient-based training. Indeed, the training
methods for NNs are typically gradient-based and stochastic and, usually, local minima are sought,
to avoid overfitting.
However, even if in discontinuous NNs the training ability is preserved (see the results of Section 4),
the optimization methods available in the Deep Learning frameworks (e.g., TensorFlow [1]) are
indeed not designed to work efficiently with discontinuous functions. The study of more efficient
optimization algorithms for the training of discontinuous NNs is certainly of great interest and
deserves future investigation.

Remark 2.3 (Discontinuity and increased capacity). We observe that the introduction of dis-
continuities in NN architectures increases their capacity (see [8, ch. 5.2]), adding a new set of
discontinuous functions to the set of functions represented by continuous NNs, the latter being
equivalent to formulation (5) with ε = 0. Concerning this point, we remark that we refer to the
layers characterized by (5) as discontinuous layers independently of the actual values learned for
ε.

In the next section, we analyze the properties of NNs with at least one discontinuous layer; the
aim of this analysis is to understand how a discontinuous layer characterizes the discontinuities of
the function LH+1

1 = F̂ of the NN.

3 Properties of Discontinuous Neural Networks

An interesting property of δNNs is that, in principle, it is possible to exactly find the discontinuities
of their characterizing functions; indeed, these NNs are piece-wise continuous functions with known
analytical expression (see Corollary 3.3 in the following). This property may be useful to improve
the approximations in regression problems but it can be also extremely important for problems in
which the discontinuity interfaces of functions are sought, especially in high-dimensional domains
(see [6], for an example of application). With this new typology of NN architectures, we propose
a novel approach to the discontinuity detection problem, showing that such a kind of NNs can be
potentially useful both for discontinuity function approximation and for learning discontinuities.

In this section, we introduce some statements that describe properties related to discontinuity
of δNNs.

3.1 Theoretic Foundations of Discontinuous Neural Networks

The following propositions (Proposition 3.1 and Proposition 3.2) represent some basic results
concerning properties of NNs characterized by discontinuous layers. In a nutshell, the propositions
state that in a δNN characterized by a function LH+1

1 , for each discontinuous layer δLh+1 of N we
have that:

• the discontinuity interfaces of the map δLh+1 are affine hyperplanes in RNh , characterized

by the columns of W (h+1) and the elements of b(h+1);

• the existence of discontinuity interfaces for δLh+1 depends on the nonzero elements of ε(h+1)

corresponding to non-null columns of W (h+1).

Moreover, assuming that N has only one discontinuous layer δLh+1, a necessary condition for

a point x̂(0) to be a discontinuity point for LH+1
1 is that its image through the first h layers, i.e.

x̂(h) = Lh1 (x̂(0)), is a discontinuity point for the map δLh+1.
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In view of the next results, we introduce here the following sets defined for anH-layers perceptron
with at least one discontinuous layer δLh+1:

• Π
(h+1)
j denotes the (possibly degenerate) hyperplane of RNh defined by the j-th column of

weights and the j-th bias of δLh+1, i.e.:

Π
(h+1)
j :=

{
x(h) ∈ RNh |W (h+1)T

· , j x(h) + b
(h+1)
j = 0

}
;

• Π(h+1) denotes the set of all the sets Π
(h+1)
j defined by the weights and the biases of δLh+1,

i.e..
Π(h+1) :=

{
Π

(h+1)
1 , . . . ,Π

(h+1)
Nh+1

}
;

• ∆(h+1) denotes the set of all and only the discontinuity points in RNh for δLh+1;

• ∆ denotes the set of all and only the discontinuity points in RN0 for LH+1
1 (i.e., for the NN).

• Γh+1 denotes the (possibly empty) counterimage of ∆(h+1) through Lh1 , namely:

Γh+1 :=
{
x(0) ∈ RN0

∣∣∣ Lh1 (x(0)) ∈ ∆(h+1)
}

=:
(
Lh1
)−1

(∆(h+1)) , (6)

where we set L0
1 as the identity function, by convention;

• let δLh1+1, . . . , δLhM+1 be all and only the discontinuous layers of the H-layers perceptron.
Then, we denote by Γ the union of all the counterimages Γh1+1, . . .Γhm+1:

Γ :=

M⋃
m=1

Γhm+1 . (7)

Proposition 3.1. Let N be an H-layers perceptron. Assume that for a fixed h ∈ {0, . . . ,H}, the
(h+1)-th layer is a discontinuous one. Let C(Π(h+1)) be the partition of RNh generated by Π(h+1)

as in (2) and characterized by P ∈ N non-empty subsets such that C(Π(h+1)) = {X(h)
1 . . . , X

(h)
P }.

For each X
(h)
p ∈ C(Π(h+1)), let k(h)

p be the region vector of X
(h)
p introduced in Definition 1.2.

Then, the following assertions are true:

1. for each x(h) ∈ RNh , equation (4) can be rewritten as

x(h+1) = fh+1

(
W (h+1)Tx(h) + b(h+1)

)
+ ε(h+1) � k

(h)
i , (8)

where i ∈ {1, . . . , P} is such that x(h) ∈ X(h)
i ;

2. δLh+1 is discontinuous at x̂(h) ∈ RNh if and only if exists j ∈ {1, . . . , Nh+1} such that

x̂(h) ∈ Π
(h+1)
j , ε

(h+1)
j 6= 0, and W

(h+1)
· , j 6= 0. In other words:

∆(h+1) =
⋃

j=1,...,Nh+1

ε
(h+1)
j 6=0

W
(h+1)
· , j 6=0

Π
(h+1)
j . (9)

Proof.

1. The proof is immediate as it directly follows from Definition 1.1.
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2. The function fh+1 is continuous and H is discontinuous at zero. Then, for each j =

1, . . . , Nh+1, the function H(W
(h+1)T
· , j x(h) + b

(h+1)
j ) is discontinuous at x̂(h) if and only

if x̂(h) ∈ Π
(h+1)
j and W

(h+1)
· , j 6= 0. Therefore, δLh+1 is discontinuous at x̂(h) if and only if

there exists j ∈ {1, . . . , Nh+1} such that x̂(h) ∈ Π
(h+1)
j , W

(h+1)
· , j 6= 0, and ε

(h+1)
j 6= 0.

In a nutshell, according to item 2 of the previous Proposition, discontinuity interfaces of δLh+1

are affine hyperplanes in RNh , whose equations depend on the columns of W (h+1) and the elements
of b(h+1).

While Proposition 3.1 characterizes the discontinuity points of a layer δLh+1, in Proposition 3.2
we characterize the discontinuity points of LH+1

1 , assuming that δLh+1 is the only discontinuous
layer of the δNN.

Proposition 3.2. Under the assumptions of Proposition 3.1, assume that N has a unique discon-

tinuous layer δLh+1 for a fixed h ∈ {0, . . . ,H}. Let x̂(0) be a given vector in RN0 . Then:

1. Lh+1
1 is discontinuous at x̂(0) if and only if x̂(0) ∈ Γh+1, i.e. Lh1 (x̂(0)) ∈ ∆(h+1);

2. if x̂(0) is a discontinuity point for LH+1
1 then x̂(0) is a discontinuity point for Lh+1

1 ; i.e.:

∆ ⊆ Γh+1 .

Proof.

1. For each x̂(0) ∈ Γh+1, the proof that x̂(0) is a discontinuity point for Lh+1
1 is straightforward,

as δLh+1 is the only discontinuous layer of N. On the other hand, let x̂(0) ∈ RN0 be a

discontinuity point for Lh+1
1 such that Lh1 (x̂(0)) 6∈ ∆(h+1); then, δLh+1 is continuous at

Lh1 (x̂(0)). But Lh1 is continuous and Lh+1
1 = δLh+1 ◦ Lh1 ; then, Lh+1

1 is continuous at x̂(0),
which is a contradiction of the hypothesis.

2. The result is straightforward, as δLh+1 is the only discontinuous layer of N.

Proposition 3.2 can be generalized to NNs that take into account more discontinuous layers.
This generalization is summarized in Theorem 3.1 in the next section.

3.2 Main Results about Discontinuous Neural Networks

The results presented in Section 3.1 describe the discontinuity behavior in a δNN and give a general
idea about the potential of such a kind of instruments. Indeed, the discontinuities of a δNN can
be quite well characterized.

However, the detection of all the discontinuity interfaces ∆ ⊂ RN0 of a map LH+1
1 representing

a δNN can be quite an hard task; even just considering a δNN with one discontinuous layer (see
Proposition 3.2), the search for points in Γh+1 would require to solve the nonlinear system

W
(h+1)T
· , j1 Lh1 (x) + bj1 = 0

...

W
(h+1)T
· , jk Lh1 (x) + bjk = 0

,

where ε
(h+1)
j 6= 0 and W

(h+1)
· , j 6= 0 for all and only the j ∈ {j1, . . . , jk} ⊆ {1, . . . , Nh+1}.

An alternative idea, useful to avoid the difficulties related to the direct detection of the dis-
continuity interfaces, is to solve its complementary problem, i.e., find the continuity regions of
the domain. Theorem 3.1 and Corollary 3.3 state that δNNs are, actually, piecewise continuous
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functions and that given a pair of points in the function domain, it can be easily detected if they
belongs or not to a region described by the same continuous piece of function.

Before illustrating these results, we generalize Definition 1.1 with respect to all the discontinuous
layers of a δNN.

Definition 3.1 (Generalized Region Vectors for δNN). Let N be an H-layers perceptron with
M discontinuous layers. Let δLhm+1, for m = 1, . . . ,M , and 0 ≤ h1 < . . . < hM ≤ H, be the
discontinuous layers. For each m = 1, . . . ,M , let gm : RNhm → {0, 1}Nhm+1 denote the region
function corresponding to the weights and biases of δLhm+1, i.e.

gm(x(hm)) := H
(
W (hm+1)Tx(hm) + b(hm+1)

)
,

for each x(hm) ∈ RNhm ; then, we denote by Km the image of gm, i.e. the set

Km =
{
k(hm) ∈ {0, 1}Nhm+1

∣∣∣ ∃ x(hm) ∈ RNhm s.t. gm(x(hm)) = k(hm)
}
, (10)

representing all the region vectors characterizing the sets of C(Π(hm+1)) in RNhm identified by the
weights and biases of layer δLhm+1.

Setting δN =
∑M
m=1Nhm+1, let G : RN0 → {0, 1}δN be defined as

G(x(0)) =


g1 ◦ Lh1

1 (x(0))
...

gM ◦ LhM1 (x(0))

 . (11)

Then, G is called generalized region function of N and we call generalized region vectors of N all
the vectors k ∈ K, where K is the image of G:

K :=
{
k ∈ {0, 1}δN

∣∣ ∃x(0) ∈ RN0 s.t. G(x(0)) = k
}
. (12)

in particular, for each m = 1, . . . ,M , we denote by k(hm) the subvectors of k belonging to Km and
related to δLhm+1 (see (10)).

Thanks to the generalized region vectors of a given δNN, it is possible to identify a partition
of the domain RN0 such that the discontinuities of δNN are contained in the union of all the
boundaries of the partition sets, while the map LH+1

1 is continuous in the interior of these sets.
These results are better described in the following theorem and corollaries.

Theorem 3.1. Let N be an H-layers perceptron with M discontinuous layers. Let δLhm+1, for
m = 1, . . . ,M , and 0 ≤ h1 < · · · < hM ≤ H, be the discontinuous layers. For each i = 1, . . . , |K|,
consider the region vector ki ∈ K and let Ki be defined as

Ki = {x(0) ∈ RN0 | G(x(0)) = ki}. (13)

Then, the following assertions are true:

1. The set ∆ of discontinuity points of LH+1
1 is contained in Γ (see (7)).

2. {K1 . . . ,K|K|} is a partition of RN0 ;

3. LH+1
1 is continuous in the interior of Ki (denoted by

◦
Ki), for each i = 1 , . . . , |K|;

4. Let Γ̃ denote the union of all the counterimages, through Lhm1 , of the hyperplanes Π
(hm+1)
j ,

i.e.:

Γ̃ :=

M⋃
m=1

⋃
j=1,...,Nhm+1

W
(hm+1)
· , j 6=0

(
Lhm1

)−1
(Π

(hm+1)
j ) (14)
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Then,
|K|⋃
i=1

∂Ki = Γ̃ (15)

Proof.

1. Let x̂(0) be a discontinuity point for LH+1
1 such that x̂(0) 6∈ Γ. Then, for each m = 1, . . . ,M ,

we have that Lhm+1
1 (x̂(0)) 6∈ ∆(hm+1) and Lhm+1

1 is continuous at x̂(0). Therefore, all the

layers are continuous at x̂(0) and LH+1
1 is continuous at x̂(0), which is a contradiction of the

hypothesis.

2. The result is a direct consequence of the definition of K and K1 . . . ,K|K|.

3. Let x̂(0) be an arbitrary point of
◦
Ki, for a fixed i ∈ {1 . . . , |K|}; then, there exists an ε̂ > 0

such that, for each 0 < ε ≤ ε̂, the ball Bε(x̂
(0)) contains only points x(0) belonging to Ki

and, therefore, for each m = 1 , . . . ,M it holds

lim
x(0)→x̂(0)

Lhm+1
1 (x(0)) = lim

x(0) −→
Bε(x̂

(0) )̂

x(0)
fhm+1

(
W (hm+1)TLhm1 (x(0)) + b(hm+1)

)
+

lim
x(0) −→

Bε(x̂
(0) )̂

x(0)
ε(hm+1) �H

(
W (hm+1)TLhm1 (x(0)) + b(hm+1)

)
=

= fhm+1

(
W (hm+1)TLhm1 (x̂(0)) + b(hm+1)

)
+

ε(hm+1) � k
(hm)
i =

= Lhm+1
1 (x̂(0)) ,

where [k
(h1)T
i , . . . ,k

(hM )T
i ]T = ki is the generalized region vector of Ki. Then LH+1

1 (and

Lhm+1
1 , for each m = 1 , . . . ,M) is continuous at x̂(0); since x̂(0) is an arbitrary point, LH+1

1

is continuous in
◦
Ki, for each i = 1 , . . . , |K|.

4. The inclusion Γ̃ ⊆
⋃|K|
i=1 ∂Ki is straightforward, by the definition of the sets K1, . . . ,K|K|, so

we are only left to prove the opposite inclusion.

Let x̂(0) be a boundary point for a given Ki, i ∈ {1 . . . , |K|}, i.e. x̂(0) ∈ ∂Ki; then, for each

ε > 0, the ball Bε(x̂
(0)) contains both an internal point x

(0)
in ∈ Ki and an external point

x
(0)
out ∈ Kj , j 6= i. Since these two vectors belong to two different continuity regions, they

have different generalized region vectors, i.e. ki := G(x
(0)
in ) 6= G(x

(0)
out) =: kj .

Let Kj , j 6= i, be a region that shares the boundary with Ki through x̂(0) ∈ ∂Ki, and let

m ∈ {1, . . . ,M} be the first index such that k
(hm)
i 6= k

(hm)
j , for each pair of internal and

external points x
(0)
in ∈ Ki and x

(0)
out ∈ Kj , respectively, in the ball Bε(x̂

(0)), for each ε > 0.

For item 3, the sub-NN characterized by Lhm1 is continuous on Bε(x̂
(0)); then, the image

B
(hm)
ε (x̂(hm)) := Lhm1 (Bε(x̂

(0))) is a connected neighborhood of x̂(hm) in RNhm , where we

denoted by x̂(hm) the image of x̂(0) through Lhm1 .

Let us denote by x
(hm)
in ,x

(hm)
out ∈ B

(hm)
ε (x̂(hm)) the images of x

(0)
in ,x

(0)
out ∈ Bε(x̂

(0)), respec-

tively, through Lhm1 . Since we have k
(hm)
i 6= k

(hm)
j , it holds that x

(hm)
in ,x

(hm)
out belong to two

distinct sets X
(hm)
i , X

(hm)
j ∈ C(Π(hm+1)), respectively, where ∂X

(hm)
i ∩ ∂X(hm)

j 6= ∅.

Then, for each ε > 0, we have that x̂(hm) ∈ ∂X(hm)
i ∩∂X(hm)

j and, therefore, x̂(0) ∈ Γ̃ because

x̂(hm) belongs to one of the hyperplanes in Π(hm+1). For the generality of the choice of Ki
and x̂(0) ∈ ∂Ki, we have that

⋃|K|
i=1 ∂Ki ⊆ Γ̃.
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Corollary 3.2. Let the hypotheses of Theorem 3.1 be satisfied. Then, the set ∆ of all the discon-

tinuity points of LH+1
1 is contained in

⋃|K|
i=1 ∂Ki and, in particular, we have that

∆ ⊆ Γ ⊆
|K|⋃
i=1

∂Ki . (16)

Proof. We observe that item 3 of Theorem 3.1 implies ∆ ⊆
⋃|K|
i=1 ∂Ki and we recall that item 1 of

Theorem 3.1 implies ∆ ⊆ Γ. By construction, Γ ⊆ Γ̃ and for item 4 we have Γ̃ =
⋃|K|
i=1 ∂Ki; then,

(16) is proved.

The Theorem and the Corollary above highlight the importance of the partition given by sets
(13). Due to the properties illustrated in the theorem, we denote the sets of the partition by the
names of continuity regions, through the following definition.

Definition 3.2 (Continuity Regions of a δNN). Let N be an H-layers perceptron with M discon-
tinuous layers, and let K1 . . . ,K|K| ⊆ RN0 be defined as in (13). The sets K1 . . . ,K|K| are called
continuity regions of N.

Definition 3.2 makes even more sense looking at the results illustrated in the following Corol-
lary, immediate consequence of Theorem 3.1, which states that δNNs are piece-wise continuous
functions.

Corollary 3.3. Let the hypotheses of Theorem 3.1 be satisfied. Let M(i)
hm+1 be the function

M(i)
hm+1(x(hm)) = fh+1

(
W (hm+1)Tx(hm) + b(h+1)

)
+ ε(hm+1) � k

(hm)
i ,

for m = 1 , . . . ,M , where k
(hm)
i is the subvector of ki (see Definition 3.1).

Then LH+1
1 is a piecewise continuous function such that

LH+1
1 (x(0)) =


F1(x(0)) , if x(0) ∈ K1

...

F|K|(x(0)) , if x(0) ∈ K|K|

where, for each i = 1 , . . . , |K|, Fi is the continuous function defined by

Fi = LH+1
hM+2 ◦M

(i)
hM+1 ◦ L

hM
hM−1+2 ◦M

(i)
hM−1+1 ◦ · · · ◦M

(i)
h1+1 ◦ L

h1
1 .

We conclude this section making a resume and some observations concerning the outcomes of
Theorem 3.1 and Corollary 3.3 that are useful for practical applications. First, the results state
that it is possible to identify the points where the map LH+1

1 of the δNN is certainly continuous;
these regions of the domain are the open sets (Ki \ ∂Ki), i.e. the interior of the continuity regions
Ki. As a consequence, we have the precise indication that the discontinuity interfaces of LH+1

1

are contained in the union of the boundaries ∂Ki. Furthermore, since the continuity regions are
characterized by the generalized region vectors and the set K of these vectors is contained in
K1 × · · · ×KM (see (12)), we can control the number of continuity regions through the following
proposition.

Proposition 3.3 (Maximum number of continuity regions). Let the hypotheses of Theorem 3.1
be satisfied. Then, the number |K| of continuity regions for N is such that

|K| ≤ 2
∑M
m=1Nhm+1 .
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The continuity regions Ki of a δNN are a bit more complex than their simpler counterparts in

the discontinuous layers, which are sets X
(h)
i identified by hyperplanes and region vectors (see

Section 1.1.2). Indeed, sets Ki are not necessarily convex nor connected sets in RN0 , due to the
function compositions that take place inside the δNN; this is also the reason for the difficulties
in directly computing the discontinuity interfaces, even if theoretically possible. On the other
hand, given a set X(0) ⊆ RN0 , the computation of the generalized region vector G(x(0)) for each
x(0) ∈ X(0) is extremely easy and fast since, by definition, G is characterized by sub-networks of
the δNN considered (see (11)). Therefore, in practice, the regions Ki can be deduced by sampling
a large enough set of points in the domain and then computing the generalized region vector for
all such points.

Since the continuity regions can be non-convex and/or disconnected, the actual significance of
Proposition 3.3 is to define an upper bound to the number of continuous functions that define the
equation of LH+1

1 through (3.3).

4 Learning Discontinuities: Numerical Experiments

In the previous sections we have focused on the analysis of the function LH+1
1 characterizing a

(trained) δNN, highlighting properties related to the discontinuous layers present in the network.
In this section we show experimental evidence about the ability of a δNN to learn discontinuity
interfaces, given a target function to approximate. To this aim, we consider different test cases,
with increasing complexity, given by discontinuous functions with several kinds of discontinuity
interfaces. Several δNN architectures have been tested; since the main target of this section is
to show the viability of δNNs for discontinuous function regression and discontinuity interfaces
detection, we do not focus on the problem of finding the best hyper-parameters or architectures
for regression performance, but we focus on the parameters and characteristics related to the dis-
continuous layers of the δNNs, aiming to highlight the actual sensitivity of the δNN approximation
performances with respect to the new discontinuous layers.

4.1 Test cases

In all the test cases here considered, the underlying function is a scalar function with domain in
R2. In all the cases, we consider the functions restricted to the region D = [−2, 2]× [−2, 2]. The
test functions used are the following.

1. Test 1. We consider the function g` : D → R defined as

g`(x) =

{
2 sin(1.25π ‖ x ‖) + 4 if x2 ≤ 2x1

2 sin(0.75π ‖ x ‖) otherwise
, (17)

The discontinuity interface is the line ` : x2 = 2x1 that halves the square domain D (see
Figure 3-(a)).

2. Test 2. As a second test function, we consider gs : D → R defined as

gs(x) =

{
−2x21 + 6 , if x ∈ [−1, 1]× [ 0,+∞)

4e(1−x
2
1)/2 , otherwise

, (18)

The discontinuity interface is the segment s := {x(λ) = λ[−1, 0]T +(1−λ)[1, 0]T , 0 ≤ λ ≤ 1}
(see Figure 3-(b)). Then, in this case, the discontinuity is a sort of straight “rip” for the
graph of the function.
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3. Test 3. The third test function we consider is gη : D → R, defined as

gη(x) =


sin (0.4π(x1 + x2)) , if x2 ≥ ex1

sin (0.7π(x1 + x2))− 4 , if x2 < ex1 − 1

sin (π(x1 + x2)) + 4 , otherwise

, (19)

The discontinuity interfaces are two curves, η1 and η2, that split the domain in three regions
(see Figure 3-(c)). In particular, η1 : x2 = ex1 and η2 : x2 = ex1 − 1.

4. Test 4. As a last example we consider a function gγ : D → R characterized by a discontinuity
interface that is a closed curve, the circumference γ :‖ x ‖2= 1. The function gγ (see
Figure 3-(d)) is defined as

gγ(x) =

{
sin(π(x1 + x2)) + 4 , if ‖ x ‖2≤ 1

sin (0.4π(x1 + x2)) , otherwise
. (20)

(a) g` (b) gs (c) gη (d) gγ

Figure 3: Top view of the functions g`, gs, gη, and gγ (see equations (17)-(20), respectively). The
dotted curves correspond to the discontinuity interfaces.

4.2 Architectures and Performance Measures

In the numerical experiments, we use discontinuous H-layers perceptrons. We consider three
archetypes of δNN architectures, varying the depth, the number of discontinuous layers, and
the size and position of these layers. The number of units in the fully connected (i.e., non-
discontinuous) hidden layers is fixed to 128, while we let d denote the number of units in each
discontinuous layer.

The three architecture archetypes we consider are:

1. Architectures with one discontinuous layer only. We consider a unique discontinuous layer
with d units, which is the h-th inner layer, with h ∈ {1, . . . ,H} (see Figure 4-(a)). We let
Adh,H denote such an architecture.

2. Architectures with two discontinuous layers.

2.1. We consider two consecutive discontinuos layers with d units each, which are the h-th
and (h + 1)-th inner layers, for h ∈ {1, . . . ,H − 1} (see Figure 4-(b)). We let Bdh,H
denote such an architecture.

2.2. We consider two discontinuos layers with d units each, separated by a fully-connected
layer; they are the h-th and (h + 2)-th inner layers, with h ∈ {1, . . . ,H − 2} (see
Figure 4-(c)). We let Cdh,H denote such an architecture.
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In our tests we considered: architecture Adh,H with H = 5, h = 1, . . . , 5 and d = 2, 4, 8; archi-

tecture Bdh,H with H = 5, 7, h = 1, . . . ,H − 1 and d = 2, 4, 8; architecture Cdh,H with H = 5, 7,
h = 1, . . . ,H − 2 and d = 2, 4, 8. As a whole, we tested 69 architectures.

The activation function for all the hidden layers of the δNNs is the elu activation function [7],
chosen after a preliminary investigation, while in the output layer the linear activation function
is used. The depth H for the NNs has been chosen to analyze the effects of the discontinuous
layers with respect to their position in the network, while guaranteeing a good approximation of
the target function, and trying to avoid the so-called degradation problem [10]. The size of the
discontinuous layers d has been chosen to keep limited the maximum number of continuity regions
(see Proposition 3.3) to ease the analysis.

L0

x1

...
...

xn

L1

...

L2

...

δL3

...

L4

...

L5

...

L6

ŷ

(a) Ad
h,H

L0

x1

...
...

xn

L1

...

L2

...

δL3

...

δL4

...

L5

...

L6

ŷ

(b) Bdh,H

L0

x1

...
...

xn

L1

...

L2

...

δL3

...

L4

...

δL5

...

L6

ŷ

(c) Cdh,H

Figure 4: The three archetypes Adh,H , Bdh,H , Cdh,H (example with h = 3 and H = 5). Discontinuous
layers are represented by orange units, fully-connected hidden layers by purple units, input layers
by green units, and output layers by red units.

All the networks are trained with the same training options and configurations:

• Dataset: for each testcase g = g`, gs, gη, gγ , the dataset D is made of 10 000 pairs (xi, yi),
with xi randomly sampled with uniform distribution from the domain of the target function
and yi = g(xi). Then, D is randomly split into the training set (5 600 pairs), validation set
(1 400 pairs) and test set (3 000 pairs);

• Data preprocessing: z-normalization (see [20]) of the input data with respect to the
training set;

• Training options: Mean Square Error (MSE) loss function, Adam optimizer (learning rate
ε = 10−3, decay rates β1 = 0.9 and β2 = 0.999; see [15]) with learning rate reduction on
plateaus (factor 0.75, patience 50 epochs), mini-batch size of 64 samples, 5 000 maximum
number of epochs, early stopping with best-weights restoration (patience of 250 epochs) as
regularizer.

The performance measure that we adopt to evaluate the results on the test set is the Mean
Absolute Error (MAE), considering that the values of all the test functions are approximately
between −2 and 6:

MAE(δNN,P) :=
1

|P|
∑

(xi,yi)∈P

|yi − ŷi| ,

where P is the test set and ŷi denotes the output prediction of the δNN for xi.
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4.3 Performance Analysis for the Test Functions

We start our analysis verifying the performance of the δNN in the regression task. Upon training
all the NNs, with respect to all the test cases, we analyze the MAE of the models on the test set.
The errors, reported in Table 1, prove that δNNs behave quite well in the regression task, and
discontinuous layers do not hinder the regression abilities of Neural Networks.

MAE g` gs gη gγ

mean 0.0906 0.0218 0.1868 0.0605

std 0.1597 0.1363 0.2706 0.0557

median 0.0274 0.0029 0.0695 0.0427

Table 1: Statistics of the MAEs over all the δNNs on the test sets of the functions g`, gs, gη, gγ .

Once the good approximation abilities of the δNNs are verified, we focus the analysis on the
ability to identify the continuity regions. We recall that the computation of the generalized region
vectors for an arbitrary set of points in the domain is extremely easy and fast since, by definition,
G is characterized by sub-networks of the δNN (see (11)). In a nutshell, when we compute the
prediction LH+1

1 (x(0)) for a generic vector x(0) ∈ RN0 , we can easily obtain from the NN, at no
additional cost, also the intermediate values Lh1 (x(0)) needed in (11), returned by any arbitrary
hidden layer Lh; the computation of G is therefore and extremely easy and fast task, for an
arbitrary batch of vectors.

(a) A8
1,5 on g`. MAE: 0.0107 (b) B8

1,5 on gs. MAE: 0.0013

(c) A4
5,5 on gη. MAE: 0.0370 (d) B4

6,7 on gγ . MAE: 0.0262

Figure 5: Approximation of g`, gs, gη, gγ with the δNNs A8
1,5, B81,5, A4

5,5, B46,7, respectively. For
each subfigure we have the δNN function values (left) and the continuity regions (right). In the
plots of the continuity regions, each region is identified by a different color, according to the
colorbar on the right.

In Figure 5 we report some examples of results of the regression and interface detection tasks
obtained on all the tests considered. For each sub-figure the left plot reports the approximation
of the corresponding function, and the right panel reports the continuity regions identified by the
δNN. These last figures are obtained by picking a large enough number of points in the region D,
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and computing the corresponding region vector. Points with the same region vector are labeled
with the same color. Note that according to Proposition 3.3 the number of continuity regions can
be up to 2δN , being δN the total number of units in the discontinuous layers.

In general, we observe a very good approximation of both the test function and the actual
continuity regions by the δNNs. In Figure 5, we show the results obtained for each test function
on a selected δNN. Looking at the continuity regions of the δNNs, we observe the following
phenomena.

Boundaries of the continuity regions. If the first hidden layer is discontinuous, then there
are necessarily some continuity regions with straight boundaries. This is due to the fact that
the boundaries of the continuity regions correspond to the counterimages through Lh1 of the

hyperplanes Π
(h+1)
j introduced by the discontinuous layers (see Theorem 3.1, item 4). When

the first layer is a discontinuous one, since by convention L0
1 is the identity function (see

(6)), the continuity region boundaries identified by the hyperplanes Π
(1)
j are the hyperplanes

themselves. In particular, if δL1 is the only discontinuous layer, then the continuity regions
have only linear boundaries. This phenomenon is depicted in Figure 5: figure top, left is
obtained with a unique discontinuous layer which is the first hidden layer, whereas figure top,
right is obtained with two discontinuous layers, which are the first and second hidden layers.
Note that in the second case the boundaries separating the continuity regions identified are
either lines or mildly curvilinear lines.

On the other hand, the more the discontinuous layers are located toward the output layer, the
more the counter-images of the corresponding hyperplanes are obtained from the application
of nonlinear functions, and the more the boundaries of the continuity regions can have a
curved shape. This behaviour is still depicted in Figure 5: the bottom figures are obtained
with discontinuos layers which are either the last one (bottom left case) or the last two
(bottom right case): in both cases, highly curved boundaries are obtained.

Trade-off between approximation and discontinuity detection. The more the discontinu-
ous layers are located toward the output layer, the more they are forced to focus on learning
the discontinuity jumps of the target function. Indeed, a discontinuous layer near to the in-
put can mainly focus on learning the discontinuity interface while spending not much effort
on the precise values of the jump parameters ε, since the following layers can enlarge/shorten
these jumps to reach appropriate values for the approximation task. Then, a discontinuous
layer followed by few layers is forced also to learn the jumps, having less help available from
the following layers.

In few cases, we observe that the efforts of the δNN is mostly spent in learning the discon-
tinuity interfaces, harming the function approximation. However, this mainly happens with
discontinuous layers with few units (i.e., d = 2) that are not near to the input layer. This
rare problems clearly depend on the dimensionality reduction inside the NN (from R128 to
R2) that occurs toward the end of the network.

Since the δNNs can learn much more discontinuity interfaces than the ones actually char-
acterizing the test functions, we observe that the models use the discontinuous layers also
trying to adjust and improve the regression. In particular, we observe that in many cases the
boundaries of the continuity regions partially “follow” the level curves of the target function
but discontinuities are almost imperceptible.

From all the previous observations, the following indications can be deduced. If we are looking
for discontinuities with an almost linear discontinuity interface, it is preferred to introduce dis-
continuous layers near to the input layer, whereas if we are looking for discontinuities with highly
curvilinear interfaces, it is preferred to introduce discontinuous layers near to the output layer.
Moreover, too small discontinuous layers should be avoided, and also the use of a discontinuous
layer as first hidden layer should be avoided, unless it is a priori known that the discontinuity
interface is a straight line or segment.
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We remark that in case of an incorrect choice of the discontinuous layers, we observe that the
approximation abilities very rarely are compromised even if the discontinuity interfaces are not
learned. Typical examples are the ones illustrated in Figure 6, where two δNN approximating
the function gγ (see Figure 3-(d)) have continuity regions with boundaries that are “not-enough”
curvilinear to approximate the circumference γ. Following these indications, the architectures
used in Figure 5 are the best δNNs among the ones with h < dH/2e for g` and gs and among the
ones with h ≥ dH/2e for gη and gγ , where we recall that h is the index of the first discontinuous
layer in the NN architecture and H is the depth of the NN.

(a) A2
1,5 (b) C2

1,5

Figure 6: Approximation of gγ with the δNNs A2
1,5 and C21,5. For each subfigure we have the δNN

function values (left) and the continuity regions (right). In the plots of the continuity regions,
each region is identified by a different color, according to the colorbar on the right.

4.4 Continuity Region Clustering

In the previous section, we observed that most of the trained δNNs approximate with a good
quality level both the functions and their continuity regions of the test functions. Nonetheless, in
most of the cases, the continuity regions of the test functions are approximated by the δNNs with
many continuity regions that are separated by negligible/inexistent discontinuities; in practice the
method in its basic form largely overestimates the number of continuity region. For example, in
Figure 5-(b), we see more than 100 continuity regions but, clearly, the regions in the bottom half of
the square can be considered as one single continuity region, as no discontinuities are perceived in
the left plot; the same applies to the top half of the square. Then, to identify the actual continuity
regions of the test functions, we introduce a method to group the continuity regions of the δNNs
if the discontinuities on the boundaries are negligible/inexistent.

The development of such a kind of method is by far not trivial. From Proposition 3.1 we know
that if a discontinuity jump parameter is zero, the δNN does not introduce a discontinuity on the
corresponding continuity region boundary. Nonetheless, small values of the discontinuity jump
parameters not necessarily correspond to negligible discontinuity jumps; indeed, as previously
observed, a jump introduced by a discontinuous layer can be enlarged/shortened by the following
layers. Then, we developed a clusterization method based both on the values of the discontinuity
jump parameters and on the action they play inside the δNN.

Let N be a discontinuous H-layers perceptron defined as in Theorem 3.1, i.e. with M discontin-
uous layers δLh1+1, . . . , δLhM+1 such that 0 ≤ h1 < · · · < hM ≤ H. We recall that Nhm+1 is the
number of units of the discontinuous layer δLhm+1 and that δN denote the total number of units

in discontinuos layers, namely δN :=
∑M
m=1Nhm+1; we also recall that the generalized vector

function is G : RN0 → {0, 1}δN . In view of the formal description of the clusterization method, we
introduce here the following further notation:

• for each {i1, . . . , ik} ⊆ {1, . . . , δN}, we denote by G|i1,...,ik the vector valued function whose
elements are elements i1, . . . , ik of G (see Definition 3.1);

• after introducing a global indexing for the discontinuity jump parameters, now labeled εi

19



for i = 1, . . . , δN , we denote by LH+1
1 |εi=0 the characterizing function of the δNN obtained

from N by setting to zero the discontinuity jump parameter εi;

• for any finite set of vectors X = {x1, . . . ,xq} ⊂ RN0 , we denote by LH+1
1 (X) the matrix in

RNH+1×q defined as
LH+1
1 (X) :=

[
LH+1
1 (x1) . . .LH+1

1 (xq)
]

;

we adopt the same convention for LH+1
1 |εi=0(X).

We can now describe the clusterization method for the continuity regions of N. The proposed
method defines new regions by suitably merging some continuity regions of the δNN, leveraging
the function G|i1,...,ik . To understand the merging procedure, consider for example the function
G|i, restricted to the index i ∈ {1, . . . , δN} only: this restriction is blind to all the interfaces not
related to εi and therefore only two regions in RN0 are retained, which are, respectively: i) the

union of all the continuity regions Ĉ such that
(
G(x(0))

)
i

= G|i(x(0)) = 0, for all x(0) ∈ Ĉ; ii) the

union of all the continuity regions C̃ such that
(
G(x(0))

)
i

= G|i(x(0)) = 1 for all x(0) ∈ C̃.
The number k ∈ N of discontinuity interfaces can be arbitrarily fixed. The clustering is based

both on the values of the discontinuity jump parameters εi and on the action they play inside
the δNN. Indeed, we introduce for each εi a rank value which depends not only on the size of εi
itself, but also on its effect on the δNN; the latter dependence is obtained measuring the difference
between LH+1

1 and LH+1
1 |εi=0, i.e. switching-off εi. Formally, let X = {x1, . . . ,xq} ⊂ RN0 be a

finite set of vectors. Let ‖ · ‖ be a norm on RNH+1×q and let k ∈ N, k ≤ δN , be fixed. For each
i = 1, . . . , δN , we compute the rank value

ρi(X) := |εi|· ‖ LH+1
1 (X)− LH+1

1 |εi=0(X) ‖ . (21)

In a nutshell, ρi(X) measures how much εi contributes to the outputs of the δNN, weighted by the
value of εi itself. The higher ρi(X) is, the more likely the discontinuity interface corresponding
to εi approximates a real discontinuity interface of the target function. Then, retaining only
the discontinuity interfaces corresponding to the k highest rank values only, we can merge the
continuity regions that are unlikely to be separated by a discontinuity interface of the target
function. Following this idea, the rank values are sorted in descending order, and continuity
regions separated by hyperplanes corresponding to parameters εi with the smallest rank values
are merged, in such a way that we end with a fixed number of discontinuity interfaces.

The above procedure can be sketched in the following algorithm.

Algorithm 4.1 (Clusterization Method for Continuity Regions of a δNN). Let N be a discon-
tinuous H-layers perceptron defined as in Theorem 3.1 and let k ∈ N, k ≤ δN , be the number of
indices with respect to which I want to perform the continuity region clustering of N. Then:

1. For each i = 1, . . . , δN , compute the rank value ρi(X) as in (21);

2. sort the rank values in descending order: ρi1(X) ≥ · · · ≥ ρiδN (X). Let i1, . . . , ik be the
indices corresponding to the largest rank values;

3. Compute the new regions with respect to G|i1,...,ik .

Algorithm 4.1 represents a first attempt to build an effective method to identify the continuity
regions of a target unknown function using a δNN. Testing it on the best δNNs selected for the test
functions (see Figure 5), we observe extremely good results. In this tests we use the infinity norm
for the rank values computations (see (21)), as a preliminary analysis showed better clustering
performance with respect to the `1 and `2 norms.

As far as functions g`, gs, and gη are concerned, regions returned by Algorithm 4.1 follow very
well the actual discontinuity interfaces of the test function, for each 1 ≤ k ≤ δN (see Figures 7-9).
The only exception is the case of gγ , in which the method is not able to catch the circumference
for k = 1 (see Figure 10), and k = 3 is needed to reach the target. However, we observe that the
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method is able to detect the circumference γ with other non-optimal δNNs (e.g., see Figure 11);
this phenomenon is still under investigation and may suggest that a basic error-based criterion not
necessarily select the δNN that best identify the discontinuity interfaces of the target function.

Nevertheless, δNNs proved to have the potential for being a new useful tool for the discontinuity
detection problem.

(a) k = δN = 8 (b) k = 5 (c) k = 3 (d) k = 1

Figure 7: Test 1. Regions returned by Algorithm 4.1 and A8
1,5

(a) k = δN = 16 (b) k = 11 (c) k = 6 (d) k = 1

Figure 8: Test 2. Regions returned by Algorithm 4.1 and B81,5

(a) k = δN = 4 (b) k = 3 (c) k = 2 (d) k = 1

Figure 9: Test 3. Regions returned by Algorithm 4.1 and A4
5,5

5 Conclusions

We have presented a novel typology of layers for Neural Network models, characterized by a
discontinuous map where the discontinuity action is obtained adding a vector of multiples of the
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(a) k = δN = 8 (b) k = 5 (c) k = 3 (d) k = 1

Figure 10: Test 4. Regions returned by Algorithm 4.1 and B46,7

(a) k = δN = 16 (b) k = 11 (c) k = 6 (d) k = 1

Figure 11: Test 4. Regions returned by Algorithm 4.1 and B84,7

Heaviside function applied to input signals of the layer (see (4)); consequently, the function LH+1
1

of a NN with at least one of these discontinuous layers could be discontinuous, too. Denoting
by δNN such a NN, we analyzed and studied the theoretical properties that characterize their
maps LH+1

1 . Some useful results have been proven (see Section 3), concerning the discontinuities
introduced in the δNNs.

We have also illustrated some possible applications of δNNs to discontinuous functions. We con-
sidered different examples with increasing complexity and we analyzed the sensitivity of the new
NN models in both approximating the discontinuous functions and detecting their discontinuity
interfaces using the continuity regions. Extremely interesting results have been obtained, showing
a reat deal of potential for the new δNNs; indeed, the δNNs proved to have a remarkable ability in
detecting the actual discontinuity interfaces of the approximated function, without compromising
the function approximation ability typical of the NNs. Since in its basic form the method pro-
posed overestimate the number of continuity regions, we also propose a method for clustering the
continuity regions of the δNN in order to have a more precise identification of the actual continuity
regions of the original function.
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