
20 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Soft Error Effects on Arm Microprocessors: Early Estimations versus Chip Measurements / Bodmann, Pablo;
Papadimitriou, George; Rech Junior, Rubens L.; Gizopoulous, Dimitris; Rech, Paolo. - In: IEEE TRANSACTIONS ON
COMPUTERS. - ISSN 0018-9340. - 71:10(2022), pp. 2358-2369. [10.1109/TC.2021.3128501]

Original

Soft Error Effects on Arm Microprocessors: Early Estimations versus Chip Measurements

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TC.2021.3128501

Terms of use:

Publisher copyright

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2937660 since: 2021-11-14T18:41:27Z

IEEE

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, 2021 1

Soft Error Effects on Arm Microprocessors:
Early Estimations vs. Chip Measurements

Pablo R. Bodmann* George Papadimitriou† Rubens L. Rech Junior* Dimitris Gizopoulos† Paolo Rech‡

*PPGC, Institute of Informatics, Federal University of Rio Grande do Sul, Porto Alegre, Brasil
†University of Athens, Greece

‡Dept. of Control and Computer Engineering, Politecnico di Torino, Turin, Italy

Abstract—Extensive research efforts are being carried out to evaluate and improve the reliability of computing devices either through
beam experiments or simulation-based fault injection. Unfortunately, it is still largely unclear to which extend fault injection can provide
an accurate error rate estimation at early stages and if beam experiments can be used to identify the weakest resources in a device.
The importance and challenges associated with a timely, but yet realistic reliability evaluation grow with the increase of complexity in
both the hardware domain, with the integration of different types of cores in an SoC (System-on-Chip), and the software domain, with
the OS (operating system) required to take full advantage of the available resources.
In this paper, we combine and analyze data gathered with extensive beam experiments (on the final physical CPU hardware) and
microarchitectural fault injections (on early microarchitectural CPU models). We target a standalone Arm Cortex-A5 CPU and an Arm
Cortex-A9 CPU integrated into an SoC and evaluate their reliability in bare-metal and Linux-based configurations. Combining
experimental data that covers more than 18 million years of device time with the result of more than 176,000 injections we find that
both the SoC integration and the presence of the OS increase the system DUEs (Detected Unrecoverable Errors) rate (for different
reasons) but do not significantly impact the SDCs (Silent Data Corruptions) rate which is solely attributed to the CPU core. Our
reliability analysis demonstrates that even considering SoC integration and OS inclusion, early, pre-silicon microarchitecture-level fault
injection delivers accurate SDC rates estimations and lower bounds for the DUE rates.

Index Terms—CPU reliability, soft errors, failures in time, neutron beam, microarchitecture-level fault injection, performance models

F

1 INTRODUCTION

Reliability is today one of the main constraints for comput-
ing devices employed in several domains, from High Per-
formance Computing (HPC) to safety-critical markets [1],
[2]. High device or application error rates have been proved
to lower scientific productivity of large scale HPC infras-
tructures, resulting in significant monetary loss [3]. When
the computing device is integrated into cyber-physical sys-
tems such as cars, airplanes, or Unmanned Aerial Vehicles
(UAVs), high reliability becomes paramount as human lives
are at risk.

Arm CPU architectures, thanks to their efficiency and
flexibility, have been widely adopted in portable user de-
vices such as smartphones, tablets, and laptops. Addi-
tionally, today’s fastest supercomputer, Fugaku (RIKEN,
Japan) [4] and the next clusters of the US Department of En-
ergy’s labs at Sandia and Los Alamos, USA [5] are powered
by Arm CPUs. Additionally, Arm is working on a dedicated
line of products for autonomous vehicles. As Arm moved
from consumer applications to HPC and safety-critical ap-
plications, their architecture reliability has become a crucial
concern for the company and its partners ecosystem [2].
The ability to implement architectural modifications on Arm
cores can be extremely beneficial, as selective fault tolerance
solutions can be added at the microarchitectural level, once
the weakest hardware resources have been identified.

Microprocessors’ soft error reliability can be estimated
pre-silicon using early design models (called performance or
microarchitectural models) and post-silicon by accelerated
beam testing on manufactured chips. Despite the popularity
of the two approaches, there are three major unknowns. (1)
It is still largely unclear if the CPU reliability estimation
based on early simulation models (through fault injection
or analytical models) provides realistic soft error rates.
Without strong evidence that a microarchitectural reliability
evaluation is accurate, it is impossible to guarantee that
hardening solutions based on weak resources identification
will be effective, once implemented [6]. (2) While the CPU
early model does not include any other computing core or
peripherals, the final product is normally integrated into
heterogeneous SoCs (System-On-Chips). Although the re-
liability of standalone CPUs, FPGAs, and GPUs has already
been extensively studied [7], [8], [9], [10], [11], it is still
unknown if the CPU reliability estimation remains accurate
when the CPU core is integrated into an SoC. (3) Although
previous works have evaluated the effects of the OS on
codes reliability and even designed a radiation hardened
OS [12], [13], there is no concrete indication about the
influence of the operating system (OS) on the accuracy of
CPU reliability evaluation based on early models. The scope
of our work is to investigate and quantify these unknowns.

In this paper, we consider Arm Cortex-A5 and Cortex-
A9 that ideally support our investigations: unlike other ISAs

and CPU designs, they are available both in hardware plat-
forms and as microarchitecture-level models (in the widely
used gem5 simulator). Through this dual setup, we can com-
bine the realistic physical measurement of the FIT (Failures-
in-Time, i.e., failures per 109 hours of operation) rates ob-
tained through extensive beam experiments on actual chips
(equivalent to 18 million years of natural exposure) with
the fine-grain, hardware structure based analysis of faults
propagation obtained with microarchitecture fault injection
in early stage CPU models (based on 176,000 injections).

To understand the accuracy of microarchitecture fault in-
jection we compare the predicted FIT rate on a gem5 model
with the FIT rate measured with beam experiments on a
stand alone Cortex A5. To consider the design complexity
that derives from cores integration, we consider a Cortex A9
embedded in an SoC. To better understand the OS influence
on the system reliability, we perform the dual experiments
both on the A5 and A9 executing codes bare metal and on top
of the Linux OS.

Figure 1 shows the motivation of this work and an
abstract view of the beam experiments versus fault injection
FIT rate evaluations. Even on a stand-alone CPU running
code bare-metal (leftmost part of Figure 1), assuming fault
injection and beam experiments are performed on exactly
the same hardware and software setups, there are still
several reasons for beam and fault injection FIT rates not to
be identical and for neither of them to be perfectly accurate
if compared to the true device FIT rate. As some device
structures cannot be modeled (e.g. combinational logic and
random sequential), fault injection is likely to underestimate
the device FIT rate. Additionally, a simplified fault model
(typically a single bit flip) is normally used for injections,
which adds additional uncertainty to the predicted error
rates. On the other hand, when the real hardware is exposed
to accelerated neutrons, the whole chip is irradiated and
much more realistic behavior is modeled. However, some
resources/interfaces in the test board which are not part
of the evaluated CPU are exposed to the beam and can be
corrupted causing unresponsiveness. Such cases can lead to
an overestimation of the device FIT rate. In addition, the
particles counts in the irradiation facility are not as precise
as fault injection, adding uncertainty to beam results.

The middle part of Figure 1 shows the case of a CPU
core embedded in an SoC (without an OS). The integration
of the SoC can potentially modify the system FIT rates for
better or worse. Finally, the rightmost part of the Figure 1
shows a system with an OS on top of which the user codes
are executed.

The main contributions of this paper are:

• An evaluation of the impact of SoC integration and
OS deployment in Arm CPUs reliability, based on
beam experiments.

• A fine-grained microarchitectural component-based
fault injection analysis of the vulnerability of codes
executed on top of Linux and bare-metal in Arm
CPUs.

• Hints and guidelines on how to estimate, pre-silicon,
the reliability of a CPU as stand-alone or integrated
into an SoC and when executing programs on top of
an OS.

∞

0

C
P

U
 F

IT

CPU

SoC
CPU

CPU

SoC

OS

Beam Fault
injection

True
System
complexity

Fig. 1. Abstract view of the FIT rates evaluation uncertainties and
possible impact of SoC integration and operating system on the CPU
error rate.

We show that employing an early-stage model of the
CPU microarchitecture and the manufacturing technology
in which the CPU will be implemented can provide an
accurate first-order estimation of the expected SDC (Silent
Data Corruption) rate, even if the CPU is integrated into an
SoC or OS is employed. On the contrary, the DUE (Detected
Unrecoverable Errors) can be significantly underestimated
if only microarchitecture fault injection is considered. The
comprehensive comparison of microarchitecture level fault
injection with beam experiments is a step forward in the
quest for accurate early predictions of the FIT rates; such
predictions allow decision-making during initial design
phases to improve the product reliability.

The rest of the paper is organized as follows. Section 2
summarizes background material and reports related work
to highlight our contributions. Section 3 presents a de-
scription of the adopted evaluation methodologies (archi-
tectures, codes, and experimental setups). In Section 4 we
combine and in Section 5 we compare the results of beam
and microarchitectural fault injection, evaluating the SoC
integration and the OS impact on the Arm CPUs reliability.
Finally, Section 6 draws the conclusions of our research.

2 BACKGROUND, MOTIVATION, AND RELATED
WORK

In this section, we present the background, the motivation
of our work, and related work on devices reliability and its
assessment methodologies.

2.1 Radiation Effects in Electronic Devices
The interaction of a galactic cosmic ray with the terres-
trial atmosphere triggers a flux of particles (mainly neu-
trons). About 13 neutrons/((cm2) × h) reach the earth’s
surface [14]. A neutron strike may perturb a transistor’s
state, generating bit-flips in storage elements, or producing
current spikes in logic circuits that, if latched, lead to an er-
ror [15]. A transient error may have no effect on the program
output (i.e., the fault is masked or benign) or may be prop-
agated through the stack of system layers and produce a
Silent Data Corruption (SDC - undetected wrong output), or
Detected Unrecoverable Errors (DUEs), such as a program
crash (application hang) or a device turning not responsive
(system crash). The error rate of a software code executed

2

TABLE 1
Reliability evaluation methodologies characteristics.

Evaluation Method Time Needed Cost Accessible Resources Fault Source Availability Observability
Field, Lifetime data months/years very high all natural final product limited

Beam testing hours high all natural final product limited
Software fault injection hours low limited synthetic early/final product medium

Arch. fault injection days low limited synthetic early medium
Microarch. fault injection days/weeks low most synthetic early very high

RTL fault injection years low all synthetic late very high

on a microprocessor depends on both the raw sensitivity of
the memory and logic elements [16] and the probabilities for
the fault to be propagated through the hardware design (the
microarchitecture) and the program [6], [17], [18], [19].

2.2 Reliability Evaluation Methodologies

The most common ways to evaluate the reliability of com-
puting devices, as listed in Table 1, are: lifetime or field test,
accelerated beam experiments, and statistical fault injection
at different levels of abstractions (software, architecture,
microarchitecture, or Register-Transfer Level - RTL). We
include the time and cost required to complete the study,
how many of the available resources can be accessed (or
are modeled), if the faults are induced by processes that are
natural (i.e., realistic error rates) or synthetic (i.e., models
chosen by the user), if the study can be performed in the
early stages of the project or only on the final product, and
how much information can be gathered on faults generation
and propagation (observability). On one hand, high observ-
ability is essential to identify the most critical resources of
a device. On the other hand, to guarantee that the analysis
is accurate and valid when implemented in the field, the
evaluation must be proved to be realistic.

Field failure studies have to be based on statistically
significant amounts of data, and thus require a huge number
of devices and, obviously, are very time-consuming (because
the natural error rate is very low) [20], [21], [22]. Accelerated
particles beams reduce the cost and time of field tests taking
advantage of a high particles flux intensity [16], [23], [24].

However, beam experiments have two main limitations:
(1) the effects of faults can be observed only when they have
already compromised the system functionality, making it
very challenging to identify the most vulnerable hardware
structures of the system (observability is low). (2) Experi-
ments can be performed at the end of the manufacturing
process, when a silicon prototype or the final chip has
been produced. Any modification to the design, including
the ones necessary to improve the device reliability to soft
errors, would be, therefore, extremely expensive.

Fault injection is a complementary approach to beam
experiments. Instead of exposing the manufactured chip
to radiation, fault injection is based on models of the sys-
tem and artificially injects faults through simulation (at
different levels of abstraction): from RTL to architecture,
microarchitecture and software. The probability for a fault
to propagate to the output of an application is measured
by injecting faults in the accessible resources of each level’s
model (gates, registers, hardware arrays, variables, instruc-
tions, etc.). Fault-injection provides complete observability
of the abstraction layer details but has two main limitations:

(1) the fault model and fault injection probabilities are
synthetic (i.e., defined/modeled by the user and/or the
simulator), thus the obtained results may not correspond
to the physical phenomena, and (2) faults can be injected
only in that subset of available resources that are accessible
at each abstraction layer. Software fault injection can be
performed on the final device (with the same limitations of
beam experiments) but also on instruction set (functional)
simulators. Microarchitecture and RTL descriptions, on the
contrary, are available in the early stages (RTL much later
than the microarchitecture level, but still pre-silicon), where
modifications to the project are still possible (fast and cheap
at the microarchitecture level; extremely time consuming
and expensive at the RTL).

2.3 Motivation and Contribution

Designs that need to comply with certain dependability
constraints require decisions to improve the reliability of
the system but without adding unnecessary overhead. It is
critical to make these decisions as early as possible since
any additional re-design iteration can lead to unacceptably
high costs. Experiments on the silicon chip (lifetime failure
statistics, beam tests, software fault injection) are less than
ideal, as they can be performed only on the final product.
They can report the reliability of the product but at a stage
when improvements are too costly or not impossible. Early-
reliability assessments (architecture level, microarchitecture
level, and RTL) are often performed in models that exist
prior to silicon prototypes. These vary in the level of detail,
with the most abstract and less detailed (architecture level)
being available earlier in the design flow while the most
detailed (RTL) being available at the very late stages before
design sign-off. Performance (microarchitectural) models
are much more representative of the hardware details (al-
though certain RTL details are missing) but are also very fast
to execute. Early decisions for protection against soft errors
that are based on fault injection can be useful only with
strong evidence that fault injection evaluation is sufficiently
close to the actual silicon chip. Without such evidence,
which we intend to provide, any mitigation solution risks
being ineffective.

While architecture level description is behavioral and
not necessarily close to the actual implementation [25], [26],
RTL is highly detailed but a fault simulation in this level
of abstraction is extremely slow (typically 3 orders of mag-
nitude slower than the microarchitecture level). Thus, we
focus on microarchitecture-level as it includes an accurate
description of the most important hardware structures of
the microprocessor (registers, caches, buffers, queues, etc.).

3

By showing that microarchitecture level fault injection
on Arm CPUs can predict the final product error rate, we
move a big step forward in the validation of fault injection
evaluation and in the quest of early FIT rates estimation.
Additionally, by providing both beam and microarchitec-
tural fault injection results we ensure our analysis to be both
accurate and with high observability.

2.4 Related Work

Arm processors have been exposed to accelerated particles
beams and have been subject to fault injection in previous
studies [27], [28], [29], [30]. [25] and [26] present results on
architecture-level and [31] on microarchitecture-level fault
injection on Cortex-A9 core. [32] presents a comparative re-
liability evaluation between microarchitecture and RTL fault
injection, for bare-metal workloads running on Cortex-A9,
while [33], [34] also includes results of RTL fault injection
on Arm CPU cores.

Some work has been done to evaluate the influence of
an OS on the reliability of code executions [12], [13], [27],
[35], showing that the OS can be beneficial in the presence
of cache conflicts.

However, these previous works do not correlate the
results of beam testing to fault injection, as we do in this
paper to cross validate the two approaches.

Some preliminary studies have proposed a compari-
son or combination of different reliability evaluation tech-
niques [9], [24], [30], [36], [37], [38]. In [8], a first attempt
to compare only the reliability evaluation of Cortex-A9 over
Linux using beam experiment and microarchitectural fault
injection was made. According to the authors, for SDCs the
comparison can be very close, for DUEs the difference is
significant. In this paper, we extend the analysis proposed
in [8] by considering both an in-order stand alone Cortex-A5
and an out-of-order Cortex-A9 integrated in a SoC. For both
devices, we run the codes bare metal and on top of Linux.
We can, then, address the impact of both SoC integration
and OS on the reliability of a device. This is the first paper
that uses both beam experiments and microarchitectural
fault injection to better understand how the OS and the SoC
integration affect the reliability of a processor.

3 METHODOLOGY

In this section we describe the Arm CPUs we analyze in this
paper, the OS and codes we use, and the two experimental
setups we employ. We perform our evaluation and beam
versus microarchitecture fault injection comparison first on
a stand-alone CPU (Cortex A5) running the codes bare to
the metal. Then, we consider the Cortex A9 CPU, which, in
its silicon implementation, is integrated into an SoC. Finally,
we study the impact of the OS in both the A5 and the A9.

3.1 Benchmarks, Devices

Our study is performed on an Arm®CortexTM-A5 im-
plemented in a 65nm CMOS technology in the Mi-
crochip SAMA5D2 XPLAINED ULTRA board and on the
Arm®CortexTM-A9 that is embedded, together with other
cores, in a Xilinx ZynqTM-7000 SoC implemented in a 28nm

TABLE 2
Summary of setup attributes.

Property Cortex-A5 Cortex-A9
Setup Beam Gem5 Beam Gem5

Platform SAMA5D2 VExpress Zynq 7000 VExpress
Technology 65 nm N/A 28 nm N/A
CPU cores 1 1 1∗ 1
L1 (4-way) 32 KB 32 KB 32 KB 32 KB
L2 (8-way) 128 KB 128 KB 512 KB 512 KB

Kernel 4.14 3.13 3.14 3.13

CMOS technology. Being low-cost embedded devices, nei-
ther the A5 nor the A9 feature any hardware protection
technique such as ECC. The ECC has been shown to reduce
by about 1 order of magnitude the SDC rate of modern
computing devices [9]. The two Arm CPUs have signifi-
cantly different microarchitectures. The A5 is a simple in-
order CPU while the A9 is a more complex out-of-order
superscalar CPU with speculative execution. The silicon
chips also differ: the Microchip features a stand-alone A5
while the Xilinx features an A9 integrated into an SoC. The
SAMA5D2 device has a single A5 core operating at a max-
imum frequency of 500MHz and the Zynq SoC has two A9
cores operating at 667 MHz and an FPGA (not used in our
tests). Each core has a 32 KB 4-way set-associative instruc-
tion and data caches and a unified 8-way set-associative
Level 2 cache which is 128kB in the A5 and 4x larger, i.e.,
512kB, in the A9. We have diligently configured the gem5
model to resemble the physically available A5 and A9 CPUs
and in the Zynq SoC, we disabled the second A9 core to
make the two evaluation setups as close as possible (details
in Section 3.4). Table 2 presents the main characteristics of
the two setups.

We have selected Arm chips and in particular, the A5
and A9 CPUs for our work because they are the only
Arm CPU cores that are publicly available both as stand-
alone and as SoC-integrated silicon devices and can both be
modeled in gem5. We aim at providing a methodology and
a beam vs fault injection comparison that can be applied to
other Arm CPUs, as long as their gem5 model is available.
The fact that the methodology holds for two significantly
different devices provides a good indication that it can
be extended to other CPU cores’ ISAs. We have chosen
codes with different computational characteristics from the
mibench [39] benchmarks suite which has been extensively
employed for reliability and other studies. We have selected
the codes based on the recommendations for reliability
evaluation provided in [40]. Using the selected codes helps
in correlating the observed reliability behaviors with the
computational characteristics. The benchmarks are:

• CRC32 (CPU intensive), that calculates the corre-
sponding 32-bit Cyclic Redundancy Check (CRC).

• FFT (memory intensive), that performs the Fast
Fourier Transform (FFT) on a wave on a floating-
point array.

• MatMul (memory intensive), that multiplies two
square float matrices.

• Qsort (memory and control flow intensive), that
sorts an array using the quick-sort algorithm imple-
mented in the GNU C standard library.

4

Fig. 2. Part of the beam test setup at ChipIR.

We use exactly the same input values and size for each
benchmark in both the beam experiments and the fault
injection campaigns (details in Section 3.5).

3.2 Bare-metal vs Linux Setup
The reliability of the two devices running the selected
benchmarks was evaluated in both bare-metal (without an
OS) and on the top of the Linux OS. The Linux kernel
version that was used on the beam setup is 3.14 for the A9
and 4.14 for the A5 while in gem5 we used the 3.13 version.
These were the closest kernel versions that have been ported
on the two platforms.

All executables were generated with the same compiler
and were statically linked. This means that all the OS func-
tions used during computation are exactly the same between
the A5 and A9, between bare-metal and Linux execution.

The Silent Data Corruption (SDC) detection, identical
for bare-metal and Linux setup, is performed comparing the
output of the experiment (for either beam or fault injection)
with the expected golden output (calculated in a fault-free
execution). Any mismatch triggers SDC detection. Detected
Unrecoverable Errors (DUEs) manifestation is different for
bare-metal and Linux. In a bare-metal execution, a DUE
simply hangs the application and, subsequently, the device.
We call this event Crash. When the application runs on
top of Linux, a fault can hang the application but not the
OS (Linux is still responsive and a new instance of the
application can be launched) or can hang the entire OS,
requiring a hard reboot. We call the former an AppCrash,
and the latter a SysCrash.

3.3 Neutron Beam Experiments
Our radiation experiments were performed at the ChipIR
facility of the Rutherford Appleton Laboratory (RAL) in
Didcot, UK. ChipIR delivers a neutron beam suitable to
mimic the atmospheric neutron effects in electronic de-
vices [41], allowing to measure the Failures In Time (FIT)
rate of the device executing a code.

Figure 2 shows part of our setup at ChipIR. We irradiate
two Xilinx Zedboards and three Microchip boards with a

3 × 3 cm beam spot, which is sufficient to irradiate the
chip uniformly without affecting the main memory or other
onboard peripherals (data in the DDR is not exposed to the
beam).

The available neutron flux was about
3.5 × 106n/(cm2/s), i.e. about 8 orders of magnitude
higher than the terrestrial flux (13n/(cm2 × h) at sea
level [14]). Since the terrestrial neutron flux is low, in a
realistic application it is highly unlikely to observe more
than a single corruption during the program execution. We
have carefully designed the experiments to maintain this
property (observed error rates were lower than 1 error per
1,000 executions). Experimental data, then, can be scaled to
the natural radioactive environment without introducing
artifacts. Each of the 16 configurations (4 codes per device,
bare-metal and with Linux) were tested for at least 100
effective hours (i.e., not considering setup, initialization,
and recovery from crash times). The 1,600 hours of testing,
when scaled to the natural exposure, account for more than
18 million years.

3.4 Microarchitectural Fault Injection
The microarchitecture-level reliability assessment was per-
formed on top of gem5 simulator [42], using the GeFIN fault
injection framework [43]. GeFIN is employed in our work to
quantify the Architectural Vulnerability Factor (AVF) [17] of
each modeled hardware component of the system, which
expresses the probability for a fault leading to a failure.
Gem5 has been demonstrated to accurately resemble Arm
Cortex microarchitectural configurations [44].

For both the A5 and A9 cores gem5 includes a detailed
model of the CPU pipeline (in-order and out-of-order, re-
spectively) along with cache memories, predictors arrays,
and TLBs. Compared to the RTL, microarchitecture-level
simulation has three orders of magnitude higher through-
put, allowing simulation of long workloads, both in bare-
metal and on top of an OS.

We have configured GeFIN to inject single-event tran-
sient faults during system simulation in the following com-
ponents, which cover the vast majority (>90%) of SRAM
cells inside the CPU core: L2 Cache, L1 Data and Instruction
Caches (both the data arrays and the tags arrays of all
caches), Physical Register File, and the Data and Instruction
Translation Lookaside Buffers (DTLB, ITLB). To achieve a
statistical sample of at most 4% error margin and 99%
confidence level, we have injected at least 1,000 single bit
transient faults on each of the target components [45]. In
total, 176,000 fault injections have been performed.

3.5 Fault Injection and Beam Experiment Comparison
To avoid any difference not related to the reliability eval-
uation methodology that can bias our results, we used
exactly the same source code, compiler, compiler options,
and input vector (size and values) for both the GeFIN
fault injections and the neutron beam experiments. Still, the
setups used for beam experiments and fault injection are
intrinsically different as we are comparing the execution
on actual hardware vs. gem5 simulation. We have tuned
as much as possible the two setups to avoid major differ-
ences in the execution of the same code; to validate this

5

5.
7

40
.5

40
.6

8.
0

23
.7

13
.7

78
.9

90
.7

53
.9 59
.3

0

20

40

60

80

100

120

crc32 fft qsort matmul AVG

SDC - Bare SDC - Linux
FI

T

0.
9

5.
5

1.
1 1.
6

2.
3

7.
9

2.
2 3.
4

1.
1

3.
6

14
.9

13
.4

11
.1 14
.4

13
.5

0

4

8

12

16

20

crc32 fft qsort matmul AVG

Crash - Bare AppCrash - Linux SysCrash - Linux

FI
T

Cortex A5

Fig. 3. Cortex A5 Bare-metal and Linux beam FIT rates for SDCs (left) and Crashes, Application Crashes, and System Crashes (right).

34
.2

1.
9

70
.5

0.
6

26
.8

7.
0

28
.0

12
6.
0

1.
7

40
.7

0
20
40
60
80
100
120
140
160

crc32 fft qsort matmul AVG

SDC - Bare SDC - Linux

FI
T

3.
8 26
.8

26
5.
0

27
.6

80
.8

7.
4

18
1.
0

17
6.
0

11
.5

94
.0

91
.3

16
5.
0

11
0.
0

96
.1 11
5.
6

0

50

100

150

200

250

300

350

crc32 fft qsort matmul AVG

Crash - Bare AppCrash - Linux SysCrash - Linux

FI
T

Cortex A9

Fig. 4. Cortex A9 Bare-metal Linux beam FIT rates for SDCs (left), and Crashes, Application Crashes, and System Crashes (right).

synchronization effort we measured the values in 7 different
hardware performance counters on both the chips and the
simulator: CPU cycles, branch miss-predictions, L1 data
cache accesses, L1 data cache misses, L1 data TLB misses,
L1 instruction cache misses, and L1 Instruction TLB misses
and has observed only small differences. Still, as literature
has already identified, certain design differences exist in
the implementations of gem5 and Arm Cortex microarchi-
tectures [44]. Our analysis contributes to understanding if
microarchitectural simulations can provide accurate insights
on hardware reliability.

To estimate the FIT rate of a code using fault injection
and compare it with the FIT rate measured with beam
experiments, it is necessary to know the raw (intrinsic) fault
rate per bit along with the probability of each fault becoming
a failure. In principle, multiplying the per bit raw failure rate
of each microarchitectural component to its AVF and its size
(in bits) provides the failure rate (FIT) of the code executed
on the device:

FIT =
∑

component(i) AV F (i)× size(i)× FITbit(i)

However, while the fab can provide the components
FIT rate, measuring the FIT rate for each resource on the
actual physical chips would require too much time and,
when dealing with an off-the-shelf component, could be
unfeasible due to visibility limitations. We decided to use
the experimentally measured L1 cache FIT/bit rate, as a
reference fault rate for the technology in which the micro-
processor is implemented:

FIT ' FITbit(tech.)×
∑

component(i) AV F (i)× size(i)

This simplification is justified by the fact that caches are
normally the most vulnerable resource in a microprocessor
and the targeted components in gem5 are all implemented,
in silicon, with the same technology as the L1 cache.

4 FAULT INJECTION AND BEAM TESTING DATA

In this section, we first compare and combine the experi-
mentally measured FIT rates for the A5 CPU and on the
A9-based SoC. Then, we evaluate how close the FIT pre-
diction based on microarchitectural fault injection is to the
experimentally measured FIT rates on the actual chips. The
main insights are highlighted (using the italic type) in the
text.

4.1 Beam Experiments
Technology Sensitivity: Since the Cortex-A5 and Cortex-
A9 are implemented in two different technologies, the raw
probability for a neutron to generate a fault is different in
the two devices. To measure the technology sensitivity we
load a known pattern in the CPU, filling the L1 data cache,
expose the device to the beam for seconds, and read back
the memory content, counting the eventual bit flips. We
tuned the exposure time with the beam intensity, keeping
the probability for two different neutrons to generate faults
between two reads negligible.

The experimentally measured FIT rates for a single mem-
ory bit in the L1 cache is 2.37 × 10−4 for the Cortex-A5
and 2.59× 10−5 for the Cortex-A9. These values are in line
with similar technologies, as shown with life tests in [20].
A neutron is, then, about 9.1x more likely to generate a

6

fault in the 65nm Cortex-A5 than in the 28nm Cortex-A9.
The difference between the FIT rates should not surprise
as transistor dimensions, layout, manufacturing process,
voltage, etc. impact significantly the device sensitivity [16],
[46]. It is also not surprising that the per-bit FIT rate is higher
for the 65nm CMOS than for the 28nm CMOS device. In fact,
while a smaller transistor is likely to have a smaller critical
charge (i.e., particles with lower energy can generate a fault),
it also has a smaller area (i.e., it is harder for a particle to
hit the transistor’s sensitive area). This has been previously
documented in [47]. Additionally, as the two devices have
been manufactured in two different facilities with possibly
completely different processes the critical charge might in-
deed be very different. We also observed that more than 95%
of observed errors are single bit-flips, which is expected for
65nm and 28nm planar CMOS technologies [16], [46].

It is worth noting that the FIT rate of a device executing
an application does not depend only on the technology
sensitivity but also on the amount of resources involved in
the computation (the A9 is bigger than the A5) and on the
probability for a fault to propagate through computation
(i.e., the AVF). We quantify and qualify both aspects next.

A5 and A9 FIT rates: Figures 3 and 4 show on the
left the SDCs and on the right the DUEs (Crash for bare-
metal, AppCrash, and SysCrash for Linux, as detailed in
Section 3.2) FIT rates measured with beam experiments for
the A5 and A9, respectively. In each Figure, we show the
results obtained when executing the codes bare-metal and
on top of Linux. Data is reported with 95% confidence
intervals.

As a first quantitative comparison, we can observe that
the average SDC rates are very similar for the two devices (the
average SDC rate difference between the A5 and A9 is 12%
for bare metal and 45% for Linux). Interestingly, the average
DUE rate (Crash, AppCrash, SysCrash) is at least one order of
magnitude higher on the A9 (Figures 3 and 4 are on different
scales). Correlating the technology sensitivity data (the A5
has a 9.1x higher sensitivity than the A9) with Figures 3 and
4 (A5 and A9 have similar SDC rate and the A9 has a 10x
higher DUE rate) suggests that the A9 architecture is more
vulnerable than the A5, mostly for DUEs. Additionally, as
the A9 is bigger (out-of-order and with a four times larger
L2 cache) than the A5, it is likely to have a higher probability
of being hit by a neutron.

The microarchitectural analysis proposed in Section 4.2
will investigate the A5 and A9 vulnerabilities in finer, per-
component, granularity. We anticipate that the higher DUE
rates of the A9 are due to the SoC high integration.

From the beam experiment data we can observe that the
FIT rate is significantly dependent on the device, program
executed, and system stack configuration (Linux vs. bare-
metal).

The SDC FIT variation among the different codes is of
about 1 order of magnitude for both the A5 and the A9.
Qsort is the code with the highest FIT rate in both devices,
because of the way it accesses the input data stored in
caches and memory: as the core is waiting for new data
to be fetched, the elements in the caches are exposed and
contribute to the SDCs rate.

Impact of OS: Comparing beam results shown in Fig-
ures 3 and 4 obtained running the codes bare-metal (filled

bars) and on top of Linux (pattern-filled bars), we can have
a first evaluation of how the OS impacts the systems reliabil-
ity. It is worth noting that we can only identify faults while
the OS is executed that impact the application output (SDC)
or the system execution (DUE). Possible faults during the
OS code execution that do not influence the correct system
functionality are not detectable. The OS presence only slightly
increases the code SDC FIT rate, of about 2.4x for the A5 and
1.9x for the A9, on average. While, at a first glance, the OS
impact seems high, it is much lower than the differences
between SDC FIT rates of different codes in the same device
(and of the impact on FIT rates of other factors, as shown
in [16], [30]).

For DUEs, as discussed in Section 3.2, the bare-metal
execution can only lead to a Crash (i.e. the application and,
then, the device are not responding), while the execution on
top of Linux can lead to an AppCrash (i.e., the application
does not respond but Linux is still up and running) or
to a SysCrash (i.e., Linux not responding). As events are
stochastic and uncorrelated, the DUE FIT rate for the Linux
execution is to be considered as the sum of AppCrash and
SysCrash. When an OS is deployed the overall DUE rate
increases by 8.5x for the A5 and 2.6x for the A9, on average.

Crashes in bare-metal are mainly caused by exceptions
raised by the CPU when it is hit by a fault, such as undefined
instruction, invalid opcode, prefetch abort, a fetch from
an illegal address and data abort, data load from or store
to an illegal address. Any exception raised in interfaces
or communication protocols not used by the bare-metal
code will be ignored and will not result in a Crash. The
Linux AppCrash results from the kernel terminating the
application, while in bare-metal the CPU itself triggers the
Crash. The reason for the kernel terminating the application
may be the result of a CPU exception (i.e., errors in the
control flow, bad memory accesses, etc. as for the bare-metal
Crash) handled by the kernel, but also from a signal sent by
the kernel to the application. From Figures 3 and 4, we can
observe that for both the A5 and A9 the average AppCrash is
about 50% higher than the bare-metal crash. The SysCrash, on
the contrary, is triggered by the corruption of kernel code
or data, interfaces, etc. An error in the application being
executed can hardly affect the system since it operates in
an unprivileged space and can only access kernel space via
system call services. The reported experimental data shows
that, while the SDC rate and the Crash/AppCrash rates vary
significantly across benchmarks, the SysCrash rate is almost
constant for both the A5 and on the A9 (the variation between
codes is, on average, 30%). This observation confirms pre-
vious studies that demonstrate that the System Crash has a
stronger component that depends on the hardware and is
almost independent of the executed code [30].

4.2 Fault Injection Results

By employing the GeFIN microarchitectural fault injector,
we can analyze the trends observed with beam experiments
with a fine granularity (utilizing the full observability on the
CPU model that gem5 provides) and further investigate the
impact of SoC integration and of Linux.

AVF analysis of A5 and A9: The main outcome of
the GeFIN fault injection is the components’ AVF, i.e. the

7

Fig. 5. AVF for FFT (on the left) and qsort (on the right) executed bare-metal or on top of Linux on the A5 and A9.

probability for a transient fault inside a component to prop-
agate through the microarchitecture and the software stack
and affect the program execution. AVF is the technology-
independent part of the FIT rate as a combination of the
hardware design and the software execution on top of it. It
is worth noting that, while the silicon A9 is embedded in an
SoC, the microarchitectural model of the A9 just considers
the stand-alone CPU. This is typical, as microarchitectural
reliability studies are performed on the stand-alone CPUs.
In Section 5 we will evaluate if considering just the stand-
alone A9 still provides accurate reliability estimations.

While the main scope of our paper is to understand at
which level fault injection can be used to predict the CPU
FIT rates, to highlight the insights GeFIN can provide we
discuss in detail the AVFs of some CPU components for
FFT and qsort (the findings of the same analysis for the
other benchmarks are very similar). Figure 5 shows the AVF
of L1 instruction cache (L1I), L1 data cache (L1D), and L2
unified cache for both A5 and A9 microprocessor chips.
These hardware structures contribute the most to the overall
FIT rate of the CPU (because these structures are the largest
components of the CPU; see Section 3.5) when FFT (left) and
qsort (right) are executed bare-metal and on top of Linux.

The AVF results in Figure 5 are shown in stacked bars
broken down in the AVF results for the different fault effects:
SDCs, Crashes/AppCrashes, and SysCrashes.

From Figure 5 we can derive that the AVF of the three
major cache blocks are significantly larger for the A9 core than the
A5 core. In both the bare-metal and the Linux configuration
the L1I cache AVF is from 4x to 10x larger in the A9 than
the A5 (and the majority of effects are Crashes as expected
in an instruction-storing structure). In the L1D cache, the
trend is the same: A9 has higher AVF than the A5 for
both benchmarks, but the differences are smaller (up to 2x).
The L1D cache fault effects are mainly SDCs, again a very
natural result in a data-storing structure. Note that the L1
caches in both CPUs have the same size.

The L2 caches (which store both instructions and data)
have a mixed fault effects behavior (SDCs and Crashes) but
the A9 AVF results are, again, significantly larger (up to
about 4x) than the A5. An important aspect is that in the
A9 the L2 cache is 4x larger than the A5 (512K vs. 128K).
We recall that higher AVF means that the probability for a
fault to propagate to the output of the program is higher,
and a larger area also increases the probability for the fault
to occur.

While not shown in Figure 5, we have seen that faults
in the data/instruction translation lookaside buffers (TLBs)
are highly likely to lead to a DUE, possibly because they
cause illegal accesses to memory or accesses to unmapped
memory locations (the Crash AVF is 50% and the Hang
AVF is 10%, on average). Only in a few cases, a fault in
the data TLB leads to SDCs (SDC AVF is lower than 1%).
This happens when the corrupted memory address is still
valid and the program considers its data for computation.
Finally, an interesting result we obtained is that the out-of-
order A9 microprocessor chip has an average AVF for the
Physical Register File lower than 3% for SDCs (much lower
than the ∼30% of L1D or ∼15% of L2) and lower than 9%
for DUEs.

In summary, the significantly larger AVF results of A9
for the three major structures along with the largest L2
cache size, explain the fact that A5 and A9 total FIT rates
observed in the beam experiments are very close to each
other in almost all cases despite the much higher technology
sensitivity of the A5. The combined effect of the high A9
AVF results and the A9 L2 cache size compensates for the
lower raw FITbit(tech.) value of the A5.

AVF analysis of OS Impact:
Figure 6 shows the distribution of kernel and user mode

code execution during the execution of each program in
gem5. The OS kernel code execution can be as small as less
than 3% (for FFT) and as large as about 67% (for matmul).
Kernel code is invoked whenever a program requires to
perform I/O operations, communicate with peripherals, or,
periodically, serve system tasks. Depending on how much
time is spent on kernel mode, a fault has a higher probability
to cause a DUE, in all hardware components.

Qsort and FFT show a remarkable difference in the Linux
kernel vs user code execution time: the time dedicated to

Fig. 6. Distribution of kernel and user mode relative to execution time.

8

fft

qsort

matmul

crc32

fft

qsort

matmul

fft

qsort

matmul

crc32

fft

qsort

matmul

-50 -40 -30 -20 -10 0 10 20

+1.08

+1.44

-3.66

+2.82

+1.74

+4.29

+1.75

-8.77

+2.42

-39.20

+9.45

-1.37

+3.00

-15.30

A5

A9

B
ar
e

Li
n
u
x

B
ar
e

Li
n
u
x

Fig. 7. Beam and fault injection SDC FIT rates comparison

fft

qsort

matmul

crc32

fft

qsort

matmul

fft

qsort

matmul

crc32

fft

qsort

matmul

-60 0 60 120 180 240 300

-1.08

-6.64

-1.55

-1.18

-1.88

-3.11

-2.64

+11.60

+244.00

+37.50

+13.90

+26.40

+99.50

+12.60

A5

A9

B
ar
e

Li
n
u
x

B
ar
e

Li
n
u
x

Fig. 8. Beam and fault injection Crash/AppCrash FIT rates comparison

kernel execution in qsort is 12% and in FFT is less than
3% of the total execution time. A longer Linux kernel time
is likely to increase the probability for a fault to affect
the operating system execution, leading to a crash. This is
directly reflected in the AVF breakdown shown in Figure 5.
For FFT, which has very short kernel execution cycles,
the presence of the OS adds extra DUE AVF (that can be
attributed to either the user of the kernel code) in both the
A5 and A9 and all three components (L1I, L1D, L2) while
the SDC AVF remain the same or are slightly increased. In
the qsort benchmark, which has significantly larger kernel
operations, we observe significant changes in the SDC/DUE
AVF distribution. Particularly interesting is the change in
the L2 cache AVF stack for qsort: the vast majority of SDC
events observed in the bare-metal setup are manifesting in
the Linux setup as DUEs. This is very likely because the
fault effect becomes more severe in the Linux setup and the
operating system does not allow the code to terminate the
execution with an SDC but rather the execution (Application
or System) crashes earlier.

5 FAULT INJECTION AND BEAM COMPARISON

As discussed in Section 3.5, we can predict the codes’ FIT
rates with microarchitectural fault-injection multiplying the
AVF by the number of available bits and the technology
sensitivity (2.37× 10−4 FIT/bit for the A5 and 2.59× 10−5

FIT/bit for the A9). By comparing the predicted FIT rate
with the beam FIT rate (which we assume is the ground
truth) we can evaluate the accuracy of microarchitectural

crc32

fft

qsort

matmul

crc32

fft

qsort

matmul

-20 0 20 40 60 80

+4.70

-1.10

-1.18

+2.45

+9.98

+17.70

+35.50

+62.40

A5

A9

Fig. 9. Beam and fault injection SysCrash FIT rates comparison

fault injection in estimating the FIT rate of codes executed
in silicon devices. We recall that the gem5 model includes
only the CPU and not the entire SoC. Thus, the comparison
between GeFIN and beam data is particularly interesting
for the A9, as it shows if microarchitectural fault injection
is accurate in predicting the FIT rate of a CPU even when
embedded in an SoC.

Figure 7, 8, and 9 show the comparison between FIT
rates measured with beam experiments and predicted with
GeFIN for SDC, Crashes/AppCrashes, and SysCrashes, re-
spectively. To better visualize the comparison, for each code
we divide the highest FIT rate between the one calculated
with beam and the one predicted using fault injection by
the lowest FIT rate between the two. Whenever the FIT
rate obtained with beam experiments is higher than the
fault injection the value is represented as positive; negative
otherwise. That is, in Figure 7, for matmul executed in bare-
metal on the A5, the SDC FIT rate predicted with fault
injection is 3.66x higher than the one measured with beam
experiments. For the AppCrash FIT rates of qsort executed
with Linux on the A9, shown in Figure 8, beam experiments
provide a FIT rate that is about 2 orders of magnitude higher
than GeFIN prediction.

5.1 Accuracy of SDC prediction
A result of great impact, shown in Figure 7, is that , de-
spite the different setup and intrinsic differences between
a Silicon device and a microarchitectural model, for the
majority of cases (10 out of 14), the GeFIN SDC FIT rate
prediction is very similar to the one measured with beam
experiments. Differences for all codes, devices (A5 and A9),
and configurations (with or without Linux) but matmul
and FFT on the A9, are well smaller than 5x. FFT and,
mostly, matmul on the A9, have a higher difference, prob-
ably because of the lower statistical significance of the data
gathered with beam experiments. This result is of extreme
importance as it attests that microarchitectural fault injection
can be used to predict the SDC FIT rate of the correspondent
real hardware of two completely different devices, with and
without Linux. As shown in Figures 3 and 4 the OS increases
the SDC rate of 2.4x and 1.9x for the A5 and A9, respectively.
The comparison in Figure 7 attests that early pre-silicon
measurements on GeFIN are highly accurate in catching the OS
impact on the application SDC FIT rate and the AVF analysis of
OS impact in Section 4.2 is directly applicable to explain the
OS impact in the SDC error rate even in the silicon device.
Additionally, even if not the entire SoC is modeled in GeFIN

9

Fault
inj.

23.7

2.2

31.6

5.2

80.8

23.8

1.4

26.8

59.3

17.1 16

25.5

~

210

40

25.5

15.9

∞

0

SDC DUE (Crash+Hang)

Beam

FI
T

ra
te

s

A5

A9

SoC

A5
OS

A9

SoC
OS

Fig. 10. Abstract view of the difference between beam and microarchi-
tecture level fault injection SDC and DUE (Crash+Hangs) FIT rates. For
most configuration, fault injection and beam provide sufficiently close
FIT rates.

(the A9 model in gem5 does not include the cores available
in the Zynq board), the predicted SDC FIT rate for the A9 is
still sufficiently close to the ground truth. This intrinsically
means that SoC integration does not significantly impact codes’
SDC rates which can be safely attributed to the CPU only.

5.2 Accuracy of DUE prediction
When estimating Crashes and AppCrashes, as can be seen
from Figure 8, for the A5, GeFIN reports FIT rates very
similar to the ones measured with beam experiments, for
both bare-metal and Linux configurations. As shown in
Figure 9, even for SysCrashes the FIT rates for the A5 are
very similar between fault injection and beam experiments.
As observed for SDC, then, for stand-alone CPUs GeFIN
accurately models DUEs (Crashes, AppCrashes, and SysCrashes),
considering also the impact of the OS.

For the A9 the differences diverge, with the beam pro-
viding a Crash and AppCrash FIT rate from 1 to 2 orders
of magnitude higher than GeFIN, for both Linux and bare-
metal. It is interesting to notice that, for DUEs on the
A9, which are the only values for which GeFIN could not
provide a good prediction for the FIT rate, beam experiment
data is always (significantly) higher than GeFIN. We can
derive that a great portion of DUEs in the embedded A9 are
generated by faults in resources that are not modeled in gem5.
For the single-core, stand-alone A5, the model used on
gem5 and the real hardware are very similar. This is not
the case with the board with the A9 which is integrated
with an FPGA (that is not utilized) and it is a dual-core
(with one core disabled). The integration in an SoC requires
additional interfaces, logical or control components that are
not modeled in gem5. In practice, this translates to a highly
complex interconnect inside the chip whose corruption is
likely to lead to a DUE in the physical chip.

5.3 Discussion
A major contribution of our study is that we demonstrate
that, under several different system setups, microarchitec-

∞

0

FI
T

ra
te

s

CPU

SoC
CPU

SD
C

D
U
E

SDC

DUE

~ ~
1.3x

97.7x

SDC

DUE

2.1x

5.1x

CPU

SoC
OS

Fig. 11. Overall impact of SoC integration and OS on the CPU error
rate as resulting from our data (vertical axis is in log scale). On the
average, the cores integration barely increases the SDC rates (about
1.3x) but significantly increases the DUE rate (97.7x). The OS has a
smaller impact on SDCs (about 2.1x) and increases DUE by about 5.1x.

tural fault injection provides an accurate estimation of the
SDC FIT rate (that is mainly attributed to the CPU cores)
before implementing the device in silicon. It is worth not-
ing that while we have experimentally measured the L1
FIT/bit, it is not necessary to implement the device in silicon
to know its technology sensitivity as it can be predicted
with simulations knowing the technology node, layout, etc.
The fab where the device will be implemented normally
provides this value, eventually allowing the customer to
choose between different technology qualities (more or less
susceptible to faults and more or less expensive).

Figure 10 shows the average FIT rates for SDCs and
DUEs (intended as the sum of Crashes and Hangs) mea-
sured with beam experiments and predicted with GeFIN on
the A5 and A9, executing the codes bare-metal or on the top
of Linux. As mentioned in the introduction, both beam and
fault injection FIT rates have different reasons not to provide
a perfectly accurate FIT rate. However, when beam and fault
injection FIT rates are similar we can be reasonably sure that
we can give a bound to the true device FIT rate. The abstract
view of Figure 10 shows that for most configurations, GeFIN
and beam SDC FIT rates are similar. Only for DUEs in the
SoC, the difference diverges, as discussed in Section 5.2.

A large portion of DUEs, then, is generated by faults
outside the CPU core. Microarchitectural fault injection can,
in this case, only provide an optimistic lower bound for the
DUE FIT rate; the actual DUE FIT rate can be expected to
be significantly larger. Whenever the FIT rate estimate is
too high for a design project’s requirements, it is possible
to include additional hardware reliability solutions (such
as ECC) taking advantage of Arm flexibility in modifying
the microarchitecture. As we have shown, GeFIN provides
also details about the possible sources of failures (hardware
components with higher AVF/FIT rates). The microarchi-
tectural hardening can then be applied only to the resources
that are found to be responsible for the majority of failures
(for example the caches), avoiding the introduction of un-
necessary overhead. According to our results, these CPU
architectural hardening solutions may not be effective in
reducing the DUE rate if the CPU is integrated into an SoC,

10

as most DUE are caused by faults in external resources. A
re-design of the cores interfaces, including some specific
software procedures to handle synchronizations or hangs
problems, could be necessary to significantly reduce DUEs.

The combination of fault injection along with beam
results quantifies how either the SoC integration or the OS
deployment influences the overall FIT rate. Figure 11 shows
a high-level summary of the results that were observed with
beam experiment and validated using GeFIN (vertical axis is
assumed in log scale). It shows the average factors of change
in the SDC and DUE FIT rates introduced by the integration
of the CPU core in an SoC (average difference between bare-
metal FIT rates obtained with beam and fault injection on
the A9 embedded in the Zynq board) and the inclusion of
the OS in the software stack (average difference between
A5 and A9, bare-metal vs Linux). We clearly show that, in
both devices, the SDC FIT rate is minimally affected by the
SoC integration or the presence of the OS while the DUE
FIT rates are affected to a larger extend by both parameters
(severely in the case of the SoC integration).

SoC integration, which was present only in the silicon A9
chip exposed to the beam, has a strong impact on the DUE
FIT rate (between one and two orders of magnitude). As
the A9 microarchitecture was quantified to be 5x more vul-
nerable using fault injection (Section 4.2) and the different
fabrication technology makes the fault rate to be 9.1x higher
on A5 (Section 4.1), we should expect a difference of roughly
2-3x between A5 and A9 FIT rates. Higher differences are
to be attributed to factors other than the technology or the
architecture, i.e., SoC integration. Moreover, the average dif-
ference between beam (that includes integration) and GeFIN
(that models only the stand-alone CPU) shows an increase
of just 1.3x for SDCs but of 97.7x for DUEs. These differences
corroborate with the statement that the SoC integration has a
massive impact on the failure rate of the system but not on the
codes SDC rate.

The OS also affects the DUE FIT rate. We have observed a
difference of 5.1x (Linux being higher) on the averages DUE
FIT rates between A5/A9 bare-metal and A5/A9 Linux on
beam experiments, while the difference is limited to 3.5x
on fault injection. The DUEs increase is due to the fact
that, besides the benchmarks, several other system processes
responsible for the OS management are running and suscep-
tible to the radiation.

SDCs FIT rates are only slightly affected by the OS, since the
output is only being processed under the actual workload
and any OS interference does not participate nor relate to
the generated output unless it is serviced by a system call.
This is consistently observed in both beam experiments and
fault injection campaigns.

6 CONCLUSIONS

In this work, we have performed an extensive reliabil-
ity evaluation of two widely used Arm microprocessors,
Cortex-A5 and Cortex-A9, with the primary objective of
identifying the differences and similarities between the re-
ported soft error rates from post-silicon neutron beam test-
ing and pre-silicon microarchitecture level fault injection.
We extensively analyze the impact that the SoC integration
and the OS deployment have on the reported FIT rates from

the two setups. The two CPU cores are fabricated using
different technologies and different SoC organizations; A5
is an individual CPU core whereas the A9 is integrated into
an SoC. Our analysis demystifies the contribution of the
different aspects: the bare CPU alone, the SoC integration,
and the OS deployment.

The major finding of our analysis is that the SDC FIT
rate is practically unaffected by the SoC integration and the
presence of the OS. On the other hand, DUEs (both appli-
cation and system crashes) are significantly increased (up to
2 orders of magnitude) due to SoC integration, showcasing
how this attribute can really influence the total system FIT
rate. The OS influence on the overall setup is also evaluated
and an average DUE FIT rate increase of 5.1x is reported.

Our analysis confirms on two different Arm CPU cores
that the majority of the SDCs can be safely attributed to
the CPU core itself while executing the user codes. On
the other hand, the System and Application Crash parts
of the overall system failure rates are significantly affected
by the complexity of the SoC integration as well as the
inclusion of the OS. The comparison between beam testing
and microarchitecture fault injection we provide is a step
forward in the quest of early error rate estimation. This
is of extreme interest mainly for flexible architectures like
Arm, that can be tuned by the customer, adding hardening
solutions if necessary, before being implemented in silicon.

7 ACKNOWLEDGMENTS

This research has been supported in part by the Euro-
pean Union’s Horizon 2020 research and innovation pro-
gramme under the Marie Sklodowska-Curie grant agree-
ment No 886202, the H2020 UniServer Project (Grant Agree-
ment 688540), the FP7 CLERECO Project (Grant Agreement
611404), and from the Coordenação de Aperfeiçoamento de
Pessoal de Nı́vel Superior - Brazil (CAPES) - Finance Code
001. Neutron beam time was provided by ChipIR (DOI:
10.5286/ISIS.E.RB2000161) thanks to C. Cazzaniga and C.
Frost and by LANSCE thanks to Steve Wender and Gus
Sinnis.

REFERENCES

[1] R. Lucas, “Top ten exascale research challenges,” in DOE ASCAC
Subcommittee Report, 2014.

[2] A. Cohen, X. Shen, J. Torrellas, J. Tuck, Y. Zhou, S. Adve, I. Ak-
turk, S. Bagchi, R. Balasubramonian, R. Barik, M. Beck, R. Bodik,
A. Butt, L. Ceze, H. Chen, Y. Chen, T. Chilimbi, M. Christodorescu,
J. Criswell, C. Ding, Y. Ding, S. Dwarkadas, E. Elmroth, P. Gibbons,
X. Guo, R. Gupta, G. Heiser, H. Hoffman, J. Huang, H. Hunter,
J. Kim, S. King, J. Larus, C. Liu, S. Lu, B. Lucia, S. Maleki,
S. Mazumdar, I. Neamtiu, K. Pingali, P. Rech, M. Scott, Y. Solihin,
D. Song, J. Szefer, D. Tsafrir, B. Urgaonkar, M. Wolf, Y. Xie, J. Zhao,
L. Zhong, and Y. Zhu, “Inter-disciplinary research challenges in
computer systems for the 2020s,” tech. rep., National Science
Foundation, USA, 2018.

[3] M. Snir, R. W. Wisniewski, J. A. Abraham, S. V. Adve, S. Bagchi,
P. Balaji, J. Belak, P. Bose, F. Cappello, B. Carlson, et al., “Address-
ing failures in exascale computing,” International Journal of High
Performance Computing Applications, pp. 1–45, 2014.

[4] Top500.org, “Japan Captures TOP500 Crown with Arm-
Powered Supercomputer.” https://www.top500.org/news/
japan-captures-top500-crown-arm-powered-supercomputer/,
2020. [Online; accessed 6-July-2020].

[5] N. Hemsoth, “Arm it the nnsa’s new secret weapon,” 2018.

11

https://www.top500.org/news/japan-captures-top500-crown-arm-powered-supercomputer/
https://www.top500.org/news/japan-captures-top500-crown-arm-powered-supercomputer/

[6] G. Papadimitriou and D. Gizopoulos, “Demystifying the system
vulnerability stack: Transient fault effects across the layers,” in
48th International Symposium on Computer Architecture (ISCA 2021),
June 14-19, 2021, Worldwide Online Event, pp. 902–915, IEEE, 2021.

[7] G. Wang, S. Liu, and J. Sun, “A dynamic partial reconfigurable
system with combined task allocation method to improve the
reliability of fpga,” Microelectronics Reliability, vol. 83, pp. 14 – 24,
2018.

[8] A. Chatzidimitriou, P. Bodmann, G. Papadimitriou, D. Gizopou-
los, and P. Rech, “Demystifying soft error assessment strategies on
arm cpus: Microarchitectural fault injection vs. neutron beam ex-
periments,” in 2019 49th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), pp. 26–38, June 2019.

[9] F. F. d. Santos, P. F. Pimenta, C. Lunardi, L. Draghetti, L. Carro,
D. Kaeli, and P. Rech, “Analyzing and increasing the reliability
of convolutional neural networks on gpus,” IEEE Transactions on
Reliability, vol. 68, pp. 663–677, June 2019.

[10] D. Oliveira, L. Pilla, M. Hanzich, V. Fratin, F. Fernandes, C. Lu-
nardi, J. Cela, P. Navaux, L. Carro, and P. Rech, “Radiation-
Induced Error Criticality in Modern HPC Parallel Accelerators,”
in Proceedings of 21st IEEE Symp. on High Performance Computer
Architecture (HPCA), ACM, 2017.

[11] A. Chatzidimitriou, G. Papadimitriou, C. Gavanas, G. Katsoridas,
and D. Gizopoulos, “Multi-bit upsets vulnerability analysis of
modern microprocessors,” in 2019 IEEE International Symposium
on Workload Characterization (IISWC), pp. 119–130, 2019.

[12] R. K. Iyer and D. J. Rossetti, “Effect of system workload on oper-
ating system reliability: A study on ibm 3081,” IEEE Transactions
on Software Engineering, vol. SE-11, pp. 1438–1448, Dec 1985.

[13] T. Santini, P. Rech, L. Carro, and F. R. Wagner, “Exploiting cache
conflicts to reduce radiation sensitivity of operating systems on
embedded systems,” in 2015 International Conference on Compilers,
Architecture and Synthesis for Embedded Systems (CASES), pp. 49–58,
Oct 2015.

[14] JEDEC, “Measurement and Reporting of Alpha Particle and Ter-
restrial Cosmic Ray-Induced Soft Errors in Semiconductor De-
vices,” Tech. Rep. JESD89A, JEDEC Standard, 2006.

[15] N. Mahatme, T. Jagannathan, L. Massengill, B. Bhuva, S.-J. Wen,
and R. Wong, “Comparison of Combinational and Sequential
Error Rates for a Deep Submicron Process,” Nuclear Science, IEEE
Transactions on, vol. 58, no. 6, pp. 2719–2725, 2011.

[16] R. Baumann, “Radiation-induced soft errors in advanced semicon-
ductor technologies,” Device and Materials Reliability, IEEE Transac-
tions on, vol. 5, pp. 305–316, Sept 2005.

[17] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin,
“A Systematic Methodology to Compute the Architectural Vulner-
ability Factors for a High-Performance Microprocessor,” in Pro-
ceedings of the 36th Annual IEEE/ACM International Symposium on
Microarchitecture, (Washington, DC, USA), pp. 29–, IEEE Computer
Society, 2003.

[18] V. Sridharan and D. R. Kaeli, “Using hardware vulnerability
factors to enhance avf analysis,” in Proceedings of the 37th Annual
International Symposium on Computer Architecture, ISCA ’10, (New
York, NY, USA), pp. 461–472, ACM, 2010.

[19] G. Papadimitriou and D. Gizopoulos, “Characterizing soft er-
ror vulnerability of cpus across compiler optimizations and mi-
croarchitectures,” in IEEE International Symposium on Workload
Characterization (IISWC), November 7-9, 2021, Virtual Online Event,
pp. 113–124, IEEE, 2021.

[20] A. Lesea, S. Drimer, J. J. Fabula, C. Carmichael, and P. Alfke, “The
rosetta experiment: atmospheric soft error rate testing in differ-
ing technology fpgas,” IEEE Transactions on Device and Materials
Reliability, vol. 5, pp. 317–328, Sept 2005.

[21] D. Tiwari, S. Gupta, J. Rogers, D. Maxwell, P. Rech, S. Vazhkudai,
D. Oliveira, D. Londo, N. Debardeleben, P. Navaux, L. Carro,
and A. B. Bland, “Understanding GPU Errors on Large-scale HPC
Systems and the Implications for System Design and Operation,”
in Proceedings of 21st IEEE Symp. on High Performance Computer
Architecture (HPCA), ACM, 2015.

[22] V. Sridharan, N. DeBardeleben, S. Blanchard, K. B. Ferreira,
J. Stearley, J. Shalf, and S. Gurumurthi, “Memory errors in mod-
ern systems: The good, the bad, and the ugly,” in Proceedings
of the Twentieth International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS ’15,
(New York, NY, USA), p. 297–310, Association for Computing
Machinery, 2015.

[23] N. Seifert, X. Zhu, and L. W. Massengill, “Impact of scaling on
soft-error rates in commercial microprocessors,” Nuclear Science,
IEEE Transactions on, vol. 49, no. 6, pp. 3100–3106, 2002.

[24] D. Oliveira, L. Pilla, N. DeBardeleben, S. Blanchard, H. Quinn,
I. Koren, P. Navaux, and P. Rech, “Experimental and analytical
study of xeon phi reliability,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, SC ’17, (New York, NY, USA), pp. 28:1–28:12, ACM, 2017.

[25] G. S. Rodrigues and F. L. Kastensmidt, “Soft error analysis at
sequential and parallel applications in ARM cortex-a9 dual-core,”
in 2016 17th Latin-American Test Symposium (LATS), IEEE, Apr 2016.

[26] F. Rosa, F. Kastensmidt, R. Reis, and L. Ost, “A fast and scalable
fault injection framework to evaluate multi/many-core soft error
reliability,” in 2015 IEEE International Symposium on Defect and Fault
Tolerance in VLSI and Nanotechnology Systems (DFTS), IEEE, Oct
2015.

[27] T. Santini, L. Carro, F. R. Wagner, and P. Rech, “Reliability analysis
of operating systems and software stack for embedded systems,”
IEEE Transactions on Nuclear Science, vol. 63, pp. 2225–2232, Aug
2016.

[28] A. B. de Oliveira, G. S. Rodrigues, and F. L. Kastensmidt, “An-
alyzing lockstep dual-core arm cortex-a9 soft error mitigation
in freertos applications,” in Proceedings of the 30th Symposium on
Integrated Circuits and Systems Design: Chip on the Sands, SBCCI ’17,
(New York, NY, USA), pp. 84–89, ACM, 2017.

[29] A. Martı́nez-Álvarez, F. Restrepo-Calle, S. Cuenca-Asensi, L. M.
Reyneri, A. Lindoso, and L. Entrena, “A hardware-software ap-
proach for on-line soft error mitigation in interrupt-driven applica-
tions,” IEEE Trans. Dependable Sec. Comput., vol. 13, no. 4, pp. 502–
508, 2016.

[30] V. Fratin, D. Oliveira, C. Lunardi, F. Santos, G. Rodrigues, and
P. Rech, “Code-dependent and architecture-dependent reliability
behaviors,” in 2018 48th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), pp. 13–26, June 2018.

[31] A. Chatzidimitriou, M. Kaliorakis, S. Tselonis, and D. Gizopou-
los, “Performance-aware reliability assessment of heterogeneous
chips,” in 2017 IEEE 35th VLSI Test Symposium (VTS), IEEE, Apr
2017.

[32] A. Chatzidimitriou, M. Kaliorakis, D. Gizopoulos, M. Iacaruso,
M. Pipponzi, R. Mariani, and S. D. Carlo, “RT level vs.
microarchitecture-level reliability assessment: Case study on
ARM(r) cortex(r)-a9 CPU,” in 2017 47th Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks Workshops
(DSN-W), IEEE, Jun 2017.

[33] X. Iturbe, B. Venu, and E. Ozer, “Soft error vulnerability assess-
ment of the real-time safety-related ARM cortex-r5 CPU,” in 2016
IEEE International Symposium on Defect and Fault Tolerance in VLSI
and Nanotechnology Systems (DFT), IEEE, Sep 2016.

[34] J. Blome, S. Mahlke, D. Bradley, and K. Flautner, “A microarchi-
tectural analysis of soft error propagation in a production-level
embedded microprocessor,” in In Proceedings of the First Workshop
on Architecture Reliability, 2005.

[35] T. Santini, C. Borchert, C. Dietrich, H. Schirmeier, M. Hoffmann,
O. Spinczyk, D. Lohmann, F. R. Wagner, and P. Rech, “Effec-
tiveness of software-based hardening for radiation-induced soft
errors in real-time operating systems,” in Architecture of Computing
Systems - ARCS 2017 (J. Knoop, W. Karl, M. Schulz, K. Inoue,
and T. Pionteck, eds.), (Cham), pp. 3–15, Springer International
Publishing, 2017.

[36] N. J. Wang, A. Mahesri, and S. J. Patel, “Examining ACE analysis
reliability estimates using fault-injection,” ACM SIGARCH Com-
puter Architecture News, vol. 35, p. 460, Jun 2007.

[37] N. George, C. R. Elks, B. W. Johnson, and J. Lach, “Transient
fault models and AVF estimation revisited,” in 2010 IEEE/IFIP
International Conference on Dependable Systems & Networks (DSN),
IEEE, Jun 2010.

[38] H. Cho, S. Mirkhani, C.-Y. Cher, J. A. Abraham, and S. Mitra,
“Quantitative evaluation of soft error injection techniques for
robust system design,” in Proceedings of the 50th Annual Design
Automation Conference on - DAC '13, ACM Press, 2013.

[39] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown, “Mibench: A free, commercially representative
embedded benchmark suite,” in Proceedings of the Fourth Annual
IEEE International Workshop on Workload Characterization. WWC-4
(Cat. No.01EX538), pp. 3–14, Dec 2001.

[40] H. Quinn, W. H. Robinson, P. Rech, M. Aguirre, A. Barnard,
M. Desogus, L. Entrena, M. Garcia-Valderas, S. M. Guertin,

12

D. Kaeli, F. L. Kastensmidt, B. T. Kiddie, A. Sanchez-Clemente,
M. S. Reorda, L. Sterpone, and M. Wirthlin, “Using benchmarks for
radiation testing of microprocessors and fpgas,” IEEE Transactions
on Nuclear Science, vol. 62, no. 6, pp. 2547–2554, 2015.

[41] C. Cazzaniga and C. D. Frost, “Progress of the scientific commis-
sioning of a fast neutron beamline for chip irradiation,” Journal of
Physics: Conference Series, vol. 1021, p. 012037, may 2018.

[42] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen,
K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The
gem5 simulator,” SIGARCH Comput. Archit. News, vol. 39, pp. 1–7,
Aug 2011.

[43] A. Chatzidimitriou and D. Gizopoulos, “Anatomy of
microarchitecture-level reliability assessment: Throughput and
accuracy,” in 2016 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), IEEE, Apr 2016.

[44] A. Gutierrez, J. Pusdesris, R. G. Dreslinski, T. Mudge, C. Sudanthi,
C. D. Emmons, M. Hayenga, and N. Paver, “Sources of error in
full-system simulation,” in 2014 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), IEEE, Mar
2014.

[45] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert, “Statistical
fault injection: Quantified error and confidence,” in 2009 Design,
Automation Test in Europe Conference Exhibition, pp. 502–506, April
2009.

[46] J. F. Ziegler and H. Puchner, SER–history, Trends and Challenges: A
Guide for Designing with Memory ICs. Cypress, 2010.

[47] N. Seifert, B. Gill, K. Foley, and P. Relangi, “Multi-cell upset proba-
bilities of 45nm high-k + metal gate sram devices in terrestrial and
space environments,” in 2008 IEEE International Reliability Physics
Symposium, pp. 181–186, 2008.

Pablo R. Bodmann received his MSc degree
from Universidade Federal do Rio Grande do
Sul (UFRGS) in 2017 and received his master
degree in 2019. Currently, he is a Ph.D. student
at UFRGS working on fault tolerance on Arm ar-
chitectures. His main research focus is reliability
of Arm architectures when exposed to radiation.

George Papadimitriou is a Postdoctoral Re-
searcher in the Department of Informatics &
Telecommunications at National & Kapodistrian
University of Athens in Greece. He received his
PhD in Computer Science from the same Univer-
sity in 2019. His research focuses on depend-
ability and energy-efficient computer architec-
tures, microprocessor reliability, functional cor-
rectness of hardware designs and design vali-
dation of microprocessors, in which he has pub-
lished more than 30 papers in international con-

ferences and journals.

Rubens Luis Rech Junior is currently Com-
puter Engineering student at Universidade Fed-
eral do Rio Grande do Sul (UFRGS), Brazil. He
is currently working on radiation-induced effects
in neural networks and safety-critical applica-
tions.

Dimitris Gizopoulos is Professor at the Depart-
ment of Informatics & Telecommunications of the
National & Kapodistrian University of Athens in
Greece where he leads the Computer Architec-
ture Laboratory. The group’s research focuses
on the dependability, the energy-efficiency and
the performance of computer architectures. Gi-
zopoulos has published more than 180 papers
in top-tier conferences and journals, has served
and is currently serving as Associate Editor for
several IEEE and ACM Transactions and Maga-

zines and as member of Program, Organizing and Steering Committees
of IEEE and ACM conferences. He served as the General Chair of the
53rd and the 54th editions of the IEEE/ACM International Symposium
on Microarchitecture (MICRO). Gizopoulos is an IEEE Fellow, a Golden
Core member of the IEEE Computer Society and a Senior ACM mem-
ber.

Paolo Rech received his master and Ph.D. de-
grees from Padova University, Padova, Italy, in
2006 and 2009, respectively. He is an asso-
ciate professor at UFRGS in Brazil and a Marie
Curie Fellow at Politecnico di Torino, Italy. His
main research interests include the reliability of
radiation-induced effects in large-scale HPC, au-
tonomous vehicles for automotive applications
and space exploration.

13

	Introduction
	Background, Motivation, and Related Work
	Radiation Effects in Electronic Devices
	Reliability Evaluation Methodologies
	Motivation and Contribution
	Related Work

	Methodology
	Benchmarks, Devices
	Bare-metal vs Linux Setup
	Neutron Beam Experiments
	Microarchitectural Fault Injection
	Fault Injection and Beam Experiment Comparison

	Fault Injection and Beam Testing Data
	Beam Experiments
	Fault Injection Results

	Fault Injection and Beam Comparison
	Accuracy of SDC prediction
	Accuracy of DUE prediction
	Discussion

	Conclusions
	Acknowledgments
	References
	Biographies
	Pablo R. Bodmann
	George Papadimitriou
	Rubens Luis Rech Junior
	Dimitris Gizopoulos
	Paolo Rech

