POLITECNICO DI TORINO
Repository ISTITUZIONALE

iPlace: An Interference-aware Clustering Algorithm for Microservice Placement

Original

iPlace: An Interference-aware Clustering Algorithm for Microservice Placement / Adeppady, Madhura; Chiasserini, Carla
Fabiana; Karl, Holger; Giaccone, Paolo. - STAMPA. - (2022). (Intervento presentato al convegno IEEE International
Conference on Communications (IEEE ICC) 2022 tenutosi a Seoul, Korea, Republic of nel 16-20 May 2022)
[10.1109/ICC45855.2022.9839222].

Availability:
This version is available at: 11583/2951275 since: 2022-01-19T11:19:12Z

Publisher:
IEEE

Published
DOI:10.1109/1CC45855.2022.9839222

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright
IEEE postprint/Author's Accepted Manuscript

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

23 April 2024

1Place: An Interference-aware Clustering Algorithm
for Microservice Placement

Madhura Adeppady’, Carla Fabiana Chiasserinif, Holger Karl*, Paolo Giaccone'

t Politecnico di Torino, Italy

Abstract—Efficiently deploying microservices (MSs) is critical,
especially in data centers at the edge of the network infras-
tructure where computing resources are precious. Unlike most
of the existing approaches, we tackle this issue by accounting
for the interference that arises when MSs compete for the same
resources and degrades their performance. In particular, we first
present some experiments highlighting the impact of interference
on the throughput of co-located MSs. Then, we formulate an
optimization problem that minimizes the number of used servers
while meeting the MSs’ performance requirements. In light of
the problem complexity, we design a low-complexity heuristic,
called iPlace, that clusters together MSs competing for resources
as diverse as possible and, hence, interfering as little as possible.
Importantly, the choice of clustering MSs allows us to exploit
the benefit of parallel MSs deployment, which, as shown by
experimental evidence, greatly reduces the deployment time as
compared to the sequential approach applied in prior art. Qur
numerical results show that iPlace closely matches the optimum
and uses 10-63% fewer servers compared to alternative schemes,
while proving to be highly scalable.

I. INTRODUCTION

Edge computing is a prominent and promising technology
for 5G-and-beyond networks; it enables offloading of service
tasks from either mobile devices or the core network to the
edge, thus reducing end-to-end latency and resource utiliza-
tion. While edge computing scenarios vary widely, a preva-
lent characteristic are services that are composed of simpler
components. To witness, service function chains (SFCs) [1]
comprise individual virtual network functions (VNFs) or even
other, simpler chains; microservice chains are similarly com-
posed of individual microservices (MSs) or other chains.
Differences exist: VNFs might run close-to hardware; MSs
might run inside general-purpose containers. But while details
and terminology certainly differ, many core ideas and issues
are very similar across these domains. In the following, for the
sake of concreteness, we tackle an MS architecture running
inside containers, but we emphasise that our ideas and results
apply to SFCs/VNFs as well.

Services as such are deployed by an orchestrator that places,
deploys, connects, and configures the needed components
in one or several edge data centers, so as to meet the
associated Service Level Agreement (SLA). Locally, com-
ponents run inside a container, facilitated by a hypervisor.
Current hypervisors isolate containers running on the same
server by, e.g., placing them on dedicated cores [2], [3],
[4], [5], thus allowing to consolidate multiple components on
the same hardware. Nonetheless, containers still compete for
other hardware resources, predominantly memory subsystem

! Hasso Plattner Institute, University of Potsdam, Germany

resources [6], [7], [8], [9]. Thus, unregulated competition for
a server’s shared resources by the MSs degrades throughput
compared to them running alone on the same server. Such
performance degradation experienced by an MS is referred to
as interference or noisy neighbor problem [10].

Interference is complicated by the multitude of different
MSs, each with its own code: they contend for resources
differently (e.g., emphasizing memory over I/O) and, hence,
experience interference differently [11]. Thus, resources that
might have sufficed to meet a particular MS’s SLA goal in
some combination of components might no longer suffice
when combined with other components. This makes guaran-
teeing SLAs challenging when dynamically consolidating MSs
on a limited set of servers, which is the typical operational
condition in edge computing.

Recently, several research efforts have been made to address
this issue [6], [9], [12], [13]. The proposed solutions use
either resource partitioning schemes [9] or supply-demand
models [12], [13] to quantify interference. However, none of
these methods fully addresses interference completely, as they
fail to consider all resources responsible for interference [6].
A few notable approaches [6], [7], [8] have built models to
predict the throughput of a target MS when co-located with
other MSs and, using such prediction models, they have pro-
posed placement solutions (which component executes where).
But even though the prediction models are accurate [6], these
placement approaches are somewhat straightforward and suffer
from scalability issues.

Unlike prior art, in this paper we propose iPlace, an
Interference-aware Microservice Placement (IMSP) approach
based on clustering and on a prediction model. We start from
the observation that, usually, requests for new services do not
comprise just a single MS but a set, and also that multiple
services might be requested simultaneously. Hence, instead
of placing individual MSs sequentially as done in previous
work, our solution uses a clustering phase and a placement
phase for the sake of scalability. The key idea of clustering the
MSs prior to placement stems from the experimental evidence
showing that parallel MSs deployment is much faster than
sequential deployment. Also, while MS clustering has been
widely used for placement, e.g., in [14], existing approaches
are not suitable for the problem under study as they do not
consider interference. Instead, we cluster newly requested MSs
so that MSs contending for different resources are grouped
together, thereby minimizing intra-cluster interference. Then,
we place each cluster in the server whose MSs interfere least

with that cluster’s MSs, minimizing inter-cluster interference
and also ensuring that no SLAs are violated. To account for
interference in the clustering and placement phases, we use the
contentiousness metric [6], [7], which captures the pressure a
MS places on shared resources, and build a prediction model
inspired by [6], which takes into account the interference
among co-located MSs.

To summarize, our main contributions are as follows:

1) We introduce a system model capturing the major char-
acteristics of the network system and the virtualized
services; we do so by leveraging both previous work
[6] and our own experiments;

2) We formulate an optimization problem for IMSP at the
network edge to minimize the number of servers used
to place the MSs while minimizing the adverse effects
of performance interference;

3) Owing to the problem’s NP-hardness, we develop iPlace,
a heuristic, interference-aware algorithm for cluster-
based MS placement;

4) Through extensive simulations, we demonstrate that
iPlace efficiently solves the IMSP problem and outper-
forms state-of-the-art solutions.

To our knowledge, our work is the first to explore clustering
to mitigate the effects of interference during MS placement.

The paper is organized as follows. Sec. II introduces our
experimental method. Sec. III presents the system model
and formulates IMSP as an optimization problem. Sec. IV
describes our heuristic, iPlace, which is then evaluated in
Sec. V. Finally, Sec. VI concludes the paper.

II. MEASURING AND PREDICTING INTERFERENCE

We start by giving experimental evidence on how through-
put degrades due to interference among competing MSs,
despite a resource isolation setup in the server. We then
show how to build a prediction model for estimating the
throughput of competing MSs, which is required to develop
an interference-aware MS placement solution. We stress, how-
ever, that our solution, introduced in Sec. III, can work with
any other appropriate interference prediction model.

A. Experimental interference assessment

To observe the throughput degradation due to interference,
we carried out several experiments using snort, a well-known
open-source intrusion detection system, and pktstat, which
displays real-time packet activities. The testbed we used is
depicted in Fig. 1. The experiments were conducted on an
Intel Core(TM) i17-7700K server with 4 CPU cores, 16 GB
memory, and 8 MB LLC cache shared across all the CPU
cores, while individual cores have 1 MB L2 cache and 128 KB
L1 cache (resp.). Each MS runs on a Docker container pinned
to a dedicated core using Docker runtime option cpuset-cpus,
while iperf3 is used to generate traffic.

We first fed each MS with 100 flows and ran it individ-
ually, on a server dedicated to a single Docker container.
Measurements conducted with increasing per-flow traffic load
showed that, when running separately, pktstat and snort reach a

Target
MS+iperf
server

Competing test
MS+iperf
server

Container 0 ‘ iperf client ‘ Container 1 ‘ iperf client ‘

Core 0 Core 1 Core 2 Core 3

Docker bridge Docker bridge

Fig. 1. Experiment setting: target MS and competing MS.

Profiling
Server

maximum throughput of 17 Gbps and 30 Gbps (resp.). We then
evaluated the throughput of each MS with the other running
as competing MS, for a varying number of flows and per-
flow offered load. The results, shown in Fig. 2, highlight a
throughput drop of 28.5 % for pktstat and of 22.5 % for snort,
relative to their solo run, both for 100 concurrent flows. Also,
as the workload and the number of concurrent flows of the
competitor MS increase, the throughput degradation of the
target MS becomes more severe. Thus, despite the isolation
of the CPU resources, interference is practically relevant.

Throughput degradation of the target MS depends upon
traffic load and packet processing logic of the competing
MSs. As the competitor’s number of concurrent flows or its
packet rate grow, competition for memory subsystem resources
increases, thus degrading performance. It is thus evident that
interference plays an important role in MS placement and
that inattentive co-location of MSs would seriously degrade
throughput.

B. Building a prediction model

It is now clear that, to optimally place MSs, it is necessary
to predict an MS’s throughput taking into account interfer-
ence. For the sake of concreteness and later evaluation, here
we describe the model based on [6], which leverages two
main concepts: contentiousness and sensitivity. Contentious-
ness measures the pressure (i.e., load) applied on shared
server resources by an MS in the presence of competing MSs;
sensitivity models the target MS’s throughput as a function of
its competitors’ aggregate contentiousness.

This prediction model includes an offline profiling phase
and an online prediction phase. In the former phase, con-
tentiousness and sensitivity are computed a-priori, considering
a target MS running on a server in the presence of a synthetic
load. By letting this load increase, the increasing pressure
of competing MS(s) on the shared resources is measured.
Thus, contentiousness profiling consists of determining a set of
vectors, one for each pressure level of the synthetic competi-
tor(s). Profiling sensitivity then builds on a regression model
leveraging the throughput of the target MS in the presence of
varying synthetic contentiousness vectors. In the online phase,
the sensitivity model predicts the target MS throughput, given
the contentiousness vector of any real competitor(s) as input.

1) Offline profiling phase: To evaluate the contentiousness
vector, we have considered various system-level metrics (e.g.,
instructions/cycle, L2/L.3 cache misses/hits/occupancy, mem-
ory read/write operations) exposed by Intel’s PCM framework,
which is a performance monitoring API to collect real-time,

—F— snort vs 10 pktstat flows
—#— pktstat vs 10 snort flows

target MS throughput [Gbps]

—+— snort vs 50 pktstat flows
—+— pktstat vs 50 snort flows 30.0

15.0 M 15.0 % 10 m{\l\l\“—‘

—4— snort vs 100 pktstat flows
—4— pktstat vs 100 snort flows

0 5 10 15 20 25 30 0 5 10

Workload of competing MS [Gbps]

Workload of competing MS [Gbps]

15 20 25 30 0 5 10 15 20 25

Workload of competing MS [Gbps]

Fig. 2. Throughput of the target MS running with a competing MS, as the workload of the latter varies: 10 (left), 50 (center), 100 (right) concurrent flows,

and traffic load equally distributed across the flows.

TABLE I
MOST MEANINGFUL SYSTEM LEVEL METRICS BASED ON THE
CORRELATION COEFFICIENT (CC)

Snort pktstat
Metric CC Metric CcC
Core-1 EXEC 096 System L2MPI 0.98
System READ 0.90 Core-0 IPC 0.98
Core-1 IPC 0.89 Core-1 EXEC 0.96
System WRITE ~ 0.88 Core-2 L2MISS 0.95
Core-2 L3MISS 0.85 System L2MISS 0.95
Core-1 L2MISS ~ 0.83 Core-0 softirqs 0.94

architecture-specific resource usage metrics. Intel PCM out-
puts a wide range of metrics but not all of them are relevant.
Out of those, we selected components for the contentiousness
vector that are highly correlated with the target MS throughput,
i.e., the Pearson correlation coefficient is larger than 0.7. Tab. I
lists such system-level metrics for snort and pktstat.

The contentiousness vector Vr(k) (x) of MS r depends upon
the competing workload, x, generated by k£ MSs, each with
a specific configuration and operational setting (e.g., traffic
rate). As in [6], the sensitivity model of MS r, denoted by M.,
is then obtained by trainin% a regression model mapping the
contentiousness vector W(k (x) into the observed throughput
pP (x). More specifically, we use a Gradient Boosting Re-
gressor model, as sensitivity is a non-linear, non-continuous
function of the contentiousness vectors.

Further, the experimental results are used to compute the
representative contentiousness vector Vr(k) of MS r, obtained
by averaging over all the observed contentiousness vectors
with k£ competing MSs, with respect to the workload values
X. Vr(k) is then fed as input to the sensitivity model in the
online prediction phase.

2) Online prediction phase: It leverages the specific con-
tentiousness vectors of the competitors and the sensitivity
model of the target MS to predict the throughput of the
latter. As an example, let us consider three MSs, r,, 7, and
r¢, Tunning on the same server; similar arguments hold for
an arbitrary number of MSs. To predict the throughput of
r, in the presence of 7, and r., we compute the aggregate

contentiousness Vr(b2,2~c jointly imposed by the two competing
MSs by combining their representative contentiousness vec-
tors: Vr(fzﬂc = r(f) + Vr(f) where, with an abuse of notation,
+ denotes an appropriate linear operator (e.g., sum for cache
occupancy or the cache read/write operations, or average for
cache hit or miss probability) applied to each component of
the contentiousness vector, to reflect the combined effect of the
two competing MSs. We stress that this approach showed to be
very accurate [6]. Next, the throughput of r, can be predicted
via the sensitivity model as: P, ({74, 7, 7c}) = M,, (W(bz,)rc).

Generalizing the above case, the throughput of r, when
running on server s with set Js \ {r,} of competing MSs is

predicted as:
Z V;(DM—U) . (1)
r€Vs\{ra}

PTa(yS) = Mm(

III. SYSTEM MODEL AND PROBLEM FORMULATION

We now describe the system model under study and formal-
ize the IMSP problem to optimally place MSs.

A. System model

Let us focus on a single data center and let S be the
set of servers available therein. We consider an online MS
placement scenario in which a subset of servers in S run some
pre-existing MSs, each of them currently satisfying its SLA.
Let F; be the set of pre-existing MSs running on server s;
Fs = 0 if s is idle. Then, consider a set R of requests for MS
instances, (possibly) related to different services, arriving at
the orchestrator. Let ¢, be the minimum required throughput,
as per SLA, for an MS r € R.

We assume that the data center has ample bijection band-
width and thus the throughput of an MS depends only upon its
server’s processing capacity, potentially influenced by interfer-
ence. Thus, each MS r € R can be placed independently from
other 7’ € R. Also, each server s € S has CPU and memory
resources, denoted by 7, [is, respectively, while other resource
types are sufficiently available. In addition, each MS request
r entails CPU and memory demand as denoted by 7,- and ..,
respectively.

While placing new MSs, pre-existing ones are not moved
and their SLAs must be met even after the new MSs have
been placed. If an MS request cannot be placed in any of the
existing servers without violating the SLAs, then an additional
server is provisioned.

Let y,., € {0,1}, with » € R and s € S, be a binary
decision variable expressing whether a new MS 7 should be
placed on server s or not, and let YV, = {r € Rly,s = 1}
be the set of MSs placed on server s. A server s is active
(indicated by ns € {0,1}) if and only if it serves at least one
MS r. Using the prediction model introduced in Sec. II, we can
predict the throughput of any MS in a server with co-located
MSs. We denote by P,.()s) the predicted throughput of MS
r € R when running in server s and competing with MSs in
FsUYs \ {r}, i.e., pre-existing and newly placed MSs.

B. The IMSP problem formulation

Given the set of requested MSs, R, the objective is to
minimize the number of servers used to place the MSs, i.e.,

S, @)
seES

subject to system and SLA constraints:

d grs=1 ¥remr (3)
sES
ng < Z Yrs +|Fs|] Vse€S 4
reR

Zyr,s',ulr‘i‘Z/JrSns'ﬂs VseS (5

r€Ys re€Fs
Syt Y. m<ngh VsES 6)

TE€Ys re€Fs
P.(YsUFs) >t, VseS,re RUF; @)
ns € {0,1} VseS, (8)
yrs € {0,1} VseS,reR. 9)

Eq. (3) specifies that a new MS must be placed on exactly
one server. Eq. (4) ensures that a server is turned off if no MS
is assigned to it. Egs. (5)-(6) mandate that the memory and
computing resource requirement of all (new and pre-existing)
MSs allocated in server s cannot exceed the available server
memory or computing capability; they also ensure that server
s is active if any MS is assigned to it. Eq. (7) leverages (1)
and imposes that the predicted throughput for any new and
pre-existing MS must satisfy the throughput required specified
in the SLA, thus the mutual interference across all MSs is
acceptable.

Theorem: The IMSP problem in (2), subject to constraints
(3)-(9), is NP hard.
The proof, omitted for brevity, shows that any instance of the
bin packing problem, which is NP-hard, can be reduced to a
simplified, off-line version of the IMSP in polynomial time.
This makes a heuristic approach plausible: iPlace, described
in the next section.

Initial After
—

Placement phase

requests clusterin, g
q! . g O O.O)
eoo (\o °
O O O © New MS

9 Pre

000 @ . e
[; .
@ S><> @ existing
R ¢ Ms

Fig. 3. Example of the clustering phase for a batch of requests (color indicates
type of resources an MS competes for; shape distinguishes old vs. new MSs).

IV. TIPLACE: THE INTERFERENCE-AWARE MS PLACEMENT

The key idea is to partition the set of new MSs into clusters
in which the MSs contend for different types of resources.
Clustering is motivated by experimental evidence showing
that, e.g., deploying a batch of 50 MSs using Docker Swarm
orchestrator reduces the deployment time by 46% when com-
pared to sequential deployment. Further, while clustering MSs,
we reduce the mutual interference of MSs in the same cluster,
which allows them to coexist on the same server.

Then, as depicted in Fig. 3, the algorithm works in two
phases: the clustering phase, which clusters the new MS
placement requests based on their contentiousness, and the
placement phase, which places each created cluster in the
server accounting for the pre-existing MSs in the server.

In the clustering phase, we define the distance between
any 73,7;€R (r;7#r;) of MS placement requests with the
following criterion: larger distance between MSs means that
their corresponding contentiousness vectors are more similar
and compete more for similar resources. Formally, we write:

d(ry,r;) = [V = VIl

(10)
The MSs in R are initially clustered using the mean-shift
clustering [15] technique that automatically discovers the
number of clusters and the MSs to be included therein based
on the chosen distance metric.

After clustering the MSs in R into clusters, the placement
phase starts and the clusters are put in a queue in a random
order, processed until each cluster is assigned to a server.
More specifically, we define the distance between the server
s running pre-existing MSs in F, and the cluster C as:

HVIE‘EJT}LHCI%) — Vﬁefc‘gmc\fl)”; o

where V(IF |+IC\ 1)

of all MSs placed in s and V is the one for
C. All the eligible servers havmg sufﬁment computing and
memory resources to host the MSs of cluster C are sorted in
the increasing order of their distance with cluster C according
to (11). To assess the impact of interference of the new MSs in
C on the nearest server s consisting of F pre-existing MSs, we
use the prediction model for the most critical MS placement
request 7 € C U Fy:

is the aggregate contentiousness vector
(\f [+Icl-1)

M (v (IFHE-D)y

P:(CUFy) = weFLUC\{#}

12)

Algorithm 1 iPlace: Interference-aware MS placement

1: procedure MsPlacement(R, V, §, M)
Z 4 MeanShiftClustering (R, V)
clustering on the placement requests based on V

> 8 : set of currently active servers
> Initially apply mean-shift

»

3: while Z # 0 do

4 C « Z.pop() > Remove the first cluster from Z to C
5: A<+ {s€ Slpc < fis N7¢ < 7} > Servers with enough resources
6: Sort A in increasing Distance (C, Fq, V)

7 for every s in A do > For each server
8 7 <— most critical MS in C U F

9: if PredictSLAViolations(#, Fs, V, M) = no violations then
10: Fs +— FsUC > Place the cluster C on the server s
11: break > Consider a new cluster
12: if Cluster C is not placed then > Placing C in any s € A violates SLA
13: if [C| = 1 then > If size of C is 1, then a new server is created
14: S+ Su{n} > Start a new server n and place C there
15: Fn < C > Update pre-existing MSs in n to include cluster C

16: else > The cluster is too large and must be split
17: Z <+ Z.append(K-meansClustering(C, V)) > Apply
K-means clustering on C based on V with K= 2

18: end procedure

where the most critical MS placement request # € C U Fy is
the one that has minimum throughput drop relative to its solo
run, and we considered the aggregate contentiousness vectors
of the (|Fs| + |C] — 1) competitors of 7 as:

VAIZHEID (74D (7 +el-1),

weFUC\{#Y = VweF\{F} (13)

If the predicted throughput of 7 following (13) satisfies its
SLA requirements, then we can safely place cluster C on server
s. Otherwise, C will be provisionally placed on the next nearest
server and the procedure is repeated until we find a server
where we can place it without violating the SLA or we ran out
of all the active servers. In the latter case, if C > 1, we partition
the cluster into two smaller ones using K-means clustering
with K=2 and add these two new clusters to the end of the
cluster queue. If C = 1, we create a new server to place C.

It is worth to note that the algorithm will tend to consolidate
the MSs in the minimum number of servers, in line with
the considered cost function in (2). The pseudocode of the
proposed approach is provided in Alg. 1.

Notably, the overall complexity of the clustering phase is
linear in the number of requested MSs; the placement phase
is linear in the product of the number of active servers and
clusters. Thus, the approach will scale well in the number of
allocated MSs; it will not grow quadratically in the number of
already running MSs. Rather, its worst-case complexity will
be |S||R|?, with |R| being the number of newly requested
MS instances and |S| the number of currently, still partially
empty, active servers.

V. PERFORMANCE EVALUATION

We evaluate iPlace against the optimum in a small-scale
scenario, as well as against state-of-the-art alternatives in a
larger-scale scenario. To do so, we consider snort and pkstat
instance requests, arriving in batches of size |R|, each with its
associated SLA, i.e., the required throughput. Specifically, for
each MS in R, the latter is chosen from a uniform distribution
between 70% and 100% of its solo performance.

Small-scale scenario. We first compare the results yielded
by iPlace to the optimal solution. The latter is obtained through

g

1 mmm iPlace . iPlace
Optimal Optimal

snort

3

131
Avg throughput [Gbps]

pktstat

Fig. 4. iPlace vs. optimal: number of used servers (left); throughput (right).

60
—4— iPlace

501 slomo
== worst-fit

40 best-fit

@ 30

20 1

101

01—~ : : : :
10 20 30 40 50

IR]|

Fig. 5. iPlace vs. benchmarks: number of used servers as |R| varies.

brute-force search by generating all possible placement com-
binations and selecting the one that uses the minimum number
of servers while satisfying the SLAs of all MSs. We consider
that each request arriving at the orchestrator includes six MSs,
and that two servers are already active: one running a pre-
existing snort MS and the other a pre-existing pkstat MS. We
repeat the experiment 100 times, each time varying the MSs’
required throughput, and compute the confidence interval with
a confidence level of 95%.

Fig. 4 shows that iPlace requires the same minimum and
maximum number of used servers as the optimal, while the
average is just slightly higher. Interestingly, Fig. 4 also shows
that iPlace can provide better performance, as it reduces the
interference among co-located MSs, by placing in the same
server MSs competing for different types of resources.

Large-scale scenario. We now vary |R| from 10 to 50 in
steps of 10, such that R contains an equal number of snort and
pktstat instances. The initial number of active servers is fixed
to six, each of them running one instance of either pktstat
or snort, such that they satisfy their SLAs. As benchmarks,
worst-fit, best-fit, and slomo [6] are considered. In worst-fit
and best-fit approaches, the new requests are allocated to
the server with, respectively, lowest and highest cumulative
throughput of the pre-existing MSs running on it. If the request
cannot be placed on the server with the lowest (highest)
cumulative throughput, a new server is provisioned. In slomo,
new requests are placed in a greedy incremental way that
evaluates for every server whether the placement of a new
request will lead to SLA violations using the same prediction
model as in iPlace. If the request cannot be placed in any
of the active servers without violating the SLAs, then a new
server is launched.

Fig. 5 shows the number of servers used to place the MSs

34
i
I3 i x % +
o 32
=
3
< 30 X
= -+- SLA slomo == best-fit
o —4— iPlace —#— worst-fit
S 28
b=
s |
w 26 L i a4 » 1
g | | 1)
< S S S — - —
24
10 20 30 40 50
IR]
_18
a -+- SLA slomo == best-fit
I —4— iPlace —#— worst-fit
S 1714 % + o +
Qo
<
(=]
=)
o 16
<
s
o
]
£15
o
g‘) g ——————— — - -
< 14— y v y y
10 20 30 40 50

IR|

Fig. 6. iPlace vs. its benchmarks: average pktstat throughput (top) and average

snort throughput (bottom).

160

140

120

100
80
60
40
20

—4— iPlace

slomo

Avg # of calls to prediction function

10 20 30 40 50
IR|

Fig. 7. iPlace vs. slomo: number of calls made to the prediction function as
|R| varies.

as |R| varies. Compared to slomo, worst-fit and best-fit, iPlace
utilizes 9.9%, 38.25% and 63.13% fewer number of servers,
respectively, for |R| = 50. Importantly, as depicted in Fig. 6, it
can do so while satisfying the SLAs of pre-existing as well as
newly placed MSs. Clearly, the throughput of pktstat and snort
is higher under the alternatives we considered, but they have
used a remarkably higher number of servers to place the MSs.
Further, we recall that, as shown by experimental evidence,
deployment of MS clusters is much faster than sequential
deployment. Thus, iPlace can also greatly reduce the MSs
deployment time with respect to all its alternatives.

Finally, to demonstrate the scalability of iPlace, we compare
the number of calls made to the prediction function, which
is the most CPU consuming function, for both iPlace and
slomo. To better highlight the significant improvement, we
have scaled down the MSs throughput requirements by a factor
of 10 so that a higher number of clusters can be placed in the
same server. Fig. 7 shows the results obtained using cProfile:
for |R| = 50, iPlace makes 93.58% fewer number of calls to

the prediction function than slomo.

VI. CONCLUSIONS

We have addressed the placement of microservices (MSs)
in data centers with the aim to minimize the number of used
servers, while meeting the MSs performance requirements. In
doing so, we experimentally characterized the gain of parallel
versus sequential MSs deployment and the interference among
MSs competing for the same resources, and formulated an
optimization problem that aims at minimizing the number of
used servers. Given the problem NP-hardness, we developed
a low-complexity heuristic that aims at placing on the same
server batches of MSs that compete for different resources.
Our numerical results show that the proposed approach closely
matches the optimum and, when compared to existing solu-
tions, reduces the number of used servers by 10-63%, while
proving to be highly scalable.

Future work will extend the experimental evaluation to
diverse MSs as well as to MSs memory requirements, and
it will further enhance the performance prediction model.

REFERENCES

[1] D. Bhamare, R. Jain, M. Samaka, and A. Erbad, “A survey on service
function chaining,” J. of Network and Computer Applications, 2016.

[2] W. Zhang, G. Liu, W. Zhang, N. Shah, P. Lopreiato, G. Todeschi,
K. Ramakrishnan, and T. Wood, “OpenNetVM: a platform for high
performance network service chains,” in ACM HotMiddlebox, 2016.

[3] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco,
and F. Huici, “ClickOS and the art of network function virtualization,”
in USENIX NSDI, 2014.

[4] A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy, and S. Shenker,
“NetBricks: Taking the V out of NFV,” in ACM OSDI, 2016.

[5] S. Palkar and et al., “E2: a framework for nfv applications,” in ACM
SOSP, 2015.

[6] A. Manousis, R. A. Sharma, V. Sekar, and J. Sherry, “Contention-
aware performance prediction for virtualized network functions,” in
ACM SIGCOMM, 2020.

[7]1 J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa, “Bubble-up:
Increasing utilization in modern warehouse scale computers via sensible
co-locations,” in IEEE/ACM MICRO, 2011.

[8] M. Dobrescu, K. Argyraki, and S. Ratnasamy, “Toward predictable
performance in software packetprocessing platforms,” in ACM NSDI,
2012.

[9]1 A. Tootoonchian, A. Panda, C. Lan, M. Walls, K. Argyraki, S. Rat-
nasamy, and S. Shenker, “ResQ: Enabling SLOs in network function
virtualization,” in USENIX NSDI, 2018.

[10] V. Varadarajan, T. Kooburat, B. Farley, T. Ristenpart, and M. M. Swift,
“Resource-freeing attacks: Improve your cloud performance (at your
neighbor’s expense),” in ACM CCS, 2021.

[11] C. Zeng, F. Liu, S. Chen, W. Jiang, and M. Li, “Demystifying the
performance interference of co-located virtual network functions,” in
IEEE INFOCOM, 2018.

[12] Q. Zhang, F. Liu, and C. Zeng, “Adaptive interference-aware VNF place-
ment for service-customized 5G network slices,” in IEEE INFOCOM,
2019.

[13] Q. Zhang, F. Liu, and C. Zeng, “Online adaptive interference-aware
VNF deployment and migration for 5G network slice,” IEEE/ACM
Transactions on Networking, 2021.

[14] S. Song, C. Lee, H. Cho, G. Lim, and J.-M. Chung, “Clustered
virtualized network functions resource allocation based on context-
aware grouping in 5G edge networks,” IEEE Transactions on Mobile
Computing, 2020.

[15] K. Fukunaga and L. Hostetler, “The estimation of the gradient of
a density function, with applications in pattern recognition,” [IEEE
Transactions on Information Theory, 1975.

