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ABSTRACT   The development of coarse-grained (CG) molecular models typically requires a time-

consuming iterative tuning of parameters in order to have the approximated CG models behaving correctly 

and consistently with, e.g., available higher-resolution simulation data and/or experimental observables. 

Automatic data-driven approaches are increasingly used to develop accurate models for molecular dynamics 

simulations. But the parameters obtained via such automatic methods often make use of specifically-

designed interaction potentials, and are typically poorly transferable to molecular systems or conditions 

other than those used for training them. Using a multi-objective approach in combination with an automatic 

optimization engine (SwarmCG), here we show that it is possible to optimize CG models that are also 

transferable, obtaining optimized CG force fields (FFs). As a proof of concept, here we use lipids, for which 

we can avail of reference experimental data (area per lipid, bilayer thickness) and reliable atomistic 

simulations to guide the optimization. Once the resolution of the CG models (mapping) is set as an input, 

SwarmCG optimizes the parameters of the CG lipid models iteratively and simultaneously against higher-

resolution simulations (bottom-up) and experimental data (top-down references). Including different types 

of lipid bilayers in the training set in a parallel optimization guarantees the transferability of the optimized 

lipid FF parameters. We demonstrate that SwarmCG can reach satisfactory agreement with experimental 

data for different resolution CG FFs. We also obtain stimulating insights on the precision-resolution balance 

of the FFs. The approach is general and can be effectively used to develop new FFs, as well as to improve 

existing ones.   
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I. INTRODUCTION 

Molecular dynamics (MD) has become a fundamental tool in the study of complex molecular systems, 

providing high-resolution insights often inaccessible via experimental techniques. One of the main 

limitations of all-atom (AA) MD simulations is the space and time scales accessible with current 

computational capabilities. Coarse-grained (CG) molecular models, in which groups of atoms are 

represented as larger CG particles (or beads), may alleviate these issues and are increasingly employed to 

study systems of interest in structural biology1–3, drug discovery4,5, biophysics6–8 and nanomaterials design9–

11. Lipid bilayers, key components of the cell membranes, are a notable example of supramolecular systems 

exhibiting properties which, to a large extent, require CG models to be studied effectively12. 

Different approaches are typically used for the development of CG force fields (FFs)13–26. Top-down 

strategies essentially aim at reproducing molecular properties observed experimentally with the CG models. 

Conversely, bottom-up approaches rely on calibrating CG model parameters using equilibrium simulations 

of higher-resolution molecular models (e.g., AA). Widely used for the simulation of lipids, the popular 

Martini24 FF, for example, presents aspects of both. The possibility to parametrize molecular models for a 

variety of molecules using transferable CG beads makes the Martini24 FF versatile. However, general CG 

FFs remain intrinsically approximated in modeling specific molecular systems compared to CG models that, 

albeit less general and transferable, are optimized ad hoc to this end18,27. 

Methods such as, e.g., Inverse Monte Carlo (IMC)13, Iterative Boltzmann Inversion (IBI)15, Multi-State IBI 

(MS-IBI)19, Force Matching (FM)16–18,28,  ForceBalance29,30, Relative Entropy Minimization (REM)31, the 

generalized Yvon-Born-Green (g-YBG)32 equation, and different flavors of Particle Swarm Optimization 

(PSO)21,22,33,34 have been used as basis to build bottom-up and/or top-down FF parametrization approaches 

to calibrate AA FFs relying, e.g., on quantum mechanical data30,35,36, or to calibrate CG FFs based on AA 

MD trajectories37–42,34,43,44. For what pertains to the bottom-up route, their parameters extraction schemes 

are based on, e.g., reproducing pair distribution functions13,15,19, matching forces16–18,28–30, minimizing the 

information loss in terms of relative entropy31, or on the liquid state theory32 (see, e.g., Kmiecik et al.45 for 

an exhaustive review of these approaches). 

More recently, the evolution of machine learning approaches is considerably accelerating the development 

of accurate CG molecular models. Deshmukh et al. developed a CG FF for different solvents21,22, 

hydrocarbons46, small peptides33 and several polymers47, optimizing the interaction parameters to reproduce 

experimental observables (exclusively top-down) using particle swarm optimization48 (PSO) and artificial 

neural networks (ANN)-assisted PSO21. Force matching16–18,28 has been reformulated as a supervised 

learning problem in CGNet25, using ANN and point forces as features to learn the potential of mean force of 

a polypeptide in water. Automatic learning of both the CG FF and its “functional form” (abstract 

featurization) was then introduced in CGSchNet26 using graph convolutional neural networks (GCNN). 
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Such approaches, relying exclusively on equilibrium AA trajectories for CG FF calibration (exclusively 

bottom-up), are exposed to MD sampling problems and potential inaccuracies in the reference AA FF 

(which are then transferred into the CG FF). Automatic approaches capable of optimizing the accuracy of 

the CG models, while at the same time guaranteeing their transferability to different conditions or system 

variants than those used during FF calibration, would be fundamental for the development of next-

generation transferable CG FFs. 

Using phosphatidylcholine (PC) lipids as a test case, here we describe an automatic multi-objective 

optimization approach that allows to develop accurate and transferable CG lipid FFs. We build on 

SwarmCG,23 a CG FF optimization algorithm based on fuzzy self-tuning PSO49 (FST-PSO), recently 

developed to optimize bonded parameters in CG molecular models. We designed a comprehensive general 

strategy that now allows SwarmCG to optimize also the non-bonded parameters of a FF in order to improve 

the accuracy of the CG models. We chose lipids as a test case, as an example of molecular systems for 

which we can avail of experimental data (e.g., area per-lipid, bilayer thickness, etc.) and of reliable all atom 

FFs. Here, in a new multi-objective version of SwarmCG (https://github.com/GMPavanLab/SwarmCGM), 

we provide the opportunity to combine bottom-up and top-down reference information for calibrating CG 

lipid FFs using simultaneously high-resolution (AA) MD simulations and the experimental data. Using new 

metrics based on optimal transport (OT)50 for deriving the bonded and non-bonded interaction terms of the 

CG FF, we show that SwarmCG can simultaneously and iteratively optimize CG models of different types 

of PC lipids in parallel, improving the transferability of the optimized CG parameters among different lipid 

types, and also to those which are not included in the training set. Several FF calibration experiments 

demonstrate that this multi-objective approach can be successfully applied for generating new and custom 

lipid FFs across different resolutions. Furthermore, a stress-test of SwarmCG against a state-of-the-art CG 

lipid FF (Martini 3.0)24 proves the robustness of the software. 

 

II. METHODOLOGY 

A. Optimization strategy 

Our multi-objective CG FF optimization strategy relies on the complementary use of structure-based 

information from high-resolution molecular simulations (bottom-up: AA MD), providing knowledge on the 

submolecular structure and dynamics of the systems, and of experimental data (top-down: e.g., area per 

lipid, bilayer thickness), used to guide the calibration of the models on a larger scale (Fig. 1a). Similar 

multi-objective strategies, based on the simultaneous combination of simulation and experimental data used 

as the references for FFs fitting, have been employed also by others for the development, e.g., of different 

types of AA FFs29,36,51,52. In our approach, the discrepancies observed between the data provided by the CG 

models and the bottom-up and top-down reference data are measured via a global scoring function (Eq. 1) 

and minimized through an iterative optimization procedure. Executed in parallel using in the training set 
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multiple bilayers, each composed of a different type of lipid, our procedure can output optimal versions of 

CG lipid FFs, offering optimal consistency with the experimental data set as target. Importantly, the quality 

and completeness of the information embedded in the training set (e.g., number of different types of lipids, 

number of different temperatures used, resolution and topology of the CG representations, accuracy of the 

AA MD simulations and of the experimental data set used as the targets) directly conditions the accuracy of 

the CG FFs optimized via SwarmCG, as well as their capacity to transfer to other types of lipids (not 

included in the training set). 

For our demonstrations, here we use in the training sets up to 5 PC lipids that span a range of different tail 

characteristics (length, unsaturation, and combinations of those), for which accurate experimental 

measurements for the area per lipid (APL) and phosphate-to-phosphate bilayer thickness (Dʜʜ) are 

available from lamellar bilayer isolates in the liquid phase53,54 (Fig. 1b, Table S2). As proof of concept of 

this method for optimizing CG FFs for lipid models with different resolutions, we first focus on 

parametrizing custom CG models where the lipid molecules are represented at low resolution using either 5 

beads per lipid (lowest resolution), or 6-8 beads per lipid (slightly higher resolution). We then test the same 

approach on high resolution PC lipid models (3-5 heavy atoms per bead). In such a case, as a stress-case for 

the method, we start from the state-of-the-art version of the widely used Martini FF (i.e., Martini 3.0)24. 

Given the notable level of usage and testing of this CG FF (especially for the simulation of lipids), we use 

this as a control case to check that SwarmCG does not produce CG parameters deviating much from a FF 

that is already quite evolute in terms of accuracy and reliability. All the models in these demonstrations 

make use of the same simple and computationally-efficient FF functional form (i.e., the standard one used 

in Martini24 lipid models, see also Sec. S1), with bonded interactions described by harmonic terms for bonds 

and angles, and non-bonded interactions described by Lennard-Jones (LJ) and Coulomb potentials. The 

parameters of the CG FFs are iteratively optimized using FST-PSO49 (one of the most efficient PSO variant 

to date55) and by running at each iteration 200 ns of CG MD simulation of lipid bilayer patches composed of 

128 lipids (which preliminary tests indicated being enough to reach successfully the MD equilibrium and 

sufficient sampling in the simulated CG bilayer systems), from which the scores of the CG models are 

measured and used for improving the FFs accuracy according to a loss function. 
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Figure 1. Multi-objective optimization process implemented in SwarmCG. (a) SwarmCG simultaneously relies on 
bottom-up and top-down references to iteratively optimize CG lipid FFs using higher-resolution AA MD simulations 
and experimental data. (b) Properties of lipid bilayers (APL and DHH) used for calculating the top-down component of 
the loss function.  

 

In classic PSO48, a swarm of individuals (referred to as “particles”, each representing a set of parameters to 

be optimized) moves iteratively inside a bounded multidimensional search space and cooperates to identify 

the best solution for a problem according to a loss function, without using analytical gradients. Settings 

referred to as “social” and “cognitive” attraction respectively favor the collaboration among particles and 

their tendency to rely on individual experience. In FST-PSO49, faster convergence is achieved with the 

introduction of fuzzy logic for adjusting attraction settings independently for each particle and dynamically 

during optimization. This approach is particularly competitive in computationally expensive black-box 

optimization problems and effectively handles noisy data. Applied to our CG FF calibration problem, this 

enables using a variational principle for high-dimensional FF parameterization with limited concern over 

the impact of the noise originating from MD sampling. In our demonstrations, the loss function evaluates 

the CG FF parameters of up to 5 different lipids (Fig. 2a,b) simultaneously (i.e., each particle of the swarm 

is tasked with running up to 5 CG MD simulations). The optimization problem is thus formulated for 

maximizing the thermodynamic consistency of the optimized CG FF for all tested PC lipids (potentially 

simulated using different temperatures), increasing the sampling of the data while at the same time limiting 

the number of local minima on the loss surface. Therefore, the computational cost of running multiple 

simulations for calculating the relevance of a single set of FF parameters (i.e., a particle of the swarm) is 

compensated by an even faster convergence, enabled by an information-rich loss function. Because swarm 

optimization already constitutes an embarrassingly parallel workload, and each particle is tasked with 

running independent MD simulations (i.e., another layer of parallelization), this approach also efficiently 

leverages high-performance computing (HPC) resources (see Sec. S2). 

 

B. Loss function and optimal-transport-based metrics 

1. Top-down components 

Our process is based on the minimization of a loss function encompassing the distances from the bottom-up 

and top-down target objectives. Our construction of the loss function aims at: (i) reducing a many-objective 

optimization problem to a single-objective one (global FF accuracy score); and (ii) using as priority 

reference the available experimental data (APL and Dʜʜ), while the features calculated from AA MD 

simulations (which may suffer from sampling issues or FF inaccuracies) are used only as guidance during 

optimization, and for restricting the number of possible solutions to a given optimization problem. The loss 

function takes the form 
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𝑙𝑜𝑠𝑠 = √𝛥𝐴𝑃𝐿𝑔𝑙𝑜𝑏𝑎𝑙2+𝛥𝐷ʜʜ𝒈𝒍𝒐𝒃𝒂𝒍2+𝑂𝑇–𝐵𝑔𝑙𝑜𝑏𝑎𝑙2+𝑂𝑇–𝑁𝐵𝑔𝑙𝑜𝑏𝑎𝑙24 , (1) 

where 𝛥𝐴𝑃𝐿𝑔𝑙𝑜𝑏𝑎𝑙 and 𝛥𝐷ʜʜ𝑔𝑙𝑜𝑏𝑎𝑙 are the aggregated APL and Dʜʜ deviations with respect to 

experimental values, calculated across all CG lipid bilayers used for an optimization (loss components 1 and 

2) as 

𝛥𝐴𝑃𝐿𝑔𝑙𝑜𝑏𝑎𝑙 = √∑(𝑤1+min(𝑚𝑎𝑥(0,𝛥𝐴𝑃𝐿𝑙𝑡−𝐸𝑡𝑜𝑙),𝛥𝐴𝑃𝐿𝑐𝑎𝑝))2𝐿𝑔 , (2) 

and 

𝛥𝐷ʜʜ𝑔𝑙𝑜𝑏𝑎𝑙 = √∑(𝑤1+min(𝑚𝑎𝑥(0,𝛥𝐷ʜʜ𝑙𝑡−𝐸𝑡𝑜𝑙),𝛥𝐷ʜʜ𝑐𝑎𝑝))2𝐿𝑔 , (3) 

where 𝛥𝐴𝑃𝐿𝑙𝑡 and 𝛥𝐷ʜʜ𝑙𝑡 are the APL and Dʜʜ absolute % deviations with respect to the experimental 

values for a bilayer composed of lipid type 𝑙 simulated at temperature 𝑡, 𝐸𝑡𝑜𝑙 is set to 1.5 and represents the 

tolerated error in 𝛥𝐴𝑃𝐿𝑙𝑡 and 𝛥𝐷ʜʜ𝑙𝑡 accounting for experimental error in measurements, 𝑤1 is a weight 

(empirically set to 10) that prioritizes using the target experimental data over the AA reference data during 

the FF optimization, 𝐿𝑔 is the number of different lipid bilayer simulations used in the training set (a bilayer 

of lipid type 𝑙 can be simulated at different temperatures), and 𝛥𝐴𝑃𝐿𝑐𝑎𝑝 and 𝛥𝐷ʜʜ𝑐𝑎𝑝 are set to 30 and used 

to cap 𝛥𝐴𝑃𝐿𝑙𝑡 and 𝛥𝐷ʜʜ𝑙𝑡 values for limiting noise during the first steps of an optimization procedure, by 

allowing to disregard uninformative loss values that can be produced when putative CG FF parameters 

would induce a disassembly or explosion of the bilayer during MD simulations. By capping 𝛥𝐴𝑃𝐿𝑔𝑙𝑜𝑏𝑎𝑙 and 𝛥𝐷ʜʜ𝑔𝑙𝑜𝑏𝑎𝑙 values, then 𝑂𝑇–𝐵𝑔𝑙𝑜𝑏𝑎𝑙 and 𝑂𝑇–𝑁𝐵𝑔𝑙𝑜𝑏𝑎𝑙 (Eq. 8, 10) are able to guide the optimization even 

in otherwise potentially uninformative conditions. We define the convergence criterion as 10 swarm 

iterations without improving loss. 

 

2. Optimal-transport-based metrics 

Regarding the bottom-up component, as preliminary steps we obtain well-sampled equilibrium AA MD 

trajectories of lipid bilayers to be used as references for each lipid to be used in the training sets (see Sec. 

S3), and map the AA lipid models at the desired CG resolution (Fig. 2a). The AA-to-CG mapping 

determines the chemical identity/correspondence of each CG bead, bond and angle, defining also the 

number of parameters to be optimized in the CG FF (Figs. 2c, additional details provided in Sec. S4). 

Reference bond and angle distributions, as well as the distance distributions between each type of particle 

(within a 25 Å cut-off), are computed from each AA-mapped MD trajectory, and compared to those 

calculated using the corresponding CG models at each iteration during optimization (inexpensive via 

MDAnalysis56,57). Altogether, the discrepancies between such average AA and CG quantities measure how 

closely a putative CG FF matches the AA description of the molecular systems18. 
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For evaluating the mismatch between corresponding AA vs. CG bond and angle distributions, we employ 

the OT-based Wasserstein distance58,59 (a.k.a., Earth Movers’ Distance, EMD) with an underlying 

symmetric and positive-definite distance matrix (hereafter referred to as “OT-B metrics”, Fig. 2d). This 

metrics has been already proven well-suited for parametrizing the bonded terms of CG models of complex 

and flexible molecules in a previous version of SwarmCG23. Noteworthy, OT-based metrics offer several 

interesting features: (i) multimodal distributions are properly handled; (ii) distances are robust to noise; (iii) 

distances are quantified in interpretable units (e.g., Å, degrees); and (iv) their computations are inexpensive. 

In particular, here we introduce a new metrics that relies on OT for comparing the spatial distribution of 

particles in equilibrium MD trajectories (hereafter referred to as “OT-NB metrics”, Fig. 2e). The OT-NB 

metrics employs the Wasserstein distance58,59 on the distance distribution between particles, with an 

underlying distance matrix accounting for the differences in between radial shell volumes. This metrics can 

be considered as an OT-based adaptation of the Kirkwood-Buff integrals60, which is particularly well-suited 

for quantifying differences in the spatial organization of particles in molecular systems described at 

different resolutions (e.g., AA vs. CG). 

 

Figure 2. Description of the CG representations applied and the metrics used in this modified version of SwarmCG. 
(a) AA vs. CG mapping for the benchmark lipids used in the training set for optimization at different resolutions: 1,2-
dilauroyl-sn-glycero-3-phosphocholine (DLPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-
dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC), 1,2-
dioleoyl-sn-glycero-3-phosphocholine Δ9-Cis (DOPC) and 1-palmitoyl-2-docosahexaenoyl-sn-glycero-3-
phosphocholine Δ4,7,10,13,16,19-Cis (PDPC, 16:0-22:6). (b) Bottom-up components of the scoring function: 
SwarmCG optimizes in concert the bonded and non-bonded terms of a CG FF, iterating CG MD simulations of 
bilayers composed of different types of lipids. (c) CG bonds and angles are classified according to the CG beads 
involved, and are attributed specific parameters. (d) Principle of the OT-B metrics used for structure-based 
information related to bonded FF terms. (e) Principle of the OT-NB metrics used for structure-based information 
related to non-bonded FF terms. 
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Given 2 histograms 𝑃, 𝑄 the EMD as initially defined by Rubner et al.59 is: 

𝐸𝑀𝐷(𝑃, 𝑄) = 𝑚𝑖𝑛{𝑓𝑖𝑗}∑ 𝑓𝑖𝑗𝑑𝑖𝑗𝑖,𝑗∑ 𝑓𝑖𝑗𝑖,𝑗 , (4) 

with 𝑓𝑖𝑗 ≥ 0, ∑ 𝑓𝑖𝑗𝑗 ≤ 𝑃𝑖, ∑ 𝑓𝑖𝑗𝑖 ≤ 𝑄𝑗 and ∑ 𝑓𝑖𝑗𝑖,𝑗 = min(∑ 𝑃𝑖𝑖 , ∑ 𝑄𝑗𝑗 ), where {𝑓𝑖𝑗} represents the optimal 

transport plan, each 𝑓𝑖𝑗 represents the amount transported from the 𝑖 supply bin to the 𝑗 demand bin, and 𝑑𝑖𝑗 
is the distance matrix between bin 𝑖 and bin 𝑗 in the histograms. In this study, the domains of the bond and 

angle distributions 𝐷𝑏 and 𝐷𝑎 are set to [0, 50] Å and [0, 180] degrees, respectively, for the distributions of 

all AA-mapped and CG bond and angle, with histogram bandwidths set to 0.1 Å and 2 degrees. The domain 

of all the AA-mapped and CG distance distributions between pairs of bead types 𝐷𝑝 is set to [0, 15] Å and 

the bandwidth used is 0.25 Å. All EMD calculations used in this study rely on the implementation of 

PyEMD58,61. 

To calculate the EMD between 2 corresponding AA-mapped vs. CG bonds or angles, noted 𝑂𝑇–𝐵𝑏𝑜𝑛𝑑(𝑖,𝑙) 
and 𝑂𝑇–𝐵𝑎𝑛𝑔𝑙𝑒(𝑖,𝑙) in the next section, we use normalized histograms (∑ 𝑃′𝑖𝑖 = 1 and ∑ 𝑄′𝑗𝑗 = 1) and a 

symmetric positive-definite distance matrix. For obtaining the EMD between 2 corresponding AA-mapped 

vs. CG distance distributions between pairs of bead types, noted 𝑂𝑇–𝑁𝐵𝑏𝑒𝑎𝑑𝑝𝑎𝑖𝑟(𝑙) in the next section, we 

first normalize the bins in each of the 2 histograms so that ∑ 𝑃′𝑖𝑖 + ∑ 𝑄′𝑗𝑗 = 2, with 𝑃′𝑖 = 2𝑃𝑖∑ 𝑃𝑖𝑖 +∑ 𝑄𝑗𝑗  and 𝑄′𝑗 = 2𝑄𝑗∑ 𝑃𝑖𝑖 +∑ 𝑄𝑗𝑗 . We then define a distance matrix that accounts for the differences in between radial shell 

volumes as: 

𝑑𝑖𝑗 = {  
  𝑖 < 𝑗, 𝑉𝑗 𝑉𝑖⁄𝑖 = 𝑗, 0𝑖 > 𝑗, 𝑉𝑖 𝑉𝑗⁄ }  

  
, (5) 

with 𝑉𝑖 and 𝑉𝑗 the volumes of the radial shells for bin 𝑖 and 𝑗. The optimal transport plan {𝑓𝑖𝑗} calculated 

here consists in a partial matching of the 2 compared histograms58,61 because of the normalization we apply. 

We finally account for the extra or missing mass that is left out of {𝑓𝑖𝑗} using: 

𝑂𝑇–𝑁𝐵𝑏𝑒𝑎𝑑𝑝𝑎𝑖𝑟(𝑙) = (𝐸𝑀𝐷(𝑃′, 𝑄′) + (max(∑ 𝑃𝑖𝑖 ,∑ 𝑄𝑗𝑗 )min(∑ 𝑃𝑖𝑖 ,∑ 𝑄𝑗𝑗 ) − 1)) ∗ 100. (5) 

Because the distance matrices 𝑑𝑖𝑗 are symmetric, the OT-B and OT-NB distances inherits the properties of 

metrics58,61. 

 

3. Bottom-up components 
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Finally, for the definition of our global loss function (Eq. 1), we aggregate the OT-B and OT-NB distances 

obtained from the comparison between a set of CG MD simulations (i.e., a particle of the swarm) and their 

corresponding reference AA MD trajectories (bottom-up), together with the discrepancies observed between 

CG vs. experimental APL and Dʜʜ measurements (top-down). The OT-B distances from the reference AA 

MD trajectories are calculated as: 

𝑂𝑇–𝐵𝑏𝑜𝑛𝑑𝑡𝑦𝑝𝑒 = √∑(𝑤2×𝑂𝑇–𝐵𝑏𝑜𝑛𝑑(𝑖,𝑙,𝑡))2𝐵𝑖,𝑙,𝑡 , (6) 

where 𝑂𝑇–𝐵𝑏𝑜𝑛𝑑𝑡𝑦𝑝𝑒 quantifies the deviation of the CG models from the reference AA trajectories in terms 

of bond distributions for a given bond type, 𝐵𝑖,𝑙,𝑡 is the number of instances of this bond type in CG model 

topologies across all simulations used in an optimization, 𝑂𝑇–𝐵𝑏𝑜𝑛𝑑(𝑖,𝑙,𝑡) is the OT-B distance for each 

instance of this bond type across all simulations used in an optimization (a bond of a given type can be 

present multiple times in the topology of a single lipid model), 𝑤2 is a weight that prioritizes minimizing the 

OT-B distances of the bonds over those of the angles (see below); and 

𝑂𝑇–𝐵𝑎𝑛𝑔𝑙𝑒𝑡𝑦𝑝𝑒 = √∑(𝑂𝑇–𝐵𝑎𝑛𝑔𝑙𝑒(𝑖,𝑙,𝑡))2𝐴𝑖,𝑙,𝑡 , (7) 

where 𝑂𝑇–𝐵𝑎𝑛𝑔𝑙𝑒𝑡𝑦𝑝𝑒 quantifies the deviation of the CG models from the reference AA trajectories in 

terms of angle distributions for a given angle type, 𝐴𝑖,𝑙,𝑡 is the number of instances of this angle type in CG 

model topologies across all simulations used in an optimization, 𝑂𝑇–𝐵𝑎𝑛𝑔𝑙𝑒(𝑖,𝑙,𝑡) is the OT-B distance for 

each instance of this angle type across all simulations used in an optimization (an angle of a given type can 

be present multiple times in the topology of a single lipid model); and 

𝑂𝑇–𝐵𝑔𝑙𝑜𝑏𝑎𝑙 = √∑𝑂𝑇–𝐵𝑏𝑜𝑛𝑑𝑡𝑦𝑝𝑒2+∑𝑂𝑇–𝐵𝑎𝑛𝑔𝑙𝑒𝑡𝑦𝑝𝑒2𝐵𝑔+𝐴𝑔 , (8) 

where 𝑂𝑇–𝐵𝑔𝑙𝑜𝑏𝑎𝑙 is the global OT-B deviation score for the CG FF being optimized (loss component 3), 𝐵𝑔 is the number of different bond types in this FF and 𝐴𝑔 the number of different angle types in this FF. 

The OT-NB distances from the reference AA MD trajectories are calculated as: 

𝑂𝑇–𝑁𝐵𝑏𝑒𝑎𝑑𝑝𝑎𝑖𝑟 = √∑(𝑂𝑇–𝑁𝐵𝑏𝑒𝑎𝑑𝑝𝑎𝑖𝑟(𝑙))2𝑃𝑙 , (9) 

where 𝑂𝑇–𝑁𝐵𝑏𝑒𝑎𝑑𝑝𝑎𝑖𝑟 quantifies the deviation of the CG models from the reference AA trajectories in 

terms of distance distributions between pairs of bead types, 𝑂𝑇–𝑁𝐵𝑏𝑒𝑎𝑑𝑝𝑎𝑖𝑟(𝑙) is the OT-NB distance for 

this pair of bead types calculated from each CG MD simulation in which this interaction is sampled, 𝑃𝑙 is 

the number of instances of this pair of bead types across all lipids used in an optimization; and 

𝑂𝑇–𝑁𝐵𝑔𝑙𝑜𝑏𝑎𝑙 = √∑𝑂𝑇–𝑁𝐵𝑏𝑒𝑎𝑑𝑝𝑎𝑖𝑟2𝑃𝑔 , (10) 
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where 𝑂𝑇–𝑁𝐵𝑔𝑙𝑜𝑏𝑎𝑙 is the global OT-NB deviation score for the CG FF being optimized (loss component 

4), and 𝑃𝑔 is the number of different pair types in this FF. 

Therefore, the components of the loss function are empirically weighted according to only 2 parameters: (i) 𝑤1 slightly prioritizes minimizing the APL and Dʜʜ discrepancies over the OT-B and OT-NB distances, 

which regulates the extent to which structure-based information is discarded for better fitting experimental 

measurements, and (ii) 𝑤2 allows to obtain comparable OT-B metrics for the bond and angle deviations and 

is set to 50, meaning that an OT-B of 0.4 Å between corresponding CG vs. AA-mapped bond distributions 

(noted 𝑂𝑇–𝐵𝑏𝑜𝑛𝑑(𝑖,𝑙)) is considered equivalent to an OT-B of 20 degrees between corresponding CG vs. 

AA-mapped angle distributions (noted 𝑂𝑇–𝐵𝑎𝑛𝑔𝑙𝑒(𝑖,𝑙)). 
 

4. Modulation of the loss function for mixed bottom-up and top-down FF calibration 

The simple form used for the aggregation of the different objectives in the loss function (Eq. 1) enables 

modularity. In this modified version of SwarmCG, if no AA trajectories are provided for a given 

optimization procedure, the bottom-up components of the loss function described in Eq. 1 will be discarded 

and the loss will automatically become: 

𝑙𝑜𝑠𝑠′ = √𝛥𝐴𝑃𝐿𝑔𝑙𝑜𝑏𝑎𝑙2+𝛥𝐷ʜʜ𝒈𝒍𝒐𝒃𝒂𝒍22 . (11) 

User-defined configuration files allow complete modularity of the parameters being optimized and of the 

reference data being used, notably for performing CG lipid FF calibrations in a mixed bottom-up and top-

down fashion. For example, this allows to make use of bottom-up reference AA trajectories only for lipids 

for which an accurate AA FF is available (see Sec. S3 and Table S1), while parameters that are specific to 

CG lipids for which the AA FFs are still inaccurate to date (e.g., containing highly unsaturated tails, such as 

SDPC and PDPC53) can be calibrated exclusively with respect to top-down experimental data. In this case, 

these parameters can be evaluated in parallel and in context with other FF parameters subjected to both 

bottom-up and top-down reference calibration. 

 

III. RESULTS 

A. Multi-objective automatic optimization of CG models of POPC at different resolutions 

As a first demonstration of this approach, we use SwarmCG to perform individual multi-objective (bottom-

up plus top-down) optimizations of 3 different-resolution CG models of POPC. In particular, for this first 

test we use: (I) a low-resolution (5 beads) implicit-solvent CG model, (II) a mid-resolution (8 beads) 

implicit-solvent CG model, and (III) a high-resolution (12 beads) explicit-solvent CG model of a POPC     
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bilayer composed of 128 lipids (64 per leaflet). These three CG models are then optimized individually, 

with the prime purpose to check how SwarmCG copes with the different resolution of the models. 

In the case of (I) and (II), the parametrization of the coarser CG models is performed completely ab-initio 

(Fig. 2a,b). In such cases we initially set all parameters randomly, while in the first particle in the first 

swarm iteration all LJ ε are set to 4 kJ/mol (it can be a random number, but too low or too high ε values 

should be avoided in order to prevent all CG MD simulations to crash in the first swarm iteration). All 

parameters are then iteratively changed by SwarmCG with the goal of minimizing the loss function. In 

particular, the following terms of the CG FFs are calibrated: (i) equilibrium values for bonds and angles; (ii) 

force constants for bonds and angles (bonded terms); and (iii) LJ σ and ε parameters defining all 

interactions between pairs of CG bead types (non-bonded terms). For obtaining the LJ σ parameters, we 

optimize the values of the radii attributed to each bead type and apply the Lorentz-Berthelot rule62 (see also 

Sec. S5 and S6 in the SI). As initial parameters, we use: (i) the average equilibrium values of the bonds and 

angles computed from AA-mapped MD trajectories; (ii) arbitrary values for all force constants; and (iii) 

arbitrary values for the bead radii and LJ ε parameters. The green curves in Fig. 3a,b (loss) indicate that the 

optimizations converged after ~50 and ~40 swarm iterations, respectively. Independently of the resolution 

applied, at convergence the models correctly reproduce the APL and Dʜʜ experimental data used as target 

(Fig. 3a,b: yellow and blue curves converging to reference black line, set to 0). The OT-B and OT-NB 

distances are effectively minimized (Fig. 3a,b: black and olive curves), indicating that both CG models 

globally reproduce the structural features present in the reference AA MD trajectories (Figs. S3-4: low-

resolution). 
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Figure 3. Multi-objective optimization of CG FF parameters in models of POPC described at different resolutions, at 
303K in the liquid phase. For each modelling resolution: (a) 5 CG beads, (b) 8 CG beads, (c) 12 CG beads – (Left 
panels) green curve: loss during optimization; (Middle panels) black and olive curves: OT-B and OT-NB metrics for 
the specific lipid; (Right panels) yellow and blue lines: APL and Dʜʜ for the specific lipid model during optimization, 
displayed with window-averaging (solid) and without (shaded); (Right images) CG MD snapshots of the lipid bilayers 
for the FF obtained at each resolution. The horizontal black lines set at 0 identify the target experimental APL and 
Dʜʜ values. Diamonds represent values at convergence, obtained with the selected optimized CG FF parameters. 

 

In the case of (III), we test our approach in explicit solvent starting from the current high-resolution Martini 

3.024 model of POPC (Fig. 2c). The following terms of the CG FF are iteratively optimized: (i) the 

equilibrium values for bonds and for angles not initially set to 180; (ii) force constants for bonds and angles; 

and (iii) LJ ε parameters defining all solute-solute interactions between pairs of CG bead types. LJ σ 

parameters, solute-solvent and solvent-solvent interactions are unchanged. As initial parameters, we use the 

existing ones in Martini 3.024 for this model. The optimization procedure converged after ~60 swarm 

iterations (Fig. 3c). At convergence the model of POPC correctly reproduces the APL and Dʜʜ 

experimental data used as target (Fig. 3a,b: yellow and blue curves), whereas the original Martini 3.024 

model produces a small offset (~6 %) on Dʜʜ with respect to experimental data. The OT-B distances 

reached a higher plateau (Fig. 3c: olive curve) than in the 2 previous cases, due to the CG topologies used in 

Martini 3.024 lipid models, which creates small offsets in the CG vs. AA-mapped fits of the bond 

distributions (see Sec. S7). This has no effect on OT-NB distances, which were minimized to a plateau 

similar to the 2 previous cases (Fig. 3c: black curve). 

This first experiment demonstrates the ability of SwarmCG to balance bonded and non-bonded interaction 

terms to optimize the CG lipid models, independently of the resolution used. In all three cases, the obtained 

CG models for POPC self-assemble into bilayers and allow to simulate vesicle fusion (Fig. 4: e.g., 5 and 8 

CG beads models) consistently with previous studies63,64. In terms of computational time, the ab-initio 

calibration of the low-resolution POPC model (Fig. 3a, 5 CG beads and 26 FF parameters) required 36 

hours (wall-clock time) to reach 60 swarm iterations using 20 particles in the swarm and using 20 CPUs 

(each CG simulation running on a single CPU, allowing for a complete parallelization of the swarm of 

particles). The ab-initio calibration of the mid-resolution POPC model (Fig. 3b, 8 CG beads and 55 FF 

parameters) required 2 days to reach 50 swarm iterations using 25 particles in the swarm and requesting 25 

CPUs. The optimization starting from the existing Martini 3.024 POPC model (Fig. 3c, 12 CG beads and 40 

FF parameters) required 8 days to reach 70 swarm iterations using 23 particles in the swarm and requesting 

23 CPUs. We underline that while the time and computational cost required for the optimization may seem 

non-negligible, the benefit makes the process balance favorable, especially considering that the result of 

SwarmCG in this case, as it will be better described in the next section, is an optimized CG FF.  
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Figure 4. Behavior of the POPC models calibrated ab-initio in different configurations of unbiased MD simulations 
in implicit solvent. (a) CG MD snapshots of the low-resolution 8 beads POPC models undergoing self-assembly into 
a bilayer starting from a dispersed configuration (128 lipids, 310K). (b) CG MD snapshots of the mid-resolution 5 
beads POPC models undergoing vesicular fusion starting from 2 pre-assembled vesicles (1196 lipids each, 310K). 

 

Such individual optimizations demonstrate that, from a technical point of view, SwarmCG can produce CG 

models fitting with the experimental data. However, the following comments on the robustness of the 

results are necessary. As said above, there is no guarantee that optimized CG parameters obtained in such a 

way are transferable to simulate other lipid systems (vice versa, typically, they do not). Furthermore, the 

individual optimization of multiple parameters (e.g., all non-bonded LJ terms) to fit, e.g., the APL of POPC, 

could lead to potential artifacts. In fact, automatic optimization approaches, such as this one, cope badly 

with resolving a high-dimensional problem using low-dimensional criteria. Typically, the method can find 

multiple combinations of LJ parameters that allow reaching the APL target. While the use of multiple 

references (bottom-up and top-down) may to some extent alleviate such limitation, here we designed a 

different approach that imparts not only robustness, but also transferability to the results of SwarmCG in 

this sense (see next sections).  

 

B. Parallel ab-initio calibration of low-resolution implicit-solvent CG lipid force fields 

In order to provide more information for guiding the optimization, here we introduce an additional 

transferability constraint. This consist in the parallel optimization of multiple lipid bilayer systems of 

different types, which are optimized as in the previous section in an iterative way against bottom-up and 

top-down references. We conducted this test using, e.g., POPC, DMPC, DOPC and DPPC lipid bilayers 

(Fig. 5a). The difference from the previous experiment is that in this case, at every iteration, the parameters 

change affects all CG beads of the same type in all 4 lipid systems in the same way. Furthermore, the 

discrepancies between all 4 systems and their bottom-up and top-down references become all part of the 

scoring function which is iteratively minimized by SwarmCG. This introduces an automatic transferability 

constraint, as the number of parameters combinations that can minimize the distance from all objectives in 

all cases are strongly reduced. In a sense, this is an endogenous constraint, in that the automatic 

optimization self-regulates under the condition that this has to satisfy and optimize all systems (and not only 

one, POPC, as in the previous tests of Fig. 3). 
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In this section, we pursue our demonstration by running a completely ab-initio optimization of an implicit-

solvent PC lipid CG FF using 4 different low-resolution models (5 CG beads) in the training set using an 

analogous combined bottom-up and top-down optimization approach as described in the previous section. 

At every iteration, SwarmCG attempts to minimize the distance between the 5 beads per lipid CG models of 

POPC, DMPC, DOPC and DPPC lipid bilayers (each composed of 128 lipids), their experimental APL and 

Dʜʜ data (top-down), and the bottom-up information extracted from their respective AA MD equilibrated 

trajectories. The conditions of the four lipid models parallel optimization conducted in this experiment are 

identical to these of the low-resolution experiment in Sec. III A, for the types of parameters being optimized 

in the FF and the initialization of the swarm of particles. After ~100 swarm iterations this parallel 

procedure reaches convergence (Fig. 5a: green curves), identifying a set of CG parameters allowing to 

approach closely the experimental APL and Dʜʜ values set as the target for all the 4 lipids in the dataset 

(Fig. 5a, right: yellow and blue curves identifying the percentage deviation from the experimental APL and 

Dʜʜ targets, identified by the black lines set to 0). The OT-B and OT-NB distances are successfully 

minimized (Fig. 5a: black and olive), indicating that the structural features described by the AA trajectories 

are being reproduced in the CG models. Although the lipids are here represented at low-resolution (5 CG 

beads each) and the functional form of the FF being applied is simple (LJ and harmonic potentials), our 

procedure still allows to identify a satisfying set of FF parameters which are intrinsically transferable among 

all 4 lipids in the training set (they are optimized under such constraint), and which guarantee good 

correspondence with the experiments in all cases. This ab-initio FF calibration required 8 days of 

computation to reach 100 swarm iterations using 23 particles and requesting 46 CPUs (42 FF parameters, 4 

CG simulations of small bilayer patches per particle of the swarm). 

 

Figure 5. Multi-objective ab-initio calibration of CG FF parameters using 4 low-resolution models of PC lipids in the 
training set, in the liquid phase and in implicit solvent (DMPC: 303K, DPPC: 323K, DOPC: 303K, POPC: 303K). (a) 
For each lipid – (Left panels) green curve: loss during optimization, grey curve: loss calculated per lipid; (Middle 
panels) black and olive curves: OT-B and OT-NB metrics for the specific lipid; (Right panels) yellow and blue lines: 
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APL and Dʜʜ for the specific lipid during optimization, displayed with window-averaging (solid) and without 
(shaded). The horizontal black lines set at 0 identify the target experimental APL and Dʜʜ values. Diamonds 
represent values at convergence, obtained with the selected optimized CG FF parameters. (b) APL and Dʜʜ measured 
across 200 ns for SOPC (303K) and DSPC (333K) using transferred FF parameters. 

 

Considering that the obtained CG FF parameters are transferable between 4 different PC lipids, a relevant 

question is to what extent these are transferable also to other PC lipids which are not in the training set, and 

which structure can be described by combinations of the same CG beads (and by their bonded parameters). 

To tackle such a question, starting from the optimized CG FF parameters obtained at convergence with 

SwarmCG in Fig. 5a, we apply these parameters a posteriori to parametrize 2 additional low-resolution 

models of SOPC and DSPC lipids, and simulate the corresponding bilayers composed of 128 lipids in the 

liquid phase, at 303K and 333K respectively. It is worth noting that these models can be assembled using 

the previously calibrated CG beads as building blocks (non-bonded parameters), but most of the bonded 

parameters are still unknown. According to our topology definition, only those of the unsaturated tail of 

POPC can be recycled (see Sec. S4). This test therefore required another preliminary optimization 

procedure for calibrating exclusively the 12 unknown bonded parameters (3 bonds and 3 angles: 

equilibrium values and force constants), which we perform this time in a fully top-down fashion (no AA 

trajectories are provided for reference, as described in Sec. II B 4). The calibration of the additional 12 

bonded parameters required 10 hours of computation to reach 20 swarm iterations using 17 particles and 

requesting 34 CPUs (2 CG simulations of small bilayer patches per particle of the swarm).  

The APL and Dʜʜ measured for the obtained CG models of SOPC and DSPC across 200 ns of MD 

simulation of patches of bilayers of 128 lipids (parametrized using the transferred CG parameters obtained 

from the optimization of Fig. 5a) are found in very good agreement with experimental data (Fig. 5b: blue 

data from the CG models vs. black experimental target APL and Dʜʜ data), with a maximum deviation of 

<3% in the calculation of the Dʜʜ of DSPC. This is a remarkable result, as this second test using the low-

resolution models of Fig. 5 demonstrates the ability of our procedure to generate ab-initio CG lipid FFs 

even using incomplete training sets. Namely, the CG parameters obtained by optimizing the FF including 

some lipids in the training set can be then transferred also to lipid molecules that are outside the training set. 

It is worth noting that here we used as training set 4 CG simulations of small bilayer patches composed of 4 

different types of lipids. In this way, we could further calibrate FF parameters for modelling different types 

of lipids (e.g., SOPC and DSPC) with a reduced computational effort, by transferring some of the 

previously calibrated FF parameters, and calculating only the missing parameters. In comparison, obtaining 

the single POPC model in Fig. 3a required the calibration of 26 FF parameters, while obtaining 4 and then 6 

different lipid models required the calibration of only 42 and 54 FF parameters in total, respectively. While 

this is not the central purpose of this work, this demonstrates how the present approach could be scaled for 

the calibration of general FFs for many different types of lipids. Importantly, it is not forcefully required to 
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provide AA reference trajectories for each of the lipids for which one desires to optimize CG FF parameters 

for, as the present approach enables bottom-up and/or top-down scoring of the FF being calibrated. 

 

C. Parallel ab-initio calibration of mid-resolution implicit-solvent CG lipid force fields  

In this section we also demonstrate the ab-initio calibration of an implicit-solvent PC lipid CG FF using 4 

different lipid types in the training set, while in this case the lipids are represented by mid-resolution CG 

models (6-8 CG beads per lipid). The combined bottom-up and top-down multi-objective approach is 

always the same, and the conditions of the optimization are identical to these of the mid-resolution 

experiment in Sec. III A, for the types of parameters being optimized in the FF and the initialization of the 

swarm of particles. Also in this case, SwarmCG outputs transferable optimized CG parameters for POPC, 

DMPC, DOPC and DPPC lipid bilayers matching the experimental APL and Dʜʜ data for all 4 lipids within 

the experimental error (Fig. 6a: yellow and blue curves). The OT-B and OT-NB distances are effectively 

minimized (Fig. 6a: black and olive curves), with the structural features of the AA trajectories being 

reproduced in the CG models (Figs. S5-6). This ab-initio FF calibration required 40 hours of computation to 

reach 40 swarm iterations using 27 particles and requesting 54 CPUs (79 FF parameters, 4 CG simulations 

of small bilayer patches per particle of the swarm). 

 

Figure 6. Multi-objective ab-initio calibration of CG FF parameters using 4 mid-resolution models of PC lipids in the 
training set, in the liquid phase and in implicit solvent (DLPC: 303K, DPPC: 323K, DOPC: 303K, POPC: 303K). (a) 
For each lipid – (Left panels) green curve: loss during optimization, grey curve: loss calculated per lipid; (Middle 
panels) black and olive curves: OT-B and OT-NB metrics for the specific lipid; (Right panels) yellow and blue lines: 
APL and Dʜʜ for the specific lipid during optimization, displayed with window-averaging (solid) and without 
(shaded). The horizontal black lines set at 0 identify target experimental APL and Dʜʜ values. Diamonds represent 
values at convergence, obtained with the selected optimized CG FF parameters. (b) APL and Dʜʜ measured across 
200 ns for SOPC (303K) and DSPC (333K) using transferred FF parameters. 
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Also in this test, we evaluate the transferability of the optimized FF parameters obtained at convergence by 

building mid-resolution models of SOPC and DSPC and simulating bilayers composed of 128 lipids in the 

liquid phase, at 303K and 333K respectively. In this case, this requires calibrating just one additional angle 

(equilibrium value and force constant), which we did again in a fully top-down fashion. The APL and Dʜʜ 

measured for the obtained models of SOPC and DSPC using transferred FF parameters are found again in 

very good agreement with experimental data (Fig. 6b), and results are overall comparable to those of the 5 

beads per-lipid model. The calibration of the 2 additional bonded parameters required 3 hours of 

computation to reach 15 swarm iterations using 3 particles and requesting 16 CPUs (2 CG simulations of 

small bilayer patches per particle of the swarm).  

Altogether, the results presented in this and in the previous section demonstrates the effectiveness of 

SwarmCG, used with the parallel multi-objective paradigm presented herein, for producing optimized CG 

lipid FF of variable resolution. The input required for the process are: (i) a pre-defined CG mapping, which 

defines the resolution in the description of the lipids in the system (in this sense, a too low resolution – e.g., 

below 5 beads per lipid, was found to produce poor results and inefficiency in reaching the objectives), (ii) 

available experimental data and (iii) reliable higher-resolution for the systems that one wants to model. As 

anticipated, the computational cost for the process, which may seem non-negligible, is fully compensated by 

the fact that, in a few days, it is possible to obtain fairly accurate and transferable CG FFs. In this sense, we 

point out that the information present in the training set is important. For example, in the tests described 

above we obtain optimized CG FF parameters that can be transferred among PC lipids (and in particular, for 

those lipids which share the lipid types optimized herein). More complete FFs can be for sure obtained by 

including additional systems in the training set (e.g., PA, PG lipids, etc.). In such a case, the cost/benefit 

balance of the process is of prima importance. Noteworthy, the fact that SwarmCG is demonstrated to 

produce good results already with a minimal training set is very promising, as this could open the possibility 

to enrich the obtained FFs adding a limited number of systems to the training set. While future employment 

and testing of SwarmCG to develop new FFs for a growing number of classes of molecular systems will 

provide insights onto the limits and opportunities in terms of obtaining reliable FFs even using incomplete 

information, the results reported herein aim at demonstrating the potential of the approach, and to prove the 

robustness of the parameters that can be obtained with SwarmCG. An important point to guarantee is that 

such powerful data-driven approaches do better, comparably, or at least not worse than humans. With this 

aim, we designed the last control in silico experiment described in the following section.  

 

D. Control test: using SwarmCG starting from the Martini lipid force field parameters 

As a last test case, to control the robustness of the approach, we applied the same approach using the current 

version of the (explicit solvent) lipid models available in Martini 3.024. This time, we used 5 different high-

resolution PC lipids to be included in the training set, which optimization is again iteratively conducted in 

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
79

04
4



Accepted to J. Chem. Phys. 10.1063/5.0079044

18 

 

parallel using the same approach described previously for the other cases. Herein, we use this FF as a last 

control case. In fact, (i) this FF is considered a reference for the simulation of lipids – we thus expect 

SwarmCG to deviate minimally from the Martini 3.0 CG FF parameters –, and (ii) as the Martini FF 

provides a finer description of the lipids than that of the models developed in the previous sections, offering 

an additional test case for our approach.  

The conditions of the optimization are identical to these of the high-resolution experiment in Sec. III A, for 

the types of parameters being optimized in the FF and the initialization of the swarm of particles. After ~30 

swarm iterations the procedure reaches convergence (Fig. 7a: green curves), identifying a set of FF 

parameters that moderately improves the overall matching with experimental APL and Dʜʜ values set as 

target for the 5 lipids in the dataset (Fig. 7a: yellow and blue curves). This FF optimization required 7 days 

of computation to reach 30 swarm iterations using 23 particles and requesting 60 CPUs (42 FF parameters, 

5 CG simulations of small bilayer patches per particle of the swarm). We point out that here we are not 

aiming to provide an updated version of Martini 3.0 for lipids. A richer training set would be needed to this 

end. Furthermore, one should guarantee that the changes in the optimized LJ ε parameters obtained for the 

beads do not produce an impairment in the partition free-energies of the Martini beads (which have been 

developed based on such concept). However, the results of such test encourage us on the robustness of 

SwarmCG. For example, in all 5 cases we obtain results that variate just by some percentage point 

compared to the results obtained from the same 5 lipids with Martini 3.0. The result of Fig. 7a demonstrates 

that while in some cases we obtain a slight improvement (e.g., PDPC, POPC and DPPC), the optimized CG 

parameters perform slightly worse than Martini 3.0 parameters for other ones (e.g., DOPC and DMPC). 

This shows that in this case SwarmCG struggles in finding a way to improve these parameters, and this is as 

expected, considered the evolute version of this FF. This demonstrates that SwarmCG is found robust in this 

control experiment. The fact that the software cannot change much FFs, such as Martini 3.0, which are 

already quite optimized, provides even more value to the results obtained in the tests discussed in the two 

previous sections. 
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Figure 7. Multi-objective optimization of CG FF parameters using 5 high-resolution models of PC lipids in explicit 
solvent in the training set (DMPC: 303K, DPPC: 323K, DOPC: 303K, POPC: 303K, PDPC: 303K). (a) For each lipid 
– (Left panels) green curve: loss during optimization, grey curve: CG FF score for the specific lipid; (Middle panels) 
black and olive curves: OT-B and OT-NB metrics for the specific lipid; (Right panels) yellow and blue lines: APL 
and Dʜʜ for the specific lipid during optimization, displayed with window averaging (solid) and without (shaded), 
and for Martini models (dotted). The horizontal black lines set at 0 identify target experimental APL and Dʜʜ values. 
Diamonds represent values at convergence, obtained with the selected optimized CG FF parameters. (b) APL and 
Dʜʜ measured across 200 ns for SDPC (303K), DLPC (303K), SOPC (303K) and DSPC (333K) using transferred FF 
parameters (blue) and for Martini models (yellow). 

 

Also after such a control test, we tried to transfer the obtained FF parameters for modelling DLPC, DSPC, 

SOPC and SDPC and simulate bilayers in the liquid phase (Fig. 7b), staying within the framework of 

Martini 3.024 lipid models. A known limit with the current CG representations employed in Martini is that 

they do not allow differentiating between some types of lipids27,65. Here, the same models are used for 

representing, enumerated by pairs: DLPC and DMPC, SDPC and PDPC, DPPC and DSPC, and POPC and 

SOPC (Table S2). Therefore, while at convergence the experimental APL and Dʜʜ values were better fitted 

for the models of DPPC and POPC (Fig. 7a), the deviation from experimental data is increased when 

considering the same models for the representation of DSPC and SOPC, respectively (Fig. 7b). Similarly, 

the model obtained at convergence for DMPC slightly decreased the agreement with experimental Dʜʜ 

value (Fig. 7a), with respect to the original Martini 3.0 model, while the optimized model applied for 
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modeling DLPC yielded better agreement for this observable (Fig. 7b). Such additional tests demonstrate 

again that the SwarmCG optimized parameters perform comparably to the Martini 3.0 ones even when 

transferred to model lipids not included in the training set.  

 

IV. CONCLUSIONS 

We introduce an automated multi-objective FF optimization strategy and demonstrate its efficiency for 

developing optimized CG lipid FFs of variable resolution. The approach is general and can be used for 

optimizing explicit- or implicit-solvent FFs, with a variable resolution in the CG representation of the lipids. 

Newly devised OT-based metrics allow to quantify differences in the spatial organization of particles in 

molecular systems described at different resolutions. The parallel optimization of multiple lipid systems 

maximizes the transferability of the CG FF, and mitigates potential inaccuracies in the structure-based 

information (suboptimal AA FFs or limited MD sampling).  

An intrinsic drawback of multi-parametric FF optimization is that multiple sets of parameters may produce 

the same results (i.e., a high-dimensional problem is here formulated as a low-dimensional one). The 

transferability constraint, here induced by the fact that the building blocks of the FF (bonded and non-

bonded interactions between CG particle types) are conserved in different lipid systems and are optimized 

in parallel, efficiently guides the optimization and discards spurious solutions. As demonstrated, this allows 

to build a solid framework of shared and sampled interactions, eventually allowing to transfer the optimized 

CG parameters to model other lipids. While an optimized CG FF becomes more complete as the diversity of 

the training set increases (more interactions between different beads become better sampled in the context 

of different molecular systems), our demonstrations indicate that the multiple interactions present in such 

complex bilayer systems guarantee a satisfactory transferability even using a reduced number of lipids in 

the training set. For the lipids within the training set, SwarmCG generates optimized FF parameters that 

systematically reproduce target experimental observables. As a proof-of-concept, here we optimize CG FFs 

for PC lipids described at different resolutions. At the same time, the obtained parameters can be transferred 

to other types of lipids, suggesting that substantial improvements could be achieved also in high-resolution 

models and even using limited data with this procedure. Increasing the diversity of the training set, 

including also other types of lipids, should allow to obtain even more general and accurate CG lipid FFs.  

This automated multi-objective CG FF optimization strategy is general, and essentially requires that: (i) 

reference AA MD trajectories can be obtained for part of the lipids used in the training set (bottom-up 

requirement); (ii) reliable experimental data are available (top-down requirement); and (iii) the CG MD 

simulations used for testing the FF parameters are computationally accessible and sufficiently informative 

of the quality of the FF being optimized. Lipids thus constitute an appropriate use case, but the process can 

also be extended to parametrize FFs also for other classes of molecules for which reference 

experimental/simulation data are available. Because the form of the loss function used in this study is 
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simple, it would be straightforward to input additional top-down observables to be evaluated in simulations, 

and to be quantified as percentages of deviation from target values (i.e. similar to modifying the loss 

function from Eq. 11 to Eq. 1). Moreover, this approach makes an efficient use of HPC resources and scales 

efficiently. In fact, while enlarging the training set may seem to increase the computational burden, this 

makes the transferability constraints more informative and the convergence of the optimization faster. The 

cost of the optimization process is fully compensated by the benefit, considered that optimized and 

transferable force fields can be obtained in a few days of calculation. Given the revolutions that transferable 

FFs brought to the molecular modeling community, we envisage that multi-objective optimization 

approaches, such as that presented here based on SwarmCG, will have great impact in the evolution towards 

next generation FFs. 

 

SUPPLEMENTARY MATERIAL 

Supplementary material includes details on the functional form of the CG FFs for which the parameters are 

optimized, the various-resolution molecular models used in these experiments, their topologies, their 

optimized FF parameters obtained with SwarmCG, as well as the implementation for usage with HPC 

resources. Additional details are also provided concerning the submolecular features observed in the CG 

models obtained at the end of different FF optimization experiments, underlining the relevance of the OT-B 

and OT-NB metrics.  
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DATA AVAILABILITY 

The code used in this study for the optimization of the CG lipid models is available at: 

https://github.com/GMPavanLab/SwarmCGM, together with the models obtained at convergence for each 

experiment, as well as the configuration files used in this study, and all material necessary for running the 

software and for reproducibility testing. 
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