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Abstract—PMSMs are widely used in applications on electric
vehicles, robotics and mechatronic systems of industrial machin-
ery. Thus it becomes increasingly interesting to prevent their fault
or malfunctioning with Predictive Maintenance (PdM). However,
reaching this outcome could be difficult, especially if the sta-
tionary condition is not achieved and without additional sensors.
This paper examines the use of a load torque observer based
on Extended Kalman Filter for the diagnosis of electric drives
working under non-stationary conditions. The proposed Motor
Torque Analysis (MTA) is compared with the Motor Current
Signature Analysis by evaluating their diagnostic capabilities
under the assumed conditions. Finally, the results of bearing
failure detection under non-stationary conditions are presented,
highlighting the superior diagnostic capabilities of the MTA
under such conditions.

Index Terms—PMSM, non-stationary detection,MCSA-Motor
Current Signature Analysis, MTA-Motor Torque Analysis, EKF-
Extended Kalman Filter.

I. INTRODUCTION

Permanent magnet synchronous motors (PMSMs) are elec-
tric drives widely used in a wide range of industrial and
engineering fields due to their reliability, ruggedness and
simple construction. These motors are used in applications
on electric vehicles, in robotics and mechatronic systems of
industrial machinery, which will be an integral part of the
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upcoming cyber-physical production systems [1]. Due to their
spread in the above-mentioned applications, and their key
role [2] in guaranteeing performance and safety conditions
of systems [3], [4], it becomes increasingly interesting to
prevent their fault or malfunctioning with predictive main-
tenance (PdM). Among the established techniques used for
PdM, the Motor Current Signature Analysis (MCSA) is one
the most used for induction motors (IMs) [5], but it is also
applied to PMSMs under certain working conditions [6]. Other
established condition monitoring techniques often include vi-
brations, especially for mechanical fault diagnosis in steady-
state conditions. However, it is more invasive since sensors
must be installed on the drive, while MCSA requires only
current sensors. It is simply based on electric measurements
of the motor current that are analysed using Fourier analysis.
Indeed, under the assumption of constant or quasi-constant
speed, motor faulty conditions can be detected in the signal
power spectrum. However, when the constant speed may not
be guaranteed, faulty behaviour can be masked and damped
by the supply harmonics. Indeed, in many systems actuated by
PMSMs, constant speed assumption is unrealistic and faulty
harmonics in the power spectrum are hardly identifiable. This
is due to the rapid change of the electric signal, which crosses
different frequencies over time. In such cases, diagnosis with
MCSA could results unreliable if merely applied to transient
conditions, as highlighted both in robotic applications [7]
and in industrial machinery [8]. Motors’ diagnosis in non-
stationary conditions can be relevant for different purposes,
such as those involving control, safety, or evaluation of health
conditions. Just think to the forthcoming electric vehicles
equipped with all-wheel drive, whether they are four or two-
wheel drive [9], [10], where the motors rapidly changing
speed. Furthermore, all applications with torque control for
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fast precise tasks, for instance, robotic collaborative tasks
or high-performance mechatronic systems are of interest. In
high performances electrical drives, observers are often used
as established techniques to replace sensors; very often load
torque observers are used for control purposes [11], [12].
This because torque sensors are often bulky and expensive.
Thus, they cannot be a good choice for most applications,
while torque estimation allows having a cost-less, reliable,
and more compact drive system. Only Stopa et al. [13]
propose for the first time a load torque analysis investigating
the mathematical relationships and the frequency response
using the linear Luenberger observer for IMs. However, their
approach is applicable only to motor running at a constant
speed and requires additional voltage sensors for magnetic
flux and electromagnetic torque estimation. On the other hand,
condition monitoring and diagnosis of electrical drives using
observer-based methods in non-stationary conditions are not
well established. The present paper intends to investigate
the usefulness of a load torque observer for diagnosis on
electric drives working in non-stationary conditions. Results
are evaluated comparing the MTA with the most widely used
technique that uses the same signals for diagnosis (MCSA).
Both techniques do not require the installation of additional
sensors except those already present in the drive. The paper is
organised as follows: section II introduces the PMSM model
and the torque estimation problem, section III shows the
results, while section IV concludes the paper.

II. PMSM MODELING AND LOAD TORQUE ESTIMATION

A. Mathematical model of the PMSM
Referring to the well known model of a PMSM in Park’s

domain [14], the relation between the three-phase currents Ia,
Ib, Ic and the direct, quadrature, and zero current components
Id, Iq and I0 in a rotating reference dq-frame isIdIq

I0

 =

[
cos(θe) cos(θe− 2π

3 ) cos(θe+
2π
3 )

− sin(θe) − sin(θe− 2π
3 ) − sin(θe+

2π
3 )

1/2 1/2 1/2

]IaIb
Ic

 (1)

where θe = P ·θm is the electrical position of the dq-frame in
radiants, θm is the angular position, and P is the pole number.
According to this model, two electric equations can be derived:

Vd = RsId + Ld
dId
dt
− PωrLqIq, (2)

Vq = RsIq + Lq
dIq
dt

+ Pωr(IdLd + φpm), (3)

where Vd and Vq are the voltages in the Park domain, Rs, Ld
and Lq are the electric parameters of the equivalent circuit
of the stator, ωr is the angular velocity of the rotor and φpm
is the permanent magnet flux linkage. The electromagnetic
torque can be estimated as:

Te =
3

2
P Iq(φpm + Iq(Ld− Lq)). (4)

The assumption of non salient poles implies that Ld = Lq =
Ls
2 , and the equation (4) is simplified as follows:

Te =
3

2
PIqφpm. (5)

In addition to the electric equations, we define the well known
mechanic equations of the rotor:

dωr
dt

=
1

J
(Te − Tl), (6)

dθe
dt

= Pωr. (7)

The load toque Tl is assumed to vary slowly w.r.t. the
dynamics of the electric equations which changes rapidly, and
w.r.t. the sample time (ts ' 10−5sec). Thus, we can assume
it to be constant during a sampling period without lost of
information:

dTl
dt
' 0. (8)

The state vector x, the input vector u and the output
vector y of the state space representation are chosen as
x = [Id, Iq, ωr, θe, Tl]

T , u = [Vd, Vq]
T and y =

[Id, Iq, ωr, θe]
T . According to forward Euler approximation,

we can obtain the discrete time state space system represen-
tation as follows:

xk+1 = f(xk, uk) + wk = A(xk)xk +Buk + wk

yk = h(xk) + vk = Cxk + vk
(9)

where:

A(xk) =


1−Ts

Rd
Lq

Ts
Ld
Lq

0 0 0

−ωrTs
Ld
Lq

1−Ts RsLq −Tspφpm 0 0

0 3
2
p
J φpm 1 0 −TsJ

0 0 Tsp 1 0
0 0 0 0 1


B =


Ts
Ld

0

0 Ts
Lq

0 0
0 0
0 0

C =

[
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

] (10)

with wk and vk, respectively, the process and observation
noises which are assumed to be zero mean Gaussian variables
with covariances:

Q =

[
0.1 0 0 0 0
0 0.1 0 0 0
0 0 0.1 0 0
0 0 0 0.1 0
0 0 0 0 1

]
, R =

[
0.25 0 0 0
0 0.25 0 0
0 0 0.5 0
0 0 0 0.5

]
. (11)

Q and R will play the role of design matrices of the
Extended Kalman Filter and have been chosen using a trial-
and-error approach; further details regarding the choice are
given in Section II-B1.

B. EKF load torque estimation
The EKF is the tool chosen to estimate the load torque Tl,

i.e., one of the state vector variables [11]. Table I summarizes
the steps of the EKF algorithm. In our notation Fk and
Hk are the state transition and observation matrices defined
respectively as:

Fk =
∂f

∂x
|xk−1|k−1,uk , Hk =

∂h

∂x
|xk−1|k−1

. (12)

Matrices Pk|k−1 and Pk|k are the predicted and innovated state
covariances respectively. The Initialization values for the EKF
algorithm (Tab. I) are as follow:

P0|0 = diag
[
0.1 0.1 5 1 10

]
x0|0 =

[
0 0 0 0 0

]T
.

(13)



TABLE I
THE EKF ALGORITHM

Prediction step

xk|k−1 = A(xk)xk−1 +Buk
Pk|k−1 = FkPk−1|k−1F

T
k +Q

Innovation step

Kk = Pk|k−1H
T
k (HPk|k−1H

T +R)
xk|k = xk|k−1 +Kk(yk −Hxk|k−1)

Pk|k = Pk|k−1 −KkHPk|k−1

1) Design and tuning of Q, R, P0|0: The critical point for
the EKF design is the choice of the covariances matrices which
affect the performance and the convergence of the observer as
well [12]. Varying P0|0 yields to a different amplitude of the
transient, but does not affect transient duration and steady-state
conditions. Q gives a statistical description of the reliability
of the model and of the parameters uncertainty. R is related to
measurements noise. Higher the values, lower the confidence
in the measurements.

C. Bearing fault modelling

The model of a bearing fault proposed in [15] states that
this fault can be observed by the dynamic rotor equation:

dω

dt
=

1

J
(Te − β(θr)ωr − Tl), (14)

where:
β(θr) = β4β (15)

describes an inner bearing section behavior that varies
linearly with respect to the angular position. With respect
to (6), equation (14) contains an additional term that the
EKF observer confuses in the Tl estimation. Then, from now
on, we will distinguish the real torque Tl by the torque Tlo
estimated with the Extended Kalman Filter. This last contains
two different quantities when a mechanical fault arises (e.g.,
bearing fault). One is related to the torque load and the other
one depends on the fault contribution, as follows:

Tlo = Tl + β(θr)ωr. (16)

Consequently, in order to detect this fault, we can analyse the
signal Tlo that comes out from our observer and from this
information pull out the faulty therm. Trivially in this paper,
the magnitude of the signal is evaluated and a threshold is
selected to detect the defecting frequencies. In the following
section we investigate the proposed approach.

III. RESULTS

In this Section, experimental and simulation results are
compared first to validate the dq-model of the PMSM, derived
in Section II. Equation (10) represents the state-space model
of the industrial PMSM (Fig. 1) whose parameters are listed
in Table II. Then, the EKF is used in simulation to estimate
the torque load Tl (eq.(6)) in both cases of healthy conditions
and bearing fault (eq. (15)).

A. PMSM model validation

To validate the PMSM model, the currents of the two phases
(Ia, Ib) and the rotor position are acquired from the real asset
(Fig. 1). Having the measurements of the two phases currents
the third one can be simply derived from Ia + Ib + Ic = 0.
The rotor position measurements (θr) is used to calculate
the d and q current components of the Park transform using
equation (1). Through equations (2), (3), (6) (7) and the Id, Iq
signals obtained from the real PMSM, it is possible to compare
dynamic behaviours of the real asset with its model, as shown
in Figure 2. Then, the Root Mean Square Error (RMSE)
between the two wr signals is calculated to validate results
as

RMSE =

√√√√ 1

N

N∑
k=1

(yk − ŷk)2, (17)

where yk, ŷk are the real and simulated ωr and N is the length
of the signals. As shown in Figure 2, the dynamic behaviour
of the model is very consistent. The wr signal obtained from
simulations is almost perfectly overlapped to the real one, the
RMSE value is ' 0.70. The diagnosis with MTA is compared
with MCSA technique using the PMSM model in a double
loop control scheme commonly used in electric motors [16].
The entire architecture is presented in Figure 3, here is possible
to notice the controllers and EKF observer interaction, the
measured signals and the estimated ones. The Vd and Vq
voltage references to the Inverter source are converted into
the effective open and closure of the IGBTs (three-phase AC)
using the Space Vector Pulse With Modulation (SV-PWM)
technique [16].

B. Bearing fault analysis

The bearing fault can be modelled using a friction function
β(θr) (eq. (15)) as presented above. As already showed in
different work, in case of steady-state application (constant
reference speed) bearing faulty frequencies (fbf ) can be de-
tected in the one-phase currents harmonics using MCSA [17],
[18]. These frequencies depend on the rotor position θr and
then in the motor speed ωr:

fbf = ±k fr. (18)

where k is any integer and fr is the rotational frequency
of the rotor. However, in general it may be difficult to
detect mechanical faults in the current spectrum, especially
when the constant speed assumption can not be fulfilled.
Usually, advanced signal processing tools have to be used to
extract faulty features from these signals. Indeed, in case of
mechanical faults under non-stationary conditions the faulty
frequencies in the current spectrum can be masked or damped.
The motor supply frequency and its harmonics mask and
overhang mechanical defecting frequencies that show a lower
contribute. This last assertion has been already proven in two
other previous works [7], [8], but more details will be clearer
during the results discussion. Thus, since mechanical faulty
frequencies observed in the current spectrum are caused by



Fig. 1. Laboratory test bench developed by the authors using an industrial
electric motor. (PMSM)
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Fig. 2. Superimposition of the wr signals, in red the simulated while in black
the real feedback of the PMSM.

anomalous oscillations produced by a mechanical defect in
the rotor shaft, in the transmission system or the load, we
propose to use an EKF load torque observer to detect and
diagnose this behaviour. The estimated signal (Tlo) is analysed
to extract faulty characteristic. We remark that the torque
load signal does not contain electric frequencies related to the
motor supply, leading to analyse a signal without additional
information not useful for diagnosis.

C. Results discussion

The filtered and estimated state vector x̂ =
[Id, Iq, ωr, θe, Tlo] obtained with the EKF is presented
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Fig. 3. Double velocity loop control scheme used in simulation. The blue
PMSM represents the model of the electric drive while the red cube represents
the bearing fault model. The EKF is drawn in the bottom part of the image
with input uk , measurement yk and prediction x̂.

in Figure 4. The reference speed profile used (Fig. 3) is a
trapezoidal speed-time curve. Attached to the motor shaft is
modelled a load torque of 0.5Nm with relative coefficient
friction β listed in Table II. Two different simulations are
conducted running the PMSM in case of healthy conditions
and in case of bearing fault. During the simulations are
acquired the one-phase current Ia and the Tlo signal with a
sampling frequency of 2 kHz. The first signal is used to
perform MCSA, while the signal obtained with the observer
is used for MTA.

1) The priory knowledge: Considering the reference trape-
zoidal speed-time curve that goes from 0 to 288 [rad/s]
(Fig. 4), having a priory knowledge on the fault behaviour
we already know which frequencies should be monitored
according to equation (18). The trapezoidal speed signal
reaches for a short period (' 1 sec) the constant velocity
shape (wr = 288 [rad/s]), while for the remaining time a
constant acceleration profile is applied with varying speed. In
the constant speed period, the rotational frequency is equal to
fr = 45.83[Hz]. Thus, according to (18) in the current signal
(Ia) and in the estimated torque load signal (Tlo) we look
for harmonics related to fr which indicate that a bearing is
broken.

Figure 5 shows the one-phase measured current and its
FFT when the PMSM is running in healthy conditions. While
Figure 6 shows the same one-phase current acquisition and
relative FFT when the bearing fault arises. As it is possible
to notice, the FFT of the current signal presents all the
frequencies crossed over time with a bigger peak related to
the inverter supply on fe = 229.15Hz (upper image of Fig.
5). This peak is related to the short period of constant speed
assumption (fr = 45.83, Hz) considering that the electric
supply frequency fe = P fr where P is the poles pairs.
Since we are working with a synchronous motor, in which
the rotational frequency (fr) is synchronous with the supply
frequency (fe), we have that fe starts from 0 Hz, goes to
229.15 Hz and comes back to 0 Hz in 3.5 sec to follow
the trapezoidal speed reference profile. This causes the spread
of the frequencies in all the spectrum of the measured one-
phase electric signal because of non-stationary conditions. The
analysis of this signal and the detection of the frequency
peak related to the bearing fault is hard without using ad-
vanced processing techniques. Indeed, most of the defecting
frequencies are damped by electrical frequencies related to
the supply, as it is clearly visible in the upper image of Figure
6 by evaluating the signal frequency content. Regarding the
proposed MTA, Figure 7 shows the Tlo estimation in case of
healthy conditions and its FFT. While in Figure 8 is shown the
Tlo estimation in case of bearing fault with relative FFT. As
it can be seen, the fault signature is clearly visible in the Tlo
spectrum and can be identified by considering the frequency
difference between 7 and 8. Referring to the measured one-
phase current Ia, the Tlo signal may contain frequencies
only when mechanical malfunctions arise. Indeed, in case
of healthy conditions Tlo does not contain any frequency
content. Comparing diagnosis results of MTA and MCSA,
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Fig. 4. Id, Iq , ωr, θe, Tlo estimation in case of PMSM healthy conditions.
Starting from the bottom in red the Tlo signal acquired during trapezoidal
speed-time curve ωr . In black the electric position θe of the dq-frame and
ωr estimation, while in blue the dq currents.

shown in Figure 6 and Figure 8 respectively, can be evidenced
the superior capability of MTA of detecting failures in non-
stationary conditions. Using MTA, even under non-stationary
conditions it is straightforward to detect defecting frequencies.
Regarding the shape of the Tlo signal, it can be noticed that it
strictly depends on the dynamics behaviour of the PMSM. This
depends on how much accurately is modelled the load torque
equation. The robustness of the torque estimation by EKF has
been already analyzed in [12] and [19]. Since we assume that
the variation of the load torque (Ṫl) is zero in a small period,
only when the constant speed phase is reached the Tl value is
well estimated, as clearly explained in [19]. During transient,
indeed, it may be present an amplitude difference depending
on the parameters uncertainty (e.g., inertia J , viscous damping
β, etc). However, for diagnosis purposes, this does not affect
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Fig. 5. In the bottom image is shown the Ia current in case of healthy
conditions, while the upper image shows the FFT of the Ia signal.
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Fig. 6. In the bottom image is shown the Ia current in case of bearing fault,
while the upper image shows the FFT of the Ia signal.

the reliability of the proposed method. Indeed, it is really
interesting to notice that the faulty frequencies belonging to
the bearing can be easily detected once performed the Fourier
analysis on the estimated Tlo.

IV. CONCLUSION AND FUTURE TRENDS

This paper proposes the MTA based on Extended Kalman
Filter for diagnosis of electric drives under non-stationary
conditions. The observer allows to use the same inputs of
MCSA without oversensoring the system. Thus, the results
are compared with the well-known MCSA diagnosis technique
and superior diagnostic capabilities are shown under the as-
sumed conditions especially for mechanical defects affecting
the load torque. In future works, the MTA will be tested
introducing failures in the real asset. Furthermore, will be
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discussed the possibility of using the proposed technique to
develop a reliable PdM supervision system.
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