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A Virtual Element Method coupled with a Boundary Integral Non
Reflecting condition for 2D exterior Helmholtz problems

L. Desiderioa,∗, S. Fallettab, L. Scuderib

aDipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma,
Parco Area delle Scienze, 53/A, Parma, Italia

bDipartimento di Scienze Matematiche “G.L. Lagrange”, Politecnico di Torino,
Corso Duca degli Abruzzi, 24, 10129, Torino, Italia

Abstract

We present a new numerical approach to solve 2D exterior Helmholtz problems defined in un-
bounded domains. This consists in reducing the infinite region to a finite computational one Ω,
by the introduction of an artificial boundary B, and by applying in Ω a Virtual Element Method
(VEM). The latter is coupled with a Boundary Integral Non Reflecting Condition defined on B (in
short BI-NRBC), discretized by a standard collocation Boundary Element Method (BEM). We
show that, by choosing the same approximation order of the VEM and of the BI-NRBC discretiza-
tion spaces, the corresponding method allows to obtain the optimal order of convergence. We test
the efficiency and accuracy of the proposed approach on various numerical examples, arising both
from literature and real life application problems.

Keywords: Exterior Helmholtz problems, Virtual Element Method, Boundary Element Method,
Non Reflecting Boundary Condition.

1. Introduction

In the last years the introduction of the Virtual Element Method (VEM) [7, 9] has allowed
to broaden the classical family of the Finite Element Method (FEM) for the discretization of
problems described by Partial Differential Equations (PDEs). In particular, VEMs generalize
FEMs for what concerns both the decomposition of the computational domain and the definition
of the local discrete spaces. Indeed, FEMs are typically constructed on triangular/tetrahedral
or quadrilateral/hexahedral meshes, while VEMs can be defined on more general meshes such
as polygons/polyhedra. It has been shown that the main advantage of using such meshes is the
possibility of significantly simplifying the decomposition of domains with complex geometry and
the reduction of the complexity of the adaptive mesh refinements. Additionally, VEMs over-
come the key difficulty faced in designing a polygonal version of the FEMs for what concerns
the construction of the discrete spaces. In the standard FEMs, the approximant basis functions
are polynomials defined by closed and relatively simple formulas on each triangular/tetrahedral
or quadrilateral/hexahedral element. However, when the mesh contains elements of more gen-
eral shape, these local polynomial spaces are awkward and not rich enough to produce numerical
schemes characterized by optimal local approximation properties and by a low computational cost.
On the contrary, in the VEM formulation, the global discrete function space is built starting from
local spaces that are “virtual”, in the sense that they contain polynomials as in the FEM, but
include also more general functions, whose pointwise values never need to be determined or eval-
uated in practice.
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The VEM, introduced in [7] for the Poisson equation, has been applied to a wide variety of prob-
lems. We mention the pioneering papers concerning linear elasticity [8], inelasticity [5], plate
bending problems [15], elliptic convection-reaction-diffusion problems [10], as well as Stokes prob-
lems [4] and fluid flows in fractured media [12, 13]. As far as the authors are aware, in literature all
papers dealing with VEMs treat problems set in bounded domains and, in particular, there is no
application of these methods to simulate wave propagation phenomena in infinite or unbounded
regions, which are often encountered in mathematical models associated with acoustic, aerody-
namic, geophysical, electromagnetic and many other engineering and science disciplines.
One class of numerical methods to solve exterior homogeneous problems is based on a re-formulation
of the original PDE as an equivalent Boundary Integral Equation (BIE), whose unknown represents
a contour/ surface distribution on the boundary. It is however known that, once the boundary dis-
tribution is retrieved by means of a Boundary Element Method (BEM) [29, 30], the solution of the
original problem at any point of the exterior domain is obtained by computing boundary integrals.
This procedure may result not efficient, especially when the solution is needed at many points of
the infinite domain. Alternatively, when one is interested in studying the wave phenomenon in a
particular subregion and/or when the medium presents inhomogeneities within a bounded region,
it is possible to reduce the unbounded domain into a bounded computational one, delimited by a
chosen artificial boundary. On this latter a suitable Non Reflecting Boundary Condition (NRBC)
is imposed and the new problem, defined in the bounded region, is solved by a domain method
such as Finite Differences (FD) or Finite Elements (FE).

The NRBC must guarantee that the solution of the problem, defined in the finite computational
domain, coincides with the restriction to the computational domain of the solution of the original
PDE. The NRBCs are usually divided into two main categories: the local (approximated) and
the global (exact) ones. For the formers we refer to [24, 25]. The latter are generally defined
by a known Boundary Integral (BI) relationship that the solution and its normal derivative must
satisfy at the artificial boundary. The BI-NRBCs are nowadays widely used since they offer many
advantages with respect to the local ones. Among them, we mention that they allow to consider
artificial boundaries of arbitrary shape and they are transparent, in the sense that they prevent
spurious reflections caused by the reduction of the physical domain to a bounded one, both when
convex or non-convex artificial boundaries are considered. Moreover, they can be used in situations
of multiple scattering and of non trivial data, whose (local) supports do not have necessarily to
be included in the finite computational domain. They have been applied to several stationary and
time dependent problems in combination with FD or FE methods (see, for example, [2, 6, 21]).

By virtue of the above mentioned benefits with respect to standard FEMs, in this paper we
propose the use of a VEM coupled with a BI-NRBC to solve exterior 2D Dirichlet problems
for the Helmholtz equation. We mention that, in literature, VEMs have been applied to the
Helmholtz equation only in the case of interior problems and with a particular choice of the VEM
discretization space that include plane-wave functions [27]. Here, we combine a standard VEM of
order k with a BI-NRBC discretized by a classical collocation BEM of the same order k, within
the context of conforming meshes. We remark that the numerical scheme that we propose allows
in principle virtual element spaces of order k coupled with boundary element space of order 1. At
the current stage of the implementation of the method, the choice of the same order for both the
VEM and the BI-NRBC becomes mandatory to preserve the global accuracy.

The paper is organized as follows: in Section 2 we present the model problem for the Helmholtz
equation, its restriction to a bounded region of interest by the introduction of the BI-NRBC and the
variational formulation associated to the problem reformulated in the finite computational domain.
In Section 3 we describe the main features of the VEM and of the BI-NRBC and their corresponding
discretizations. In Section 4 we present various numerical simulations to validate the proposed
approach. In the first example we show the optimal order of convergence of the scheme in the
L2-norm for a benchmark problem associated to different wave numbers. Moreover we highlight
that, when high-frequencies are considered, we achieve a prescribed accuracy of the numerical
solution by increasing the order of the VEM/BI-NRBC discretization spaces, rather than the mesh
density, with a not significant increasing of the complexity. Finally, some interesting applications
to exterior acoustics are provided. The considered challenging problems are: i) spinning wave
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propagation; ii) scattering of plane waves by single or multiple rigid obstacles. The extensive
testing have confirmed the robustness of the proposed approach as well as its feasibility to be
applied to a wider set of exterior problems, reduced to finite computational domain of generic
(even non-convex) shapes.

2. The model problem

In a fixed Cartesian coordinates system x = (x1, x2)
>, we consider an open bounded domain

Ωi ⊂ R2 with boundary Γ := ∂Ωi and we denote by Ωe := R2\Ωi the exterior unbounded domain.
We are interested in the numerical solution of the following frequency-domain wave propagation
problem in Ωe: 

∆ue(x) + κ2ue(x) = 0 x ∈ Ωe

ue(x) = g(x) x ∈ Γ

lim
‖x‖→∞

‖x‖ 1
2

(
∇ue ·

x

‖x‖
− ıκue

)
= 0.

(1a)
(1b)

(1c)

In the above problem, Equation (1a) is known as Helmholtz equation, Equation (1b) represents a
boundary condition of Dirichlet type with datum g, and Equation (1c) is the Sommerfield radia-
tion condition, that ensures the appropriate behaviour of the complex-valued unknown function
ue at infinity. Furthermore, ∇ and ∆ denote the nabla and Laplace operators, respectively, and ı
stands for the imaginary unit.
We recall that the given wave number κ is related to the speed of the wave propagation c by
the relation κ = ω/c, being ω the angular frequency. The corresponding wavelength λ = 2π/κ
allows to distinguish two regimes of interest: when λ is small compared to the size of Ωi, i.e.
κdiam(Ωi) > 2π, we are in the so-called high-frequency regime; when κ diam(Ωi) < 2π, we deal
with problems in the low-frequency regime.
In the sequel we assume that g ∈ H1/2(Γ) to guarantee existence and uniqueness of the solution
ue ∈ H1

loc(Ωe) of Problem (1) (see [17]).

As many practical situations require, we aim at determining the solution ue of Problem (1) in
a bounded subregion of Ωe surrounding Ωi. To this end, we introduce an artificial boundary B
which allows to decompose Ωe into a finite computational domain Ω, bounded internally by Γ and
externally by B, and an infinite residual one, denoted by Ω∞, as depicted in Figure 1.

Ωi

Ω

Ω∞

n∞

n

BΓ

Figure 1: Model problem setting.
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Introducing u and u∞, which represent the restrictions of the solution ue to Ω and Ω∞, respectively,
and denoting by n and n∞ the unit normal vectors to B pointing outside Ω and Ω∞, we impose
the following compatibility and equilibrium conditions (recall that n∞ = −n):

u(x) = u∞(x) x ∈ B
∂u

∂n
(x) = −∂u∞

∂n∞
(x) x ∈ B.

(2a)

(2b)

To obtain a well posed problem in Ω, we need to impose a proper boundary condition on B. It is
known that the solution u∞ in Ω∞ can be represented by the following Kirchhoff’s formula:

u∞(x) =

ˆ
B
G(x,y)

∂u∞
∂n∞,y

(y) dBy −
ˆ
B

∂G

∂n∞,y
(x,y)u∞(y) dBy x ∈ Ω∞ \ B, (3)

in which G is the fundamental solution of the 2D Helmholtz problem. The expression of G and of
its normal derivative in (3) are given by

G(x,y) =
ı

4
H

(1)
0 (κr) and

∂G

∂n∞,y
(x,y) =

ıκ

4

r · n∞,y
r

H
(1)
1 (κr), (4)

where r = ‖x− y‖ represents the distance between the source point x and the field point y, and
H

(1)
m denotes the m-th order Hankel function of the first kind. Introducing the single-layer integral

operator V : H−1/2(B)→ H1/2(B)

V ψ(x) :=

ˆ
B
G(x,y)ψ(y) dBy, x ∈ B (5)

and the double-layer integral operator K : H1/2(B)→ H1/2(B)

Kϕ(x) :=

ˆ
B

∂G

∂n∞,y
(x,y)ϕ(y) dBy, x ∈ B, (6)

the trace of (3) on B reads (see [17])

1

2
u∞(x)− V ∂u∞

∂n∞,y
(x) +Ku∞(x) = 0, x ∈ B. (7)

Equation (7), which expresses the natural relation that u∞ and its normal derivative have to
satisfy at each point of the artificial boundary, is imposed on B as an exact (non local) BI-NRBC
to solve Problem (1) in the finite computational domain.

Thus, taking into account the compatibility and equilibrium conditions (2a)-(2b), and intro-
ducing the notation w(x) := ∂u

∂n (x), the new problem defined in the domain of interest Ω takes
the form: 

∆u(x) + κ2u(x) = 0 x ∈ Ω

u(x) = g(x) x ∈ Γ

1

2
u(x) + V w(x) +Ku(x) = 0 x ∈ B.

(8a)
(8b)

(8c)

We point out that w, which is defined on the boundary B in general by means of a trace operator
(see [28]), is an additional unknown function. In order to use a variational method for (8a)-(8b)
and to apply a collocation approach for (8c), we consider the weak form only for the Helmholtz
equation and we impose the BI-NRBC in its strong form, i.e. pointwise. To this end, we set

H1
0,Γ(Ω) :=

{
u ∈ H1(Ω) : u

Γ
= 0
}

and H1
g,Γ(Ω) :=

{
u ∈ H1(Ω) : u

Γ
= g
}
, (9)
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we introduce the bilinear forms a,m : H1(Ω)×H1(Ω)→ C given by

a(u, v) :=

ˆ

Ω

∇u(x) · ∇v(x) dx and m(u, v) :=

ˆ

Ω

u(x)v(x) dx, (10)

and the L2(B)-inner product (·, ·)B : L2(B)× L2(B)→ C

(w, v)B =

ˆ

B

w(x)v(x)dBx, (11)

extended to the duality pairing on H−1/2(B)×H1/2(B) denoted by 〈·, ·〉B.
The variational formulation of Problem (8) consists in finding u ∈ H1

g,Γ(Ω) and w ∈ H−1/2(B)
such that − a(u, v) + κ2m(u, v) + 〈w, v〉B = 0 ∀ v ∈ H1

0,Γ(Ω)

1

2
u(x) + V w(x) +Ku(x) = 0 x ∈ B.

(12a)

(12b)

3. Discretization

3.1. Discrete variational formulation
We start by assuming that the bounded domain Ωi is a polygon and that the artificial bound-

ary B is of piecewise linear type, so that Ω is a domain with polygonal boundaries. We remark
that this choice avoids the issue of the approximation of the geometry and allows to retrieve the
optimal rate of convergence of the method by using standard (non curvilinear) elements both in
the interior VEM and for the approximation of the BI-NRBC.
In order to obtain the discrete counterpart of Problem (12), we consider an unstructured mesh
Th = {E}, that represents a coverage of the domain Ω with a finite number NE of simply connected
polygons. The mesh width h is related to the spacing of the grid.
We suppose that each element E ∈ Th has nE vertices V1, . . . ,VnE and its boundary ∂E is made
of nE line segments e1, . . . , enE . Furthermore, we denote by VE , hE and |E| the mass center, the
diameter and the measure of E, respectively. Additionally, we call NV and Ne the numbers of
total vertices and edges of Th, respectively.
Finally, we denote by T Bh the decomposition of the artificial boundary B, inherited from Th, which
consists of NB straight segments.

Let V kh ⊂ H1(Ω) and W k
h ⊂ H−1/2(B) denote two (finite dimensional) discrete spaces associated

to the meshes Th and T Bh . The parameter k ≥ 1 denotes the degree of the polynomials defined on
each element E that are contained in the spaces V kh , and it is related to the order of accuracy of
the method. We consider the following discrete problem: find uh ∈ V kh,g and wh ∈W k

h such that− ah(uh, vh) + κ2mh(uh, vh) + 〈wh, vh〉h = 0 ∀ vh ∈ V kh,0
1

2
uh(x) + V wh(x) +Kuh(x) = 0 x ∈ B,

(13a)

(13b)

having set
V kh,0 := V kh ∩H1

0,Γ(Ω) and V kh,g := V kh ∩H1
g,Γ(Ω). (14)

In Equation (13a), ah,mh : V kh × V kh → C are two discrete bilinear forms approximating a and m
respectively, while 〈·, ·〉h : W k

h × V kh → C represents an approximation of 〈·, ·〉B.

In the next sections we describe in detail the virtual element space V kh and the boundary element
space W k

h .
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3.2. Discretization by the Virtual Element Method in the computational domain
Before formally characterizing the discrete space V kh , we observe that the introduction of the mesh
Th allows to split the bilinear forms a and m defined in (10) into a sum of local bilinear forms
aE,mE : H1(E)×H1(E)→ C, such that

a(u, v) =
∑
E∈Th

aE(u, v) =
∑
E∈Th

ˆ

E

∇u(x) · ∇v(x) dx (15)

m(u, v) =
∑
E∈Th

mE(u, v) =
∑
E∈Th

ˆ

E

u(x)v(x) dx. (16)

Denoting by Pk(E) the space of polynomials of degree k defined on E (for k = −1 we set P−1(E) :=

{0}), we introduce the H1-projection operator Π∇,Ek : H1(E)→ Pk(E), such that

aE
(

Π∇,Ek v, q
)

= aE (v, q) ∀ q ∈ Pk(E). (17)

Being Π∇,Ek defined up to a constant, to determine it uniquely, it is necessary to introduce a pro-
jector onto constants PE0 := Π∇,E0 : H1(E) → P0(E) such that PE0 (Π∇,Ek v) = PE0 (v). Following
[9], we define PE0 as 

PE0 (v) :=
1

NE

NE∑
j=1

v(Vj) for k = 1

PE0 (v) :=
1

|E|

ˆ

E

v(x) dx for k ≥ 2.

(18)

Additionally, we introduce the L2-projection operator Π0,E
k : L2(E)→ Pk(E), defined such that

mE
(

Π0,E
k v, q

)
= mE (v, q) ∀ q ∈ Pk(E). (19)

The space V kh is built element-wise, by preliminarily introducing for each E ∈ Th the local finite
dimensional augmented virtual space Ṽ kh (E) and the local enhanced virtual space V kh (E) defined
as (see [1], Section 3 for details)

Ṽ kh (E) :=

{
vh ∈ H1(E) : vh |∂E ∈ C

0(∂E), vh |e ∈ Pk(e) ∀ e ⊂ ∂E, ∆vh ∈ Pk(E)

}
(20)

and

V kh (E) :=
{
vh ∈ Ṽ kh (E) : mE

(
Π∇,Ek vh, q

)
= mE (vh, q) ∀ q ∈ Pk(E)/Pk−2(E)

}
, (21)

where Pk(E)/Pk−2(E) stands for the space of all polynomials of degree k on E that are L2-
orthogonal to all polynomials of degree k − 2 on E. It is possible to prove that the dimension of
V kh (E) is (see [1], Proposition 2)

n := dim(V kh (E)) = knE +
k(k − 1)

2
(22)

and that a generic element vh of V kh (E) is uniquely determined by the following n conditions (see
[1]):

• its values at the nE vertices of E;

• its values at k − 1 uniformly spaced internal points of every edge e ⊂ ∂E, for k > 1;
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• its moments up to order k − 2 in E, defined for k ≥ 2 as:

1

|E|

ˆ

E

vh(x)q(x) dx ∀ q ∈ Pk−2(E). (23)

As shown in [1], the space Pk(E) is included in V kh (E). Now, choosing an arbitrary but fixed
ordering of the degrees of freedom such that these are indexed by i = 1, · · · , n, we introduce as in
[7] the operator dofi : V kh (E) −→ R, i = 1, · · · , n, defined as

dofi(vh) := the value of the i-th local degree of freedom of vh.

The basis functions {Φj}nj=1 chosen for the space V kh (E) are the standard Lagrangian ones, such
that

dofi(Φj) = δij , i, j = 1, . . . , n, (24)

δij being the Kronecker delta. The key feature of the VEM consists in computing the local bilinear
forms aE and mE without the need of knowing a closed form of the basis functions. Indeed, we
remark that, according to the definition of V kh (E), it is not possible to compute the quantities
aE(uh, vh) andmE(uh, vh), being an element of V kh (E) not explicitly known in the interior of E. On
the contrary, the bilinear forms aE(q, vh) and mE(q, vh) are exactly computable when q ∈ Pk(E)
and vh ∈ V kh (E), since in this case the expression of vh inside E is not needed. Indeed, by using
the Green’s formula

aE(q, vh) =

ˆ

E

∇q(x) · ∇vh(x) dx = −
ˆ

E

∆q(x)vh(x) dx +

ˆ

∂E

∂q

∂n
(x)vh(x) dx,

we get that the right hand side integrals are computable: the first according to (23) since ∆q ∈
Pk−2(E); the second one since ∂q/∂n ∈ Pk−1(E) and vh ∈ Pk(∂E).
Again, the condition in (23) allows to compute

mE(q, vh) =

ˆ

E

q(x)vh(x) dx ∀q ∈ Pk−2(E).

Since V kh (E) ⊂ Ṽ kh (E) ⊂ H1(E), the H1-projection Π∇,Ek is well defined on V kh (E) and we can
evaluate

mE(q, vh) =

ˆ

E

q(x)vh(x) dx =

ˆ

E

q(x)Π∇,Ek vh(x) dx ∀ q ∈ Pk(E)/Pk−2(E), ∀ vh ∈ V kh (E).

According to the above considerations, in order to define computable discrete local bilinear
forms aE

h : V kh (E) × V kh (E) → C and mE
h : V kh (E) × V kh (E) → C, following [7] and by using the

definition of Π∇,Ek and Π0,E
k , we first split aE and mE in a part that can be computed exactly (up

to the machine precision) and in a part that will be suitably approximated:

aE(uh, vh) := aE
(

Π∇,Ek uh,Π
∇,E
k vh

)
+ aE

((
I −Π∇,Ek

)
uh,
(
I −Π∇,Ek

)
vh

)
(25)

mE(uh, vh) := mE
(

Π0,E
k uh,Π

0,E
k vh

)
+mE

((
I −Π0,E

k

)
uh,
(
I −Π0,E

k

)
vh

)
, (26)

I being the identity operator. The implementation steps for the computation of aE
(

Π∇,Ek uh,Π
∇,E
k vh

)
and mE

(
Π0,E
k uh,Π

0,E
k vh

)
require the choice of a suitable basis of the space Pk(E), that allows to

define in practice the projectors Π∇,Ek and Π0,E
k . In accordance with the standard literature on
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VEM (see [9], Section 3.1), we have considered the basis of the scaled monomials, i.e.

Mk(E) :=

{
mα(x) =

(
x1 − VE,1

hE

)α1
(
x2 − VE,2

hE

)α2

, α = (α1, α2) : |α| = α1 + α2 ≤ k
}
,

where, we recall, VE = (VE,1, VE,2) and hE denote the mass centre and the diameter of E,
respectively. This choice allows for an exact (up to the machine precision) and easy computation
of the first terms in the right hand side of (25) and (26), provided we have an efficient rule to
compute the L2-product of two scaled monomials, i.e.

Hαβ :=

ˆ

E

mα(x)mβ(x)dx =

ˆ

E

(
x1 − VE,1

hE

)α1+β1
(
x2 − VE,2

hE

)α2+β2

dx1dx2. (27)

Recalling that ∂E consists of nE segments e1, . . . , enE , by applying to (27) the divergence theorem,
we obtain the following explicit formula we have considered to compute Hαβ:

Hαβ =
1

α1 + β1 + 1

(
1

hE

)|α|+|β| nE∑
i=1

ˆ

ei

ni,1 (x1 − VE,1)
α1+β1+1

(x2 − VE,2)
α2+β2 dei, (28)

where ni,1 is the component in the x1-direction of the unit normal vector at ei pointing outside
E. Denoting by Vi and Vi+1 the endpoints of ei, we introduce the parametrization γ : [0, 1]→ ei
such that

γ(t) :=

{
x1(t) = Vi,1 + (Vi+1,1 − Vi,1)t = Vi,1 + `i,1t

x2(t) = Vi,2 + (Vi+1,2 − Vi,2)t = Vi,2 + `i,2t

and we recast (28) in the following form:

Hαβ =
1

α1 + β1 + 1

(
1

hE

)|α|+|β| nE∑
i=1

`i,2

1ˆ

0

(
V i,1 + `i,1t

)α1+β1+1 (
V i,2 + `i,2t

)α2+β2
dt (29)

where Vi = Vi −VE . Finally, by using the binomial identity, we exactly compute the integrals
in (29) as follows:

Hαβ =
1

η1 + 1

(
1

hE

)|η| nE∑
i=1

η1+1∑
r=0

η2∑
s=0

(
η1 + 1

r

)(
η2

s

)
V
η1+1−r
i,1 V

η2−s
i,2

r + s+ 1
`ri,1`

s+1
i,2 (30)

where η = (η1, η2) := (α1 + α2, β1 + β2).

For what concerns the second terms in (25) and (26), these are approximated by the following
bilinear forms

sE
((
I −Π∇,Ek

)
uh,
(
I −Π∇,Ek

)
vh

)
:=

n∑
j=1

dofj
((
I −Π∇,Ek

)
uh

)
dofj

((
I −Π∇,Ek

)
vh

)
, (31)

rE
((
I −Π0,E

k

)
uh,
(
I −Π0,E

k

)
vh

)
:=

n∑
j=1

dofj
((
I −Π0,E

k

)
uh

)
dofj

((
I −Π0,E

k

)
vh

)
, (32)

that allow to define the approximations aE
h and mE

h of aE and mE, respectively, as follows:

aE
h(uh, vh) := aE

(
Π∇,Ek uh,Π

∇,E
k vh

)
+ sE

((
I −Π∇,Ek

)
uh,
(
I −Π∇,Ek

)
vh

)
(33)

mE
h(uh, vh) := mE

(
Π0,E
k uh,Π

0,E
k vh

)
+ rE

((
I −Π0,E

k

)
uh,
(
I −Π0,E

k

)
vh

)
. (34)
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We recall that the quantities in (31) and (32) are called stabilization terms and are defined such
that the following properties are satisfied (see [7]):

• k-consistency: for all vh ∈ V kh (E) and for all q ∈ Pk(E):

aE
h(vh, q) = aE(vh, q) (35)

mE
h(vh, q) = mE(vh, q) (36)

• stability: there exist four positive constants α∗, β∗, α∗ and β∗ all independent of h, such that
for all vh ∈ V kh (E):

α∗a
E(vh, vh) ≤ aE

h(vh, vh) ≤ α∗aE(vh, vh) (37)
β∗m

E(vh, vh) ≤ mE
h(vh, vh) ≤ β∗mE(vh, vh). (38)

On the basis of the definition of the local VEM space V kh (E), the global VEM space is defined as

V kh :=

{
vh ∈ H1(E) : vh |E ∈ V

k
h (E)

}
. (39)

Analogously, the global approximate bilinear forms ah : V kh × V kh → C and mh : V kh × V kh → C
are defined by summing up the local contributions as follows:

ah(uh, vh) :=
∑
E∈Th

aE
h(uh, vh) and mh(uh, vh) :=

∑
E∈Th

mE
h(uh, vh). (40)

We remark that the global degrees of freedom for a generic element vh ∈ V kh are:

• its values at each of the NV vertices of Th;

• its values at k − 1 distinct internal points of each of the Ne edges of Th, for k > 1;

• its moments up to order k − 2 in each of the NE elements of Th, for k > 2:

1

|E|

ˆ

E

vh(x)q(x) dx ∀q ∈ Pk−2(E). (41)

Consequently, V kh has dimension

N := dim(V kh ) = NV + (k − 1)Ne +
k(k − 1)

2
NE. (42)

To derive the linear system associated to (13a)-(13b), we further need to introduce the boundary
element space

W k
h :=

{
ψ ∈ L2(B) : ψ

e
∈ Pk(e), ∀e ∈ B

}
with |e| < h, (43)

where |e| denotes the length of the edge e.
For what follows, it is convenient to reorder and split the complete index set S := {j =

1, · · · , N} of the basis functions {Φj}j∈S of V kh as

S = SI ∪ SΓ ∪ SB, (44)

where SI , SΓ and SB denote the sets of indices related to the internal degrees of freedom and to
the degrees of freedom lying on Γ and B, respectively. With this choice, it follows that

V kh,0 = span {Φj}j∈SI∪SB , W k
h = span

{
ΦBj
}
j∈SB ,
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having denoted by ΦBj := Φj |B.
In order to derive the system associated to the discrete problem (13), we expand the unknown
functions as

uh(x) :=
∑
j∈S

ujhΦj(x) with ujh = dofj(uh) (45)

wh(x) :=
∑
j∈SB

wjhΦBj (x) with wjh = dofj(wh) (46)

and we impose the Dirichlet condition on Γ by introducing the approximation gh of the datum g
as

gh(x) :=
∑
j∈SΓ

gjhΦj(x) with gjh = dofj(g).

Hence, we split
uh(x) :=

∑
j∈SB∪SI

ujhΦj(x) +
∑
j∈SΓ

gjhΦj(x)

and, using the basis functions of V kh,0 to test the discrete equation (13a), we get∑
j∈SB∪SI

ujh

∑
E∈Th

[
−aE

h(Φj ,Φi) + κ2mE
h(Φj ,Φi)

]
+
∑
j∈SB

wjh〈Φ
B
j ,Φi〉h

=
∑
j∈SΓ

gjh

∑
E∈Th

[
aE
h(Φj ,Φi)− κ2mE

h(Φj ,Φi)
]
, i ∈ SB ∪ SI . (47)

To write the matrix form of the above linear system, we introduce the stiffness and mass
matrices A, M and the matrix Q whose entries are respectively defined by

Aij :=
∑
E∈Th

aE
h(Φj ,Φi), Mij :=

∑
E∈Th

mE
h(Φj ,Φi), Qij := 〈ΦBj ,Φi〉h

and the column vectors u =
[
ujh

]
j∈SB∪SI

, w =
[
wjh

]
j∈SB

and g =
[
gjh

]
j∈SΓ

. In accordance

with the splitting of the set of the degrees of freedom (44), we consider the block partitioned
representation of the above matrices and vectors (with obvious meaning of the notation), and we
rewrite equation (47) as follows: −ABB + κ2MBB −ABI + κ2MBI

−AIB + κ2MIB −AII + κ2MII

 uB

uI

+

 QBBw

OIBw

 =

 (ABΓ − κ2MBΓ
)
g(

AIΓ − κ2MIΓ
)
g

 (48)

being OIB the null matrix since 〈ΦBj ,Φi〉h = 0 for i ∈ SI . For what concerns the generic entry
QBBij , we have

QBBij = 〈ΦBj ,Φi〉h =

ˆ

B

ΦBj (x)ΦBi (x) dBx (49)

which is exactly computable, since ΦBj ∈ Pk(e) ∀e ⊂ B.
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3.3. Discretization of the non reflecting boundary condition by a Boundary Element Method
Using the basis functions

{
ΦBj
}
j∈SB to interpolate the unknown function uh(x) and its normal

derivative wh(x) on the artificial boundary B, i.e.

uh |B(x) :=
∑
j∈SB

ujhΦBj (x) with ujh = dofj(uh) (50)

wh(x) :=
∑
j∈SB

wjhΦBj (x) with wjh = dofj(wh) (51)

the discrete equation (13b) can be rewritten as

∑
j∈SB

ujh
1

2
ΦBj (x) +

ˆ

B

∂G

∂ny
(x,y)ΦBj (y) dBy

+ wjh

ˆ

B

G(x,y)ΦBj (y) dBy

 = 0. (52)

Remark 1. We point out that the approximation spaces V kh and W k
h are chosen with the same

polynomial degree k to guarantee a more accurate approximation of the BI-NRBC. As we will see,
in Section 4 Example 1, this choice allows to obtain the expected order of convergence k + 1 of
the global scheme, under the assumption that all the integrals involved in the computation of the
matrix entries of the final linear system are computed with a sufficient accuracy.

We remark however that it is possible in principle to couple discretization spaces with different
orders of accuracy. Indeed, as we will show in Section 4 Example 1, we have considered the
particular choice of the spaces V 2

h and W 1
h , that allows to retrieve an accurate solution, even if

the optimal order has not been reached. It is worth noting however that, in a more general setting,
different values of k would require a non conforming coupling between the problem defined in the
interior computational domain and that defined in the exterior region. A possible remedy could
be to enforce weakly the BI-NRBC by a mortar type technique (see for example [14]). Such an
approach offers the further advantage of coupling different types of approximation spaces and of
using fast techniques for the discretization of the BI-NRBC (see for example the very recent papers
[16, 18, 19]). This will be the subject of a future investigation.

To detail the computation of the integrals in (52), due to the arbitrariness of the choice of the
contour B, we assume that it is defined either by a global or by a piece-wise (local) parametric
representation. In what follows, for simplicity, we consider the case of a global parametrization
given by x := ξ(σ) and y := ξ(ϑ) with σ, ϑ ∈ [0, 2π]. Thus, the integration over B is reduced to
an equivalent integration over the parametric interval [0, 2π] and Equation (52) can be rewritten
as

∑
j∈SB

ujh
1

2
φBj (σ) +

2πˆ

0

∂G

∂nϑ
(σ, ϑ)φBj (ϑ)|ξ

′
(ϑ)|dϑ

+ wjh

2πˆ

0

G(σ, ϑ)φBj (ϑ)|ξ
′
(ϑ)|dϑ

 = 0 (53)

where φBj (ϑ) := ΦBj (ξ(ϑ)) = ΦBj (y), φBj (σ) := ΦBj (ξ(σ)) = ΦBj (x) and, by abuse of notation, we
have denoted by K(σ, ϑ) := K(ξ(σ), ξ(ϑ)), K = G, ∂G∂nϑ

.

By enforcing Equation (53) at NB := |SB| (cardinality of SB) collocation points σi ∈ [0, 2π] such
that xci = ξ(σi) ∈ B, we obtain:

∑
j∈SB

ujh

1

2
φBj (σi) +

2πˆ

0

∂G

∂ny
(σi, ϑ)φBj (ϑ)|ξ

′
(ϑ)|dϑ

+
∑
j∈SB

wjh

2πˆ

0

G(σi, ϑ)φBj (ϑ)|ξ
′
(ϑ)|dϑ = 0,

(54)
that, by using the notation introduced in the previous section, can be rewritten in matrix form as
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follows (
1

2
N + K

)
uB + Vw = 0, (55)

where the generic elements of the matrices V, K and N are

Vij :=

2πˆ

0

G(σi, ϑ)φBj (ϑ)|ξ
′
(ϑ)|dϑ i, j = 1, . . . , NB (56)

Kij :=

2πˆ

0

∂G

∂ny
(σi, ϑ)φBj (ϑ)|ξ

′
(ϑ)|dϑ i, j = 1, . . . , NB (57)

Nij := φBj (σi) i, j = 1, . . . , NB . (58)

By combining (48) with (55) we obtain the final linear system
−ABB + κ2MBB −ABI + κ2MBI QBB

−AIB + κ2MIB −AII + κ2MII OIB

1
2N + K OBI V




uB

uI

w

 =


(ABΓ − κ2MBΓ)g

(AIΓ − κ2MIΓ)g

0B

 (59)

which represents the matrix form of (13).

Remark 2. We remark that, in the forthcoming numerical tests, the collocation points xci =
ξ(σi) ∈ B will be chosen either nodal or shifted. In the first case they coincide with the mesh nodes
detected on B by the partitioning Th of the computational domain Ω while, in the second case, they
will be obtained by a proper shift of the mesh nodes by the quantity δ∆ϑ, ∆ϑ being the mesh size
of the parameterization interval and δ ∈ (0, 1) properly chosen. This alternative choice will depend
on the shape of the artificial boundary B (smooth or with corners) and will be specified in each of
the forthcoming numerical examples.

Remark 3. To compute the integrals in (56)-(57), we generally follow the numerical strategy
proposed in [22]. In particular, we apply a standard ν-point Gauss-Legendre quadrature rule when
the kernel functions are smooth. We remark however that the kernel G involved in (56) (see
formula (4)) has a log-singularity for r = ‖ξ(σi) − ξ(ϑ)‖ → 0. For this reason an accurate
computation, by a standard Gaussian rule, of those integrals for which r is small would require a
large number ν of quadrature nodes, thus affecting the efficiency of the method. Moreover, since the
log-singularity cannot be factored out, it cannot be taken as weight function of the corresponding
integrals we have to compute. This means that the use of associated (weighted) Gaussian rules is
not an effective approach as well. Therefore, to compute efficiently these integrals, we will use the
smoothing strategy proposed in [26] and already applied in several similar contexts (see [22]). This
approach consists in the preliminary introduction of a very simple polynomial smoothing change of
variable and in the computation of the transformed integrals by a standard ν-point Gauss-Legendre
quadrature rule. In particular, denoting by [σ∗, σ

∗] the subinterval of the support in which the basis
function φBj is smooth, if σi ∈ [σ∗, σ

∗], we split the integral over [σ∗, σ
∗] as follows:

σ∗ˆ

σ∗

G(σi, ϑ)φBj (ϑ)|ξ
′
(ϑ)|dϑ =

σiˆ

σ∗

G(σi, ϑ)φBj (ϑ)|ξ
′
(ϑ)|dϑ+

σ∗ˆ

σi

G(σi, ϑ)φBj (ϑ)|ξ
′
(ϑ)|dϑ, (60)

and we introduce the change of variable ϑ = σi ± ηq with an odd q > 1. The sign of the change of
variable in the above integrals is minus (plus) when σi is the upper (lower) integration endpoint. We
remark that, in the nodal collocation case, σi coincides with one of the two endpoints (consequently
one of the two integrals in (60) is null), while in the shifted collocation case it will be an interior
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point. The choice of the smoothing parameter q and of the number of quadrature nodes ν depends
on the accuracy required for the computation of the matrix entries and influences the accuracy of
the global scheme. Therefore, such a choice will depend on the order k of the scheme and will be
specified in the numerical tests of Section 4.

4. Numerical examples

In this section we present some numerical examples to validate the accuracy and efficiency of
the proposed approach. To this aim, some preliminary features need to be addressed.

For the generation of the partitioning Th of the computational domain Ω, we have used the
GMSH software (see [23]). In particular, we have built unstructured conforming meshes consisting
of quadrilaterals, by employing the Mesh.ElementOrder option within the GMSH code. To simplify
the creation of the meshes, in all the examples, we have generated the decomposition of the
computational domain in such a way that the points inherited both on Γ and B are equally
spaced. We remark however that this choice does not represent a limit in the applicability of the
proposed method.

Out of an extensive numerical testing, for the chosen wave numbers κ, we have considered the
stabilization term in (33) for the computation of the stiffness matrix, while that for the evaluation
of the mass matrix in (34) has been neglected. This latter, indeed, revealed to be not necessary
to achieve a stable solution, in accordance with what observed in [1] and [9].

In the description of the method we have assumed that both the interior and the artificial
boundaries of the computational domain Ω are polygonal. As we will see in Example 1, this choice
guarantees the optimal convergence rate of the scheme. However, we have also tested our approach
in the case of non polygonal boundaries and for more challenging problems; even if in these cases we
have retrieved only a sub-optimal rate of convergence, we have obtain very satisfactory numerical
results.

To test our numerical approach, the order k of the approximation spaces has been fixed equal
to 1 and 2 and it is the same for both V kh and W k

h . In Example 1, we have also considered
the approximation spaces V 2

h and W 1
h of decoupled orders, which allowed to retrieve an accurate

solution despite the loss of the optimal order of convergence. In all the numerical examples, for
the computation of integrals that define the entries Vij in (56), we have applied the q-smoothing
strategy and ν-point Gauss-Legendre quadrature rule described in Remark 3, with the following
choices:

i) ν = 8 and q = 3, if k = 1;

ii) ν = 8 for i 6= j, ν = 16 for i = j and q = 5, if k = 2.

This choice of the parameters has guaranteed the computation of the mentioned integrals with
a full precision accuracy (16-digit double precision arithmetic) for k = 1 and a single precision
(8-digit double precision arithmetic) for k = 2. This latter is the maximum reached precision with
the chosen quadrature number of nodes ν. A higher value of ν could be considered, but it would
increase the overall computational cost and imply a not worthy performance of the method.

All the numerical computations have been performed on a PC with Intel R© CoreTM i7-7700
(3.60 GHz) by means of standard (i.e. sequential) Matlab R© codes.

Example 1. We consider here Problem (1), where Ωe is the outer region of the square Ωi =
(−1, 1)2. On the boundary Γ we prescribe the Dirichlet condition

g(x) = H
(1)
0 (κ|x− x0|) with x0 = (−0.25, 0)>, x ∈ Γ (61)

where, we recall, H(1)
0 denotes the 0-th order Hankel function of the first kind. In this case, the

exact solution ue(x) is known and it is the field produced by the point source at x0. Its expression
is given by (61) for every x ∈ R2.
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The aim of this example is to test the accuracy order of the proposed method. To this end,
as artificial boundary B we choose the contour of the square [−2, 2]2 so that the finite compu-
tational domain Ω is the frame bounded internally by Γ and externally by B. We remark that
this choice avoids the issue of the approximation of the geometry and allows the use of standard
(non curvilinear) VEM and BEM methods, without affecting the convergence order of the global
scheme.

We start by considering the coarse mesh associated to the level of refinement zero (lev. 0) and
all the successive refinements are obtained by halving each side of its elements. In Figure 2, the
meshes corresponding to level 0 (left plot) and level 3 (right plot) are represented. In Table 1, we
report the total number of degrees of freedom of the VEM space, associated to each decomposition
of the computational domain, for the approximation orders k = 1 (linear) and k = 2 (quadratic).
We remark that, due to the technical computer specifications, the maximum level of refinement
we have been able to consider is lev. 8 for k = 1, whose number of degrees of freedom coincides
with that of lev. 7 for k = 2.

For what concerns the approximation of the BI-NRBC, due to the presence of corners in the
artificial boundary, we choose the shifted collocation approach (see Remark 2). This consists in
shifting the mesh nodes, defined in the parametrization interval, towards the right by δ∆ϑ, with
δ = 1/3. As noticed in [22], any value of δ not too close to one of the values 0, 1/2, 1 would be an
equally good choice.

lev. 0 lev. 1 lev. 2 lev. 3 lev. 4 lev. 5 lev. 6 lev. 7 lev. 8
k = 1 36 120 432 1, 632 6, 336 24, 960 99, 072 394, 752 1, 575, 940
k = 2 120 432 1, 632 6, 336 24, 960 99, 072 394, 752 1, 575, 940 -

Table 1: Example 1. Total number of d.o.f for different levels of refinement and for approximation orders k = 1, 2.

Figure 2: Example 1. Meshes of Ω for lev. 0 (left plot) and lev. 3 (right plot).

In the sequel, we report the numerical results corresponding to the two choices of the wave
number κ = 1 and κ = 10. In Figures 3 and 4, we show the real and imaginary parts of the
numerical solution for κ = 1 and κ = 10 respectively, obtained by the quadratic approximation
associated to the minimum refinement level for which the graphical behaviour is accurate and not
wavy; this latter is lev. 3 for Figure 3 and lev. 5 for Figure 4. We remark that the solution
obtained by the linear approximation is graphically accurate choosing lev. 6 for κ = 1 and lev. 8
for κ = 10. For brevity we omit to report the corresponding plots.
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Figure 3: Example 1. Real (left plot) and imaginary (right plot) part of the numerical solution for κ = 1, refinement
lev. 3 and k = 2.

Figure 4: Example 1. Real (left plot) and imaginary (right plot) part of the numerical solution for κ = 10, refinement
lev. 5 and k = 2.

In Table 2, we report the L2-norm errors εklev (see [11]) and the corresponding Estimated Order
of Convergence (EOC), defined by the formulas

εklev :=

√√√√√√√
∑
E∈Th

∥∥∥u−Π0,E
k uh

∥∥∥2

L2(E)∑
E∈Th

‖u‖2L2(E)

, (62)

EOC := log2

(
εklev+1

εklev

)
, (63)

where the superscript k = 1, 2 refers to the linear or quadratic order approximation of u, the
subscript lev = 0, . . . , 8 (k = 1) and lev = 0, . . . , 7 (k = 2) refers to the refinement level and, we
recall, Π0,E

k is the local L2-projector defined in (19).
As we can see, for both wave numbers κ = 1 and κ = 10, the convergence rate of the scheme
is optimal (quadratic) when the linear VEM (k = 1) is considered. Instead, in the case of the
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quadratic VEM (k = 2) and starting from lev. 5, the optimal (cubic) convergence rate deteriorates
when the wave number κ = 1 is considered. We recall that this phenomenon is due to the precision
reached by the numerical quadrature employed for the computation of the BEM matrix entries,
as previously remarked. It is worth noting that for κ = 10 the optimal convergence rate is indeed
preserved since, in this case, the accuracy of the approximation is lower than the single precision.

Finally we note that, as expected, for a fixed refinement level, the accuracy of the solution
deteriorates for κ = 10 with respect to κ = 1 since the density of points per wavelength λ = 2π/κ
decreases when κ increases.

κ = 1 κ = 10

lev h ε1
lev EOC ε2

lev EOC ε1
lev EOC ε2

lev EOC
0 1.86e+ 00 7.02e− 02 1.02e− 02 1.04e+ 00 3.00e+ 00

1.8 2.9 0.0 2.6
1 9.45e− 01 1.98e− 02 1.34e− 03 1.02e+ 00 5.06e− 01

1.9 3.2 0.8 2.3
2 4.77e− 01 5.18e− 03 1.48e− 04 5.90e− 01 1.02e− 01

2.0 3.0 0.8 3.2
3 2.40e− 01 1.31e− 03 1.81e− 05 3.43e− 01 1.15e− 02

2.0 2.9 1.8 3.2
4 1.20e− 01 3.28e− 04 2.38e− 06 9.53e− 02 1.23e− 03

2.0 2.7 2.1 3.4
5 6.02e− 02 8.20e− 05 3.58e− 07 2.25e− 02 1.14e− 04

2.0 2.4 2.0 3.4
6 3.01e− 02 2.05e− 05 6.67e− 08 5.54e− 03 1.06e− 05

2.0 2.2 2.0 3.3
7 1.50e− 02 5.12e− 06 1.50e− 08 1.38e− 03 1.08e− 06

2.0 × 2.0 ×
8 7.52e− 03 1.28e− 06 × 3.45e− 04 ×

Table 2: Example 1. Relative errors in L2-norm and EOC for wave numbers κ = 1, 10 and approximation orders
k = 1, 2.

For completeness, in Figure 5, we show the sparsity patterns of the matrices associated to the
final linear system (59) which give an idea of the memory requirement of the BEM with respect to
the VEM. As we can see the matrix system exhibits a block structure in which the BEM matrices
are fully populated and, in general, non symmetric. This is in contrast to the VEM blocks, that
are sparse and symmetric. As expected, as the problem size (d.o.f.) grows, the BEM blocks
become smaller and negligible, compared to the VEM ones, and the global system matrix can be
considered sparse. Consequently, we expect that the global complexity scales linearly as that of
the VEM. This is confirmed by the behaviour of the total memory storage with respect to the
increasing number of d.o.f., which is reported in Figure 6. We observe that the complexity is
optimal for both approximation orders k = 1, 2.

Figure 5: Sparsity patterns of the global system matrix for lev. 0 (left plots, k = 1 on the left and k = 2 on the
right) and lev. 3 (right plots, k = 1 on the left and k = 2 on the right).
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Figure 6: Memory storage with respect to d.o.f.

As previously remarked, the choice of the same approximation order of the spaces V kh and
W k
h is necessary to obtain the optimal convergence order. As a further investigation, we have

considered the spaces V 2
h and W 1

h . This is a manageable setting from the implementation point
of view, since it is possible to enforce the conforming coupling of the VEM with the BI-NRBC by
discretizing this latter using piecewise linear polynomials defined on the finer mesh inherited on
B from the degrees of freedom of the VEM. In Table 3, we report the corresponding numerical
L2-norm relative errors, denoted by ε2,1

lev, where we observe that the convergence order seems to
be only linear.

κ = 1 κ = 10

lev h ε2,1
lev EOC ε2,1

lev EOC
0 1.86e+ 00 2.32e− 02 1.04e+ 00

1.6 0.8
1 9.45e− 01 7.76e− 03 5.87e− 01

1.3 0.2
2 4.77e− 01 3.16e− 03 5.23e− 01

1.2 2.4
3 2.40e− 01 1.42e− 03 9.63e− 02

1.1 2.1
4 1.20e− 01 6.72e− 04 2.21e− 02

1.0 1.8
5 6.02e− 02 3.27e− 04 6.25e− 03

1.0 1.5
6 3.01e− 02 1.61e− 04 2.24e− 03

1.0 1.2
7 1.50e− 02 8.01e− 05 9.81e− 04

Table 3: Example 1. Relative errors in L2-norm and EOC for wave numbers κ = 1, 10 and decoupled approximation
orders.

Example 2. We apply our numerical scheme to simulate the phenomenon of the wave propagation
in its spinning mode around an obstacle Ωi, whose boundary Γ is the circumference of radius
R0 = 1 centred at the origin of the Cartesian axes. This benchmark example is taken from [20].
The solution of this problem is known and it is given in polar coordinates (r, θ) by:

uspin(r, θ) = H(2)
m (κr)e−ımθ, (64)
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where H(2)
m represents the Hankel function of the second kind of m-th order. The parameter m

defines the number of waves in the polar direction and is fixed here m = 30. Moreover, choosing
the wave number κ = 40, we deal with a problem in the high-frequency regime since 2κR0 = 80.
For this choice of the parameters, it is known that the sound wave propagates with a slow decay
rate of order 1/

√
r, as prescribed by the Sommerfield radiation condition.

We consider Problem (1) with Dirichlet datum g = uspin on Γ. We reduce the infinite domain
Ωe to an annulus Ω bounded internally by Γ and externally by the circular artificial boundary B
of radius R1 = 2 centered at the origin. We remark that, since the computational domain has a
non-polygonal shape, the polygonal mesh Th introduces an approximation Ωh of Ω, by means of
an inscribed polygon.
We consider two meshes: the first consisting of NE = 81, 920 quadrilaterals and mesh size h =
3.50e − 02; the second one is obtained by a refinement of the previous one and consists of NE =
327, 680 quadrilaterals with h = 1.75e− 02.
The virtual element space of order k = 2 is associated to the coarser mesh, while that of order
k = 1 to the finer one. The boundary points, inherited on B from these tessellations, are uniformly
spaced in both cases and their number is NB = 2, 048. Since in this case the artificial boundary
is smooth, for the approximation of the BI-NRBC we have applied the nodal collocation method,
using the mesh points as collocation nodes. The two discretizations give rise to a linear system
of order 329, 216. With such a choice, the relative errors (62) are about 8.79e− 02 for k = 1 and
2.22e− 03 for k = 2.
In Figure (7) we plot the real (on the left) and imaginary (on the right) part of the solution obtained
with k = 2, showing that the propagating mode is well approximated, without the presence of
wavy or undulating effects. A very similar graph has been obtained for k = 1.

t

Figure 7: Example 2. Real (left plot) and imaginary (right plot) part of the numerical solution uh,spin for κ = 40,
m = 30 and k = 2.

Example 3. In the following examples we consider 3D scattering problems which, under proper
geometric and data assumptions, can be reduced to 2D ones. This is the case, for example, of
problems defined on the exterior of bounded rigid domains, which are invariant in one of the Carte-
sian directions. These problems occur in several applications such as acoustics, electromagnetics,
optics, elasticity and, generally, involve large values of κ and multiple scatterers.
In particular, we focus here on the scattering of incident plane waves with unit amplitude

uinc(x) = eıκx1

by Ncyl infinitely long and equal cylindrical scatterers. In a fixed 3D Cartesian coordinates system
x = (x1, x2, x3)>, each obstacle is supposed to be invariant with respect to x3, and to have circular
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section with radius Rp centred at point Op, with p = 1, . . . , Ncyl. We set our simulation in the
plane x3 = 0, where the scattering obstacle Ωi is the union of Ncyl disks Ωi,p with boundaries Γp,
so that the global boundary Γ is the union of the local boundaries Γp, p = 1, . . . , Ncyl.

The incident wave is scattered by the cylinders in the surrounding medium Ωe = R2 \ ∪Ncyl
p=1 Ωi,p.

The scattered field usca is solution of Problem (1) with Dirichlet datum g = −uinc on Γ and the
total field is retrieved as utot(x) := uinc(x) + usca(x), x = (x1, x2, 0)>.

Example 3.1. Scattering of a plane wave by a single cylinder at high-frequency.
The first test aims at showing the efficiency of the proposed method to simulate high-frequency
problems. We choose the wave number κ = 100 and we consider a single cylinder whose section
Ωi is the unit disk centred at the origin O = (0, 0)> of the Cartesian axis, so that 2κR = 200.
In polar coordinates (r, θ), the analytical expression of the scattered wave in Ωe is given by

usca(r, θ) = −
∞∑
m=0

(−ı)mεm
Jm(κR)

H
(1)
m (κR)

H(1)
m (κr) cos (mθ), (65)

where Jm represents the Bessel function of the first kind of m-th order, while εm is the Neumann
symbol, such that ε0 = 1 and εm = 2 for m ≥ 1.
The artificial boundary B is chosen as the contour of the square centred at the origin with edge
4. We consider two meshes: the first consisting of NE = 393, 216 quadrilaterals and mesh size h =
1.49e− 02; the second one results as a refinement of the previous and consists of NE = 1, 572, 864
quadrilaterals with h = 7.45e− 03.
The virtual element space of order k = 2 is associated to the coarser mesh, while that of order
k = 1 to the finer one. Both decompositions induce NB = 4, 096 equally spaced points on B and
the corresponding discrete problems have the same number of degrees of freedom N = 1, 575, 940.
With such choices the relative L2-norm errors associated to the reference solution, computed by
truncating the series in (65) to m = 400, are 2.76e− 01 for k = 1 and 7.11e− 03 for k = 2.

In Figure 8, we report the absolute value of the computed scattered wave for k = 1 (left plot)
and k = 2 (right plot). As we can see, in accordance with the reported error values, for the same
number N of degrees of freedom, the solution obtained by the quadratic VEM/BI-NRBC displays
a graphical behaviour more satisfactory than that associated to the linear VEM/BI-NRBC. Indeed
this latter shows a spurious and wavy behaviour. The same considerations hold for the absolute
value of the total field reported in Figure 9.

Figure 8: Example 3.1. Absolute value of the scattered wave for k = 1 (left plot), k = 2 (right plot) and κ = 100.
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Figure 9: Example 3.1. Absolute value of the total wave for k = 1 (left plot), k = 2 (right plot) and κ = 100.

Example 3.2. Scattering of a plane wave by two disjoint cylinders. We consider here
the case of two cylindrical obstacles, whose sections Ωi,1 and Ωi,2 have circular boundaries Γ1 and
Γ2, with radii R = R1 = R2 = 0.5 and centres O1 = (2, 0)> = −O2. We choose the wave number
κ = 5, so that 2κR = 5 (low-frequency regime).

In order to reduce the infinite domain Ωe = R2 \ Ωi,1 ∪ Ωi,2 to a computational region Ω of
finite extent, we enclose Ωi,1 and Ωi,2 inside the box [−10, 10]2, whose contour defines the artificial
boundary B. Thus, Ω is bounded internally by Γ1 and Γ2 and externally by B. We consider a
decomposition of the computational domain into NE = 67, 584 polygons (h = 3.62e − 01). The
total number of equally spaced points on B is NB = 512. On this tessellation we build a VEM
space of order k = 2 so that the number of degrees of freedom associated with the final linear
system is N = 272, 639.
Since in the case of multiple scatterers an analytical expression of the scattered wave usca in
Ωe is not known, we have compared the behaviour of the numerical solution with the reference
solution provided in [3] (see Figure 6 top-left plot). In Figure 10, we show the absolute value of
the computed scattered (left plot) and total (right plot) waves. By a comparison, we observe that
the scattered field perfectly matches with the reference one in [3].

Figure 10: Example 3.2. Absolute value of the scattered (left plot) and total (right plot) wave for κ = 5 and k = 2.
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Example 3.3. Scattering of a plane wave by five disjoint cylinders. For the last test, we fix
the wave number κ = 5 and consider five scatterers, whose circular sections Ωi,p are disks of radius
R = Rp = 0.5, p = 1, · · · , 5. The corresponding centres are O1 = (0, 0)>, O2 = (2, 0)> = −O3,
O4 = (0, 2)> = −O5. Even if in this case our problem is set in the low-frequency regime, since
2κR = 5, the reproduction of the scattered field is extremely complex in the region between
the obstacles, when these are bumped by the incident wave. Aiming at determining an accurate
solution in that region, we surround the scatterers by a proper non convex star-shaped curve,
boundary of the star domain 6 represented in Figure 11. The computational domain Ω

6
:=

6 \ ∪5
p=1Ωi,p has been decomposed into NE = 173, 056 quadrilaterals (h = 1.43e − 01), and the

induced (equally spaced) points on the artificial boundary are NB = 1024. The solution has been
obtained by the quadratic VEM/BI-NRBC method and by applying the shifted collocation method
with δ = 1/3; the total number of degrees of freedom of the final linear system is N = 512, 468. In
Figure 11 we plot the absolute value of the approximated scattered and total field.

Figure 11: Example 3.3. Absolute value of the scattered (left plot) and total (right plot) wave in Ω
6

for κ = 5 and
k = 2.

To test the applicability of the proposed method in cases of non-convex artificial boundaries
with re-entrant corners like the one considered, and hence the reliability of the corresponding
numerical results, we compare the above solution with that retrieved in the larger (previously
tested) domain Ω� obtained by enclosing the obstacles in the box [−10, 10]2.

In Figure 12, we show the absolute value of the computed scattered (left plot) and total (right
plot) waves in Ω�. As we can see, the solutions represented in Figure 11 for Ω

6
perfectly match

with the restriction to Ω
6
of those represented in Figure 12 for Ω�. It is worth noting that the

choice of the larger domain Ω� implies a higher computational cost and RAM resource since its
decomposition required a number NE = 450, 560 of quadrilaterals (h = 3.46e− 01) and NB = 512
points on B to achieve a reliable solution. With such a choice, the total number of degrees of
freedom for the problem defined in Ω� is N = 1, 353, 468.
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Figure 12: Example 3.3. Absolute value of the scattered (left plot) and total (right plot) wave in Ω� for κ = 5 and
k = 2.

5. Conclusions

We have proposed a new approach for solving 2D Helmholtz problems defined in unbounded
regions, external to bounded obstacles. The novelty of this paper consists in using a Virtual
Element Method as domain method (instead of standard ones such as Finite Elements or Finite
Differences) to determine the solution in a computational domain limited by an artificial boundary.
The main benefits of the VEMs, we have exploited here, are the use of generic, non triangular,
meshes associated to discrete spaces of order k, not necessarily of linear type. In particular,
the VEM allows to use approximation orders k > 1 by knowing the explicit expression of the
virtual element basis functions only on the mesh elements boundary. This feature facilitates the
practical implementation of the corresponding method for high values of k. To guarantee a well
posed problem in the finite computational domain and an optimal convergence order, we have
combined the VEM with a collocation BEM of the same order k; the latter has been applied for
the discretization of an integral non reflecting condition imposed on the artificial boundary.

We have applied our approach to multiple scattering problems from the low to the high fre-
quency regime, treated in literature and/or arising from real life application problems. By a
comparison with the papers from which our tests have been drawn on, the numerical results we
have obtained show the optimality of the global scheme and reveal it to be accurate and com-
petitive. We remark that, at the current implementation stage, we have limited the choice of
k = 1, 2 since a higher approximation order for the discretization of the BI-NRBC would require
proper numerical strategies for the accurate computation of the BEM matrix entries. This issue,
as already observed in other contexts, is crucial to maintain the overall accuracy but is out of the
aim of the present pioneering paper. Since these aspects are worth to be studied, they will be the
subject of future investigations.
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