
Doctoral Dissertation
Doctoral Program in Control and Computer Engineering (33th cycle)

Industry 4.0: Industrial IoT
Enhancement and WSN

Performance Analysis

Mohammad Ghazi Vakili
* * * * * *

Supervisor
Prof. Claudio Giovanni Demartini

Doctoral Examination Committee:
Prof. Paulo Portugal, Referee, University of Porto (PT)
Prof. Davide Quaglia, Referee, University of Verona (IT)
Dr. Luca Durante, Senior Researcher at CNRI-EIIT (IT)
Prof. Bartolomeo Montrucchio, Politecnico di Torino (IT)
Prof. Lucia Lo Bello, University of Catania (IT)

Politecnico di Torino
September 2021

This thesis is licensed under a Creative Commons License, Attribution - Noncommercial-
NoDerivative Works 4.0 International: see www.creativecommons.org. The text
may be reproduced for non-commercial purposes, provided that credit is given to
the original author.

I hereby declare that, the contents and organisation of this dissertation constitute
my own original work and does not compromise in any way the rights of third
parties, including those relating to the security of personal data.

. .
Mohammad Ghazi Vakili
Turin, September 2021

www.creativecommons.org

Summary

The fourth revolution of industry began in 2011 at Hannover Fair, with the
introduction of communication between the factory shop floor and information
technology applications. The Internet of Things (IoT) technology leveraged this
revolution to transfer data from industrial plants to cloud services, providing man-
ufacturing improvements, such as production line optimization (e.g., reducing pro-
duction costs) and machine learning (e.g., suggesting the best product-to-produce
in the next month). This new production era provided a new customer experience
by customizing the product for the customer. Thus, it developed a new business
model for the business owners as well as new customer experiences. This new
methodology was coined Industry 4.0, and it requires sustainable communication,
intra- and inter-Shopfloor, and Business devices and applications.

There are many communication challenges in Industry 4.0; however, the present
work focuses on IoT and Wireless Sensor Network (WSN). The first part of this
thesis deals with IoT issues in industrial applications, and the second part proposes
a mathematical model to analyze the 6TiSCH WSN performance indicators for
industrial applications. Moreover, the TSCH predictor is presented to simulate and
predict realistic performance indicators in the TSCH network in the WSN domain.
In general, three proposals focus on the Industry 4.0 communication challenges.

The first part of this thesis is focused on IoT standardization issues, and it
proposes an OPC-IoT protocol to overcome standardization challenges. The pro-
posed IoT platform’s communication is based on the Reference Architecture Model
Industries 4.0 (RAMI 4.0), which means it complies with the OPC-UA protocol as
the RAMI 4.0 suggests. Nonetheless, the platform proposes an industrial gateway
that supports industrial protocols, such as Profinet S7, Modbus, and OPC-UA.
Experimental analysis was performed to compare the OPC-IoT platform to the
commercial Kaa IoT platform.

The IoT domain’s other challenges are centralization and decentralization of
the data and control logic in the factories. These challenges are related to the ar-
chitectural issues in Industry 4.0. This issue mainly affects data latency and data
privacy. The fog architectures are proposed to overcome centralization challenges in
industrial applications. IFog4.0 was developed and implemented for industrial ap-
plications in Industry 4.0, which is compliant with the RAMI 4.0 and utilizes many

iii

open-source components. In this thesis, the industrial use case was implemented
by using IFog4.0.

The second part of the thesis focuses on Industrial Wireless Sensor Networks,
precisely analyzing the Time Slot Channel Hopping (TSCH) technique introduced
by the IEEE 802.15.4 standard for WSN. The analysis was performed mainly on
an 6TiSCH enabled device, IPv6, over the TSCH network. Communication perfor-
mance in wireless sensor networks suffers from background traffic such as Wi-Fi or
other networks that operate in the same spectrum. However, thanks to its ability
to effectively counteract disturbances and interference, including the traffic gener-
ated by co-located Wi-Fi networks, TSCH is currently gaining momentum in many
application fields characterized by demanding reliability determinism requirements.
In particular, the ability of TSCH to sensibly change the transmission frequency
on every attempt sensibly mitigates packet loss, improving the overall behavior
tangibly.

The challenge with the WSN is how to select an exemplary configuration in the
WSN, especially in the 6TiSCH protocol, which is the latest version of the TSCH
protocol. A mathematical model is proposed to overcome the WSN network config-
uration issue by analyzing the TSCH’s behavior and propose a model to estimate
the performance indicator in the 6TiSCH devices. To better analyze the TSCH
WSN’s behavior, the communication quality obtained by the 6TiSCH protocol in
a setup that includes real WSN devices exposed to reality is evaluated experimen-
tally. A theoretical model is then developed, based on simple assumptions about
time and the effectiveness of frequency diversity, which satisfactorily matches the
actual behavior. The model permits the determination of the number of network
parameters(e.g., the retry limit) that actually affect communication quality and
can be exploited to find proper settings for them. Finally, the ability of channel
hopping to prevent narrowband interference from disrupting communication is as-
sessed. As the results show, this mechanism makes motes suffer from an equivalent
interference that roughly corresponds to the mean interference evaluated over all
physical channels.

In addition to the proposed mathematical model, the accurate measurement
has been performed on the OpenMote B devices to evaluate the power consump-
tion value. These experiments provide the actual energy consumption for each
slot frame on the devices. The values are utilized to develop a realistic power-
consumption model, which, to the best of our knowledge, is the first realistic model
for OpenMote B .

Additionally, the proposed model provides a reasonable estimation of the per-
formance indicators in the 6TiSCH WSN(e.g., reliability, power consumption, and
latency). The single and multi-hop WSN mathematical models were compared with
6TiSCH’s behaviors on the actual device and were utilized to predict the network
behavior where the parameters of the 6TiSCH matrix are varied. The reason to
propose such a model was to verify the performance requested from the industry

iv

and satisfy different application requirements in the factory. The results demon-
strated that when one of the three performance indicators is privileged, the others
worsened. These results open a new research direction for developing a model to
calculate 6TiSCH parameters with reinforcement learning for the WSN network.
Eventually, the proposed parameters could satisfy the application requirements af-
ter applying the learning technique.

The proposed mathematical model is applicable when there is no packet waiting
for the next hop in the multi-hop network and develops the proposed model for
the TSCH network; however, this assumption is not a limitation in many WSN
applications due to the low frequency of transferring data in the WSN devices.
Nonetheless, it could be useful to propose a technique or tool to overcome this issue.
The TSCH predictor is a simulation tool proposed for predicting the performance
indicators in the TSCH WSN, and it overcomes the queuing phenomenon in the
WSN. This predictor simulates the TSCH devices with excellent estimation, then
provides the performance indicators. Experimental analysis was performed on real
OpenMote B devices to validate the TSCH Predictor results.

In IoT and WSN domains, we explore the strengths and weaknesses of com-
munication technologies concerning standardization and performance indicators,
especially their potential to serve real-world applications. The proposed methods
provide a new generation of easy-to-deploy platforms in Industry 4.0. However,
by applying communication models in WSN, we demonstrate both potential use
cases and the concerns that may limit them. By revealing problems that future
deployments may face, we hope to guide improvements to these protocols that will
improve their use and support the growth of the Internet of Things and Wireless
Sensor Networks in industrial environments for the future of factories.

v

Acknowledgements

Many helped me along the way on this journey. I want to take a moment to
thank them.

I would like to thank my supervisor Prof. Claudio Demartini for his invaluable
advice, continuous support, and patience during my Ph.D. journey. His knowledge
and plentiful experience have encouraged me in my academic research and daily
life.

My gratitude extends to the Department of Control and Computer and Doc-
torate school for the funding opportunity to undertake my Ph.D. studies.

Additionally, I would like to thank Prof. Bartolomeo Montrucchio for his trea-
sured support, which was influential in shaping my experiences during my Ph.D.
and personal life. Additionally, I also thank Dr. Stefano Scanzio and Dr. Gianluca
Cena for their mentorship and invaluable advice and support in shaping my exper-
iment methods and critiquing my results, and helped me step by step to reach to
my goals.

I wish to thank my dissertation referee and committee, Prof. Paulo Portugal
and Prof. Davide Quaglia, who served as wise referee members, and Prof. Lucia Lo
Bello and Dr. Luca Durante, served as a committee members.

I would like to thank Edoardo for being my best friend and colleague, who
helped me during my hard times. Also, I would like to thank my best friend,
Mauro, who helped me sincerely all the time.

I would like to take a moment to thank all my lab mates, colleagues, and re-
search team – Renato, Fillipo, Francesco, Sina, Davide, Gabriele, Antonio, Federico,
Gustavo, Sorath, and Alberto for a cherished time spent together in the lab, and
in social time. My appreciation also goes out to my family and friends for their
encouragement and support throughout my studies.

Finally, to my wife, Elahe: your love and understanding helped me through the
dark times. Without you believing in me, I never would have made it. It is time
to celebrate; you earned this degree right along with me.

vii

I dedicate this thesis to
my wife, for her
constant support and
unconditional love.

Contents

List of Tables xiii

List of Figures xv

1 Introduction 1
1.1 Internet of things: Problem Statement and Challenges 2

1.1.1 IoT Challenges . 3
1.1.2 Related work . 5

1.2 TSCH Wireless Sensor Network: Problem Statement and Challenges 11
1.2.1 WSN Challenges . 12
1.2.2 Related work . 16
1.2.3 Time Slot Channel Hopping mechanism 17

2 Industrial IoT Platform Based on RAMI 4.0 23
2.1 Proposed Architectures . 24

2.1.1 DIIG-Kaa . 24
2.1.2 OPC-IoT . 26
2.1.3 DIIG-OPC algorithm . 30
2.1.4 OPC-IoT algorithm . 30

2.2 Performance Evaluation and Comparison 32
2.3 Results . 34

2.3.1 Throughput . 34
2.3.2 Round-trip . 34
2.3.3 Fairness . 36
2.3.4 Scalability . 37

2.4 Conclusion . 37

3 Industrial Fog Architecture Based on Industrial Protocols 41
3.1 Background . 42

3.1.1 Docker virtualization . 42
3.2 Proposed IFog4.0 Architecture . 42

3.2.1 Architecture . 42

x

3.2.2 Fog-Management . 44
3.2.3 Programming tools . 46
3.2.4 Data visualization . 46
3.2.5 Enterprise resource planning(ERP) 46
3.2.6 Data storage . 47
3.2.7 Industrial communication 47

3.3 Use Case and Results . 48
3.3.1 Testbed hardware . 48
3.3.2 IFog4.0 installation & configuration 51

4 Wireless Sensor Network: Testbed and Experimental setup 53
4.1 Experimental testbed . 53
4.2 Wi-Fi Interference . 55
4.3 OpenWSN OS . 56
4.4 Measurement . 57

5 Single-hop WSN: Modeling and Performance Analysis of IEEE
802.15.4 TSCH 59
5.1 Two-way communication model . 60

5.1.1 Packet loss on a single hop 60
5.1.2 Failure rate for two-way communication 61
5.1.3 Transmission latency . 63
5.1.4 Number of retransmissions 64
5.1.5 Modeling the transmission latency 65
5.1.6 Channel hopping . 67

5.2 Experimental evaluation . 67
5.2.1 Experimental testbed . 67
5.2.2 Interfering traffic . 68
5.2.3 Measurement technique . 68
5.2.4 Matching experimental parameters 69

5.3 Results . 70
5.3.1 Channel hopping disabled 72
5.3.2 Channel hopping enabled . 73
5.3.3 Comments on channel hopping effectiveness 75

5.4 Conclusions . 75

6 Multi-hop WSN: Modeling and Performance Analysis of IEEE
802.15.4 TSCH 77
6.1 Mathematical model . 78

6.1.1 Reliability . 79
6.1.2 Power consumption . 82
6.1.3 Latency . 85

xi

6.1.4 Derived quantities . 85
6.2 Power-consumption Model . 87

6.2.1 Characterization of power consumption 88
6.3 Results . 91

6.3.1 Performance vs. slotframe length 92
6.3.2 Performance vs. retry limit 93

6.4 Practical application contexts . 94
6.4.1 Leveraging the mathematical model 94
6.4.2 Evaluation of relevant configurations 95

6.5 Conclusions . 99

7 TSCH Predictor 101
7.1 Introduction . 102
7.2 System Architecture . 103

7.2.1 TSCH predictor configuration layer 104
7.2.2 System core . 105
7.2.3 Simulation core . 107

7.3 Simulation Logic . 107
7.4 Interfaces . 109
7.5 Results . 109

8 Results 113
8.1 OPC-IoT . 113
8.2 Fog Architecture . 114
8.3 Single-hop WSNs . 115
8.4 Multi-hop WSNs . 117
8.5 TSCH predictor . 119
8.6 Conclusion . 120

A Publication List 123

B Kaa and DIIG algorithm 125
B.1 Kaa IoT Platform . 125
B.2 DIIG Protocol . 126

Bibliography 131

xii

List of Tables

1.1 Taxonomy of the scientific works related to the WSN/WSAN. . . . 21
2.1 Round-trip test in [ms] for KafKa with minimum, maximum, and

average values . 37
2.2 Round-trip test in [ms] for MongoDB with minimum, maximum,

and average values . 37
2.3 Round-trip test in [ms] for Cassandra db with minimum, maximum,

and average values . 38
2.4 Round-trip test in [ms] for Mixed db with minimum, maximum, and

average values . 38
5.1 Glossary of quantities . 62
5.2 Experimental results and estimated parameters; channel hopping

disabled and enabled . 71
6.1 Glossary of Quantities. 80
6.2 Energy consumption for different types of actions within a slotframe

matrix with OpenMote B motes. In bold quantities used in Eq. (6.7). 90
6.3 Experimental results about the influence of Nslot on latency, reliabil-

ity, and power consumption (measured on real devices). 92
6.4 Experimental results about the influence of Ntries on latency, relia-

bility, and power consumption (measured on real devices). 93
6.5 Latency, reliability, and power consumption, measured on real de-

vices, related to four configurations (characterized by different values
of Nslot and Ntries) targeted to different application contexts. 97

7.1 Energy consumption for different types of actions within a slotframe
matrix with OpenMote B motes. In bold quantities used in the
hardware node. 106

7.2 TSCH predictor Web interface . 110
7.3 Simulation data compared with real experimental data obtained from

OpenMote B . 111
8.1 Experimental results about the influence of Nslot on latency, reliabil-

ity, and power consumption (measured on real devices). 118
8.2 Experimental results of the influence of Ntries on latency, reliability,

and power consumption (measured on real devices). 118

xiii

8.3 Simulation data compared with real ping data 120

xiv

List of Figures

1.1 RAMI 4.0 architecture . 6
1.2 Measured ping round-trip time (Max./Avg./Min. values, Friday-to-

Monday, 1-hour moving average). 13
1.3 Wi-Fi spectrum traffics during experimental campaigns. 14
1.4 Overlapping channels in IEEE 802.11 and 802.15.4 (ISM band). . . 16
1.5 Example of a TSCH matrix defining the slotframe usage: global

schedule (on the left) and local, trimmed-down copies (on the right). 19
1.6 Physical channel calculation obtained from ASN counter in TSCH

matrix . 20
2.1 DIIG architecture components with IoT platform 24
2.2 DIIG gateway algorithm . 26
2.3 DIIG-OPC architecture components with the IoT platform 27
2.4 Server & Data object in the OPC-IoT platform (for 1000 clients) . . 27
2.5 DIIG-OPC database schema for the IoT platform. 28
2.6 DIIG-OPC gateway algorithm . 31
2.7 OPC-IoT Server algorithm . 32
2.8 Test-bed configuration . 33
2.9 Result of 100,000 data that were sent to the server from each client,

and the data were stored in various database technologies 35
2.10 Fairness results . 36
2.11 OPC-IoT: Scalability test for 10–1,000 clients 39
3.1 IFog4.0: Industry 4.0 open source fog architecture 43
3.2 IFog4.0 architecture: components and applications 44
3.3 Fog-management for components and applications 45
3.4 Node-RED (fog-programming tools) 45
3.5 Pipe and Instrument Diagram (P&ID) for gas regulation station use

case . 47
3.6 Water bath heater (WBH) PLC workflow 49
3.7 Test Configuration . 49
3.8 The application developed for the user interface 50
4.1 Testbed configuration . 54
4.2 IEEE 802.15.4 ISM band vs. IEEE 802.11 OFDM 55

xv

5.1 Single-hop request-response transaction in TSCH 64
5.2 Measured and theoretical CDFs of d (channel hopping disabled). . . 73
5.3 Measured and theoretical CDFs of d (channel hopping enabled). . . 74
6.1 The example of request/response iteration in TSCH without (Cases

A and B) and with (Case C) transmission errors (nrep,i = ntra,i−Nhop
represents the overall number of retransmissions performed for the
i-th packet on the two-way path). 79

6.2 Power consumption for the duration of the slotframe (Plot 6.2.a) and
for a zoomed-out portion of it that embraces seven slots (Plot 6.2.b).
In the plot on the right side, the reception of a confirmed frame
(bearing a ping request) can be observed in the fourth slot. 88

6.3 Power consumption for the different types of cells: slot including
a confirmed frame transmission (a), slot including confirmed frame
reception (b), slot in which idle listening occurs (c), and dissection
of a confirmed frame reception into separate contributions (d). . . . 89

6.4 Influence of Nslot and Ntries on reliability, power consumption, and la-
tency, evaluated using the proposed network model (ϵ = 0.4, Ntries =
16 for Plot 1, Nslot = 101 for Plot 2 and Plot 3). 95

6.5 Influence of Nslot and Ntries on reliability, power consumption, and
latency, evaluated using the proposed network model (ϵ = 0.13,
Ntries = 16 for Plot 4, Nslot = 101 for Plot 5 and Plot 6). Effects
of moving working points—marked with solid red circles (•)—away
from the default configuration—marked with empty red circles (◦)—
are suitably labeled. 96

6.6 Effects of different parameter configurations (targeted to specific ap-
plication contexts) on power consumption (P), reliability (R), and
latency (L). 98

7.1 TSCH predictor Software Architecture. 103
8.1 OPC-IoT: scalability test for 10 to 1000 clients 114
8.2 Measured and theoretical CDFs of d (channel hopping disabled). . . 116
8.3 Measured and theoretical CDFs of d (channel hopping enabled). . . 116
8.4 Main idea of the single-hop methodology 117
8.5 Effects of different parameter configurations (targeted to specific ap-

plication contexts) on power consumption (P), reliability (R), and
latency (L). 119

B.1 Kaa IoT platform architecture integrated with DIIG gateway. . . . 126
B.2 DIIG architecture components. 127
B.3 DIIG architecture elements. 129

xvi

Chapter 1

Introduction

The term Internet of Things (IoT) was coined in 1999 by Kevin Ashton,
who used Radio Frequency IDentification (RFID) [1] to read sensor data. Over
the past 20 years, IoT technology has evolved and expanded its communication
capabilities with the use of Wi-Fi , wireless sensor network (WSN), 3G, 4G, and 5G,
and these technologies help increase connectivity around the world. For instance,
5G technology made it possible for IoT to provide real-time connectivity, which
is essential in critical industrial applications [2]. IoT technology enables various
services around the world, from smart homes to smart factories.

The integration of Internet technology into the industry has been committed
to the birth of Industry 4.0, which suggested approaches and guidelines call for a
more significant attempt to combine all current technologies into full and efficient
industrial goods [3]. New specifications have been adopted to unify hardware tools,
manufacturing machinery, and applications, leading to a linked world in which all
parties connect, share information, and monitor manufacturing activities [4].

The term of "Industry 4.0" was introduced initially in 2011, at Hanover Fair,
where a cyber-physical system (CPS) made a connection between the physical and
digital world. The CPS enabled real-time control and monitoring of physical pro-
cesses by providing sensor data. It proposed physical-layer visualization and de-
veloped a new technology called "digital twin" using physical processes [5]. It also
helped develop a flexible, adaptable manufacturing system through its integration
with IoT and WSN technologies [6]. IoT technology could develop smart produc-
tion by adding intelligent machines and processes to factory floors. This innovation
could be adopted during production and subsequent phases, including the contin-
uous monitoring of product lifecycles.

The ongoing industrial revolution of the past decade is taking enormous advan-
tage of cloud computing, as cloud computing improves product quality, efficiency,
and decision-making [7]. The fourth industrial revolution, is expanding based on
the connection between industry and the Internet [8]–[10]. The industrial world
is moving toward the concept of connected things, in which machines are linked

1

Introduction

through the cloud, interacting with a complex virtual world. Cloud computation
enables services that were not previously available, such as the machine learning
service, which develops smarter devices by computing large amounts of data on the
cloud side.

On the other hand, Wireless sensor networks (WSN) is another key technology
in industry 4.0, were introduced about two decades ago to provide accessible and
affordable sensors with low-cost communication over the air [11]. WSNs aim to col-
lect data through wireless communication from many sensors deployed across large
areas, and they are becoming key technologies for the IoT, allowing data exchange
between sensors and edge devices, such as gateways and routers. WSNs are basic
instruments that can quickly be inserted into a monitoring or control scheme, some-
times operated by batteries, with on-board sensors and, often, actuators. When
the wireless sensor and actuator networks are embedded together, they are referred
to as wireless sensor and actor networks (WSAN).

WSN nodes usually do not directly connect to the Internet; typically, the root
has an Internet connection, making a difference between WSN and IoT devices in
the architectural schema. WSNs are used in large areas, and sensor networks, and
this technology could leverage the accessibility of data and easily communicate be-
tween devices. This technology could deploy in many industrial applications, such
as natural-disaster management [12], [13], environmental monitoring [14], [15], pre-
cision agriculture [16], [17], unmanned surveillance [18], assistance for maintenance
in large industrial plants [19], [20], smart cities [21], and wireless body area networks
(WBAN) for healthcare [22].

The present work focuses on performance indicators in the IoT and Wireless
Sensor Network (WSN) technologies for industry 4.0. This dissertation is struc-
tured as follows: the first part deals with IoT issues in industrial applications.
Chapter 2 and 3 proposes Industrial Internet of things platform for industry 4.0.
Then the second part proposes mathematical models to analyze the 6TiSCH WSN
performance indicators for industrial applications. In the following, chapter 4 ex-
plains the testbed configuration and experimental setup. Chapter 5 and 6 propose
mathematical models to analyze the performance indicators. Chapter 7 presents
a TSCH predictor to simulate and predict performance indicators in the TSCH
network for WSN domain. In general, three proposal deals with communication
challenges in the Industry 4.0.

1.1 Internet of things: Problem Statement and
Challenges

Most industrial communication protocols were developed before the advent of
the Internet, and the first industrial network, which was based on serial communica-
tion, was proposed by Modcon in 1979. Other standards were introduced by other

2

1.1 – Internet of things: Problem Statement and Challenges

companies, such as Bitbus, Hart, and DeviceNet, and, after 2000, other standards
were developed using Ethernet as the base technology [2].

Industry 4.0 aims to apply IoT technology in factories to connect machines and
assets to remote servers. This connection will result in an intelligent system that
relies on cloud computing [23], [24]. However, common IoT technology is not based
on industrial protocols, so gateways and middleware are acting as important rules
to enable communication between machines and intelligent systems hosted on the
cloud.

The Reference Architecture Model Industries 4.0 (RAMI 4.0) was introduced
by Platform Industries 4.0 [25], [26], and was developed to create a road map for
Industry 4.0 standardization, especially in the Industry 4.0 integration. It consists
of a three-dimensional map that explains the structural organization of Industry
4.0 [27]. RAMI 4.0 is a multidisciplinary standard that helps enterprises adapt to
the aspects of Industry 4.0. It is a collection of existing standards divided into
four categories-architecture, life cycle, value stream, and hierarchical levels-and
explains how to integrate them into each factory layer. The standards community
is also developing new standards to help companies fill the standards gap between
information and communications technology (ICT) and industry needs [25].

The Industry 4.0 integration challenges are categorized by two problems in the
CPS layer: the IoT protocol standardization and centralized and decentralized
issues, such as latency and data privacy. These two problems lead us to propose
standard Industrial Internet of things (IIoT) protocols based on OPC-UA and the
fog architecture for Industry 4.0.

1.1.1 IoT Challenges
IoT standardization protocol

Industry 4.0 improved the automation of manufacturing by adopting IoT in fac-
tories. As a result, the factories became smarter and predictable by implementing
communication between assets and business applications [28]. CPSs in the industry
are based on defined standards established by either the international standard or
a local standardization institute. These standards have always been a requirement
in industrial design; however, since 1999, many IoT protocols have been proposed
to exchange data between connected things. These protocols-some of which are
MQTT, AMQP, XMPP, DDS, Websocket, and restful services [29]-have become a
backbone for IoT platforms. Thus, standardization of IIoT platforms is essential.

IoT gateways also are proposed for machine-to-machine (M2M) communication
and data marshaling in the IoT scenario to handle IoT end nodes. Gateways are
used as part of the edge computing paradigm in IoT architectures [30], [31]. The
industrial gateway is customized for industrial networks that comply with industrial
protocols and assets, such as PLC and instruments. The gateways are developed to

3

Introduction

connect industrial networks to IoT platforms, and they work as a data-conversion
layer [32]. The data conversion gateway accepts different input protocols, such as
Profinet, Modbus, and Hart, and then the output of the gateway provides an IoT
protocol that exchanges data from the gateway to the IoT platform/middleware.

As mentioned previously, RAMI 4.0 is becoming the standard architecture
model for Industry 4.0. VDE has proposed its architecture and suggested RAMI
4.0 as a standard architecture for Industry 4.0 [24]. In RAMI 4.0, the data con-
versions are placed in a communication and information layer. As a result, the
model places an IEC 62541 standard in the communication layer, and it proposes
the OPC-UA protocol as a suggested protocol for Industry 4.0 [33], which complies
with the IEC 62541 standard. Furthermore, AutomationML is proposed for an
end-to-end engineering approach in industrial scenarios [34], [35].

Chapter 2 proposes an Industry 4.0 platform that can satisfy the industrial
standard requirements. The challenges are standardization in the communication
layer and proposing a unique protocol to exchange data from machines to the cloud
system. An IoT middleware architecture is proposed and developed to connect
directly to the machine protocol. The proposed solution complies with RAMI 4.0
and develops a platform for industrial needs.

Centralization in industry

The Industry 4.0 development uses cloud computing as an intelligent system
that controls machines and robots remotely. The centralized cloud services are
used for cloud computing. Recently, the modern cloud-computing model has been
adopted to overcome the need for centralized assessment and a centralized storage
unit, which has partially resolved the digital transformation problems relevant to
the IoT environment [36]. However, network capabilities have grown with speed
disproportionate to the growth of computing capacity. Thus, the cloud-based in-
frastructure cannot have the bandwidth needed to run at the speed required to
satisfy the crucial real-time limits [2].

One of the most common techniques is to deploy sensitive tasks on nodes near
the end-user application. This model, best known as fog computing [37], leaves a
centralized cloud computing concept heading in a decentralized architecture, where
edge nodes perform essential tasks. This paradigm decreases latency in time-critical
applications and leaves regular computing to the central cloud service [38].

The decentralization of computation introduces a new issue regarding the de-
ployment of all cloud/fog services. Security is negatively affected by offloading
computation to edge nodes [39], and it becomes more complicated to run different
services across the network without a simple and effective way of deploying mod-
ules to nodes that perform some computation [40], [41]. Moreover, most available
solutions are proprietary and require fees or subscriptions to be used, reducing the
possibility of creating products tailored to the user’s needs.

4

1.1 – Internet of things: Problem Statement and Challenges

Thus, Chapter 3 proposes an open-source architecture for IIoT, to evaluate if
open-source tools can provide the same solution as proprietary software. The pro-
posed architecture is specifically designed for small- to medium-sized enterprises
(SME). Further, a case study is introduced to explore the usefulness of the imple-
mentation process.

1.1.2 Related work
IoT platforms and middleware are key technologies in Industry 4.0. These tech-

nologies have been developed for several applications, from smart cities to industrial
applications. Industry 4.0 is a road map that is leveraged with many different tech-
nologies. In this section, we will present some of those key elements.

Industry 4.0

The standard definition of Industry 4.0 began by combining IoT and CPS com-
munications at the factory level. This hybrid technology helped connect machine
data to machine data and machine data to human data in real-time. Connected
manufacturing, a new concept in the industrial domain, connects factories and
organizations by using Internet of Service (IoS) technology [42].

Recently, emerging technologies and facilities have also made it easier to develop
intelligent and scalable factories that provide customized products and produce on-
demand products. As a result, Industry 4.0 is now an economic imperative to
decrease prices, raise manufacturing income, and minimize operating costs [43]–
[47].

RAMI 4.0

Working in the industrial domain requires using relevant standards for each
sector, making Industry 4.0 communication different concerning other domains.
Therefore, the (RAMI 4.0) was proposed by VDI/VDE-GMA 7.21 Industrie 4.0
technical committee for Industry 4.0 standardization. This model defines data ex-
change methods, from assets to the business application layer [25]. Furthermore,
RAMI 4.0 introduces many standards for communications and information in the
CPS that improve communication from assets to the information layer. RAMI 4.0
suggests the OPC-UA protocol (an M2M protocol based on IEC62541) as a pre-
ferred protocol in the communication layer. The OPC-UA was developed by the
OPC foundation 1, which complies with the IEC 62541 standard [33].

RAMI 4.0 represents a set of integration standards to improve the Industry 4.0
implementation [25]. Fig. 1.1 presents RAMI 4.0 as a service-oriented architecture

1https://opcfoundation.org/

5

Introduction

in the three-axis view. The first axis represents the hierarchy from a network model
to a hardware-based structure; the second axis explains the products’ life cycles,
from development to usage and maintenance; and the third axis represents the
architecture of the layered service. Security is at the base of the RAMI 4.0 model
and the applications implemented by this model are secure by design [48].

Business

Functional

Information

Communication

Integration

Asset

Layers

Life Cycle & Value Stream Hierarchy Levels

IEC62264 // IEC61512
IEC62890

Type
Instance

Product

Field Device

Control Device

Station
Work Centers

Enterprise

Connected World

Figure 1.1: RAMI 4.0 architecture

IoT middleware platforms

Middleware provides a software interface between applications, the operating
system (OS), and network communication to reduce the complexity of the system
[49]. In general, the middleware’s task is to communicate with assets in a differ-
ent system’s layer in the IoT architecture and manage the data exchange between
sensors and IoT storage [49]. Middleware is the best solution for managing mul-
tiple assets and protocols in the CPS, and it is used mainly in the Industry 4.0
communication layer.

As reported in [50], several challenges must be addressed before developing
middleware, such as inseparability, scalability, spontaneous interaction of objects
and devices, and infrastructure diversity. The middleware functionality can be
classified as service-based, event-based, VM-based, tuple-spaces, database-oriented,
and application-specific [49].

Industrial middleware is expected to fulfill industrial requirements, such as low
latency, real-time communication (either soft or hard), and working with interna-
tional standards. These specifications are necessary for ensuring reliable and rapid
data exchange between assets and business applications. Moreover, industrial mid-
dleware needs to provide SDKs for further development.

6

1.1 – Internet of things: Problem Statement and Challenges

IoT platforms

An IoT platform is a set of functionalities that builds an ecosystem in which
things (sensors, actuators, and APPs) can connect and communicate. The IoT
platform includes middleware too, and the platform provides many functionalities,
such as communication, databases for big data, the representational state transfer
(REST) API, user management / end-node management, flexibility to implement
data schema, event/alert management, visualization, and SDKs for development
[51].

In Industry 4.0, IoT platforms are used in the communication layer to exchange
information, and they play a crucial role in the factory’s IT infrastructure. Essential
data rely on IoT platforms, so using the right technology is critical. The first step
to choosing the right IoT technology is to identify problems by considering the
industrial scenario; then, it is possible to develop an IoT solution considering the
requirements [51].

Several metrics are defined to evaluate an IoT middleware platform, which may
be defined as two subcategories: qualitative and quantitative. Qualitative metrics
are popularity, number of updates, security features, supports, and the SDK for
development. The quantitative metrics are error percentage, fairness, packet size,
and latency of the server application. IoT platforms are usually evaluated using
these metrics [51].

RAMI 4.0 suggests several standards adopt Indutry4.0; this is why Industrial
IoT platforms currently face additional challenges related to adapting the commu-
nication protocol from assets to the business layer in Industry 4.0.

The most popular platforms and IoT middleware are Eclipse Kura, ThingsWorx,
Kaa, Devicehive, Thinger.io, ThingSpeak, OpenIoT, Linksmart, Bosch IoT, Webi-
nos, Samsung ARTIK, Webinos, Nimbits, Konker Platform, Orion, Nitrogen, and
Sitewhere. SDKs for development are provided in some of these (Kaa, Eclipse Kura,
and ThingsWorx). After review, the Kaa platform was selected to compare with
the proposed protocol, as the Kaa IoT was flexible and compatible with different
databases. [51].

Gateways

Industrial IoT architecture utilizes gateways to perform data marshaling. It
is common to use many vendors in factory communication, each of which has its
technologies and protocols. However, developing human-machine interfaces for In-
dustry 4.0 requires reliable communication and data exchange between different
machines, such as robots, CNCs, and 3D printers. These requirements are why
data marshaling needs to be provided in the Industrial IoT scenario to convert
the machine data format to a format that is acceptable for IoT middleware. IoT
middleware offers gateways, solves compatibility issues, and allows for exchanging
data using M2M communication [52].

7

Introduction

Fog

Improvements in cloud computation have been enabled by the great effort of
researchers in recent years, as well as the evolution of the technology on which
cloud computing is based. The use of a centralized architecture, however, limits the
real-time application of this paradigm, as network technology is not experiencing
the same revolution as parallel and cloud computation. A solution that has been
recently proposed is to move some of the computational power of the central nodes
toward the edges of the network (near end-user nodes). This approach has been
called fog computing [53].

Decentralization allows for creating specialized nodes dedicated to real-time
computation. These nodes perform tasks that would be negatively affected by the
physical distance from cloud server clusters or by network capabilities. The tasks
that manage sensitive or harmful activity are required on leaf nodes that provide
a quicker response and do not violate safety criteria. Services for which latency is
not critical may still be executed on the central server cluster [41].

Fog computing proposes a new computational framework for the industrial envi-
ronment, especially Industry 4.0. The fog architecture extends the cloud approach
to highly critical tasks. However, the decentralization of computational power in-
creases the complexity of the industrial framework, fragmenting the execution of
services across the node network. Therefore, it is essential to provide an architecture
capable of running all essential services seamlessly, regardless of physical location.
A fast service deployment environment can dramatically increase the productivity
and quality of industrial frameworks [54].

Databases

The IIoT platform requires a reliable, fast, and robust data-storage system. This
is why nonrelational databases (DB) are selected in the IoT scenario, which enables
fast storage operation with low computational power. Several NoSQL DB has
recently been developed, divided into four categories: Wide-Column Store, Graph
Store, Key-Value Store, and Document Store. Graph Store is developed based on
graph theory, and graph connections represent each relationship. Key-Value Stores
is implemented for storing data in a schema-less way, where each data is stored as
a pair of index values. Dynamic DB, Cassandra, and Berkeley are implemented
by storing the key-value schema. The Wide-Column Stores were developed based
on Google®Bigtable. The data structure is a tabular form of columns and rows.
HyperBase, BigTable2, and HBase are Column Store databases [55], [56]. The
Document database is an extended version of the key-value schema, where each key
is a standard document, such as JSON, BSON, or XML. They have a flexible schema

2https://cloud.google.com/bigtable/

8

1.1 – Internet of things: Problem Statement and Challenges

and can be modified as needed. Couchbase Server and MongoDB3 are document
databases. These databases are like collection-based document technology [55].

Furthermore, the streaming data platform is an important feature in the dis-
tributed IoT platform. This kind of platform is like a database in IoT platforms
for streaming data in real-time. Kafka is open-source and widely used in the dis-
tributed platform, where producer and consumer channels are available to produce
and update data for end nodes [57]. Kafka4® is an open-source platform; it was
initially developed by LinkedIn, then became open-source (Apache Foundation).

Industrial communication networks

Industrial networks were first defined in 1981. Since then, many enhancements
have been made due to the use of physical communication technology. In general,
an "Industrial Communication Network" refers to a network that provides data
exchange in a factory. These networks can be categorized as Fieldbus, real-time
Ethernet, and wireless [58], and the data exchange can refer to machines, assets, and
industrial devices. In the last few years, the need for high-speed data transmission
has increased dramatically in Industry 4.0, as Industry 4.0 requires high-speed data
exchange between shop floors and the cloud [58].

Industrial communication is based on well-established industrial frameworks
and protocols. This section takes advantage of a set of open-source products that
provide a complex yet compelling environment, using some well-known tools and
emerging open-source technologies.

Profinet Profinet is an industrial network communications standard based on
industrial Ethernet. It is particularly suitable for time-critical applications and
provides integrated diagnosis and safety at the protocol level. The connectivity
between the controller and the device is carried out by the PROFINET IO module,
which represents how the data is exchanged in Profinet [59]. It is based on a
consumer-producer model and can be implemented by any Ethernet controller. A
high degree of availability is guaranteed, using a redundant architecture, which is
essential in time-critical applications.

Modbus Modbus is an industrial protocol developed in 1979 for automation
systems in industrial environments [60]. The protocol is based on a client-server
paradigm, in which the client starts transmission, and the server can respond to only
a particular request. Each client is directly addressable, and the server responds to
only the client who began the conversation. The Modbus protocol communicates

3https://www.mongodb.org
4https://kafka.apache.org/

9

Introduction

through various busses and networks, and it has become the de facto standard for
industrial serial communication. The Modbus TCP is a slightly updated version of
the Modbus protocol, accepted as a standard. It requires the TCP/IP layer to be
used in network communication, either on the same network or over the Internet.
This Modbus version can be used to connect to machines and PLCs.

OPC-UA OPC is an open standard used in the industry for secure and reliable
data exchange [61]. It was released in 1996 and has become one of the most widely
used platforms for exchanging data within an industrial system. It supports com-
munication within machines, between machines, and from machines to systems.
The OPC specification defines an interface between system components to permit
them to share data using a unified communication standard without using a cus-
tom interface. It is cross-platform and scalable and can be used in a wide range
of environments, from small embedded applications to massive cloud systems and
mobile applications. The communication protocol is designed to enhance security
by providing authentication and encryption and can thus be used both within pri-
vate networks and across the Internet. The initial standard was released only on
Microsoft systems, and it is now known as Classic OPC, while the newer stan-
dard introduced in 2008, named OPC-UA (Unified Architecture), is based on the
IEC62541 standard and includes all features of the classic version, plus additional
features, such as platform independence and diagnostics.

MQTT Message Queuing Telemetry Transport (MQTT) is an M2M connectivity
protocol that complies with the publish/subscribe paradigm [62] developed in 1999
at IBM and Arcom. It was designed to be lightweight and straightforward and
was initially intended to be deployed on low-power sensors. However, given its
flexibility, it has been widely used in industrial products. Since the goal is to keep
the protocol as simple as possible, MQTT does not provide specific methods to
enhance security; however, it can rely on any additional security layer, like SSL.
The MQTT working principle is based on topics in which nodes can publish their
data as a topic on the dedicated channel. The MQTT client can subscribe to the
topics to receive notifications and messages. (At the time of this proposal, MQTT
is undergoing the standardization process at OASIS.)

10

1.2 – TSCH Wireless Sensor Network: Problem Statement and Challenges

1.2 TSCH Wireless Sensor Network: Problem
Statement and Challenges

Several applications in the industry 4.0 require low-power consumption for WSN
battery-powered devices, as well as low latency and high-reliability [63]–[67]. Typ-
ically, WSN nodes (also referred to as motes) are battery-powered and, in some
situations, are installed in environments or locations where it is difficult or impos-
sible to change the batteries. Thus, replacing batteries is a challenging task.

WSNs cannot be adopted for time-critical applications requiring extremely low
latencies, such as a few milliseconds [68], [69]. Nevertheless, specific, high-performance
wireless solutions have been recently defined for these applications: ultra-reliable
and low-latency communications (URLLC) [70]. However, many contexts, such as
industrial monitoring and surveillance applications, may benefit from (and even
demand) the underlying network’s ability to ensure short and bounded latency on
transmitted packets.

Depending on the application, network reliability, such as power consumption
and latency, must be guaranteed. In theory, this can be accomplished with au-
tomatic repeat requests (ARQ) [71], which rely on confirmed delivered messages
and performer retransmission for frames in which no corresponding acknowledg-
ment (ACK) is received. Power consumption and latency will be increased with
the retransmission technique.

The most popular transmission technology is IEEE 802.15.4, which is adopted
in WSNs [72]. It has low energy consumption, which is suitable for battery-powered
devices, and it enables a flexible and straightforward implementation of a medium
access control (MAC) mechanism via software.

Although IEEE 802.15.4 establishes a beacon-oriented transmission method
with guaranteed time slots to improve determinism, beaconless methods provide
asynchronous network access and are generally utilized in real-world applications.

A TSCH mechanism is subsequently proposed to increase the reliability of
WSNs. TSCH is an enhanced MAC technique that reduces the probability that
packets sent by applications are lost due to disturbance (e.g., electromagnetic noise)
or interference from a different wireless network.

Depending applications demand different WSN requirements. For instance, the
gas station required higher transmission reliability, and in this specific case, latency
was not an issue. However, power consumption is an essential factor. Nevertheless,
in other applications, such as environmental monitoring or home automation, low
latency, and high reliability are not issues. Nevertheless, low power consumption is
needed when the WSN node is battery-powered.

We propose a method to analyze WSNs before deployment and estimate WSN
performance indicators in a specific scenario. The following chapters (Chapter 5
and 6) will pose a problem related to WSNs’ communication performance indicators

11

Introduction

and then propose a mathematical model to analyze the performance indicators. The
model could also estimate the reliability and latency based on simple PING utility
round trip experimental data. The proposed model is based on the OpenMote B+
devices, which runs the OpenWSN OS. The nodes support the 6TiSCH protocol,
which is one of the latest WSN protocols. 6TiSCH is ip6 over the TSCH network,
with many features to guarantee better reliability and low power consumption in
the WSNs. The models in Chapter 5 and 6 are proposed based on data obtained by
running the 6TiSCH protocol on the OpenMote devices. The chapter 5 focuses on
the single-hop network modeling, and the chapter 6 extends the proposal to a multi-
hop network. Furthermore, TSCH predictor is proposed for network simulation
and estimates the performance indicators of simulation results of the WSN. The
model is introduced to help engineers validate the WSN performance indicators
before deployment. Moreover, the TSCH predictor is developed in a simple way to
estimate and predict the WSN’s behavior. The TSCH predictor was implemented in
a user-friendly and straightforward way to perform a simulation and avoid becoming
a complex simulator.

The main contribution of chapter 5 is a practical and straightforward mathemat-
ical formulation that explains a TSCH network’s behavior to help tune procedures.
The model depends on protocol configuration parameters and estimated quanti-
ties to characterize the network and the surrounding environment, obtained from
experimental measurements performed on a real setup. The model validation was
performed on the logged data from the testbed described in chapter 4.

The experimental characterization of the power consumption of OpenMote B de-
vices was the second relevant contribution of the proposal. The motes are popular
and are currently used in developing and testing newly added features or improve-
ments of both 6TiSCH and the OpenWSN OS. However, to the best of our knowl-
edge, such an analysis of power consumption is not available in the literature for
OpenMote B devices. This characterization provides a fair and accurate estimation
of the node’s power consumption in the WSN.

The third contribution was implementing the TSCH predictor which estimates
the real behavior of the 6TiSCH network in compliance with the actual data col-
lected from the WSN. Experimental analysis was performed to validate the effec-
tiveness of the TSCH predictor by comparing the data obtained from the OpenMote
hardware.

1.2.1 WSN Challenges
Many devices exchange data over wireless communication; many vendors use

wifi technologies to send and receive data over the air. Thus, Wi-Fi traffic is
increased. However Wi-Fi devices are based on the IEEE802.11 standard, which is
used in many common wireless devices as well as industrial machines to transmit
data over the air [73]. These wireless devices, known as basic service sets (BSS),

12

1.2 – TSCH Wireless Sensor Network: Problem Statement and Challenges

are widely deployed in offices, homes, hospitals, and industrial environments.
Most BSS devices transmit data via the 2.4 GHz industrial, scientific, and med-

ical band (ISM band). WSNs are based on the IEEE 802.15.4 standard, which
uses the frequency as an ISM band. This creates a collision between the WSN and
other devices working in the same frequency spectrum. One popular solution is to
plan the frequencies of co-located networks to limit interference. Nevertheless, this
solution is usually infeasible, as different departments manage different networks.
Therefore, the WSN packets suffer from delays due to interference and collisions,
and the packets may even be dropped.

Fig. 1.2 shows the impact of background traffic on the network. This experiment
was performed over four days (Friday to Monday) with the 6TiSCH network set up
using the ping utility. The 6TiSCH protocol was run on the OpenMote B devices
to obtain the round-trip values. The average, minimum, and maximum statistics
were computed over a sliding window. The window averaging was calculated for
120 samples, for which each ping was sent with a 30 second interval.

0

5

10

15

12 18 24 6 12 18 24 6 12 18 24 6 12
Friday Saturday Sunday Monday

La
te

nc
y

(s
)

Maximum
Average

Minimum

Figure 1.2: Measured ping round-trip time (Max./Avg./Min. values, Friday-to-
Monday, 1-hour moving average).

As Fig. 1.2 shows, the latency changes on the weekend and overnight on week-
days, and it has a lower value concerning workdays. The latency increases more
than three times during the workday. Furthermore, there were no high-power elec-
trical machines presented near the testbed. This means that the communication
quality was affected by background traffic. This effect was due to other Wi-Fi de-
vices (e.g., mobile phones, PCs, access points) near the laboratory.

13

Introduction

Fig. 1.3 shows the active BSSs, which were visible in our experimental testbed.
The experimental analysis performed in this setup shows that the Wi-Fi network
directly impacts the WSN (mote) communication quality. However, WSNs were
not developed to support deterministic traffic, and this type of delay is acceptable
for many applications (e.g., lighting systems or smart homes). Nevertheless, the
TSCH mechanism provides higher reliability for WSNs, making them suitable for
mid-critical scenarios (e.g., industrial plants, mission-critical applications, disaster
management), where time requirements must be met [74], [75].

There are other solutions to satisfy low power and low latency, which suites the
requirement of lighting-control applications in smart homes. This solution is called
the wireless short-packet (WSP) protocol, and its energy consumption is optimized
by using the IEC 14543-3 standard [76]. WSP solutions work well and save much
energy by decreasing duty cycles, but they were not developed for the meshing
network [77].

Wake-up radios are another approach in which some technology complies. In
this scenario, one ultra-low-power receiver is used to wake up the primary radio by
demand [78]. However, this technology is currently unavailable.

In the TSCH mechanism, the network’s time is split into slotframes, in which
unique nodes send or receive a packet in the scheduled slot time. In this scenario, in
end-to-end communications (including two-way links), when the links are scheduled
in a slotframe, they are permitted to occur within the same scheduled slotframe
[79]–[81]. This means that, in theory, the round-trip time of each query based on
the request-response paradigm is as low as 1–2 s. Moreover, when energy harvesting

Figure 1.3: Wi-Fi spectrum traffics during experimental campaigns.

14

1.2 – TSCH Wireless Sensor Network: Problem Statement and Challenges

is exploited (e.g., the motes are not powered only by batteries), TSCH networks can
be adopted for close control loops, with slow dynamics and high-reliability [82], [83].
Therefore, the TSCH communication network quality could be obtained to interfere
with Wi-Fi traffic in real scenarios. Additionally, the number of interfering Wi-Fi is
essential for deciding whether the requirements demanded by the applications can
be met.

The effects of common interference between different wireless network tech-
nologies have been widely studied. Cross-interference analysis between Wi-Fi and
ZigBee are studied in [84], [85]. In [86], the effect of IEEE 802.15.4 traffic on a
Wi-Fi network was evaluated. The influence of Wi-Fi traffic on legacy (non-TSCH)
IEEE 802.15.4 networks has been assessed in many studies, such as [87]–[90]. In
addition, the Wi-Fi interference effect on 6TiSCH (based on IEEE 802.15.4 with
TSCH) was analyzed in [91]. The performance of the channel hopping technique
has been evaluated in [92]. Finally, the whitelist and blacklist of channel hopping
have been proposed to improve the reliability in WSNs [93].

Unlike the above works, the Chapter 6 describes the mathematical model to
analyze the effects of Wi-Fi interference on a TSCH single-hop network; then,
in Chapter 6, the model will be extended to a multi-hop network. Most of the
past literature’s theoretical model considers only a single technology, excluding any
interactions with other wireless protocols. Earlier investigations based on Markov
chains, concerned Wi-Fi [94]–[96] which could be extended to TSCH as well. In
particular, in [97], [98], analytical derivations are introduced to represent the shared
cell transmission. The mutual interaction is analyzed between IEEE 802.15.4 and
IEEE 802.11, which typically refer to older versions of the standards. Other papers
report on theoretical studies about the impact of Wi-Fi traffic on a pre-TSCH
version of IEEE 802.15.4 [99], [100]. The proposed mathematical models have
been driven by the measurements obtained from a real setup in the next chapters.
Therefore, the mote communication performance can be estimated by the proposed
model.

It is better to know the issues in both technologies’ characteristics to propose
solutions for them. The IEEE 802.15.4 and IEEE 802.11 have different characteris-
tics concerning the physical layer. The bandwidth of IEEE 802.11 is 20 MHz for a
single OFDM channel (22 MHz for DSSS). However, IEEE 802.15.4 channels have
16 channels defined by the ISM band, and the frequencies are between 2.405 GHz
and 2.480 GHz, with 5 MHz bandwidth for each channel.

Fig. 1.4 shows the channels and frequency overlap; every channel in the Wi-Fi link
overlaps with about 4 adjacent WSN channels (or 8 when channel bonding is ex-
ploited). This means that when four Wi-Fi nodes are transmitting data over the
air on fixed channels, such as 1, 5, 9, and 13, every IEEE 802.15.4 channel in the
ISM band suffers from interference.

15

Introduction

2.412 GHz

Ch. 1 Ch. 5 Ch. 9 Ch. 13

2.472 GHz

Ch. 11 Ch. 26

2.405 GHz 2.480 GHz f [GHz]

f [GHz]

IEEE 802.15.4 (WSN)

IEEE 802.11 (Wi-FI)

3 MHz 5 MHz

20 MHz

Ch. 17

Figure 1.4: Overlapping channels in IEEE 802.11 and 802.15.4 (ISM band).

1.2.2 Related work
Many standards exist for wireless networks [101], which can be adapted to the

IoT paradigm, and, often, several heterogeneous communication technologies coex-
ist within the same system, which is transparently exploited by applications [102].
Many IoT solutions rely on IEEE 802.15.4 for frame exchanges (e.g., ZigBee and
WIA-PA). Concerning IEEE 802.15.4e, two operating modes are defined: the de-
terministic and synchronous multi-channel extension (DSME), and TSCH (used by
ISA 100.11a, WirelessHART, and 6TiSCH). Other technologies commonly adopted
in IoT are LoRa, IEEE 802.11 (Wi-Fi),4G/5G, and Bluetooth Low Energy (BLE).

The proposed model in the next chapter specifically refers to TSCH, and the
experimental results were obtained on motes running with the 6TiSCH protocol, the
IPv6 over the TSCH mode of IEEE 802.15.4e protocol [103]–[105]. TSCH could
satisfy a deterministic behavior for what concerns IoT system metrics [106]. In
the next chapter, the performance analysis of the network is also evaluated. The
analysis addresses, reliability, power consumption, and latency. Protocol behavior
can be tuned through several parameters, most of which can be configured by
the user. Nevertheless, since the above metrics are deeply weaved, it is generally
impossible to optimize one without worsening the others. Consequently, a proper
network arrangement that guarantees the application requirements must rely on
heuristic approaches.

16

1.2 – TSCH Wireless Sensor Network: Problem Statement and Challenges

1.2.3 Time Slot Channel Hopping mechanism
The Time Slot Channel Hopping (TSCH) mechanism was first established in

2012 and was initially an improvement of the IEEE 802.15.4e [72], [107], to in-
crease the reliability of WSNs. TSCH effectively prevents disturbances caused by
electromagnetic noise or transmissions on the wireless medium presented by other
communication technologies that work in the same (or on an overlapping) frequency
spectrum. It also improves communication reliability and reduces energy consump-
tion.

The TSCH network time is the key parameter that divides a network’s time
into slots with a fixed duration. Each slot is organized into slotframes made up of
a fixed number (Nslot) of slots. Slotframes repeat in time and are utilized by a time
slotted mechanism for controlling wireless medium access (MAC). This mechanism
expects all motes to be time-synchronized [108], [109]. Each slot time duration
ranges between 10 ms and 20 ms for common available implementations.

The following chapters explicitly consider the 6TiSCH protocol IPv6 over the
TSCH mode of IEEE 802.15.4 [103]. The reasons that are used in the experimental
analysis are, firstly, as mentioned before, TSCH provides noticeably higher com-
munication reliability than legacy IEEE 802.15.4 operating modes with the same
low energy consumption. In some cases, it could obtain better results in dense en-
vironments, where the intra-network implies interferences that cannot be ignored.
The second reason is that IP adoption integrates sensor networks in the existing
communication backbones easily and deployment faster by enabling asynchronous
request-response communications via nodes.

TSCH Protocol Basics

TSCH is placed in the data-link layer and is responsible for exchanging frames
between neighboring nodes. TSCH relies on two interrelated mechanisms: time
slotting and channel hopping.

Time slotting

Time slotting follows a more generic method of time division multiple access
(TDMA) approaches [110], it divides time into fixed-duration windows called slot-
frames, each of which includes a fixed number Nslot of slots. All slots have a fixed
Tslot, which is selected to send a request/response/acknowledgment frame in each
iteration. After the network has been configured, some slots, uniquely recognized
by their location in the slotframe, are assigned to particular links. All links are
identified by the source and destination nodes and are assigned in data exchange
(the broadcast address is also provided for the destination).

Each node is synchronized with the other node of the network [109], keeps a copy
of the descriptors for the links relevant to itself, and wakes up only when scheduled,

17

Introduction

either if it has a pending packet waiting to be sent (TX action) or requires that
a packet can be (RX action) received. This operation is necessary for reducing
the power consumption in the network [111]. However, the main drawback of this
operation is the complexity of maintaining the node being synchronized. Therefore,
the challenge remains in the TSCH network.

Slotframe transmission is repeated frequently, which indicates the communica-
tions among adjacent nodes at the data-link layer, and are scheduled cyclically in a
period Tslfr = Nslot ·Tslot. Every slot is not necessarily used in every slotframe. The
6TiSCH paradigm, IPv6 over TSCH, provides an IP layer for each node, which helps
communicate through CoAP with accurate asynchronous network access. This im-
plies that the periodicity of data transactions, as seen at the application layer, is
loosely tied to the slotframe duration and structure defined at the data-link layer.
This allows for easily modifying the old value at runtime without the need to re-
configure MAC parameters. Further, on-demand node access is fully supported in
this mechanism [112].

Due to the slotframe scheduler, which transmits a frame in each unique slot, in-
terference and collision between nodes are limited in the same network. A collision
may happen for shared cells or cells that are not reserved for a single source node.
Therefore, a random exponential method is defined to avoid a collision. Neverthe-
less, shared cells are not commonly used, and they are usually not applied to carry
application data interchange.

Channel hopping

Channel hopping is defined to increase the reliability of the WSN. This mecha-
nism constantly changes the transmission frequency according to a known pattern
defined by the user. The WSN node (OpenMote device) is implemented with the
16 channels, which is defined by IEEE 802.15.4 in the 2.4 GHz ISM band, each of
which has a width of 5 MHz, working in the range of 2.405 GHz (Channel 11) to
2.480 GHz (Channel 26).

The 6TiSCH protocol builds a matrix for each node in the network. This matrix
has information related to the node in the slotframe (e.g., when the node can
send data [TX-Transmite] or when it can receive data [RX-listen]). The wireless
spectrum of each node is divided into frequency and time through one or more
slotframe matrices. The row represents the channel number, which is 16 channel
numbers in the matrices. The columns represent a dedicated slot in the slotframe
[112]. Fig. 1.5 shows a TSCH matrix example, in which the rows refer to channel
offsets, the columns identify slot offsets, and the slotframe utilization is defined
by the TSCH matrix. Further, each cell in the matrix is addressed by row and
column (i.e., channel offset and slotframe), represents the interconnection between
the nodes, and defines when and where data should be transferred.

There are two advantages to the TSCH matrix. One prevents intra-network

18

1.2 – TSCH Wireless Sensor Network: Problem Statement and Challenges

1 2 3 2

2 3 4 1

2 1

1 4

RX RX

TX

TX

TX

RX

M1

M2

M3

M4

0

1

2

3

15

..
.

0

1

2

3

15

..
.

0

1

2

3

15

..
.

Global Schedule TSCH matrix TSCH matrixM2 M3

Mote on

Sleep

Slot offset
0 1 2 3 4 1005 ... 0 1 2 3 4 1005 ...0 1 2 3 4 1005 ...

C
h
a
n
n
e
l
o
ff
s
e
t

Figure 1.5: Example of a TSCH matrix defining the slotframe usage: global sched-
ule (on the left) and local, trimmed-down copies (on the right).

collisions by configuring the desired matrix [113], [114]. The example presented in
Fig. 1.6 shows a multi-hop path between M3 and M1. Each node’s cell is scheduled
in the matrix, with no collision between the nodes (compare the cells in the matrices
M2 and M3). The second advantage is the channel-hopping mechanism, in which
each cell transmits a packet on a different physical channel in each iteration. This
mechanism provides higher reliability and increases the packet delivery probability
in the network by avoiding collisions with other wireless networks working near a
node with unpleasant traffic.

The channel-hopping mechanism is defined with a simple strategy in the 6TiSCH
protocol. In this mechanism, the nodes must be synchronized; therefore, a broad-
cast message is scheduled to send a synchronization packet to all neighbor nodes
in the 6TiSCH protocol. This means that when the nodes are synchronized, they
will run with the same iteration counter number in each slotframe. Each slot in the
TSCH matrix is defined by the absolute slot number value (ASN), a unique number
initialized when the WSN starts. This number is unique, and it is the same for all
nodes in the network. The physical channel is obtained by computing

PhyCh = HopSeqList[(ASN + ChannelOff)%HopSeqLen] (1.1)

where HopSeqList is the list of channels with a size of HopSeqLen

HopSeqList[] = {5,6,12,7,15,4,14,11,8,0,1,2,13,3,9,10} (1.2)
and channel offset is the row number, and ASN is a sequential unique number

in the TSCH matrix.
The physical channel is computed in each iteration to avoid the effect of back-

ground traffic generated by other networks. Fig. 1.6 shows how the physical chan-
nel is obtained; the example shows the three sequences of the physical channel
in three sequential timelines. There are 16 channels available in the node (i.e.,
OpenWSN configuration). In the first sequence, the channel value is 0, where
ASN = 4052, then PhyCh = HSL[(4052 + 1)%16] = HSL[5] = 4. In the second

19

Introduction

slotframe

0

...C
h

. o
ff

se
t

4050 4150

 1 ...
...

2 ...
...

15 ...
4051 4052 4053 4151 42514152 4153 4154 4252 43524253 4254 4255

A B

...

...

...

...

...

...

...

...

...

...

...

...

...ASN

A B A B

Figure 1.6: Physical channel calculation obtained from ASN counter in TSCH
matrix

sequence, the channel value for the same cell becomes ch = 1 with ASN = 4153,
and for ASN = 4254, the value becomes ch = 10. The counter number for ASN
increases in each iteration. The ASN number is the same for all nodes in each
iteration, which helps all nodes change their physical channel. This is why the
broadcast message must be sent periodically based on the network configuration to
keep the network synchronized.

Each cell is scheduled for transmission (TX) or reception (RX) in a single mote.
When there is no activity scheduled in the cell, the mode goes into sleep mode.
This mechanism saves energy in the mote where the number of slots (Nslot) in
the slotframe is large. In the TX cell, transmission occurs when the frame is
ready or a frame is waiting in the buffer; otherwise, the cell sleeps in an optimized
implementation and waits for the next scheduled time. This is why the 6TiSCH
network has a shallow power consumption. Further, the Nslot value directly affects
the network latency, so it is better to select a small value for it.

The respond mechanism follows the same concept in the 6TiSCH protocol; for
example, when the RX cell receives data, the mote responds after Nslot ∗ Tslot
from the TX cell. This is why the 6TiSCH network needs optimization for each
application. The TSCH is part of the medium access control (MAC), and the TSCH
manages the communication between the neighbor nodes at the data link layer.
Matrices that define slotframes and spectrum usage are configured by employing
other protocols that operate at protocol stack levels.

Many published papers focus on configuring the TSCH matrix [79]–[81], [113],
[115], but only a few mathematical models are proposed for describing the perfor-
mance of the WSN communication. However, some theoretical analyses discussed
how Wi-Fi interference could affect TSCH or DSME in the IEEE 802.15.4 networks
[99], [100]. Alternatively, some papers have proposed a Markov chain model to de-
scribe the traffic on shared cells [97], [98]. Some preliminary models describing
communication over dedicated cells are described in [71], but this study does not

20

1.2 – TSCH Wireless Sensor Network: Problem Statement and Challenges

Table 1.1: Taxonomy of the scientific works related to the WSN/WSAN.

Topic References
WSN/WSAN applications [12], [15], [16], [18], [20], [22], [119]–[121]
TSCH/6TiSCH [97], [103]–[106], [112]
IEEE 802.15.4 specifications [72], [107]
Scheduling and TSCH configuration [79]–[81], [113]–[116]
Mathematical models [71], [97]–[100], [122]
WSN/WSAN high-level protocols [117] (6P),

[118] (RPL),
[123] (CoAP)

Power consumption [63]–[67], [124], [125]

consider the energy consumption model and multi-hop networks. Further, effec-
tive and efficient adaptive channel selection mechanisms are proposed for channel
hopping in [116], to increase the performance indicator in the WSN for eHealth
applications.

The 6TiSCH protocol supports an Operation Sublayer Protocol (6P) [117],
which manages multi-hop communication between a pair of nodes. This 6P permits
adding or deleting cells in the TSCH network. In addition, it configures TSCH ma-
trices and the Routing Protocol for Low-power, and Lossy Networks (RPL) [118].
Table 1.1 reports a taxonomy of the scientific works around WSN/WSAN, charac-
terized by the related topic.

21

22

Chapter 2

Industrial IoT Platform Based on
RAMI 4.0

The work described in this chapter was originally presented in [32], [126]

As discussed in Chapter 1, industrial communication protocols are proposed by
industrial companies, each of which has a diverse approach to the data structure in
data exchange. For instance, Siemens launched Profibus, then, by leveraging Ether-
net technology, proposed Profinet. Modbus, proposed by Modicom, is a serial-based
communication protocol, and it has become the de facto standard in the industrial
environment. However, Industry 4.0 is an IT approach that connects machines and
assets to the enterprise resource planning (ERP) system and the manufacturing ex-
ecution system (MES). As always, there is a strong need for standardization, and
RAMI 4.0 was proposed to target this need in the industrial community [127].

In this road map, OPC-UA (Unified Architecture) was suggested for data ex-
change at the factory level. The classic OPC was developed in 1996 by Microsoft for
the Microsoft OS. The OPC-UA is a cross-platform protocol that enables M2M and
machine-to-system data exchange by a unified standard interface. Due to its flexi-
bility, OPC-UA is a preferred choice for many applications, ranging from embedded
systems to mobile and cloud platforms. OPC-UA has an encryption mechanism,
which makes it one of the most valuable protocols in the industry, as it allows for
setting up private and secure networks, which is expected in any industrial protocol
[128].

This chapter proposes two architectures: one is based on the Distributed In-
dustrial Internet of things Gateway (DIIG) [32] and the Kaa1 IoT platform, and
the other is an open-source middleware that proposes an extended architecture,

1https://www.kaaproject.org/

23

Industrial IoT Platform Based on RAMI 4.0

including the OPC-UA protocol as the primary communication protocol. In the
second architecture, industrial machines can connect directly to the proposed IoT
middleware, and data can be exchanged using the OPC-IoT protocol, which is also
based on the IEC 62541 standard. In this proposal, the DIIG algorithm is respon-
sible for converting data from an industrial protocol to OPC-IoT. In addition, the
NoSQL databases, such as MongoDB and Cassandra, were integrated to store data.
Kafka was also adopted as a distributed streaming platform. Finally, experimental
analysis was performed to evaluate throughput, round-trip delay, and fairness.

2.1 Proposed Architectures
The new IoT architecture was designed based on the RAMI 4.0 road map, and

the focus of the architecture was the communication layer [25], which complies
with the IEC 62541 standard. Fig. 2.3 shows the proposed architecture, which
complies with RAMI 4.0. Moreover, the DIIG platform which was presented in
Fig. 2.1 [32]. It was developed with the Kaa IoT middleware, which manages
communication and data storage. It complies with the NoSQL database. This
platform was evaluated for different databases (i.e., MongoDB, Cassandra, and
Kafka, where Kafka was a streaming data platform, which enabled data streaming
for the distributed platform).

Kaa IoT Platform

M
o

d
b

u
s

S
7

P
ro

to
co

l

Kaa
SDK

Client

DIIG Gateway

Transport
Layer

Platform
Layer

d
b

 s
el

ec
t

D
IIG

 A
lg

o
ri

th
m

Kaa Server

Internet

Figure 2.1: DIIG architecture components with IoT platform

2.1.1 DIIG-Kaa
The proposed platform is implemented with a DIIG gateway (more explanation

about DIIG algorithm is presented in Appendix B)[32]. The platform has two main
layers: a DIIG gateway and Kaa IoT middleware. The DIIG gateway transmits
data from the shop floor to the Kaa IoT platform. Fig. 2.1 shows the data exchange

24

2.1 – Proposed Architectures

between the DIIG algorithm and the Kaa client routine. In this routine, when data
are ready in the gateway, the client program sends the data to the server by utilizing
Kaa SDK in the gateway. The server is set up by open-source industrial Kaa IoT
middleware, which collects data and stores them in the NoSQL database. In this
chapter, the performance evaluation was obtained by MongoDB, Cassandra, and
Kafka data storage.

Fig. 2.1 shows that the DIIG gateway can communicate with nodes supported
by the Modbus and S7 protocol. This section aims to discover the best database
among the available technologies (i.e., a technology that can store data at low la-
tency and higher throughput using the DIIG protocol). The DIIG algorithm has
the advantage of providing a communication channel with the industrial network,
such as Profinet and Modbus protocols. Furthermore, the DIIG protocol can ex-
change data between nodes and the Kaa IoT middleware without considering the
nodes’ data generation protocol (Modbus or the S7 protocol).

As Fig. 2.2 shows, DBm[256]2 byte was allocated for each client session (IoT
Node), which was partitioned into an eight-byte memory block per message. The
Tr and Ts processes were implemented to control the write/read mechanism in the
memory blocks.

The Tr process checks the memory status flag (MSF) block when the block
is free, and the Tr process writes the memory address in the free memory index
(FMI) block. If the memory block is full, the Tr process writes the memory index
in the ready-to-send index (RTSI) block. Both processes run in parallel. The client
node also must identify the memory index in the MSF when it writes new data to
the memory MSF block.

The Ts process was implemented to send data to the Kaa IoT platform, and it
checks data by the RTSI flag. Then, if the data are ready, the Ts process sends
them to the Kaa client.

The Kaa client was implemented by the Kaa endpoint SDK, which was gener-
ated by the Kaa platform. The Kaa platform is designed for scalable and flexible
applications. This advantage provides a platform that can customize the data
sources and data storage system by configuring the project. It is also possible to
produce a unique development SDK for each application. The Kaa server provides
the data marshaling, communication, and notification control within the Kaa APIs.
The client application in this gateway is based on the Kaa SDK; after all, the client
was developed to read data from the DIIG gateway, and it transmits the data from
the DIIG algorithm to the Kaa platform. Finally, the data is stored in the target
database using the Kaa IoT middleware.

In this chapter, a different database is selected to store data. As shown in Fig.
2.1, MongoDB and Cassandra are selected as NoSQL DB, and Kafka is chosen

2Data Block Memory

25

Industrial IoT Platform Based on RAMI 4.0

Process

Note : 1. n. is number of node

M.S.FF.M.I

R.T.S.I

read write

m. node

Ts thread

Tr
thread

write

2. R.T.S.I. (Ready to send index)

3. F.M.I. (Free memory index DB6[m])

4. M.S.F (Memory status flag DB7[m])

Send to IoT Platforms by using the OPC-IoT or Kaa SDK

[1 .. m]

Figure 2.2: DIIG gateway algorithm

as a distributed streaming platform for broadcasting information between several
applications. The design choices are audible to each other, and the data structures
are NoSQL.

2.1.2 OPC-IoT
The OPC-IoT is proposed based on the OPC-UA protocol for the communica-

tion core, which complies with the IEEE 62541 standard, and it is a service-oriented
architecture (SOA).

As shown in Fig. 2.3, the two stages are implemented (i.e., the DIIG-OPC 3

gateway and OPC-IoT middleware platforms). The OPC-UA SDK is employed

3DIIG: Distributed Industrial Internet of Things gateway

26

2.1 – Proposed Architectures

OPC-IoT Platform

M
o

d
b

u
s

S
7

P
ro

to
co

l

OPC-UA SDK

OPC-UA
Client

DIIG-OPC Gateway

OPC-UA
Server

Create
session per

Client
(n-Node)

Application
Layer

d
b

 s
el

ec
t

Node ID

D
IIG

 A
lg

o
ri

th
m

O
P

C
-I

o
T

 A
lg

o
ri

th
m

Internet

Figure 2.3: DIIG-OPC architecture components with the IoT platform

to develop the DIIG-OPC gateway instead of the Kaa SDK, based on the DIIG-
Kaa architecture. The DIIG algorithm is implemented to communicate efficiently
between the gateway and industrial assets. Further, in this gateway, the client is
developed by the OPC-UA protocol. As shown in Fig. 2.3, two primary core areas
in the OPC-IoT middleware are communication and data storage. Four layers are
implemented in the communication core: the application, the OPC-UA server, the
OPC-IoT algorithm, and the client session controller.

Figure 2.4: Server & Data object in the OPC-IoT platform (for 1000 clients)

27

Industrial IoT Platform Based on RAMI 4.0

Figure 2.5: DIIG-OPC database schema for the IoT platform.

The OPC-UA protocol is employed differently in this architecture; the OPC-
UA server was developed to collect data from clients, which is uncommon in this
protocol. The server is implemented to collect data from clients, and each client
creates a connection with the server to send data to the dedicated node specified by
the OPC-UA server. Then, the middleware stores the data in the database(s). Fig.
2.4 shows the server structure; each client has a dedicated node on the server-side.

The round-robin algorithm manages data in the OPC-IoT platform as "first
come, first served," which means no priority is defined for serving data in the node
management. After data marshaling, the data is stored in a NoSQL database. In
this proposal, the platform complies with MongoDB and Cassandra. Furthermore,
it uses Kafka as distributed data streaming, which provides a real-time channel to
broadcast data between different parties. The complimentary driver is implemented
for all three mentioned data management systems. Fig. 2.5 shows a general data
schema stored in the database.

The DIIG algorithm provides a link between the industrial network protocol and
the gateway. When the data is ready, the Ts process writes data on the OPC-UA
server. As shown in Fig. 2.3, four stages were implemented to send and store data
on the server: (1) read instrument values, (2) send data to the IoT middleware, (3)
process data on the server, and (4) store data in the database(s).

Read instrument values

The DIIG algorithm was employed to read data from the industrial network,
such as Profinet and Modbus protocols, on the shop floor. The gateway provides
Profinet master, and it dedicates 2048 bytes of memory data blocks for each client.
Thus, a PLC or other industrial IO could transfer their data to the gateway memory
block directly. As explained previously, the DIIG algorithm reads the available

28

2.1 – Proposed Architectures

data, changes the data format, and transfers them to the IoT protocol schema,
then sends the new data (in a new form) to the IoT middleware.

Send data to the IoT middleware

The data is sent to the IoT middleware by the OPC-UA protocol. The DIIG
algorithm receives the data, and then it sends it to the dedicated node on the OPC-
IoT server. Each client has a unique Node ID that the OPC-UA server allocates.
We implemented the server by the OPC-UA4 library, with some modification in the
library to utilize for our purpose.

Process data on the server

In this stage, the OPC-UA server accepts the incoming connection and provides
a session for each client. The data is then written to the dedicated object on the
OPC-UA server, using the OPC-UA client. There is a flag for each node that shows
if the data block on the server is ready to write, and the client will write to the
node when the flag is set to 1; however, if the flag is set to 0, the data block will be
blocked, and the client will not be able to write the new value to the servers’ node
until the status changes.

Store data in the database

The OPC-IoT algorithm was implemented to change the incoming data format.
This routine sends data to the database when the data is ready in the OPC-UA
server’s node. In this step, the data format changes to the destination database
format(s), then stored in the database. After the data are stored in the database,
the algorithm modifies the status to 1, which means the server is ready to serve the
next incoming data. It is worth mentioning that there is a poll mechanism in the
database driver, and it is fast enough to serve the incoming data from the OPC-UA
server.

Fig. 2.6 shows the two algorithms, the DIIG-OPC and OPC-IoT, developed in
this work. These algorithms exchange data from the shop floor to cloud storage(s)
(database[s]). The algorithm supports the delivery mechanism, meaning a message
is transferred to the shop floor when the data are delivered successfully in the
database(s).

4www.open62541.org

29

Industrial IoT Platform Based on RAMI 4.0

2.1.3 DIIG-OPC algorithm
The DIIG-OPC algorithm is presented in Fig. 2.6, which is extended from the

DIIG algorithm presented in [32]. The main contribution of DIIG-OPC is that
each reader (in the gateway) sends data in parallel to the server, and they are not
blocked in the client process. Initially, the instrument starts communicating and
reads DB6[m], which stores free memory indexes. Then, the instruments write
their data to DBm[32 ∗ (Index − 1)] ... DBm[(32 ∗ (Index − 1)) + 8], where m
represents the instrument number. Each instrument can write eight logical values
in memory. After writing to the gateway’s memory, the memory index is stored
in DB7[m]. These two memories are shared between the OPC-UA client and the
DIIG gateway.

In the next step, the OPC client connects to the dedicated node ID, representing
the instrument object (thanks to the supporting object in OPC-UA) on the OPC-
UA server. Each node starts on the OPC-UA server when the server is initialized.
In the gateway, the OPC-UA client checks DB7[m] (full index value) in a subroutine.
It then calculates the memory address based on the index value, 32 ∗ (Index− 1).
The OPC-UA client reads eight values from the DIIG, after which the client checks
the node m’s flag on the server and, if the flag is equal to 1, sends data to the
server using the OPC-UA SDK. The OPC-UA client sends a delivery message to
the DIIG process, after which the DIIG process changes the status of the DB6[m]
memory address to a free index address. Then the DIIG process starts over.

The OPC-UA client process continuously checks the free memory address of
node m and, when it is free, transmits the value of DBm[32 ∗ (Index− 1)] to node
m to the server. The value is sent to the node m if and only if the last transmitted
value is received in the server-side data storage. This system was designed to deliver
data to cloud storage and notify the client.

2.1.4 OPC-IoT algorithm
The OPC-IoT algorithm is presented in Fig. 2.7 and designed to manage and

store data on databases. The server complies with the IEC 62541 standard, and it
establishes the node IDs on-demand on the server-side, which means it can generate
the node on the fly as a request. When a connection is established between the
gateway and the server, the algorithm assigns the dedicated node ID m to each
instrument. The flag is available for the status of each client. The flag status
allows the node to accept a new value from the client. Initially, this flag is set to 1,
which means the node can accept the new value. The gateway reads values at the
scheduled time, and when the flag changes to 1, the client transmits the new value
to node m on the server.

Furthermore, the process checks this flag, and when the flag status changes, the
process reads all node values at once, changes the original data format, and then

30

2.1 – Proposed Architectures

OPC-UA
Server

DB6[0...5] free memory Indexes

In
st

ru
m

en
t [

0.
..n

]
Instrument DIIG OPC-UA

Client

check free Index

Index

finish message

write DBm[Index+8]

returns the address

write full Index

1

2

3

4

D
id

ic
at

ed
 G

at
ew

ay
 [0

...
n]

full Index check

read Index value

if flag ==1

yes

send to Node ID

check Node flag

no
check again

send delivery message

do
 fr

ee
 th

e
In

de
x

DB7[0...5] full memory IndexesNote

DBm[256] ... DBn[256] memory

Figure 2.6: DIIG-OPC gateway algorithm

stores node m’s data to the database(s). This process runs for all nodes in parallel.
The delivery message is sent when the data are stored in the database(s). When
the OPC-IoT flag is 1, the data has been stored in the database, and it waits for
new data from the gateway(s) and client(s).

Fig. 2.3 shows that different data storage technologies are adopted, such as Mon-
goDB, Cassandra, and Kafka. It is possible to select one, two, or three data-storage
systems in parallel, and there are synchronous functions in all methods. Synchro-
nized functions are often called blocking functions, and they are implemented to
avoid the mutex problem between shared memories; for this reason, synchronized
methods often are called in this implementation, the memory is unblocked when
the task has been completed.

31

Industrial IoT Platform Based on RAMI 4.0

Figure 2.7: OPC-IoT Server algorithm

2.2 Performance Evaluation and Comparison
The experimental results were performed on the testbed presented in Figure

2.8. The hardware hosting server and clients must provide enough resources, so a
multicore CPU was selected to host the server. The server had an Intel® Core™

Xeon(R) CPU E3-1245 v5 3.50 GHz x 8 cores, with native parallel capability. Two
virtual machines (VMs) were employed for the gateways on the other PC to simulate
gateways and clients. A PC with Intel® Core™ i7-7700 CPU @ 3.10 GHz x 8 cores
was selected to host both simulated environments. Both were simulated and run
inside the VMs on the same host. The data is produced in the profinet protocol by
each client. The VMs were linked with a D-Link 1 Gigabit Ethernet switch. Fig.
2.8 shows the hardware setup. Nevertheless, four clients sent data in parallel to
ensure that the server was under stress.

Parameters and setup configurations

The throughput was obtained by evaluating the total number of executed op-
erations in each unit of time. This was the scalability indicator for the design
architecture. Fairness was obtained to compare how much the proposed algorithms
were fair to serve to all clients. The round-trip time was also analyzed for a time-
critical scenario. As explained in the previous section, in this architecture, all

32

2.2 – Performance Evaluation and Comparison

Figure 2.8: Test-bed configuration

packets include the acknowledge mechanism for all transmitted data; hence, it is
possible to calculate the packet delivery time for all transmitted packets.

As shown in Fig. 2.8, the client’s instrument was hosted on the VMs, which
could emulate four instruments for each client. The clients could connect to the
gateway hosted in the identical VMs. The experimental evaluation was performed
using Kaa-DIIG and OPC-IoT middleware. The same instrument emulator was
utilized for both experiments.

The throughput was analyzed for both systems. We sent 8 bytes 20,000 times
from the instrument to perform this analysis. Then, the throughput was obtained
by calculating the Nthroughput = Nt

Tt
, where Nt was the total data size and Tt was the

total time in seconds. The experiment was repeated 5 times, and the total amount
of data transmitted was 100,000. Moreover, the round-trip analysis was evaluated
to examine the total time required for each message to travel from the client to the
gateway and then to the server. A flag was activated when all messages had been
received on the server-side.

The round-trip was calculated by dividing the total travel time for all messages
over the total number of messages (Troundtrip = Tt

Nt
) that were sent to the database.

33

Industrial IoT Platform Based on RAMI 4.0

The minimum and maximum round-trip times were evaluated, and each experiment
was performed for 1,000 messages.

Fairness is a server indicator that shows how much the server algorithm is fair
among the clients. Thus, this experiment is essential for determining the effective-
ness of the system. The fairness analysis was evaluated on the same testbed, and
all experiments were repeated five times to reduce measurement error.

2.3 Results
Fig. 2.9 shows throughput and round-trips by the total number of four clients.

Each client transmitted 100,000 messages to a gateway, after which the gateway
changed the format and transmitted the data to the IoT middleware. Experimental
analysis was performed using the OPC-IoT and Kaa middleware. As shown in Fig.
2.9, Kafka, Cassandra, and MongoDB were adopted in mixed scenarios.

2.3.1 Throughput
As shown in Fig. 2.9, when one client connected to both IoT platforms, the

throughput value varied between 9,000 and 10,000 per second for IoT-DIIG, and it
stayed between 5,000 and 7,000 per second for DIIG-Kaa. In the OPC-IoT, when
the number of clients increased to four, the throughput decreased by 20% to 60%
in the worst cases. In the DIIG-Kaa, the throughput decreased by 35% to 45% in
the worst cases. Fig. 2.9c shows that the best throughput occurs for the Cassandra
database, which is a better choice in both architectures, and it also has a higher
throughput on the OPC-IoT architecture platform. However, as shown in Fig. 2.9,
the OPC-IoT performs better concerning DIIG-Kaa.

2.3.2 Round-trip
The round-trip values for both systems are presented in Fig. 2.9. The values

stayed between 0.119 ms and 1.23 ms by utilizing the OPC-IoT middleware and
from 0.129 ms to 1.75 ms with the DIIG-Kaa platform. There was a significant
difference between the two architectures when more than one client was connected
to both. As expected and presented in Fig. 2.9c, when one client was connected,
the round-trip value was 0.119 ms per message on the Cassandra database on the
OPC-IoT platform, and, with four clients, the round-trip value went up to 0.578
ms for the same scenario and configuration.

Fig 2.9 shows that the DIIG-IoT’s round-trip result was significantly higher than
that of the OPC-IoT. This difference was due to the implementation of a protocol
that had less overhead in the OPC-UA implementation. Moreover, the storing
layer of the proposed algorithm in the OPC-IoT was implemented in parallel on

34

2.3 – Results

1 client 2 clients 4 clients
0

2000

4000

6000

8000

10000

12000

Th
ro

ug
hp

ut
 [s

]

KafKa dsp

OPC-IoT DIIG-Kaa

(a) KafKa® throughput

0

0.5

1

1.5

2

2.5

1 client 2 clients 4 clients

Ro
un

d-
tr

ip
 [m

s]

kafka dsp

OPC-IoT Kaa-DIIG

(b) KafKa® round-trip, ms

1 client 2 clients 4 clients
0

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

Th
ro

ug
hp

ut
 [s

]

Cassandra db

OPC-IoT DIIG-Kaa

(c) Cassandra throughput

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

1 client 2 clients 4 clients

Ro
un

d-
tr

ip
 [m

s]

Cassandra db

OPC-IoT Kaa-DIIG

(d) Cassandra round-trip, ms

1 client 2 clients 4 clients
0

2000

4000

6000

8000

10000

12000

Th
ro

ug
hp

ut
 [s

]

Mongo db

OPC-IoT DIIG-Kaa

(e) MongoDB throughput

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

1 client 2 clients 4 clients

Ro
un

d-
tr

ip
 [m

s]

Mongo db

OPC-IoT Kaa-DIIG

(f) MongoDB round-trip, ms

1 client 2 clients 4 clients
0

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

Th
ro

ug
hp

ut
 [s

]

Mix dbs

OPC-IoT DIIG-Kaa

(g) Mix databases throughput

0

0.5

1

1.5

2

2.5

3

1 client 2 clients 4 clients

Ro
un

d-
tr

ip
 [m

s]

Mix dbs

OPC-IoT Kaa-DIIG

(h) Mix databases round-trip, ms

Figure 2.9: Result of 100,000 data that were sent to the server from each client,
and the data were stored in various database technologies

35

Industrial IoT Platform Based on RAMI 4.0

the server-side, and this was an advantage in the OPC-IoT beside the Kaa project
platform, which follows a serialized mechanism.

Finally, as presented in Fig. 2.9e, MongoDB had a lower round-trip value in
the OPC-IoT when four clients were sending data concurrently. Moreover, the
Cassandra database had essentially the same round-trip value as the MongoDB.
Thus, the round-trip value in DIIG-Kaa was considerably more than that in OPC-
IoT when there were four concurrent clients. The minimum and maximum round-
trip values are reported in Tables 2.1, 2.2, 2.3 and 2.4.

Considering the round-trip analysis, both Cassandra and MongoDB were effi-
ciently adopted for the OPC-IoT platform and the DIIG-Kaa platform. Addition-
ally, there was an advantage when OPC-IoT middleware was used due to the lower
value of round trips and higher throughput than the Kaa middleware.

0

500

1000

1500

2000

2500

1st Client 2nd Client 3rd Client 4th Client

Th
ro

ug
hp

ut
 [s

]

Kafka dsp

OPC-IoT Kaa-DIIG

(a) KafKa® fairness

0

500

1000

1500

2000

2500

3000

3500

1st Client 2nd Client 3rd Client 4th Client

Th
ro

ug
hp

ut
 [s

]

Cassandra db

OPC-IoT Kaa-DIIG

(b) Cassandra fairness

0

500

1000

1500

2000

2500

3000

3500

1st Client 2nd Client 3rd Client 4th Client

Th
ro

ug
hp

ut
 [s

]

Mongo db

OPC-IoT Kaa-DIIG

(c) MongoDB fairness

0
200
400
600
800

1000
1200
1400
1600
1800
2000

1st Client 2nd Client 3rd Client 4th Client

Th
ro

ug
hp

ut
 [s

]

Mix db

OPC-IoT Kaa-DIIG

(d) Mix databases fairness

Figure 2.10: Fairness results

2.3.3 Fairness
Fairness guarantees traffic regulation in the network and server overload. To

perform the analysis of fairness, we used an application to stop the experiment after
10 seconds. We then evaluated the total number of messages that were received in
the database. This experiment was performed for all scenarios. Fig. 2.10 shows

36

2.4 – Conclusion

KafKa OPC-IoT DIIG-KAA
min [ms] avg [ms] max [ms] min [ms] avg [ms] max [ms]

One client 0.099 0.120 45.448 N/A 0.151 100
Two client 0.116 0.351 48.880 N/A 0.291 292
Four client 0.375 1.231 128.007 N/A 1.098 182

Table 2.1: Round-trip test in [ms] for KafKa with minimum, maximum, and average
values

MongoDB OPC-IoT DIIG-KAA
min [ms] avg [ms] max [ms] min [ms] avg [ms] max [ms]

One client 0.124 0.120 35.771 N/A 0.129 7116
Two client 0.102 0.236 31.178 N/A 0.320 5075
Four client 0.084 0.609 23.104 N/A 1.151 13650

Table 2.2: Round-trip test in [ms] for MongoDB with minimum, maximum, and
average values

that, in all scenarios, the system was approximately unified. This behavior was due
to implementing a dedicated thread for each client in the server and on the gateway
side.

2.3.4 Scalability
Scalability analysis was performed on both systems. Scalability analysis pro-

vides a crucial point for choosing the IoT platform and analyzes the large size of
the network in the IoT applications. For this reason, the throughput analysis was
performed for 10–1,000 clients using the OPC-IoT middleware. The client could
accept 3,000 clients concurrently by employing the same hardware configuration
on the server-side, which was enough for an industrial IoT platform in the Indus-
try 4.0 domain. Furthermore, by increasing the hardware resources, it was also
possible to increase the number of clients. Fig. 2.11 shows that the OPC-IoT
throughput was 7,300 packets/sec for 1,000 clients when the Cassandra database
was employed. The experimental analysis demonstrated that, after increasing the
number of clients, the system could guarantee a high number of concurrent clients
on the same hardware configuration. However, the resources were inadequate for a
large network, for which it is essential to use sufficient resources.

2.4 Conclusion
The work presented in this chapter was developed for two purposes: to evaluate

the best database to use with the Kaa project platform and to propose and evaluate
OPC-IoT on the same testbed. The results showed that the Cassandra database

37

Industrial IoT Platform Based on RAMI 4.0

Cassandra db OPC-IoT DIIG-KAA
min [ms] avg [ms] max [ms] min [ms] avg [ms] max [ms]

One client 0.133 0.119 35.771 N/A 0.145 247
Two client 0.104 0.255 33.592 N/A 0.278 59
Four client 0.069 0.579 22.840 N/A 1.300 167

Table 2.3: Round-trip test in [ms] for Cassandra db with minimum, maximum, and
average values

Mix dbs OPC-IoT DIIG-KAA
min [ms] avg [ms] max [ms] min [ms] avg [ms] max [ms]

One client 0.085 0.158 34.966 N/A 0.172 1213
Two client 0.0875 0.345 58.382 N/A 0.553 36689
Four client 0.068 1.069 24.540 N/A 1.750 56183

Table 2.4: Round-trip test in [ms] for Mixed db with minimum, maximum, and
average values

and MongoDB had the same performance concerning throughput; however, the
Cassandra database was better when the total number of concurrent clients was
increased. The test was performed using the Cassandra database for 1,000 clients,
and the results showed that the total throughput was around 8,000 packets / sec-
ond after increasing the number of clients. This IoT architecture was developed
based on the OPC-UA protocol, which was suggested by RAMI 4.0 for a commu-
nication layer, and it enables communication with shops without any additional
gateways or devices. Moreover, the gateway was proposed for data conversion us-
ing a different protocol in this work. As a result, it is possible to communicate with
industrial protocols, such as Modbus or Profinet. The performance evaluation was
performed with Profinet, and the delivery acknowledgment is an advantage for this
architecture.

38

2.4 – Conclusion

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

#10 #20 #40 #80 #100 #200 #400 #800 #1000

Cassandra db

Figure 2.11: OPC-IoT: Scalability test for 10–1,000 clients

39

40

Chapter 3

Industrial Fog Architecture Based
on Industrial Protocols

The work described in this chapter was originally presented in [129]

As discussed in Chapter 1, one of the most used models in IoT technology is to de-
ploy sensitive tasks on nodes near the end-user application. This model, best known
as fog computing [37], leaves a centralized cloud computing concept heading in a de-
centralized architecture, where edge nodes perform essential tasks. This paradigm
decreases latency in time-critical applications, such as controlling a robotic arm or
adaptive manufacturing, leaving regular computing to the central cloud services to
have faster and reliable computing [38].

The decentralization of computing produces new problems surrounding cloud
or fog services deployments. First, security is adversely affected by the unloading
of [39] edge-node computation. In comparison, it becomes more difficult to run
multiple services across the network without a quick and efficient way to perform
computing in distributed modules [40], [41]. Further, most available solutions are
currently proprietary and require subscriptions to be fully used.

Recently, several fog architectures have been suggested in the literature, based
on the Perdue Reference Model (PRM) [130], [131]. However, the IFog4.0 archi-
tecture proposed in this chapter is built on the RAMI 4.0 standard as well as the
PRM model. The proposed architecture is developed to employ the information
and communication layer in RAMI 4.0. It offers the edge-computing infrastructure
by including the Docker virtualization framework. In general, this architecture is
designed to create an edge-computing platform for small and medium enterprises
(SMEs) with high security for industrial needs. In addition, PLC connectivity
is provided in this architecture. This architecture illustrates how open-source re-
sources can help SMEs comply with Industry 4.0 requirements, and it also helps
deploy quick and straightforward edge-computing components on shop floors.

41

Industrial Fog Architecture Based on Industrial Protocols

3.1 Background

3.1.1 Docker virtualization
The Docker is a virtualization software that shapes the platform as a service

(PaaS). The Docker utilizes virtualization at the OS-level and delivers software
and new services in packages named containers. Containers are detached from each
other, and work independently. Services are running on top of the OS, and act as
a single virtual machine, interacting through the network connections. The Docker
platform assigns local IP to each container to be able to communicate with other
services or containers.

Furthermore, the Docker is able to arrange a package as if it was an application
together with its dependencies all grouped into a virtual container that can run on
any Linux, Windows, or macOS computer. This helps use Docker as a platform to
run different software on the same operating system without installing dependen-
cies. Hence, this proposal is based on the Docker platform, and utilizes docker as
a software package management.

3.2 Proposed IFog4.0 Architecture
The proposed fog architecture, IFog4.0, is presented in Fig. 3.1. This architec-

ture is implemented by the Linux kernel v. 4.15 and is developed to comply with
industrial specifications. As shown in Fig. 3.1, the IFog4.0 architecture is devel-
oped with the following components: Fog-Management, Docker virtualization, IDE,
visualization, Enterprise resource planning (ERP), and industrial communication
drivers.

3.2.1 Architecture
IFog4.0 is an industrial fog platform based on RAMI4.0 standard [48]. It has

been designed using a modular approach that allows to easily install and deploy
new components and tools. This way, it is possible to add new features, depending
on the end user needs.

The architecture is divided into four layers: Operating system, virtualization,
Fog-Management system and Network Layer. Each component has been carefully
selected among a set of available choices, considering three major features: flex-
ibility, modularity and availability of open source license. Moreover, for critical
sections - like the Industrial Communication Driver - throughput, latency and fair-
ness constraint were taken into account. The operating system is based on Linux
server and it features a custom Industrial Communication Driver kernel module,
which has been developed specifically for this architecture. The high flexibility

42

3.2 – Proposed IFog4.0 Architecture

Linux kernel v 4.15

Fog
Management

n
ew

 A
p

p

Docker

E
R

P

Web interface

ID
E

V
is

u
al

iz
at

io
n

L
o

ca
l N

et
w

o
rk

 L
ay

er
Industrial

Communication
Driver

C
on

ta
in

er
s

E
xt

er
n

al
 N

et
w

o
rk

Figure 3.1: IFog4.0: Industry 4.0 open source fog architecture

provided by the Linux kernel environment was the main reason for choosing it, as
it easily allow to integrate custom kernel modules.

The Fog-Management system (the green box in Fig. 3.1) is running on top of the
operating system and lays directly over the kernel on OS. The virtualization layer
is based on Docker platform (highlighted in blue in Fig. 3.1), and it utilizes the
virtualization method to provide additional functionality to IFog4.0 architecture.
Docker container system is widely used in the production environment and it’s
open source. There are other solutions based on either proprietary software or on
less stable architectures - like Linux Containers (LXC) - which are not suitable as
they would require further customization steps to improve stability. Docker allows
developers to easily design and deploy new components (light blue boxes) to the
architecture. The Network layer is separated from other layers, as the industrial
physical layer may be based on different standards like serial communication, Hart
or CAN bus. The modules within the red dashed box are open source tools.

As Fig. 3.2 shows, there are two different types of modules that can be developed
and deployed to the IFog4.0 platform: a component is an entity which is developed
offline using a dedicated SDK and that runs as a Docker container right above the
virtualization layer, whereas an application is a module instantiated and executed
within a component. Applications are developed directly on the IFog4.0 platform,
using the tools provided by the underlying component.

In order to present the IFog4.0 architecture, some main components need to be
installed, like the Fog-Management module, the programming tools, data visual-
ization, ERP (Enterprise Resource Planning), Data Storage and Industrial Com-
munication drivers. These modules are provided by IFog4.0 repositories.

43

Industrial Fog Architecture Based on Industrial Protocols

Component A

App. A App B App. C

Component B

App. A App B

Control
Manufacturing

Process
Process

Control
Temperature

Visualization Storage

Virtualization System

Figure 3.2: IFog4.0 architecture: components and applications

3.2.2 Fog-Management
The fog-management component is developed to manage Docker containers

(components) on the IFog4.0 platform. Although some solutions exist for handling
Docker containers (e.g., Portainer), the reason for using a customized solution is
to easily integrate new features with higher flexibility since it is not linked to an
already-structured product.

The Fog-Management tool allows for installing, running, and stopping applica-
tions from a simple and user-friendly dashboard. It also guides the user by adding
new components by uploading the corresponding Docker images to the platform.
The fog-management tool uses the Docker SDK [132] to deploy and launch a new
container. The SDK provides access to the Docker APIs that allow for instantiat-
ing, running, and terminating a specific container. As a result, the command will
execute the component on the iFog4.0 platform. The end-user can access the part
that may create and run new applications inside the container.

In addition, the Docker containers are used to increase the security of the pro-
posed fog architecture; the reason is that the containers are designed not to have
a direct connection to the Internet. Moreover, Docker ships with an integrated
firewall that blocks access to the internal network; the fog-management tool is the
only part that is connected to an external network, which can connect to the In-
ternet to download and install new features and components. The security of the
fog-management tool is further hardened by using a Linux firewall. As a result, all
major components are stable and protected from Internet attacks.

44

3.2 – Proposed IFog4.0 Architecture

Figure 3.3: Fog-management for components and applications

As shown in Fig. 3.3, three main components are already installed on the IFog4.0
platform: data visualization, programming tools, and ERP. Further, some quick in-
formation is provided on the first page, such as the platform and factory statuses on
top of the dashboard (i.e., the CPU usage, the Running Machine, and Maintenance
statuses).

Figure 3.4: Node-RED (fog-programming tools)

45

Industrial Fog Architecture Based on Industrial Protocols

3.2.3 Programming tools
The programming tool is implemented based on Node-RED for visual pro-

gramming tools [133]. Node-RED was originally developed by IBM Emerging Tech-
nology as an open-source product under Apache License Version 2.0 [134] and is
now part of the JS Foundation [135]. It provides a flow-based programming (FBP)
environment similar to the Function Block Diagram (FBD) programming based on
the IEC61131-3 standard. Node-RED provides many black-box nodes with inputs
and outputs, with custom programming logic for each node.

The node receives data by its input and processes the input according to the
node’s logic. The nodes are developed using NodeJs, which is a JavaScript scripting
language [133]. In the IFog4.0 architecture, Node-RED is used as a programming
tool, and three nodes have been developed as drivers for popular industrial tools:
pressure node, differential pressure node, and temperature node. As shown in Fig.
3.4, nodes are developed to manage the instrument data, such as minimum and
maximum alarm thresholds, instrument type, measurement unit, and last calibration
time for predictive maintenance purposes.

3.2.4 Data visualization
Grafana is employed for data visualization in the IFog4.0 architecture. Grafana

supports many data sources [136]; it can connect to the MySQL data source and
store the Node-RED application data in the MySQL database. The PLC Siemens
S7-1200 data are stored in the database with the developed node.

3.2.5 Enterprise resource planning(ERP)
Enterprise resource planning (ERP) is an Industry 4.0 component. It helps

factories to manage their resources, and it reduces stockroom management costs.
Moreover, it helps the industry manage its production request, and it plans to pro-
duce a product based on their need. The ERP is one of the essential components
to digitalize Small, Medium, and Enterprises (SME). In contrast, IFog4.0 pro-
vides an industry 4.0 platform for factories to facilitate industry 4.0 developments.
Therefore, according to the RAMI 4.0 model, each factory requires the enterprise
resource planning (ERP) system in the business application layer. For this rea-
son, ERP has been included in the IFog4.0 platform alongside other applications.
Odoo is utilized for the business application layer, and it includes ERP, customer
relationship management (CRM), billing, accounting, asset management, and an
inventory management system [137]. This platform has a community edition, which
is open-source; although, it is possible to add commercial plugins.

46

3.2 – Proposed IFog4.0 Architecture

3.2.6 Data storage
Data storage is always a key aspect of the edge computing paradigm and fog

architecture. MySQL and MongoDB databases are used in this proposal to store
data in the relation and non-relation databases. Further, the proposed fog platform
provides an easy way to deploy new database systems by adding the Docker image
into the fog-management system.

3.2.7 Industrial communication
The industrial sector requires the industrial communication protocol to ex-

change data in the factory layer. The IoT platform can help the factory to exchange
industrial protocol data to the upper layer; however, the IoT platforms usually do
not support the industrial protocol. Thus, the gateway plays an essential role in
the factory by converting the industrial protocol to IoT protocol (data marshaling).
For this purpose, gateways are being built by researchers and companies to convert
data from industrial protocols to IoT protocols [32].

As shown in Fig. 3.1, an industrial communication driver is implemented in the
utilized Linux kernel. The proposed architecture works with standard industrial
protocols, such as Profinet, Modbus, and OPC-UA. All components described in
this section are customized and modified for industrial application.

Gate Valve

Gate Valve

SCRUBBER
FILTER

DPT DPT

TT
115

TT
113

TT
114

Shell and
Tube Heat

Control
Valve

Ball Valve

Ball Valve

Ball Valve

Gate Valve

INLET PRESSURE 1200 Psig OUTLET PRESSURE 600 Psig

TT
116

DRY GAS FILTER

Water Bath Heater

Figure 3.5: Pipe and Instrument Diagram (P&ID) for gas regulation station use
case

47

Industrial Fog Architecture Based on Industrial Protocols

3.3 Use Case and Results
This chapter explains a proof of concept for the IFog4.0 architecture. For this

reason, the proposed IFog4.0 is developed and deployed on a real-life scenario in a
factory shop floor to provide Industry 4.0 advantages for SMEs. All technologies
utilized in IFog4.0 are based on existing open-source tools, for which additional
features are also developed and adopted for industrial applications. The IFog4.0
was developed and emulated using an industrial use case, and it was deployed on a
gas regulation station, as described in this section.

The gas regulation station changes the inlet pressure from a higher to a lower
amount with the regulators. It has two-stage filters—a scrubber and a dry gas
filter—which are designed for big and small particles, respectively. Fig. 3.5 shows
the Pipe and Instrument Diagram (P&ID) and describes the mechanical system
& design in detail. The inlet gas pressure is about 1200 [Psig], which, after the
two-stage filtering and regulations, drops to 600 [Psig] by using the control valves
in the station.

In this scenario, if the pressure decreases, the temperature drops, and the control
valve diaphragm will damage quickly. A water bath heater (WBH) was mounted on
the station to increase the inlet gas temperature to 60∼65 ℃. (This configuration
is part of the ASME International Standard [138].)

The automation of the dry gas filter is implemented in the proposed fog archi-
tecture. The filter absorbs solid particles by using a cartridge filter. By considering
high gas flow, there is a differential pressure in the vessel. Depending on how full
the cartridge is, the differential pressure may vary between 3 and 15 [Psig]. The
differential pressure transmitter (DPT), which measures the vessel’s differential
pressure value in real-time, is integrated with the system.

Two main subsystems are presented in this use case. The IFog4.0 architecture
is effectively deployed and experimented with these two subsystems. Two PLCs
emulate the subsystems. Fig. 3.6 shows that both the subsystem controller and
the subsystem emulators are represented within the PLCs.

z

3.3.1 Testbed hardware
The hardware platform that hosts the IFog4.0 system must provide sufficient

resources; thus, a computer with a multicore processor and a Gigabit Ethernet
network interface card was adopted to deploy IFog4.0; in particular, the PC had an
Intel® Core™ i5-6200U CPU @ 2.30GHz x 4 cores. The multicore CPU provided
a native parallelization capability. As shown in Fig. 3.7, the two subsystems in
the use case were simulated using the same PLCs. In this prototype, two S7-
1200 PLCs were used to simulate and emulate the use case, and the D-Link 1
Gigabit Ethernet switch was used to communicate between the PLC network and

48

3.3 – Use Case and Results

Figure 3.6: Water bath heater (WBH) PLC workflow

Figure 3.7: Test Configuration

the IFog4.0 platform.
After the hardware was set up, IFog4.0 was deployed on the hardware. The

installation process was simple, and the steps were as follows:

• Download Ubuntu Linux server image (the platform is based on the 16.04
LTS version).

• Install Docker container engine and the custom Industrial Communication
kernel driver (version 4.15) to provide real-time features.

49

Industrial Fog Architecture Based on Industrial Protocols

• Deploy the IFog4.0 main components, available on the IFog4.0 as the Docker
containers.

• Install the custom fog-management tool, provided by IFog4.0.

• After running the system, the Docker first runs, then the fog-management
tool.

• Then the fog-management system was accessible via the Web interface, avail-
able at http://<IFog4.0 IP address>:8000.

After accessing the IFog4.0 management system, a login page was available.
Once logged in, the system’s status was present in the dashboard, and short-
cuts to the three main IFog4.0 components—Grafana, IDE (Node-RED), and ERP
(Odoo)—are on the main page. (The industrial communication and database ser-
vices were working in the background process, and they were not represented in
the dashboard. The IFog4.0 repository is still in a private repository but will be
disclosed after the first IFog4.0 beta version release.)

Node-RED was utilized to develop an automation application in the gas station.
As mentioned in the previous section, instrument driver is implemented within
Node-RED to communicate with the PLCs and IFog4.0 applications. Node-RED
has an intuitive drag-and-drop interface that provides tools to design and develop
a new program quickly. The UI node provides a Web interface with a graphical
interface that was used to implement the GUI in our use case. As shown in Fig.
3.5, the WBH had four temperature sensors, which were connected to the node
application as inputs. The automation application decided whether to turn on or
off the heater on the WBH subsystem.

(a) Summary for gas regulation station (b) Automation for the WBH system

Figure 3.8: The application developed for the user interface

50

3.3 – Use Case and Results

3.3.2 IFog4.0 installation & configuration
For automating the process, a decision-making algorithm was developed to con-

trol the temperature of the gas in the outlet. The PID controller was used to
automate the system: it collected the inlet and outlet temperature values and
checked the WBH body temperature. The PID controller decided to turn on the
engine according to a setpoint value on the WBH. As presented in the diagram,
there was an ambient temperature sensor that read the outside temperature. When
the ambient temperature was high, the controller would power off the system, as
there was no need to use the WBH when the ambient temperature was high, as the
control valve will not cause further damage in higher temperatures.

The dry gas filter was the second subsystem. The main goal of this subsystem
was to automate the maintenance of the cartridge filter (filter cleaning procedure).
As previously explained, the differential pressure increases when the filter is full;
hence, a differential pressure sensor measures a higher pressure between the vessels
and then decides to open the drain valve when the sensor’s value is higher than
the set point. Fig. 3.8 shows a UI interface implemented for the dry gas filter and
WBH subsystems; this interface is composed of a set point regulator for the outlet
gas temperature WBH and an online graph for real-time data stored in the MySQL
database.

The IFog4.0 platform introduced in this chapter is a scalable architecture based
on open-source resources, such as Docker and Node-RED. Open-source components
make it possible to achieve greater accessibility, and the IDE tool embedded in
iFog4.0 was specifically tailored for this purpose. The architecture also enables
component development by using the Docker SDK and deploying it on the platform
using the fog-management tool. The proposed workflow guides the end-user to
develop a custom application for their needs and install it on their system.

51

52

Chapter 4

Wireless Sensor Network: Testbed
and Experimental setup

The testbed and experimental setup in Chapters 5 and 6 are described here.
As we discussed in the first chapter, the WSN suffers from unpredicted Wi-Fi traf-
fic, and we performed experiments in the presence of external Wi-Fi traffic in this
chapter, and we utilized the results to analyze the TSCH network in the following
chapters. We performed experimental evaluations with two testbed configurations:
the first experiment set was performed to analyze the behavior of the 6TiSCH pro-
tocol when channel hopping was disabled, and the second experimental set was
obtained when channel hopping was enabled. This experiment aimed to analyze
the impact of external Wi-Fi traffic on the channel-hopping mechanism. Differ-
ent configurations were selected for TSCH matrices (e.g., TXT_RETRIES and
N_SLOTEFRAME) to analyze the impact of the 6TiSCH protocol in the presence
of external Wi-Fi traffic.

4.1 Experimental testbed
The goal of the experiment was to investigate the effectiveness of the 6TiSCH

protocol. Therefore, the hardware which supports the 6TiSCH protocol was se-
lected. For simplicity, at the beginning of the experiment, the star network topology
with single-hop links was used in the WSN topology, then extended to the multi-
hop network to propose the multi-hop mathematical model. The two devices were
worth enough to obtain the impact of the initial configuration of the 6TiSCH pro-
tocol and perform the analysis to obtain the network’s results and develop a good
mathematical model for reliability, latency, and energy consumption. Further, to
generate a manageable interference spectrum, four Wi-Fi adapters were generated
controlled background traffic on different Wi-Fi channels. The hardware’s energy
consumption was carefully measured by connecting the hardware to an oscilloscope,

53

Wireless Sensor Network: Testbed and Experimental setup

PC 1 PC 2 PC 3

mote BA40

mote B97C

Channel 1 Channel 5 Channel 9 Channel 13

ch.1 ch.5 ch.9 ch.13

WiFi interferencesOpenmote DAG

250 cm

50 cm

300 cm

Figure 4.1: Testbed configuration

and the actual value of energy consumption was obtained in each 6TiSCH slotframe
(i.e., TX send, RX receive, TX BroadCast).

The OpenMote B hardware was selected to deploy the 6TiSCH protocol in
WSN. The device was developed in 2018, and the hardware is designed with a
TI CC2538 System on-chip microcontroller. The hardware has a SOC with ARM
Cortex TM M3 CPU with 32 KB dynamic RAM and 512 KB of flash memory,
including a radio transceiver, compatible with IEEE 802.15.4 for transmission in
the 2.4 GHz ISMB band. A few sensors, such as temperature and relative humid-
ity, are embedded in the Wi-Fi device. The device is battery-powered as well as
USB-powered.

The OpenMote B hardware is supported by many open-source OSs, such as
Contiki and OpenWSN. Both OSs support the 6TiSCH protocol, and both are open-
source. The OpenWSN OS (version REL-1.24.0) was selected to deploy the 6TiSCH
protocol for the WSN single-hop and multi-hop scenarios. All results in this chapter
have been obtained by running the OpenWSN OS on the OpenMote B device.

As shown in Fig. 4.1, the testbed is implemented with four Wi-Fi adapters and
routers. All routers were set in fixed channels, which were different from each other.
We selected channels 1, 5, 9, and 13 to generate the Wi-Fi traffic with different
adapters. In addition, custom software was implemented to generate controlled
Wi-Fi traffic over the network. As shown in Fig. 4.1, the adapters were hosted on
two computers (PC 2 and PC 3), where, PC 1 controls the Wi-Fi software by sending

54

4.2 – Wi-Fi Interference

2.412 GHz

Ch. 1 Ch. 5 Ch. 9 Ch. 13

2.472 GHz

Ch. 11 Ch. 26

2.405 GHz 2.480 GHz f [GHz]

f [GHz]

IEEE 802.15.4 (WSN)

IEEE 802.11 (Wi-FI)

3 MHz 5 MHz

20 MHz

Ch. 17

Figure 4.2: IEEE 802.15.4 ISM band vs. IEEE 802.11 OFDM

the start/stop command to PC 2 or PC 3 via the network. The main program
that performed the experimental analysis was developed in PC 1, and we utilized
the PING utilities to send a request to the motes to obtain the round-trip values.
The main program sent start/stop commands as needed to the Wi-Fi software,
which was on PC 2 and PC 3, and controlled the background traffic. PC 1 sent a
configurable ping command to the motes and stores the result in the file.

4.2 Wi-Fi Interference
The Wi-Fi interferences were generated on different channels. Channels 1, 5,

9, and 13 were selected to send the tunable traffic. The harsh environment was
emulated with four IEEE 802.11 stations on PC 2 and PC 3, and each PC hosted
two adapters. The Wi-Fi stations were placed between two OpenMote B devices to
inject the controlled traffic into the air. However, the background traffic generated
by the Wi-Fi networks deployed in the offices and labs nearby could also be added
to our controlled Wi-Fi traffics.

Additionally, the controlled traffic was injected to all 16 channels in the motes
spectrum (i.e., 2.405 to 2.480 GHz) defined by IEEE 802.15.4 in the ISM band. The
OFDM channel in the IEEE 802.11 Wi-Fi bandwidth was 20 MHz, so the Wi-Fi
channels overlapped with the motes channel by tuning four access points (AP) on

55

Wireless Sensor Network: Testbed and Experimental setup

channels 1, 5, 9, and 13, where the channel frequencies were ch1 = 2.412 GHz, ch5 =
2.432 GHz, ch9 = 2.452 GHz, and ch13 = 2.472 GHz. As Fig. 4.2 shows1, the IEEE
802.11 spectrum collided with the IEEE 802.15.4 spectrum. Therefore, it is possible
to inject controlled traffic in each mote channel using this configuration. The
experiments provide data to analyze the channel hopping effectiveness compared
to channel fixed mechanics by considering Wi-Fi traffic.

As explained, the software generates controlled traffic and injects it into the air
in a different channel. The software was developed in [69] and implemented based
on a finite state machine, which has two states: active and inactive. A sequence of
packets are generated in the active state. The number of packets within the burst
is chosen randomly, based on a truncated exponential distribution. The packets are
generated periodically, and the period is 400 µs, with packet size 1500 B. After the
active state, it goes to new states, where the interfering station stops transmitting
for a random time whose duration follows a truncated exponential distribution with
a mean of 560 ms. This state is the inactive state. The maximum duration of the
inactive state is limited to 20 s. The software generates traffic with two active
and inactive states via a dedicated Wi-Fi adapter.

4.3 OpenWSN OS
The OpenMote B hardware supports different OSs, including the OpenWSN .

The OpenWSN was developed based on the recent 6TiSCH protocol stack. It is a
fully open-source project. It has many advantages; for example, it is possible to
check how some features of 6TiSCH are implemented in the OS, and it is easy to
modify some parameters in the 6TiSCh protocol and add a new feature in the stack
level. For instance, the channel-hopping mechanism was disabled to perform and
obtain experimental data for Chapters 5 and 5. This was possible by setting the
variable ieee154e_vars.singleChannel to the desire channel, which was defined
in the source code of the OpenWSN file locate in

openstack/02a-MAClow/IEEE802154E.c

to select a fixed transmission channel.
After changing the source code, the code must be compiled, and new executable

code should be downloaded into the mote. The OS and all possible applications
were compiled from the source code with the cross-compiler on the hosted PC. The
cross-compiling software was based on the ARM gcc toolchain. OpenVisualizer
management software was used to download new executable code to the motes via
a USB interface, which was provided along with the OpenWSN platform.

1The figure is presented before in this chapter (Fig. 1.4)

56

4.4 – Measurement

The following changes were applied to obtain the experimental results for the
next chapters:

• Enable/disable Channel Hopping

• Modify the total Nslot in the 6TiSCH matrices

• Modify the maximum number of allowed attempts, Ntries

• measure the power consumption value for each slotframe

To modify the Nslot and Ntries values, the source code located in

openstack/02b-MAChigh/schedule.h

and
openstack/02a-MAClow/IEEE802154E.h

were modified. The value of the Nslot and Ntries were changed for various configu-
rations, and the experimental result was obtained to evaluate the resistance of the
6TiSCH network with respect to the Wi-Fi traffic. The analysis of the network is
presented in Chapters 5 and 6.

4.4 Measurement
We obtained the measurement to analyze TSCH behavior in the WSN, using

the request-response paradigm, like CoAP, by measuring a packet round trip. The
conventional PING utility was used to perform the experiment, and the PING values
were stored in the files. The results were analyzed according to the proposed
mathematical model to estimate the reliability and power consumption values. The
bash script was developed to perform the experiment and send the command to the
other PC, where the Wi-Fi adapters were hosted, to generate and inject controlled
traffic into the air. Two sets of experiments were performed, with channel hopping
enabled and disabled. For each set, different values of the Nslot and Ntries were
applied. The values were in 11 ≤ Nslot ≤ 201 and 2 ≤ Ntries ≤ 15, respectively. The
experiment was carried out on the combination of these values, then the analysis
was performed to compare the proposed mathematical model with real data.

The experiment was performed by the ping utilities, which is just a straightfor-
ward command, ping6 -s 30 -i 120 -c 10 bbbb:0:0:0:12:4b00:18e0:b97c, where
the first value after -s specifies the amount of data to be sent in bytes, defined as
30 in the experiment, which sent 38 ICMP data bytes (8 bytes being the ICMP
header data). The argument after -i defined the waiting interval in seconds. The
interval was set to 120 seconds to prevent the communication buffers of the motes
from filling up in the case of prolonged interference; this value was set between 30

57

Wireless Sensor Network: Testbed and Experimental setup

and 120 to avoid the queuing phenomenon. The third argument was -c which de-
fines the total number of pings and stops after sending all pings. These values were
different in the experiments, and they depended on the total number of pings in
each experiment. The bash script was developed to perform the results in parallel,
controlling the Wi-Fi software on other PCs (PC2 and PC3).

Statistics about the success or failure of every ping request were collected and
logged in a file for every experiment. For successful requests, the round-trip time
was captured as well, which coincided with di values. From the logs, the number NL
of failed requests was subsequently computed. This value permitted evaluating the
empirical two-way loss probability P̂

T

L , defined as the measured fraction of requests
for which no response is received during the experiment, P̂

T

L = NL/Nsam.
Also, the experimental data was stored and published as an open-source dataset

in the IEEEDataPort [139].

58

Chapter 5

Single-hop WSN: Modeling and
Performance Analysis of IEEE
802.15.4 TSCH

The work described in this chapter was originally presented in [122].

The WSNs suffer from disturbance and interference generated by co-located Wi-Fi net-
works near the networks. Hence, it is essential to have a mathematical model to
analyze and estimate such a system’s behavior in the field. TSCH is used in many
industrial applications characterized by demanding reliability and determinism re-
quirements, such as controlling air conditioning, smart lighting, robots, and other
applications that need to be controlled remotely by a centralized system. The
TSCH protocol’s advantage is that it can change the transmission frequency on
every attempt, which increases reliability in WSNs.

The performance indicators analysis is essential in WSN’s domain. The analysis
gives us essential information about the WSN behavior. Moreover, it tells us how
much the initial configuration satisfies the application requirements. The Single hop
topology is the most common topology in WSN, and it is interesting to propose a
method to estimate and analyze the behavior of the single-hop WSN network. This
allows us to better understanding the network and quality of the communication.

We developed a mathematical model to estimate and analyze the quality of the
communication in the single-hop WSN in this chapter. The model was built by
making simple assumptions about the time and frequency diversity’s effectiveness.
The model was obtained by analyzing the round-trip communication value between
two nodes (single-hope). The proposed model analyzes the impact of the network
parameters, such as the retry transmission and the number of time slots. Likewise,
the effectiveness of channel hopping was analyzed to exploit the ability to prevent
narrowband interference from disrupting communication.

59

Single-hop WSN: Modeling and Performance Analysis of IEEE 802.15.4 TSCH

5.1 Two-way communication model
We analyzed the behavior of a TSCH communication between two adjacent

motes from a theoretical perspective in the presence of unpredictable phenomena.
The disturbance and interference were generated from devices not belonging to the
network. Further, the network topology settled and the transmission schedule in
each slotframe. This transmission scheduling was defined and configured on motes,
and collisions no longer occurred in typical operating conditions; therefore, the
intra-network interference behavior will not be considered in our analysis. The
single-hop communication model was built by starting from TSCH operations and
the channel error model.

5.1.1 Packet loss on a single hop
There are many techniques for increasing reliability; the most common is re-

transmission, in which motes send the same packet over the air more than once.
Thus, if the packet fails, another attempt will be transmitted. A failed packet
means the packet is sent to the air, but the ACK related to the packet is still not
received. In such an event, the MAC layer automatically repeats the acknowledge
message over the air up to rL times, where the retry limit rL is defined as mac-
MaxFrameRetries in the TSCH protocol. Therefore, the packet loss means that
all retransmission (rL + 1) attempts are failed. Further, clear channel assessment
(CCA) is an option in the TSCH network, and when the channel is detected as
busy, it defers a transmission attempt. This condition is almost the same as a lack
of an ACK.

In both methods, when there is a packet failure, the retransmission will be
scheduled for the next slotframe, and the total retransmission counter increases by
one. Nevertheless, retransmission does not occur immediately in TSCH. In fact,
the transmitter must wait for a link (either dedicated or shared) targeted to the
destination device.

In our analysis, the single transmission attempts were assumed as a Bernoulli
trial model with failure probability ϵ. This hypothesis provided a rough approx-
imation of the actual channel behavior. However, the TSCH network attempts
setup was far enough away, so the time diversity sensibly decreased the statistical
dependence between them.

If a single dedicated link was allocated between any pair of motes in the slot-
frame, the transmission attempts in the related slots were placed in intervals by
the slotframe time. The slotframe duration is about 2 s, which is longer than the
default MSDU lifetime in IEEE 802.11 (i.e., the maximum time after which the
transmission process is terminated for a frame in Wi-Fi , including the retries).
Also, a random exponential backoff mechanism is applied to avoid collisions. This
technic increases the time between retransmissions (retries), and the behavior was

60

5.1 – Two-way communication model

confirmed during the experiment with the real devices.
A random exponential backoff mechanism was also employed for shared links

to prevent collisions, which further enlarged the time between retries. The above
behavior was verified for the actual devices used for the experiment. Moreover, the
subsequent attempts were sent on the same physical channel for the same packet
in the channel hopping, which meant that the frequency diversity was exploited.
Diversity techniques make retries statistically (almost) independent, so the packet
loss ratio PL on the link can be calculated as

PL = ϵrL+1. (5.1)
where the rL = 15, 20% of failed attempts for PL = 6.55 × 10−12, and when the
failure probability grows up to 50%, PL = 1.526× 10−5.

5.1.2 Failure rate for two-way communication
The ping command is considered to perform the request and response trans-

action to validate the proposed mathematical model with experimental data. As
discussed in Chapter 1.2, the Ping utility is used to perform the experimental anal-
ysis. This tool operates on the Internet Control Message Protocol (ICMP) [140],
and generates the same packet for send and receive data in both nodes, for the root
and the leaf. In this case, the same mote (the root) is in charge of sending the
experimental measurement. Also, the ping behavior is the same as that queried
via that CoAP protocol.

Every transaction generated by the ping command is sent by two echo messages,
one for a request and one for a response. This means that the original mote sends
one echo message request to the target mote, then the target mote replies an echo
message to the original mote. In our analysis, the single-hop paths were analyzed,
and our model was built by considering this assumption; indeed, this assumption
is like a star network topology in WSN, meaning one packet is sent from the root
to the leaf in the downward direction for the request message, and the leaf replies
to the root mote in the upward direction.

The P T
L is the probability that a request-response transaction fails, which means

that the short two-way loss ratio corresponds to

P T
L = 1−

(︂
1− P D

L

)︂ (︂
1− P U

L

)︂
, (5.2)

where P D
L is the packet loss probability for request messages, and P U

L is the
packet loss probability for response messages. Considering that the motes adopt
the same radio module and block, the downward and upward links suffer from the
same failure probability (PL);thus, P T

L can be rewritten as

P T
L = 1− (1− PL)2 = 2PL − P 2

L , (5.3)

61

Single-hop WSN: Modeling and Performance Analysis of IEEE 802.15.4 TSCH

Table 5.1: Glossary of quantities

Quantity Description Value
Nch Number of physical channels 16
Nslot Number of slots in a slotframe 101
Tslot Duration of a slot 20 ms
Tslfr Period of the slotframe 2.02 s
rL Max. number of MAC retransmissions (retry limit) 15
ϵ Failure probability for single attempts -

P x
L Packet loss ratio in direction x ∈ {D, U} -

P T
L Two-way loss ratio -

P x
r Probability to perform r retries in direction x ∈ {D, U} -

P T
r Probability to perform r retries in both directions -

Nsam Number of samples per experiment 2880
di Two-way transmission latency of the i-th ping request -

dwait,i Waiting time of the i-th ping request < Tslfr

dcomm Two-way network communication time -
dretr,i Retransmission time of the i-th ping request -

ri Total number of retries for the i-th ping request -
D Two-way transmission latency (random variable) -

Dwait Waiting time (random variable) < Tslfr

Dx
retr Retransmission time in direction x ∈ {D, U} (rand. var.) -

DT
retr Two-way retransmission time (random variable) -
µd Two-way mean transmission latency -
µ̂r Estimated mean number of retries (two-way) -
P̂

T

r Empirical probability to perform r retries (two-way) -
ϵ̂P Estimated failure probability (from P̂

T

0) -
ϵ̂D Estimated failure probability (from µd) -

and, under our simplified channel error model, it yields to

P T
L = 1−

(︂
1− ϵrL+1

)︂2
= 2ϵrL+1 − ϵ2(rL+1). (5.4)

Applying the same ϵ values (20% and 50%) to this equation produces low values
for the two-way loss ratio, which implies that finding a good match between the
theoretical model and experimental samples starting from this quantity is barely
possible. For example, even when ϵ = 0.5 (which indicates harsh interference), only
one packet is lost, on average, every 11 days if the ping period is set to 30 s. Further,
to prevent packets from remaining queued in the motes’ transmission buffers, setting
smaller periods in the ping command was avoided during the experiments.

62

5.1 – Two-way communication model

5.1.3 Transmission latency
The proposed model was evaluated with the latencies obtained in the experi-

mental data. di is the round-trip delay for the i-th ping request, i ∈ [1...Nsam],
where Nsam is the total number of samples in the ping test. In the following, two-
way transmission latency is denoted for simplicity. Three elements are included in
di:

1. The waiting time dwait,i passing from the request packet is queued at the root
mote and at the beginning of the downward slot to the target mote. The
packet is sent at the earliest opportunity, where the queuing phenomena are
not present, which means that the time will be between 0 and Tslfr (0 ≤
dwait,i < Tslfr). The reply packets are directly triggered by requests conveyed
in the downward slot in the target mote due to the operations of the ICMP
responder process; the responder needs enough time to serve the request and
in queue its reply before the beginning of the upward slot.

2. dcomm,i is the communication time in the two-way network if there are no
failed attempts. This time is measured between the send and received times.
It expects that the calculation starts by sending the request packet (down-
ward slot) and stops when receiving the response packet (upward slot). This
time depends on the slotframe configuration. The 6TiSCH Operation Sub-
layer Protocol (6P) in the mote is adopted to manage the slotframe. The
downward and upward slots are allocated in fixed locations in the slotframe;
consequently, the time between them is fixed, and it is expressed as dcomm.

3. dretr,i is the retransmission time spent for backoffs (when an attempt is delayed
due to a busy channel, which is sent by the CCA function) or retries (when an
attempt fails because the frame corrupted due to a collision or noise pulses).
rT

i = rD
i + rU

i is the total number of retries, where rD
i and rU

i denote the
numbers of retransmissions carried out in the downward and upward direction,
respectively. Both directions are considered in rT

i . These quantities depend
on background traffic, such as the amount of interference and disturbance
in the air. The latency increases by one slotframe when every time packet
transmission is retried in each direction. This happens when the network
formation has settled—in other words when the slots are dedicated. Finally,
the retransmission time depends only on rT

i and is given by dretr,i = rT
i · Tslfr,

where rT
i ∈ [0...2rL].

Overall, the latency of the i-th ping request in the two-way transmission is
represented as the following:

di = dwait,i + dcomm + rT
i · Tslfr. (5.5)

63

Single-hop WSN: Modeling and Performance Analysis of IEEE 802.15.4 TSCH

1 ∙ Tslfr1 ∙ Tslfr

dcomm

dcomm

dcomm

dwait

D
n

U
p D
n

U
p

D
n

U
p

D
n

U
p

D
n

U
p

D
n

U
p

D
n

U
p D
n

U
p

D
n

U
p

D
n

U
p

D
n

U
p

D
n U
p

D
n

U
p D
n

U
p

D
n

U
p

D
n

U
p

D
n U
p

D
n

U
p D
n

U
p D
n

U
p

Rq Rp

No TX errors, in-slotframe reply
Rq Rp

No TX errors, next-slotframe reply
Rq Rpdwait 1 ∙ Tslfr

dcommRq Rpdwait 1 ∙ Tslfr

Echo request

Echo reply TX error on slot

1 TX error (Dn slot)

3 TX errors (1 Dn slot + 2 Up slots)

D
n

U
p

Used/unused downward slot
Used/unused upward slot

D
n

U
p

Ping responder

a)

b)

c)

d)

Figure 5.1: Single-hop request-response transaction in TSCH

Fig. 5.1 shows how the above contributions may affect request-response transac-
tions. There are no transmission errors in Diagrams A and B; therefore, no retries
were performed. Diagram A showed no waiting time for a reply in this slot (the best
scenario), whereas, in Diagram B, the request was received just after the dedicated
slot began, so the response had to be sent in the next opportunity. The transmis-
sion error use case is shown in Diagrams C and D. The frame was corrupted one or
more times in this scenario, meaning some retries were performed. In Diagram C,
only the downward link was affected (once), while in Diagram D, the upward link
also suffered from errors.

5.1.4 Number of retransmissions
The numbers of retries carried out for a packet on the downward and upward

directions can be modeled as random variables, denoted RD and RU , respectively.
As said above, it can be reasonably assumed that both directions are affected by the
same amount and kind of interference. Therefore, RD and RU can be considered
as independent and identically distributed (i.i.d.) random variables.

For each single direction x ∈ {D, U} let P x
r

.= P(Rx = r) be the probability that
a correctly delivered packet underwent exactly r retries (besides the initial attempt).
Under our hypotheses about the channel error model, P x

r can be evaluated as the
probability to incur in r failures multiplied by the probability to succeed at the
r + 1 attempt.

Since latency is only defined for packets whose transmission was successful, the
conditional probability given that the packet eventually arrived at destination has

64

5.1 – Two-way communication model

to be considered. This yields

P x
r = 1

1− PL
ϵr(1− ϵ) = 1− ϵ

1− ϵrL+1 ϵr. (5.6)

Since P x
r does not depend on the direction x, in the following it will be simply

denoted Pr.
When both the downward and upward directions in a two-way request-response

transaction are taken into account, the probability P T
r

.= P(RD + RU = r) to incur,
on the whole, in exactly r retries is, for 0 ≤ r ≤ rL,

P T
r =

∑︂
k=0...r

Pk · Pr−k =
∑︂

k=0...r

(1− ϵ)ϵk

1− ϵrL+1 ·
(1− ϵ)ϵr−k

1− ϵrL+1 =

=
(︃ 1− ϵ

1− ϵrL+1

)︃2
(1 + r) ϵr, (5.7)

where k and r−k are the numbers of retries in the downward and upward directions,
respectively, whereas for rL < r ≤ 2rL

P T
r =

∑︂
k=r−rL...rL

Pk · Pr−k =
∑︂

k=r−rL...rL

(1− ϵ)ϵk

1− ϵrL+1 ·
(1− ϵ)ϵr−k

1− ϵrL+1 =

=
(︃ 1− ϵ

1− ϵrL+1

)︃2
(1 + 2rL − r) ϵr. (5.8)

In fact, all cases have to be considered where the sum of the numbers of retries in
both directions equals r, but no more than rL retries are performed in any single
direction. Overall

P T
r =

(︃ 1− ϵ

1− ϵrL+1

)︃2
(1 + min (r,2rL − r)) ϵr. (5.9)

5.1.5 Modeling the transmission latency
Since the ping request is a two-way transmission, the latency can be modeled

as a random variable D. Dwait is the waiting time, and it is possible to model in
the same way. The time spent in the two directions for retransmission is denoted
as DD

retr and DU
retr, respectively. dcomm is constant.

As a result
D = Dwait + DD

retr + dcomm + DU
retr. (5.10)

It is possible to consider Dwait as uniformly distributed between 0 and Tslfr
due to the asynchronous cyclic processes in the packet generation and slotframe
transmission, whose periods are prime, between 30 s and 2.02 s, respectively. Hence,
the probability density function (pdf) is

65

Single-hop WSN: Modeling and Performance Analysis of IEEE 802.15.4 TSCH

fDwait(d) = 1
Tslfr

(u (d)− u (d− Tslfr)) , (5.11)

where the Heaviside unit step function is u(·). The expected value is equal to
half of the slotframe length

E [Dwait] = Tslfr

2 . (5.12)

The overall time DT
retr taken by retransmissions corresponds to the sum of the

related contributions in both directions, which are i.i.d., and DT
retr is defined as

DT
retr = DD

retr + DU
retr. Further, starting from P T

r values, the pdf of DT
retr is

fDT
retr

(d) =
∑︂

r=0...2rL

P T
r · δ (d− r · Tslfr) , (5.13)

where δ(·) is the Dirac delta function. For all single-direction x ∈ {D, U}, the
expected retransmission latency is expressed as

E [Dx
retr] = E [Rx] · Tslfr, (5.14)

where

E [Rx] =
∑︂

r=0...rL

r · Pr = 1− ϵ

1− ϵrL+1

∑︂
r=0...rL

r · ϵr =

= rL + 1
1− ϵ

− rL + 1
1− ϵrL+1 , (5.15)

for the known properties of the truncated geometric series. Since E [Rx] does not
depend on the direction x, E [Rx] is denoted as simplified notation E [R]. Consid-
ering these hypotheses, dcomm, Dwait, DD

retr, and DU
retr are independent values, and

D can be calculated from (5.10).
By considering a similar approach described in [141], and using (5.10) and the

above pdfs, it is possible to calculate the pdf of latency D as

fD(d) = (fDwait ∗ fDT
retr

)(d− dcomm), (5.16)
where the operator ∗ expresses the convolution operation, this function is a

piecewise constant function, where the first and last intervals have infinite width
and zero height. The 2rL + 1 is the inner intervals with width Tslfr and height
P T

r /Tslfr, starting at d = dcomm.
Regarding the cumulative distribution function The cumulative distribution

function (CDF) of the overall two-way latency D, denoted as FD(·), consists of a
continuous piecewise linear function with 2rL+2 knots (see Figs. 5.2 and 5.3), where
knot r, r ∈ [0...2rL + 1] is located at coordinates ⟨dcomm + r · Tslfr,

∑︁
i=0...r−1 P T

r ⟩.
In conclusion, the expected value of the latency is the sum of the expected

values of the single contributions.

66

5.2 – Experimental evaluation

E [D] = dcomm + Tslfr ·
(︃1

2 + 2 · E [R]
)︃

. (5.17)

5.1.6 Channel hopping
The failure probability ϵ for attempts is assumed not to vary in the above

analysis. This assumption is acceptable when the WSNs are operating on a single
channel, as in legacy IEEE 802.15.4 WSNs, it is not sure when the channel-hopping
mechanism of TSCH is enabled, which keeps the transmission frequency changing.

Suppose the number of physical channels and the number of slots in the slot-
frame are prime numbers (as it happened in our 6TiSCH configuration, since
Nch = 16 and Nslot = 101), the actual frequency on which TSCH performs subse-
quent attempts hops along all channels according to a pseudo-random value. At
best, it is possible to assume that the failure probability ϵC of every channel C
stays constant over time.

The channel hopping is modeled as a truly random process, where all channels
are equally likely to be selected. This assumption is valid if channel black-listing
techniques are not used [142], [143]. Even though such techniques could be imple-
mented by modifying the macHoppingSequenceList table, maintaining coherence
among nodes is difficult. For this reason, a standard black-listing mechanism was
not included in the TSCH specification.

Thus, the probability PC for any given channel C to be used is the same and
corresponds to 1/Nch. Thus, it provides a reasonable approximation, meaning each
transmission attempt is modeled as a two-step random trial. First, a channel is
randomly selected, which is characterized by a specific failure probability. Then,
the transmission attempt is performed under such conditions. The attempt can be
modeled as a Bernoulli trial since the two steps are statistically independent, so
the equivalent failure probability ϵ̃ is equal to

ϵ̃ =
∑︂

C=1...Nch

PC · ϵC = 1
Nch

∑︂
C=1...Nch

ϵC = ϵ. (5.18)

Furthermore, the same analysis explained above can then be implemented.

5.2 Experimental evaluation

5.2.1 Experimental testbed
As discussed in Chapter 1.2, the testbed was set up based on the real WSN

devices, for which the OpenMote B hardware was selected to deploy the WSN. The
modeling in this chapter is considered for a single hop. Therefore, the experimental

67

Single-hop WSN: Modeling and Performance Analysis of IEEE 802.15.4 TSCH

data relevant to the analysis was archived by utilizing two devices in a star network
topology with single-hop links; one mote plays a root role, which is connected to
the PC to send the received request, and the other node is a leaf of the root in the
start of the topology.

The OpenWSN [144] OS (version REL-1.24.0) was selected for running on the
OpenMote B [145] devices. The OpenMote B devices are relatively new and ap-
peared on the market in 2018. They are built with a TI CC2538 System-On-Chip
microcontroller, which integrates an IEEE 802.15.4 radio transceiver for trans-
mission in the 2.4 GHz band, and an ARM® Cortex™ M3 CPU with 512 KB of
flash memory and 32 KB of dynamic RAM memory. Additionally, a specific At-
mel AT86RF215 chip, which was not used in our experimental campaigns, is avail-
able for sub-GHz transmission (868/915 MHz). The OpenWSN hardware is also
compatible with the Contiki OS.

In this chapter and most of the thesis experiments, cross-compiling was carried
out using the ARM gcc toolchain. The produced code was then downloaded to the
mote through its USB interface by the scons software construction tool, which is
provided with OpenWSN .

5.2.2 Interfering traffic
As described in Chapter 1.2, the amount of Wi-Fi traffic in the 2.4 GHz band in

the laboratory was not under control. This traffic is generated by APs, notebooks,
and many other mobile clients located near the laboratory. Therefore, software was
developed to generate and inject controlled Wi-Fi traffic into the wireless network.
The software generates traffic by a random generation pattern, as detailed in [69], in
which two finite-state machines, idle and burst states, are implemented to manage
the traffic. This software is controlled with another application that orchestrates
the packet and traffic generation.

5.2.3 Measurement technique
As discussed before, TSCH behavior is possible to analyze with higher-level

protocols, like CoAp, and with the request-response paradigm, such as the ping
utility. As said before, we wish to investigate those cases where short reaction times
are sought, e.g., less than a dozen seconds, as opposed to real-world applications
based on WSNs, where the period with which motes are probed is in the order
of several minutes or longer. A further reduction of timing does not reflect the
typical operating conditions of WSNs, since low power consumption is always given
precedence, even in cases where good reactivity is demanded. Moreover, we set the
ping timeout to 30 s. Therefore, the communication buffers of motes were prevented
from filling up in the case of prolonged interference. We stored 120 samples for each

68

5.2 – Experimental evaluation

hour. Since the analysis was done for one day, we collected 2880 samples for each
experiment day.

We stored all ping requests statistics regarding success and failure in a file for
every experiment. Further, the round-trip time value was obtained and denoted as
di. From our logs, the number NL of failed requests was computed. This value per-
mitted us to calculate the two-way loss probability P̂

T

L , defined by P̂
T

L = NL/Nsam,
where Nsam is the total number of samples.

5.2.4 Matching experimental parameters
In this section, we evaluated the behavior of the theoretical model proposed

in Section 5.1 against the real testbed. We analyzed all the experimental data,
as are the parameters dcomm and ϵ calculated from the real ping values. In the
real scenario, when the amount of interference and disturbance was tolerable, and
enough samples Nsam were available (e.g., thousands), it was possible to evaluate
a reliable estimation of dcomm, where the total value of dcomm was the minimum
among all measured latencies

d̂comm = dmin
.= min

i=1...Nsam
(di). (5.19)

In the best case, there were no transmission errors for the request and response
packets. Further, no initial waiting time was experienced by the originator of the
request. This situation corresponds to set rT

i = 0 and dwait,i ≈ 0 in (5.5), which
leads to (5.19). We described two simple and effective methods to calculate the
latency distribution and average latency failure rate.

Failure rate from latency distribution

Nr is the total number of ping requests in both directions that succeeded after
exactly r retries. Therefore, the waiting time dwait,i should be shorter than the
slotframe time, ∀i ∈ [1...Nsam], Nr can be determined by counting the number of
samples for which d̂comm + r · Tslfr ≤ di < d̂comm + (r + 1) · Tslfr.

In practice, this allows us to evaluate the experimental probability P̂
T

r , which
corresponds to the statistical relative frequency of experiencing exactly r retries on
the two-way path, between the DAG mote (root) and the target mote (leaf), which
is written as P̂

T

r = Nr/(Nsam −NL).
The failure rate ϵ was not high in all experiments, which means that the ping

requests did not suffer from any frame losses in either direction. This indicates that
P̂

T

0 provides a reliable estimate of P T
0 . From (5.7)

P T
0 = (1− ϵ)2

1− P T
L

, (5.20)

69

Single-hop WSN: Modeling and Performance Analysis of IEEE 802.15.4 TSCH

Then, a reliable estimate of the failure probability is

ϵ̂P = 1−
√︃

P̂
T

0 (1− P̂
T

L). (5.21)

If the number of failed ping requests is so low that P T
L cannot reliably be

determined from P̂
T

L (in the carried out experiments in which no requests failed),
then an adequate estimate of ϵ can be found by numerically inverting the equation

ϵ̂P = 1−
√︃

P̂
T

0

(︂
1− ϵ̂rL+1

P

)︂
(5.22)

We obtained this equation from (5.20) and (5.4).

Failure rate from average latency

The other way to write a term for the failure rate ϵ is to obtain the latency’s
sample mean value, calculated as

µd = 1
Nsam

∑︂
i=1...Nsam

di. (5.23)

By assuming that µd provides a reasonable estimation of the expected value
of the latency E [D], an alternative and reliable estimate of ϵ can be found by
modifying (5.17).

By the linearity of the expected value, it is possible to estimate the expected
number E [R] of retries in any direction as

µ̂r = 1
2

(︄
µd − dcomm

Tslfr
− 1

2

)︄
(5.24)

and by rewriting (5.15) as

ϵ̂D = 1− 1
µ̂r − rL + rL+1

1−ϵ̂
rL+1
D

= 1− 1

µ̂r + 1+rL·ϵ̂rL+1
D

1−ϵ̂
rL+1
D

, (5.25)

which is possible to solve numerically.

5.3 Results
The experiment was performed by enabling and disabling channel hopping. We

performed several experiments with OpenMote B by changing the interference con-
ditions. The experiment was performed using ping utility. Each ping request was
invoked every 30 s for all experiments. Every experiment was performed for 24
hours, so the total number of samples became Nsam = 2880.

70

5.3 – Results

Table 5.2: Experimental results and estimated parameters; channel hopping dis-
abled and enabled

Channel hopping disabled (also see plots in Fig. 5.2)
Measured counters / ratios Measured latencies (ms) Estimated failure rate Computed two-way loss ratio

Exp. NL N0 P̂
T

L P̂
T

0 dmin µd dmax ϵ̂P µ̂r ϵ̂D P T
L,P P T

L,D

I(1)
∅ 0 2286 0.0 0.794 466 1966.00 10723 0.109 0.121 0.108 8.03× 10−16 7.02× 10−16

I(2)
∅ 0 2189 0.0 0.760 464 2059.09 11587 0.128 0.145 0.127 1.06× 10−14 8.60× 10−15

I(1)
6 0 1901 0.0 0.660 460 2373.00 11872 0.188 0.224 0.183 4.69× 10−12 3.08× 10−12

I(2)
6 0 1682 0.0 0.584 464 2723.74 14756 0.236 0.309 0.236 1.82× 10−10 1.88× 10−10

I(1)
6,6 0 1092 0.0 0.379 461 3909.81 19755 0.384 0.604 0.376 4.51× 10−07 3.25× 10−07

I(2)
6,6 0 1318 0.0 0.458 466 3399.57 18553 0.324 0.476 0.323 2.88× 10−08 2.75× 10−08

I(+)
∅ • 0 4475 0.0 0.777 464 2012.55 11587 0.119 0.133 0.118 3.05× 10−15 2.69× 10−15

I(+)
6 • 0 3583 0.0 0.622 460 2548.37 14756 0.211 0.267 0.211 3.16× 10−11 3.01× 10−11

I(+)
6,6 • 0 2410 0.0 0.418 461 3654.69 19755 0.353 0.541 0.351 1.17× 10−07 1.06× 10−07

Channel hopping enabled (also see plots in Fig. 5.3)
Exp. NL N0 P̂

T

L P̂
T

0 dmin µd dmax ϵ̂P µ̂r ϵ̂D P T
L,P P T

L,D

I(1)
∅ • 0 2465 0.0 0.856 1937 3278.97 9197 0.075 0.082 0.076 1.94× 10−18 2.44× 10−18

I(1)
1 0 2133 0.0 0.741 1945 3613.18 14003 0.139 0.163 0.140 4.07× 10−14 4.40× 10−14

I(2)
1 • 0 2320 0.0 0.806 1943 3409.05 11278 0.102 0.113 0.101 2.96× 10−16 2.51× 10−16

I(1)
5 0 2481 0.0 0.861 1941 3263.55 10667 0.072 0.077 0.072 1.01× 10−18 1.00× 10−18

I(1)
1,1 0 2109 0.0 0.732 1940 3621.55 12681 0.144 0.166 0.143 7.04× 10−14 5.80× 10−14

I(1)
1,5 0 1926 0.0 0.669 1940 3859.07 12332 0.182 0.225 0.184 2.96× 10−12 3.36× 10−12

I(2)
1,5 • 0 2149 0.0 0.746 1938 3575.46 11289 0.136 0.155 0.134 2.80× 10−14 2.28× 10−14

I(1)
1,5,9 0 1524 0.0 0.529 1940 4438.65 16942 0.273 0.368 0.269 1.86× 10−09 1.53× 10−09

I(2)
1,5,9 • 0 1848 0.0 0.642 1944 3944.73 12761 0.199 0.245 0.197 1.21× 10−11 1.02× 10−11

I(1)
1,5,13 0 1952 0.0 0.678 1941 3810.58 15999 0.177 0.213 0.175 1.81× 10−12 1.61× 10−12

I(1)
1,5,9,13 • 0 1659 0.0 0.576 1942 4277.65 17288 0.241 0.328 0.247 2.59× 10−10 3.85× 10−10

I(2)
1,5,9,13 0 1768 0.0 0.614 1943 4076.80 13649 0.216 0.278 0.218 4.66× 10−11 5.06× 10−11

I(1)
1,1,5,5 0 1638 0.0 0.569 1945 4316.97 16035 0.246 0.337 0.252 3.56× 10−10 5.33× 10−10

We reported the statistics from the experimental analysis in Table 5.2. The
number of failed ping requests (NL) is reported in the left part of the table,
and the requests that did not experience any retransmissions are shown in the N0

column. Also, in relative terms, (P̂ T

L and P̂
T

0). These values are reflected by the
mean (µd), minimum (dmin), and maximum (dmax) values of the measurements of
two-way latency. The values ϵ̂P and ϵ̂D reported in the table are the estimated
values and were obtained from P̂

T

0 and µd. The estimate µ̂r of the average number
of retransmissions, also derived from µd, is included in the table. Finally, the P T

L

(i.e., P T
L,P and P T

L,D) reported on the rightmost side of the table were obtained from
the model, as presented in Section 5.1, by using the above failure rates.

Table 5.2 represents two types of experiments: the upper part shows the experi-
ment with channel hopping enabled, and the lower part shows the experiments with

71

Single-hop WSN: Modeling and Performance Analysis of IEEE 802.15.4 TSCH

channel hopping disabled. The value of dmin changed in two cases (approximately
460 ms and 1940 ms). This was due to restarting the motes in two experiments,
thus changing the TSCH matrix each time (enabling/disabling channel hopping
requires the code of motes to be modified and rebuilt).

The 6TiSCH Experimental Scheduling Function (SFX) expects 6P cell nego-
tiation to start from a randomly chosen cell set. Therefore, after each restart, a
different matrix is obtained for motes in the network. This rebooting network in-
dicates a different relative position of the downstream and upstream slots in the
slotframe. Additional experiments were performed that confirmed this behavior.

5.3.1 Channel hopping disabled
We perform the first experiment with channel hopping disabled. Intra-network

interference was present while performing the test. Nevertheless, the ability to
face narrowband disturbance and interference from nearby Wi-Fi network infras-
tructures was lost, which means that the communication quality may be affected
negatively.

We fixed the mote’s transmission frequency on WSN channel 17, while the
Wi-Fi network adapters were tuned to channel 6, which means that they overlapped
with the motes according to the frequency spectrum presented in Fig. 1.4 in Chap-
ter 1.2. As shown in the table, we selected three conditions during the experimental
analysis, denoted as I∅, I6, and I6,6, where zero, one, or two Wi-Fi interferers were
active, respectively. Two experimental analyses were performed for every interfer-
ence condition to provide information for variations of the background traffic. The
meaning of the numeric superscript in the I(x)

∅ (x in parentheses) refers to the same
nominal active interference (e.g., I(1)

6 and I(2)
6 represents that we performed two

times experiments in the same condition). Experiments with aggregate datasets are
indicated as superscript (+) (e.g., I(+)

∅ , I(+)
6 , and I(+)

6,6), and we merged all the sam-
ples collected in the experiments. The total number of samples was Nsam = 5760.

The ϵ̂D and ϵ̂P are estimated values for the failure rate obtained by both methods
(derived from P̂

T

0 and µD). The estimations were comparable to each other in
both methods. However, relying on the calculated mean latency provided a more
reliable estimate because all samples were considered. By increasing the amount of
Wi-Fi interference, the failure probability also increases. Nonetheless, we calculate
a different failure probability estimation in the same Wi-Fi conditions. For instance,
in the I6,6 case, two values were estimated for ϵ—that is, 32.4% and 38.4% (obtained
from P̂

T

0).
Fig. 5.2 shows the measured cumulative frequency distribution (CDF) by indi-

cating thin black lines. We obtained plots using the experimental data, and which
have been highlighted in Table 5.2 as • (solid circle). As described before, the
datasets with symbols (+) are merged to overcome variability of the background

72

5.3 – Results

traffic (e.g., I(+)
∅ , I(+)

6 , and I(+)
6,6). The CDFs obtained from the theoretical model

are the plots in colored lines. As shown, the experimental data and the theoretical
model are identically aligned with each other, which means that the assumptions
made on the channel error model do not generate any practical weakness. Further,
the experimental and theoretical data are matched in the tail part of the curves,
located on the rightmost side of the figure. This implies that the approximation
given by the model is satisfactory for all ranges of latency values.

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14

I(+)

∅

I(+)
6

I(+)
6,6

0.65

0.7

0.75

0.8

0.85

0.9

4 4.5 5 5.5 6 6.5 7

I(+)
6

I(+)
6,6C

D
F

Latency (s)

I(+)

∅
I(+)
6

I(+)
6,6

Zoom

Figure 5.2: Measured and theoretical CDFs of d (channel hopping disabled).

5.3.2 Channel hopping enabled
We performed the second experiment by activating the Wi-Fi interferers up to

four stations, and we set no more than two generating traffic on the same channel.
The table has the same notation as before, based on Wi-Fi channels on which
controlled traffic was injected. The results, reported in the lower part of Table 5.2,
do not have many differences with respect to the previous experiment. We calculate
the ϵ̂P and ϵ̂D of the failure probability from the P̂

T

0 and µd, and the results are
the same.

The failure rate is lower than when the channel hopping was disabled; this
improvement was expected from the channel-hopping mechanism. The controlled
background traffic undermined the repeatability of the experiments, and it allowed
only a partially meaningful direct comparison of the results performed at different

73

Single-hop WSN: Modeling and Performance Analysis of IEEE 802.15.4 TSCH

times. This appears precisely by matching side-by-side analyses carried out with the
same amount of Wi-Fi traffic. For instance, the failure rates ϵ are obtained 19.9%
and 27.3% for I(2)

1,5,9 and I(1)
1,5,9 (derived from P̂

T

0), respectively. Thus, by increasing
the amount of Wi-Fi traffic, the ϵ worsens, beginning from about 7.5% with no
Wi-Fi traffic up to 21.6%–24.6%, with four active interferences (obtained from
P̂

T

0). The equivalent failure rate achieved by channel hopping when all spectra were
occupied with four channels was, on average, lower than the failure rate calculated
when channel hopping was disabled. In this case, two identical interferences were
tuned to the same motes’ frequency.

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14

0.85

0.9

0.95

1

5.5 6 6.5 7

I(1)

∅

I(2)
1

I(2)
1,5

I(2)
1,5,9

I(2)
1,5,9,13

C
D

F

Latency (s)

I(1)

∅
I(2)
1

I(2)
1,5

I(2)
1,5,9

I(1)
1,5,9,13

Zoom

Figure 5.3: Measured and theoretical CDFs of d (channel hopping enabled).

The theoretical and measured CDFs evaluated for five interfering situations
when channel hopping was enabled are shown in Fig. 5.3 (labeled with a solid circle
in the lower part of the table). Again, the curves show a good match between the
analytical model and the experimental results. Additionally, many other experi-
ments were performed by setting the retried parameter to lower values (e.g., R = 1,
3). The estimations for ϵ̂P obtained varied between 9–14%. Despite the spectrum
variability, these values are equivalent to the results in the table. Furthermore,
when only a single retry was allowed (which indicated that packet communication
was not unlikely to fail), the estimated and measured ping failure rates were almost
equal (P T

L = 1.9% and P̂
T

L = 1.7%, respectively).

74

5.4 – Conclusions

5.3.3 Comments on channel hopping effectiveness
As presented in Table 5.2, the quality of communication experienced by motes

during the experiments was linked to the mean amount of controlled Wi-Fi traffic
injected into the network. For example, the fraction of failed attempts with 4
Wi-Fi traffics tuned on different channels (in case the transmission frequency of
motes changed on every attempt) matched the case when the mote’s frequency
was fixed and only one Wi-Fi traffic was activated within that frequency range.
Assuming that the background Wi-Fi traffic on the various channels was the same
and did not vary significantly between the experiments, the average interference was
roughly the same, regardless of the channel on which their radio communications
are tuned at the time of transmission.

This supports the assumption that channel hopping makes communicating motes
see an equivalent spectrum that averages all involved physical channels’ behavior,
as proposed by this equation (5.18), therefore decreasing the variability of the com-
munication quality. In other words, our experimental test validated, to some extent,
the ability of TSCH to flatten narrowband interference.

The use of Wi-Fi devices has increased; such devices can be found everywhere,
and their diffusion is steadily increasing over time, especially in industry. However,
the use of WSNs is essential for Industry 4.0, and it is a critical element of the
future of factories. This is why it is essential to have better performance indicators
in WSN communication. Further, traffic may impair communication in the WSN,
either by causing repeated collisions or delaying transmissions because of the carrier
sensing mechanism. The TSCH, especially the channel-hopping mechanism, was
purposely proposed to prevent such irregular phenomena.

5.4 Conclusions
In this chapter, experimental analysis was performed on 6TiSCH WSN with

a star topology when the number of interfering Wi-Fi traffic was different. The
experimental analysis was performed to evaluate the communication quality, such
as latency and reliability, where mote devices were utilized to provide a round-
trip time with a ping utility, which was used to provide a CoAP-like request-
response paradigm. Finally, a simple theoretical model was proposed to describe
the single-hop WSN communication network, where trials were considered inde-
pendent and subject to a time-invariant failure probability. Then, the model was
compared with the experimental data store with ping utility (round-trip time) via
the OpenMote B .

The experimental analysis validated the ability of TSCH to smoothen narrow-
band interference and disturbance by providing an equivalent quality of communi-
cation for motes. This value was roughly average of what was seen on the various
physical channels, which means that the quality of communication between motes

75

Single-hop WSN: Modeling and Performance Analysis of IEEE 802.15.4 TSCH

will not be affected much when there are accepted interferences near to motes.
The proposed model is not meant to compare the behavior of TSCH with legacy

WSN solutions. In fact, in many of the latter, subsequent attempts cannot be
considered statistically independent (which led to the definition of solutions relying
on time slotting and channel hopping). In the next chapter, the mathematical
model is extended to the multi-hop networks. However, the transmission latencies
over multiple hops are expected to grow and become less predictable, making the
TSCH approach less appealing for applications subject to specific timing constraints
(e.g., to close control loops with slow dynamics).

76

Chapter 6

Multi-hop WSN: Modeling and
Performance Analysis of IEEE
802.15.4 TSCH

The work described in this chapter was originally presented in [146].

This chapter proposes a simple and effective mathematical formulation that de-
scribes a TSCH network’s behavior, with the ultimate goal of optimizing perfor-
mance indicators. The model considers both configuration parameters, estimates
the protocol’s performance indicators and aims to characterize the network and the
environment. This model was obtained and validated by applying experimental
measurements performed and obtained on a real setup (see Chapter 1.2).

This chapter also proposes an experimental characterization of the power con-
sumption of OpenMote B devices, which helps perform a truthful estimation of the
power consumption. However, these devices are widely used in industrial WSN
applications, and they only recently support the 6TiSCH protocol. Nevertheless,
to the best of our knowledge, this is the first analysis of OpenMote B power con-
sumption proposed in the literature.

The mathematical model is first proposed for the performance indicators of a
multi-hop WSN. Then, experiments related to the power-consumption model are
presented in Section 6.2. Also, an experimental analysis is provided in Section 6.3.
Finally, some practical application contexts concerning performance indicators are
reported in Section 6.4.

77

Multi-hop WSN: Modeling and Performance Analysis of IEEE 802.15.4 TSCH

6.1 Mathematical model
Start topologies (e.g., single-hop) are applied in many industrial applications.

An example of this kind of WSN architecture can be found in gas station produc-
tion lines, in which sensors must send data in high frequencies to centralized control
rooms. In this architecture, all sensors are connected to a centralized control unit.
Thus, all nodes except the root are leaves and conceptually lie at the same net-
work level. Suppose all network nodes are not at the same level; a proper routing
mechanism would then be expected for communication, which relies on packet re-
lays operated by middle nodes as a gateway, according to a multi-hop transmission
mechanism.

The advantage of multi-hop solutions is to cover large areas; however, com-
munication latency increases in this method. Multi-hop WSNs usually rely on a
multi-level tree topology derived from a root node [147]. Mesh topologies also
exist where routes between nodes are arbitrary, but they are less common in prac-
tice. Many WSN protocol stacks, like 6TiSCH, rely on RPL to obtain a logical
tree topology out of a mesh physical topology. The most used WSN topologies
are multi-level networks, as these can easily be adapted to star topologies just by
setting the number of the level in the model to one.

The distance between the coordinator (root) and leaf in WSNs is Nlevel , where
Nlevel = 1 presents the single-hop network. The request/response paradigm is
considered for this analysis, as in Chapter 5, such as the CoAP (Constrained Ap-
plication Protocol), [123], which is a good solution for modern WSNs. Therefore,
every communication between two motes consists of a request packet sent in the
forward direction, then quickly replied by the packet in the return direction.

The term “packet i” is applied to both the request and response packets to
simplify the equations. As a result, the two-way communication is described by
setting Nhop = 2 in star topologies (one hop from the root to the target mote and
another level backward, from mote to root). In addition, Nhop = 2 · l is the number
of hops that are required to query a node at level l. When a leaf node sends a query
in a balanced tree, Nhop = 2 ·Nlevel .

In this section, the analysis is divide into two phases. The first phase (Sec-
tions 6.1.1, 6.1.2, and 6.1.3) describes the network model and how to adapt it to
an actual setup–in particular, an analysis is performed to estimate the performance
indicators, and many parameters of the model can be obtained directly from a set
of measurements performed on an experimental testbed. In the second phase (Sec-
tion 6.1.4), the model parameters are obtained directly from the testbed; then, the
obtained parameters are applied indirectly to derive new quantities, which helps es-
timate the expected behavior of a TSCH network when its protocol parameters are
varied. The proposed methodology allows us to compare model/protocol parame-
ters and performance indicators and enables a fast network configuration starting
from the requirements of each application.

78

6.1 – Mathematical model

1
 2

2
 3

2
 1

3
 2

1
 2

2
 3

2
 1

3
 2

1
 2

2
 3

2
 1

3
 2

1
 2

2
 3

2
 1

3
 2

1
 2

2
 3

2
 1

3
 2

1
 2

2
 3

2
 1

3
 2

1
 2

2
 3

2
 1

3
 2

M1

M2

M3

M3

M1M2 M3

M1

M2

M3

M1

M2

M3M2

M2

M2

1
 2

2
 3

2
 1

3
 2

1
 2

2
 3

2
 1

3
 2

Figure 6.1: The example of request/response iteration in TSCH without (Cases A
and B) and with (Case C) transmission errors (nrep,i = ntra,i −Nhop represents the
overall number of retransmissions performed for the i-th packet on the two-way
path).

When model parameters are estimated in the first phase, queuing insides nodes
is not considered. In other words we assumed that, for any given mote, only one
packet with the same destination for the next hop can be found in the queue at
any given time. From our viewpoint, this condition is not very restrictive. In fact,
it can be easily met if the packet rate with which measurements are performed is
much below the available capacity of the path [148]. It is worth pointing out that,
in most real application scenarios, the period of data transmissions on a WSN is
quite long, which means that queuing phenomena are typically negligible. In the
following analysis, we considered paths with a single dedicated cell for each hop,
i.e., the matrix of each mote does not contain more than one cell targeted to the
same destination. Again, this can be considered a typical configuration for such
matrix. The model quantities used in this chapter are summarized in Table 6.1.

6.1.1 Reliability
Industrial applications mostly have a high demand for reliability, which means

that all transmitted packets–or, at least, most of them–need to reach the destina-
tion. Automatic repeat request (ARQ) schema allows every packet transmission to
be retransmitted (upon failures) on each communication link up to the retry limit.

The possibility for any frame to reach the target node is defined as a parameter
called frame error probability ϵ (i.e., the chance for a single try in the probability
that two nodes near each other fail), Ntries is the maximum number of permitted
tries for each frame at the MAC layer (the total number of retries is Ntries + 1),
and Nhop is the number of hops performed at the routing layer, which is considered
in both directions).

As a result, starting from the frame error rate and the number of hops on the

79

Multi-hop WSN: Modeling and Performance Analysis of IEEE 802.15.4 TSCH

Table 6.1: Glossary of Quantities.

Quantity Description
Nslot Number of slots in the slotframe
Tslot Duration of a slot

Tsframe Duration of the slotframe
Ntries Maximum number of allowed attempts per frame
Nlevel Maximum distance between a mote and the root
Nhop Number of hops between source and destination motes
Nsam Number of samples collected in the experiment
Tapp Generation period of packets at the application level
Ntra,i Actual number of frames transmitted to deliver packet i

Nlost Measured number of lost packets
N̂ lost Estimated number of lost packets
n̂tra Average number of frames transmitted per delivered packet
Plost Packet loss ratio

ϵ Frame error probability
ϵpkt Packet loss probability
pnr Probability that no retries are made for a packet
E Total energy consumption

Ef
tx Energy consumption to transmit a confirmed frame

Ef
rx Energy consumption to receive a confirmed frame

Ef
listen Energy consumption for idle listening (single slot)

N̂ tra Total number of frames transmitted in the experiment
ftra Rate of frame exchanges (including retries)

flisten Rate at which idle listening occurs
di Latency experienced by packet i

dmin Minimum latency
µd Mean latency
σd Standard deviation of latency

dp99 99-percentile of latency
dmax Maximum latency
Maxd Theoretical worst-case latency

The hat symbol (ˆ) over a quantity denotes estimated values

two-way path, the packet delivery probability can be obtained as

1− ϵpkt =
(︂
1− ϵNtries

)︂Nhop
. (6.1)

where ϵpkt is packet loss probability for both the request and the respond directions.
Three assumptions are considered to hold the above equation. First, the upward

or downward directions have the same value of ϵ considered for the frame error

80

6.1 – Mathematical model

probability. This assumption indicates that the radio modules are similar for both
motes. Second, the value of ϵ must not change over time. This assumption is not
generally true, but the experiments performed on a real 6TiSCH network subject
to non-negligible interference produced by several nearby Wi-Fi networks suggest
that this approximation is often acceptable [122]. (An experimental analysis and
further explanation about this second assumption are described in Chapter 5).
Third, the value of ϵ must be the same for all the path links. This assumption
is mostly valid for small networks based on a star topology, but, when Nlevel ≥ 2,
it may not be acceptable in some cases due to the amount of disturbance and
interference that could vary sensibly over the coverage of the WSN (which for
multi-hop configurations can be bored).

Not unreasonably, it can be assumed that the spatial distribution of interfering
Wi-Fi devices (and, in general, of equipment exploiting wireless communication
technologies) is more or less homogeneous, as is that of the traffic they generate.
Indeed, IT administrators place the access points with this goal in mind.

The frame error probability ϵ could be obtained by analyzing the round-trip
time measurements. The packet latency is denoted as di, which is the packet’s
transmission time sending the i-th request and the packet’s reception time that
replies to it. The quantity di is just for successful transactions, where both the
request and response packets are accurately delivered.

The overall number of transmission attempts performed on-air is denoted as
ntra,i , where i is the iteration packets involved in any given request/response. All
hops considered (in both directions) can be obtained from the duration di, using
the following term

ntra,i =
⌊︄

di − dmin

Tsframe

⌋︄
+ Nhop, (6.2)

In this equation, the minimum communication latency is denoted as dmin. This
value is evaluated over all the measurements, and it depends on the TSCH matrix
setup, where the TSCH slotframe duration may be written as Tsframe = Nslot · Tslot .

To better understand the (6.2), an example is shown in Fig. 6.1, which demon-
strates different possibilities of the TSCH matrix. In this example, 3 motes are
considered, where mote M1 is the root, and the other motes are children to each
other until the last leaf (i.e., M2 is the child of the root, and M3 is the child of
M2). The notation x → y in a cell of the TSCH matrix denotes a cell reserved
for transmission from Mx to My. For example, 1 → 2 specifies that the cell is
dedicated for transmission from M1 to M2, while 2→ 1 indicates that it is reserved
for transmission inverse direction.

In the case of a request/response, transmission between the root M1 and the leaf
mote M3 is performed without errors (i.e., when no re-transmission is employed),
ntra,i = 4 and latency is in the range of dmin ≤ di < dmin + Tsframe. In particular,
when di equals (or is slightly greater than) dmin (Fig. 6.1.a), this indicates that
there is a packet in a queue on M1 to be sent before those in cell 1→ 2.

81

Multi-hop WSN: Modeling and Performance Analysis of IEEE 802.15.4 TSCH

Considering that packet generation by applications is not synchronous with
the TSCH matrix when the transmission request is issued relative to the slotframe
boundaries, it is possible to describe this as a random variable uniformly distributed
between 0 and Tsframe. In the case of no re-transmissions, the maximum delay is
limited by dmin +Tsframe, and is experienced when the packet is queued immediately
after the beginning of the 1 → 2 cell, which means that it is sent in the next
slotframe in cell 1 → 2 (Fig. 6.1.b). At the end, when there is a transmission
error, the di latency is gained by the length of one slotframe (Tsframe) for every
frame retransmission. For example, in the case of a single retransmission being
performed (Fig. 6.1.c), on any link, bounds dmin + Tsframe ≤ di < dmin + 2 · Tsframe
can be defined for latency. Equation (6.2), which allows for calculating the real
number of transmission attempts on-air, is obtained from these terms for latency.

The probability pnr that a packet is correctly exchanged with the minimum
number of transmission attempts (i.e., the probability that no retransmissions are
tried) can be obtained from our experiments as

pnr = (1− ϵ)Nhop = |{i | ntra,i = Nhop}|
Nsam

, (6.3)

where |{i | ntra,i = Nhop}| is the number of packets that arrived at the destina-
tion after precisely Nhop transmission tries (on the whole path), and Nsam is the
number of samples obtained in the experiment (i.e., the number of request/response
repetitions performed by the application).

The frame error probability can be obtained from (6.3), and is written as

ϵ = 1−
(︄
|{i | ntra,i = Nhop}|

Nsam

)︄ 1
Nhop

. (6.4)

ϵ is obtained by considering that the error rates on each of the 16 channels are
utilized in the communication channel by the TSCH mechanism.

In the case of a multi-level (hop) network, it also “aggregates” the failure prob-
abilities on all links that make up the path between the source and the destination
of the request/response exchange, and provides a simple yet effective model of the
overall behavior of the wireless spectrum in the place where the WSN is deployed.
As previously stated, this approximation is acceptable only if the error rates on the
links composing the path do not differ significantly.

6.1.2 Power consumption
Since motes cannot usually connect to a stable external power source and instead

must rely on batteries or energy harvesting, the power consumption evaluation is es-
sential in WSNs. A simple but effective power-consumption model [124] subdivides
the total energy consumption into separate contributions

E = Etx + Erx + Elisten + Ecpu + Esleep, (6.5)

82

6.1 – Mathematical model

where Etx is the overall energy required for transmission (that includes the trans-
mission of data frames and reception of the related ACK frames), Erx is the overall
energy required for frame reception (that includes the reception of data frames and
transmission of the related ACK frames), and Elisten is the energy consumed to
listen to the channel when waiting to receive frames, and the related slots remain
idle (idle listening).

In this chapter, the two contributions, Ecpu and Esleep, have been embedded in
the same quantity, Ecomp = Ecpu + Esleep, which represents the energy consumed
by the mote when no specific application that uses the network runs on it. In the
following, the focus is only on the energy consumed for communication. However,
the measured value of Ecomp for the motes used in the experimental campaign is
listed in Section 6.2.

The energy consumption Enet of the network component over a given time inter-
val can be directly obtained from the number nlisten of cells reserved for transmission
(as per the TSCH matrix) that remain unused, in which receiving nodes uselessly
sense the channel and the number ntra of cells in which transmission is actually
performed.

Enet = Etx + Erx + Elisten

= ntra ·
(︂
Ef

tx + Ef
rx

)︂
+ nlisten · Ef

listen, (6.6)

where Ef
tx and Ef

rx correspond to the energy consumed to send and receive a single
frame (data plus the related ACK), respectively, while Ef

listen is the energy consumed
to listen to the channel when a reserved cell is not used.

The equation (6.6) can be rewritten in terms of the power P as

P = ftra ·
(︂
Ef

tx + Ef
rx

)︂
+ flisten · Ef

listen, (6.7)

where ftra is the mean number of verified frame transmission attempts per second
performed on-air by all motes (i.e., the mean overall frame transmission rate), while
flisten presents the mean number of cells allocated for reception over a time span of
one second in which idle listening occurred.

The rate ftra can be calculated by dividing the total number Ntra of frames
transmitted on-air in the experiment by the overall duration of the experiment
itself

ftra = Ntra

Tapp ·Nsam
, (6.8)

where Tapp is the period in which requests are repeatedly issued by the originating
mote.

Alternately, the rate flisten was achieved by subtracting Ntra (i.e., the number
of cells that were used in the experiment) from the total number of cells kept

83

Multi-hop WSN: Modeling and Performance Analysis of IEEE 802.15.4 TSCH

for transmission in the same interval, and then divided by the duration of the
experiment:

flisten = 1
Tapp ·Nsam

·

·
(︄

Nhop · Tapp ·Nsam

Tsframe
−Ntra

)︄
, (6.9)

which can be rewritten as the slot repetition frequency 1/Tslot multiplied by the
fraction of slots in the slotframe reserved for the transmission of the considered
request/response packets, minus the mean overall frame transmission rate ftra

flisten = Nhop

Tsframe
− ftra = Nhop

Tslot ·Nslot
− ftra. (6.10)

Number Ntra is composed of two contributions: the number Ndeliv
tra of transmitted

frames associated with packets correctly delivered to the destinations, and the
number N lost

tra of transmitted frames associated with packets that were lost
Ntra = Ndeliv

tra + N lost
tra . (6.11)

Ndeliv
tra can be computed directly from the ntra,i values inferred by applying (6.2)

to experimental samples

Ndeliv
tra =

Nsam∑︂
i=0

ntra,i . (6.12)

Instead, the value of N lost
tra cannot be evaluated directly in the experimental

setup. In fact, latency is not defined for lost packets, which implies that (6.2)
cannot be applied. Thus, in the following analysis, estimate N̂ tra will be use instead
of Ntra, obtained by substituting N̂

lost
tra in (6.11). Note that, in the case of no packets

being lost (i.e., when Nlost = 0), the quantity Ntra can be derived directly from
experimental data, and the same holds for ftra and flisten.

Equations (6.8) and (6.10) are kept only when the injected traffic does not
exceed the allocated network capacity–that is, if ftra ≤ Nhop/Tsframe; otherwise,
the network behavior is unstable, and the number of packets queued in the motes’
transmission buffer will increase indefinitely.

Instead, the equation (6.2), which utilizes the round-trip time di measured on
the given path to compute the number ntra,i of transmission tries performed for the
i-th request, is kept only if packets never experience queuing delay due to previously
buffered packets that use the same outgoing cell. Indeed, the same condition also
affects all formulas that depend on (6.2). However, as highlighted in Section 6.1.4,
the approximation above is acceptable, provided that the traffic injected in the
network is low. As disturbance and interference on-air do not depend on queuing,
ϵ can be estimated by setting Tapp for measurements long enough to prevent buffer
overrun requirements.

84

6.1 – Mathematical model

N̂
lost
tra = N̂ lost·

Nhop−1∑︂
h=0

[︄
(1− ϵNtries)h − (1− ϵNtries)h+1

1− (1− ϵNtries)Nhop

]︄
·
(︄

h ·
(︄

1
1− ϵ

− Ntries · ϵNtries

1− ϵNtries

)︄
+ Ntries

)︄
(6.13)

6.1.3 Latency
Latency is of primary importance in soft and firm real-time systems, and it is

expected to obey application-dependent deadlines. For this kind of system, the
delays due to transmission over a digital network must be bounded, and specific
real-time industrial protocols and implementations are normally employed to pro-
vide guarantees (on a mathematical basis) for the worst-case transmission times
[149], [150]. In TSCH, this can be obtained by utilizing deterministic channel ac-
cess (i.e., time slotting) coupled with the proper scheduling of exchanges (matrix
configuration). The theoretical worst-case latency (Maxd), considering that the
only source of delay are retransmissions, can be computed analytically as

Maxd = Nhop ·Ntries · Tsframe.

= Nhop ·Ntries · (Nslot · Tslot) . (6.14)
The equation (6.14) holds only if, for every link in the path, no queuing of the

packets occurs in any mote. A sufficient requirement for this to happen, in case all
cells reserved for the request/response exchange are not utilized by other traffic, is
that Tapp ≥ Maxd/Nhop = Ntries · Tsframe.

Conversely, while queuing phenomena occur, Maxd can be computed by multi-
plying the value in (6.14) by the maximum size of the local queues (considering the
packet under transmission). From (6.14), it is clear that the worst-case latency can
be reduced by lowering Nslot (which increases power consumption) or by lowering
Ntries (which decreases power consumption but worsens reliability).

6.1.4 Derived quantities
In this subsection, perspective changes are proposed by laying the ground for

a comprehensive analysis of TSCH-based WSNs. A complete characterization of
the network performance can be obtained starting from the experimental results
in terms of performance indicators. First, the idea is to estimate ϵ from a set of
experimental data by (6.4). Several intermediate quantities are then derived, which
permit the expected network behavior to be modeled and evaluated analytically.
Besides ϵ, which describes to what extent disturbance and interference negatively
impact communication, the quantities that affect TSCH operation depend on:

• the characteristics of the protocol decided in the network design/configuration
phase (Nslot , Tslot , and Ntries);

85

Multi-hop WSN: Modeling and Performance Analysis of IEEE 802.15.4 TSCH

• the characteristics of the path, which mainly depend on the physical place-
ment of nodes and obstacles (Nhop);

• the characteristics of the hardware of motes in terms of power consumption
(Ef

tx , Ef
rx , and Ef

listen);

• the characteristics of the software application that communicates over the
network (Tapp and Nsam).

One of the difficulties with the previous analysis is that the measured number
Nlost of failed requests in typical operating conditions may not represent disturbance
and interference reliably. Unless the experiments are deferred for long (months),
no packets are usually lost with the default retry limit. A more reliable estimate
of the number of failed requests can be derived from (6.1) and corresponds to

N̂ lost = Nsam · ϵpkt = Nsam ·
(︂
1− (1− ϵNtries)Nhop

)︂
. (6.15)

The expected number of transmission attempts performed for a packet correctly
delivered on a single hop is described by a truncated geometric series

1
1− ϵNtries

Ntries∑︂
k=1

k(1− ϵ)ϵk−1.

Concerning the whole path, it can be easily demonstrated that an estimate n̂tra of
the average number of frames transmitted on-air for a successful request/response
exchange can be calculated as

n̂tra = Nhop ·
(︄

1
1− ϵ

− Ntries · ϵNtries

1− ϵNtries

)︄
. (6.16)

An estimate N̂
lost
tra of the overall number of frame transmission attempts associated

with failed requests can be obtained from (6.13), where the factor in square brackets
represents the fraction of packets that are lost in hop h + 1 (that is, for which
the preceding h hops were successful). In contrast, the factor in round brackets
represents the average number of transmitted frames for each one of these packets
(the first term resembles (6.16), while, for the latter, when a packet is lost because
its transmission fails on a particular link, the number of attempts on that link
equals Ntries).

An estimate of the rate ftra, as defined by (6.8), can be obtained from the
derived quantities N̂ lost , n̂tra, and N̂

lost
tra , and corresponds to

f̂ tra = n̂tra · (Nsam − N̂ lost) + N̂
lost
tra

Tapp ·Nsam
. (6.17)

86

6.2 – Power-consumption Model

By substituting f̂ tra in (6.10), the estimate f̂ listen can easily be computed. In
turn, the power consumption P is obtained from f̂ tra and f̂ listen by (6.7). The
quantities Ef

tx, Ef
rx, and Ef

listen for the commercial motes utilized in the testbed
were evaluated experimentally.

Lastly, since the overall number of frames transmitted on-air for a single end-
to-end packet exchange equals Nhop when no errors occur, and every retry uses
an additional slotframe, an estimate of the average transmission latency (that, for
request-response pairs, coincides with the round-trip time) can be obtained from
n̂tra and dmin as

µ̂d = dmin +
(︃1

2 + n̂tra −Nhop

)︃
· Tsframe. (6.18)

Practically, equations (6.15)–(6.17) are valid also in the presence of queuing
phenomena. The only limitation is that they do not consider packets that are lost
because a receiver’s queue (either an intermediate node or one of the endpoints)
is full at the time of arrival. This situation rarely occurs in real cases, and its
occurrence is indirect evidence that the network was incorrectly sized.

In contrast, neglecting queuing delays, as in (6.18), constitutes an acceptable
approximation only when (most of the time) packets manage to be forwarded at
the earliest opportunity (i.e., in the next suitable link). Nevertheless, if the average
delay experienced by packets in the queues of the traversed motes along the path can
be estimated, Equation (6.18) can be updated to consider this latency contribution.

After computing the value of ϵ by (6.4)1), all the performance indicators we
are interested in for describing a WSN based on TSCH from the point of view
of applications–namely, reliability (1 − ϵpkt), power consumption (P), theoretical
worst-case latency (Maxd), and average latency (µ̂d)–can be obtained analytically
using Equations (6.1), (6.7), (6.14), and (6.18), respectively.

6.2 Power-consumption Model
In this section, the power consumption of the specific motes used in the experi-

mental campaign was measured experimentally. Two main goals were accomplished:
first, the real power consumption of OpenMote B devices was assessed; second, the
actual values of Ef

tx, Ef
rx, and Ef

listen were obtained. By substituting these values
in (6.7), an estimate of the actual power consumption of this kind of mote can be
obtained, given the network traffic and TSCH configuration parameters. All exper-
iments were performed on OpenMote B devices [145]. An experimental campaign

1The actual value of dmin can also be derived from the configuration of the TSCH matrix (see
the example in Fig. 6.1.

87

Multi-hop WSN: Modeling and Performance Analysis of IEEE 802.15.4 TSCH

was carried out on real OpenMote B devices for the four above configurations, using
the network setup described in Section 4.

6.2.1 Characterization of power consumption
Stefano Scanzio, Mohammad Ghazi Vakili, and Gianluca Cena et al.: Preparation of Papers for IEEE ACCESS

0

5

10

15

20

25

30

35

40

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Slot 0 Slot 16 Slot 52

Slot 98

0

5

10

15

20

25

30

35

40

260 280 300 320 340 360 380 400

RX DATA TX ACK Slot 98

C
ur

re
nt

[m
A

]

Time offset [ms]

Plot a: Whole slotframe

Time offset [ms]

Plot b: Receive confirmed data on slot 16

FIGURE 3. Power consumption for the whole duration of the slotframe (Plot 3.a) and for a zoomed out portion of it that embraces seven slots (Plot 3.b). In the plot
of the right side, the reception of a confirmed frame (bearing a ping request) can be observed in the fourth slot.

On-Chip microcontroller, which integrates an ARM® Cor-
tex™ M3 CPU with 32 KB of dynamic RAM memory and
512 KB of flash memory, and a radio transceiver compliant to
IEEE 802.15.4 for transmission in the 2.4 GHz band. A sec-
ond radio chip (Atmel AT86RF215), not used in our experi-
ments, is also included on the electronic board of the motes,
which manages sub-GHz transmissions (868/915 MHz). In
addition, these motes are equipped with temperature and rel-
ative humidity sensors, and four indicator LEDs. Typically,
such a kind of devices are operated on batteries, but they
can also be powered by means of a conventional USB cable.
From a software point of view, the OpenWSN [54] and the
Contiki operating systems are supported. Both of them are
available as open source, and so their code can be easily
inspected and modified, if needed.

All the experimental campaigns we describe in this paper
are based on OpenWSN (version REL-1.24.0), as it includes
the most recent version of the 6TiSCH protocol stack. In
particular, measurements for both power consumption and
latency (this latter reported in Section V) were carried out
using a simple network setup, made up of two OpenMote
B devices (the root plus a leaf mote acting as a responder)
located about 2 m apart. The root mote was connected to a
PC running the Linux operating system, on which OpenVi-
sualizer (the network management software distributed along
with OpenWSN) was executed. This tool was used to select
the root mote, as well as to control and monitor the state of
the WSN. Samples about round-trip times and packet losses
were collected on the PC by periodically invoking the ping
command to query the leaf mote.

B. CHARACTERIZATION OF POWER CONSUMPTION
The power consumption of OpenMote B motes was estimated
by means of a Tektronix MDO3024 oscilloscope equipped
with two TPP0250 probes. The probes were connected to two
specific pins of the printed circuit board of the mote that are
devoted to measuring the total current flow it absorbs. Cur-

rent absorption was measured only on the leaf mote, which is
the one that, in real applications, is powered on batteries. The
OpenWSN code was modified to disable the onboard LEDs
(very power-hungry), so that all the experimental results were
obtained with such indicators switched off. This led to a
reduction of the absorbed current equal, on average, to about
6 mA, corresponding to about 360 µJ saved for every slot.

The experimental measures of the current drained by the
leaf mote over one slotframe are reported in Fig. 3.a, where
the x-axis represents the offset (in milliseconds) from the
beginning of the slotframe. The many regularly-spaced short
peaks are related to activities performed by the protocol stack
at the beginning of every slot. Consequently, their number is
equal to Nslot = 101. Fig. 3.b zooms out part of the diagram
in Fig. 3.a, and includes seven peaks, which clearly appear
to occur every Tslot = 20 µs. The two current consumption
patterns labeled RX DATA and TX ACK, which rise above the
previous peaks, refer to a confirmed transmission (associated
to a ping request/response exchange) as seen by the point of
view of the leaf mote that manages the RX cell.

For all the experiments described in this section, the cells
in the TSCH matrix are configured as follows:

• Slot 0 (time offset 0 ms) is a shared TXRX cell, which
is typically associated with channel offset 0. It is used
to send frames related to network formation and main-
tenance (e.g., enhanced beacons).

• Slot 16 (time offset 320 ms) is configured in the root as
a shared TXRX cell, while from the point of view of
the responder it behaves as a dedicated RX cell. After
the initial network configuration phase, it is typically
used by the root only to send confirmed packets to its
children in the downward direction, hence collisions
may not happen. In the context of this paper, this cell is
used for transferring ping request packets. An example
that shows what happens to current absorption in the
responder during the reception of a frame bearing the
ping request and the transmission of the related ACK

VOLUME 4, 2016 9

Figure 6.2: Power consumption for the duration of the slotframe (Plot 6.2.a) and
for a zoomed-out portion of it that embraces seven slots (Plot 6.2.b). In the plot
on the right side, the reception of a confirmed frame (bearing a ping request) can
be observed in the fourth slot.

OpenMote B motes’ power consumption was estimated using a Tektronix MDO3024
oscilloscope equipped with two TPP0250 probes. The probes were connected to two
specific pins of the mote’s printed circuit board dedicated to measuring the total
current flow it absorbs. Current consumption was measured only on the leaf mote,
which is the one that, in real applications, is powered by batteries. The OpenWSN
code was modified to disable the onboard LEDs, as this led to a reduction of the
absorbed current, equal, on average, to about 6 mA, corresponding to about 360 µJ
saved for every slot.

The experimental measures of the current drained by the leaf mote over one
slotframe are reported in Fig. 6.2a, where the x-axis represents the offset (in mil-
liseconds) from the beginning of the slotframe. The many regularly-spaced short
peaks are related to the protocol stack’s activities at the beginning of every slot.
Consequently, their number is equal to Nslot = 101. Fig. 6.2b zooms out part of
the diagram in Fig. 6.2a and includes seven peaks, which occur every Tslot = 20 µs.
The two current consumption patterns labeled RX DATA and TX ACK, which
rise above the previous peaks, refer to a confirmed transmission (associated with a
ping request/response exchange) as seen by the point of view of the leaf mote that
manages the RX cell.

For all experiments presented in this section, the cells in the TSCH matrix were
configured as follows:

88

6.2 – Power-consumption Model
Stefano Scanzio, Mohammad Ghazi Vakili, and Gianluca Cena et al.: Preparation of Papers for IEEE ACCESS

0

5

10

15

20

25

30

35

40

1958 1961 1964 1967 1970 1973 1976 1979 1982

TX DATA
RX ACK

0

5

10

15

20

25

30

35

40

318 320 322 324 326 328 330 332 334 336 338 340

RX DATA TX ACK

Ef
rx_data

Ef
comp

Ef
tx_ack

0

5

10

15

20

25

30

35

40

318 320 322 324 326 328 330 332 334 336 338 340 342

0

5

10

15

20

25

30

35

40

318 320 322 324 326 328 330 332 334 336 338 340

RX DATA TX ACK

C
ur

re
nt

[m
A

]

Time offset [ms]

Plot a: Send confirmed data on slot 98

Time offset [ms]

Plot d: Receive confirmed data on slot 16

C
ur

re
nt

[m
A

]

Time offset [ms]

Plot c: Listening on slot 16
Time offset [ms]

Plot b: Receive confirmed data on slot 16

FIGURE 4. Power consumption for the different types of cells: slot including a confirmed frame transmission (a), slot including confirmed frame reception (b), slot in
which idle listening occurs (c), and dissection of a confirmed frame reception into separate contributions (d).

frame can be found in Fig. 4.b. When no frame is
transferred and the cell remains unused, the responder
still spends a considerable amount of energy to listen to
the channel (idle listening), as shown in Fig. 4.c.

• Slot 98 (time offset 1960 ms) is configured in the re-
sponder as a non-shared TX cell, and is reserved for
transmission to its parent (the root) in the upward direc-
tion. In the experiments, this cell is used for transferring
packets bearing the ping response, an example of
which is shown in Fig. 4.a.

• Slot 52 (time offset 1040 ms) is configured in the re-
sponder as a shared TXRX cell, and is devoted to
communication with its children. However, as this mote
in our setup is a leaf (i.e., it has no children) the cell
remained unused in the experiment.

Experimental results related to power consumption are
reported in Table 3. They were obtained by performing a
numerical integration on the experimental samples included
in the above plots (plus other samples not reported for space
reasons), and by multiplying the resulting area, which refers
to an overall electric charge in microcoulombs (µC), by the
supply voltage of the mote (3 V), in order to obtain the power

TABLE 3. Energy consumption for different types of actions within a slotframe
matrix with OpenMote B motes. In bold quantities used in Eq. (7).

Quantity Action(s) Slot Energy Size
offset [µJ] [bytes]

Ef
rx_data RX DATA frame 16 178 87

Ef
tx_ack TX ACK frame 16 106 33

Ef
tx_data TX DATA frame 98 187 90

Ef
rx_ack RX ACK frame 98 79 33

Ef
listen Idle listening 16 138 -

Ef
comp Computation - 628 -

Ef
rx RX DATA + TX ACK 16 284 120

Ef
tx TX DATA + RX ACK 98 266 123

consumption in microjoule (µJ).
In particular, the quantity Ef

comp refers to the power con-
sumption when no transmission or reception are performed
within the slot, i.e., the global consumption of the mote
excluding operations of the network component. Such a
quantity corresponds to the rectangular area at the bottom
of Fig. 4.d filled with a continuous-green-lines pattern and,

10 VOLUME 4, 2016

Figure 6.3: Power consumption for the different types of cells: slot including a
confirmed frame transmission (a), slot including confirmed frame reception (b),
slot in which idle listening occurs (c), and dissection of a confirmed frame reception
into separate contributions (d).

• Slot 0 (time offset 0 ms) was a shared TXRX cell, which is typically associated
with channel offset 0. It is used to send frames related to network formation
and maintenance (e.g., enhanced beacons).

• Slot 16 (time offset 320 ms) was configured in the root as a shared TXRX
cell, while from the responder view, it behaves like a dedicated RX cell. After
the initial network configuration phase, the root is typically used only to send
confirmed packets to its children in the downward direction; hence, collisions
may not occur. In this context, this cell was used for transferring ping request
packets. An example that shows what happens to current absorption in the
responder during the reception of a frame bearing the ping request and the
transmission of the related ACK frame can be found in Fig. 6.3b. When no
frame is transferred and the cell remains unused, the responder still expends
a considerable amount of energy listening to the channel (idle listening), as
shown in Fig. 6.3c.

• Slot 98 (time offset 1960 ms) was configured in the responder as a non-shared

89

Multi-hop WSN: Modeling and Performance Analysis of IEEE 802.15.4 TSCH

Table 6.2: Energy consumption for different types of actions within a slotframe
matrix with OpenMote B motes. In bold quantities used in Eq. (6.7).

Quantity Action(s) Slot Energy Size
offset [µJ] [bytes]

Ef
rx_data RX DATA frame 16 178 87

Ef
tx_ack TX ACK frame 16 106 33

Ef
tx_data TX DATA frame 98 187 90

Ef
rx_ack RX ACK frame 98 79 33

Ef
listen Idle listening 16 138 -

Ef
comp Computation - 628 -

Ef
rx RX DATA + TX ACK 16 284 120

Ef
tx TX DATA + RX ACK 98 266 123

TX cell and was reserved for transmission to its parent (the root) in the
upward direction. In our experiments, this cell was used for transferring
packets bearing the ping response, an example of which is shown in Fig. 6.3a.

• Slot 52 (time offset 1040 ms) was configured in the responder as a shared
TXRX cell and was devoted to communication with its children. However, as
this mote in our setup was a leaf (i.e., it has no children), the cell remained
unused in the experiment.

Experimental results related to power consumption are reported in Table 6.2.
They were obtained by performing a numerical integration on the experimental
samples included in the above plots (plus other samples not reported for space
reasons) and by multiplying the resulting area, which refers to the overall electric
charge in micro coulombs (µC), by the supply voltage of the mote (3 V), to obtain
the power consumption in microjoule (µJ).

In particular, the quantity Ef
comp refers to the power consumption when no

transmission or reception is performed within the slot (i.e., the mote’s global con-
sumption, excluding operations of the network component). Such a quantity corre-
sponds to the rectangular area at the bottom of Fig. 6.3d, filled with a pattern of
continuous green lines, and, for a time slot lasting 20 ms, it is about 628 µJ. The
column Slot offset specifies the placement of the activity in each time frame; for
example, the Ef

rx_data happens after 380 ms (20 ∗ 16) for a duration of 20 ms after
starting the slotframe in each network cycle.

This value is noticeably higher than for other kinds of motes. For instance, in
[125] a similar analysis was performed for motes based on the STM32F103RB 32-
bit microcontroller and the Atmel AT86RF231 radio chip. In this case, the power

90

6.3 – Results

consumption (obtained by multiplying the charge in microcoulomb, as reported in
the paper by 3 V) was about 113.4 µJ. The abnormally high power consumption
obtained in the setup depended on the fact that OpenMote B devices, in several
respects, are prototypes, and the software they run (OpenWSN) is not yet opti-
mized for energy-saving (e.g., by switching the CPU to deeper sleep states when
no operations are needed).

The other quantities reported in the table refer to the network component only.
For instance, the values of Ef

rx_data, and Ef
tx_ack were obtained through numerical

integration of the areas filled with red dashed lines and blue horizontal dashed lines
in Fig. 6.3d, respectively. Starting from the consumption related to the DATA
and ACK frames, the quantities Erx = Ef

rx_data + Ef
tx_ack and Etx = Ef

tx_data +
Ef

rx_ack were obtained, which, for a confirmed frame exchange, corresponded to the
consumption on the receiver side (RX DATA + TX ACK) and on the transmitter
side (TX DATA + RX ACK), respectively.

To emulate application-level request/response exchanges (as those performed by
CoAP), the ping utility was used. In all the experiments, the size of the payload
included in ping packets was set to 30 bytes. These packets were encoded using
the rules of the IEEE 802.15.4 standard, which lead to the frame sizes reported
in Table 6.2 (which also includes the physical preamble). Since, in our setup, we
considered the responder (leaf node), Erx is associated with an ICMP echo request
packet, while Etx is associated with an ICMP echo reply packet.

6.3 Results
Two sets of experiments were performed to analyze the most relevant protocol

parameters’ effects on performance indicators; in particular, this section evaluates
the impact of the variation of TSCH matrix parameters, such as the slotframe
length and the maximum number of allowed tries.

The experimental WSN was comprised of two nodes (OpenMote B devices) and
was the same as the setup used for evaluating power consumption in Section 6.2.
This overly simplified configuration did not limit the validity of our results. Con-
cerning data exchange, the TSCH matrix permits the partition of the whole traffic
into independently managed cells, according to a known and configurable sched-
ule. The only additional complexity when dealing with multi-level networks is that,
due to the wider coverage of the network, the frame error probability ϵ on specific
links may differ, and (6.4) provides only an aggregated value for it. The ping gen-
eration period (that corresponds to Tapp) was set to 120 s, and every experiment
lasted 4 hours. Therefore, the number of samples collected in each experiment was
Nsam = 120.

Four interfering IEEE 802.11 stations were located near the two OpenMote B
devices to put the OpenMote B in a harsh environment and inject a controllable

91

Multi-hop WSN: Modeling and Performance Analysis of IEEE 802.15.4 TSCH

amount of traffic into the air. The testbed set up is explained in detail in Section 4.

6.3.1 Performance vs. slotframe length
From the first set of experiments, the impact of the number Nslot of slots in a

slotframe on the performance indicators is analyzed in Section 6.1. In particular,
this parameter was varied between 11 and 201 (the default value in OpenWSN
is Nslot = 101). Motes were restarted at the beginning of every experiment, as
modifying Nslot requires the OS to be recompiled and reloaded on every mote,
which produces a new network formation and a new TSCH matrix. For this reason,
each experiment was characterized by a different value of dmin. The other network
parameters were kept at their default values, and, in particular, Ntries = 16.

Results of the experimental analysis are reported in Table 6.3. As expected,
smaller values of Nslot improve network responsiveness: if Nslot = 11, the measured
maximum latency was 1.438 s; whereas for Nslot = 201, it increased to 14.050 s (the
theoretical worst-case values were 7.04 s and 128.64 s, respectively). On the other
hand, when Nslot = 11, power consumption was about 150 times higher than when
Nslot = 201 (1262.8 µW and 76.7 µW, respectively). This means that, concerning
the selection of Nslot , a compromise had to be made.

Table 6.3: Experimental results about the influence of Nslot on latency, reliability,
and power consumption (measured on real devices).

Latency Reliability Power Consumption
Nslot dmin µd σd dp99 dmax n̂tra µ̂d Maxd Plost ϵ 1− ϵpkt ftra flisten P f̂ tra f̂ listen

[s] [#] [s] [s] [·10−5] [·10−4] µW [·10−5] [·10−4]

11 0.212 0.409 0.194 1.231 1.438 2.34 0.399 7.040 0.0 0.148 12-nines 2.00 90.70 1262.8 1.95 90.71
31 0.491 0.982 0.431 2.301 3.419 2.27 0.969 19.840 0.0 0.119 14-nines 1.91 32.06 453.0 1.89 32.06
51 0.258 1.024 0.649 3.007 3.054 2.25 1.021 32.640 0.0 0.110 15-nines 1.88 19.41 278.3 1.87 19.42
91 0.497 1.741 1.046 4.861 5.397 2.25 1.858 58.240 0.0 0.110 15-nines 1.87 10.80 159.4 1.87 10.80
101 0.352 2.046 1.588 8.764 10.457 2.28 1.936 64.640 0.0 0.124 14-nines 1.95 9.70 144.7 1.90 9.71
151 2.877 5.036 1.755 8.846 14.557 2.25 5.135 96.640 0.0 0.110 15-nines 1.85 6.44 99.0 1.87 6.43
201 0.726 4.216 2.880 12.131 14.050 2.36 4.193 128.640 0.0 0.153 12-nines 1.97 4.78 76.7 1.97 4.78

The reason for the above behavior is that, although the actual rate ftra of frame
transmissions on-air did not vary appreciably for the different experiments, there
was an increase in the rate of flisten with which motes listened to the network for
receiving frames. ftra remained stable because it depends on the (fixed) packet
generation period at the application level and the quality of communication on the
wireless medium (i.e., the frame error probability ϵ). As expected, the values of ϵ
estimated in the different experiments were not the same. The traffic injected by the
interfering Wi-Fi nodes was, on average, fixed, but the load caused by other Wi-Fi

92

6.3 – Results

devices located close to the motes was out of our control and varied unpredictably.
The values obtained for ϵ ranged from 11.0 % to 15.3 %. Despite this variation,
because of the high value set for the retry limit, the measured packet loss ratio
Plost = Nlost/Nsam was equal to 0 in all experiments.

Values for µ̂d, f̂ tra, and f̂ listen in Table 6.3 are computed starting from ϵ and
derived quantities (that is, not measured directly in the experiments), and can be
used to cross-check the proposed model. Although our experiments included only
120 samples, they were very close to the corresponding measured quantities (i.e.,
µd, ftra, and flisten). The unit of measurement of f̂ tra, f̂ listen, ftra and flisten are
kHz in all experimental analyzes.

6.3.2 Performance vs. retry limit
In the second set of experiments, the Ntries was varied between 2 and 16. This

parameter was mostly related to reliability, but enlarging its value worsened latency
and power consumption (even though they were affected to a lower extent). For
Nslot , we used the default value, 101. The results are reported in Table 6.4. The
probability 1 − epkt that a packet was successfully delivered to its destination (re-
liability) quickly approached 1 when Ntries = 2, 1− epkt = 0.98154, while it was as
high as 0.999999999999993 (14-nines) when Ntries was increased to 16. As expected,
we managed to measure the number of lost packets different from 0 by only setting
Ntries = 2. In this case, the measured packet loss ratio was Plost = 0.017, which was
close to the 1− epkt estimate.

Table 6.4: Experimental results about the influence of Ntries on latency, reliability,
and power consumption (measured on real devices).

Latency Reliability Power Consumption
Ntries dmin µd σd dp99 dmax n̂tra µ̂d Maxd Plost ϵ 1− ϵpkt ftra flisten P f̂ tra f̂ listen

[s] [#] [s] [s] [·10−5] [·10−4] µW [·10−5] [·10−4]

2 0.496 1.851 1.015 4.441 5.377 2.17 1.861 8.080 0.017 0.0963 0.98154 1.82 9.71 144.1 1.82 9.71
4 0.342 1.853 1.272 6.066 6.090 2.24 1.850 16.160 0.0 0.1102 0.99971 1.88 9.71 144.3 1.87 9.71
6 0.387 2.031 1.323 6.906 7.447 2.32 2.048 24.240 0.0 0.1388 0.99999 1.93 9.70 144.5 1.93 9.70
8 0.726 2.320 1.558 8.255 9.890 2.27 2.285 32.320 0.0 0.1197 7-nines 1.92 9.70 144.5 1.89 9.71
16 0.352 2.046 1.588 8.764 10.457 2.28 1.936 64.640 0.0 0.1244 14-nines 1.95 9.70 144.6 1.90 9.71

Increasing the retry limit had limited latency and power consumption effects,
because the frame error probability ϵ in our setup was not particularly high (about
10 − 15%). This implies that the probability of performing many repetitions in a
row was small, as demonstrated by the fact that 1 − epkt quickly converges to 1.
As shown in the table, all statistics that refer to latency (including µd, σd, and

93

Multi-hop WSN: Modeling and Performance Analysis of IEEE 802.15.4 TSCH

dp99) were negatively affected by an increase in the retry limit. There was a good
match between the mean value µd of the measured latency and its expected value
µ̂d. Also, the measured maximum latency dmax increased from 5.377 s to 10.457 s;
however, this number is not statistically reliable because of the limited number of
samples. In fact, the worst-case latency Maxd ranges, in theory, from 8.080 s when
Ntries = 2 to 64.640 s when Ntries = 16.

The effects of Ntries on power consumption were mostly negligible. In particular,
P was between 144.1 µW and 144.6 µW. This was for two reasons: first, the param-
eters selected for the network and application consumption depend mainly on idle
listening; and second, multiple retries are performed only when frame transmission
repeatedly fails, which was unlikely in our setup.

6.4 Practical application contexts
The results provided by the network model were comparable with measurements

obtained from real devices. Hence, the model can be profitably used alone (i.e.,
without a real setup) to better investigate the effect of parameters Nslot and Ntries
on performance indicators in specific operating conditions.

6.4.1 Leveraging the mathematical model
The model was used to analyze the behavior of TSCH in the case of frame error

probability ϵ being increased to 0.4, denoting a hostile environment. The values of
dmin depend on the configuration of the TSCH matrix; however, for our analysis,
it was relevant, because it caused only a shift on the time axis (latency offset). For
this reason, dmin = 500 ms were set for all plots shown in the figure.

Initially, the number of slots in a slotframe was varied between 11 and 201. The
results are reported in Plot 1 of Fig. 6.4. To calculate P , we used (6.7), where the
value f̂ tra was obtained from (6.17). As expected, the average latency, obtained
from (6.18), increased linearly with Nslot , while power consumption decreased ac-
cording to an inverse proportionality law: when Nslot was greater than ∼ 58, power
consumption fell below 250 µW. At the same time, the average latency exceeded
2.6 s. Decreasing Nslot well below such a threshold allowed a consistent reduction
of latency; however, due to the increase in power consumption, the motes should
be connected to an external power supply.

Plots 2 and 3 of Fig. 6.4 were obtained by changing Ntries from 1 to 16. As
highlighted in both graphs, reliability 1 − ϵpkt , given by (6.1), increased as Ntries
increased. A similar trend but with some relevant differences can be observed for
the average latency µd in Plot 2 and the power consumption P in Plot 3. In both
cases, the shape of the plot is seemingly the same, but in terms of the magnitude
of the increase, the ranges in which values vary were different; the average latency

94

6.4 – Practical application contexts
Stefano Scanzio, Mohammad Ghazi Vakili, and Gianluca Cena et al.: Preparation of Papers for IEEE ACCESS

0

500

1000

1500

0 50 100 150 200

0

1

2

3

4

5

6

7

8

0

0.2

0.4

0.6

0.8

1

0 4 8 12 16 20 24

1.5

2

2.5

3

3.5

4

4.5

0

0.2

0.4

0.6

0.8

1

0 4 8 12 16

142

143

144

145

146

147

148

149

P
[m

W
]

µ
d

[s
]

Nslot

Plot 1: power and latency vs. Nslot

P̂ (left axis)
µd (right axis)

1
−
ε p

k
t

µ
d

[s
]

Ntries

Plot 2: reliability and latency vs. Ntries

1− εpkt (left axis)
µd (right axis)

1
−
ε p

k
t

P
[m

W
]

Ntries

Plot 3: reliability and power vs. Ntries

1− εpkt (left axis)
P (right axis)

FIGURE 5. Influence of Nslot and Ntries on reliability, power consumption, and latency, evaluated using the proposed network model (ε = 0.4, Ntries = 16 for Plot
1, Nslot = 101 for Plot 2 and Plot 3).

VI. PRACTICAL APPLICATION CONTEXTS
The results provided by the network model were found to be
comparable with measurements obtained from real devices.
Hence, the model can be profitably used alone (i.e., without a
real setup) to better investigate the effect of parameters Nslot

and Ntries on performance indicators in specific operating
conditions. As the final part of this paper, four experiments
were carried out to assess the performance of a real setup in
specific application contexts that demand high reliability, low
latency, and low power consumption, respectively

A. LEVERAGING THE MATHEMATICAL MODEL

The model was used to analyze the behavior of TSCH in
the case the frame error probability ε is increased up to 0.4,
this denoting a quite hostile environment. The value of dmin

depends on the configuration of the TSCH matrix, but for
our analysis it is not so relevant, because it only causes a
shift on the time-axis (latency offset). For this reason, we set
dmin = 500ms for all the plots shown in the figure.

Initially, the number of slots in a slotframe was varied be-
tween 11 and 201. Results are reported in Plot 1 of Fig. 5. For
calculating P we used (7), where the value f̂tra is obtained
from (17). As expected, the average latency, obtained from
(18), increases linearly withNslot , while power consumption
decreases according to an inverse proportionality law. When
Nslot is greater than ∼ 58, power consumption falls below
250µW. At the same time, the average latency exceeds
2.6 s. Decreasing Nslot well below such threshold allows a
consistent reduction of latency but, due to the increase in
power consumption, motes should be probably connected to
an external power supply.

Plots 2 and 3 of Fig. 5 are obtained by varying Ntries from
1 to 16. As highlighted in both graphs, reliability 1 − εpkt ,
given by (1), increases as Ntries grows. A similar trend,
but with some relevant differences, can be observed for the
average latency µd in Plot 2 and the power consumption P
in Plot 3. In both cases the shape of the plot is seemingly
the same but, in terms of the magnitude of the increase,
the ranges in which values vary are noticeably different.
The average latency is influenced more, and increases from

1.5 s when Ntries = 2 to values slightly above 4 s when
Ntries ≥ 5. Instead, in the very same conditions, power con-
sumption grows from 142mW to 148mW, which is indeed a
modest increase. This is due to the fact that, in the considered
operating conditions, the most part of energy is spent for
idle listening and initial transmission attempts (including the
very first retries possibly performed for each frame). On
the contrary, only a limited contribution is related to the
additional retransmissions made available by increasing the
retry limit, since a small fraction of frames experience many
repeated failures.

Summing up, increasing Nslot has a positive effect on
power consumption, a negative effect on latency, and no
effects on reliability. Instead, increasing Ntries has a positive
effect on reliability, a negative effect on latency, and a slight
negative effect on power consumption (practically negligible
for the typical values of the frame error probability). In the
following, some working points of interest were identified
from the previous plots and analyzed by means of an exten-
sive experimental campaign on real hardware.

B. EVALUATION OF RELEVANT CONFIGURATIONS

As stated in the introduction, WSNs are exploited in a
plurality of application contexts with very different (and
often conflicting) requirements. We identified four sample
configurations for a TSCH network, each of which suits the
needs of some specific context. They are denoted default,
high reliability, low latency, and low power consumption, and
are characterized by specific values for Nslot and Ntries .

The default configuration refers to out-of-the-box Open-
WSN devices. To find suitable values for the network param-
eters of the other configurations, we started from the plots
in Fig. 5, re-evaluated for ε = 0.13, which more closely
resembles the frame error probability typically observed in
our experimental environment. Results are reported in Fig. 6.
Then, three reasonable working points were sought on the
plots, aimed to optimize every one of the performance in-
dicators (reliability, latency, or power consumption) without
penalizing excessively the others.

VOLUME 4, 2016 13

Figure 6.4: Influence of Nslot and Ntries on reliability, power consumption, and
latency, evaluated using the proposed network model (ϵ = 0.4, Ntries = 16 for Plot
1, Nslot = 101 for Plot 2 and Plot 3).

was influenced more, and increased from 1.5 s when Ntries = 2 to values slightly
above 4 s when Ntries ≥ 5.

In the same conditions, the power consumption increased from 142 mW to
148 mW, which was a modest increase. This is because most energy is spent on
idle listening and initial transmission attempts (including the first retries possibly
performed for each frame). In contrast, only a limited contribution is related to
the additional retransmissions made available by increasing the retry limit since a
small fraction of frames experienced many repeated failures.

In summary, increasing Nslot had a positive effect on power consumption, a
negative effect on latency, and no effects on reliability. Alternatively, increasing
Ntries had a positive impact on reliability, a negative effect on latency, and a slightly
negative effect on power consumption (practically negligible for typical values of
the frame error probability). Some working points of interest were identified from
previous plots and analyzed using an extensive experimental campaign on real
hardware.

6.4.2 Evaluation of relevant configurations
As stated in the introduction, WSNs are exploited in many application con-

texts with different and often conflicting requirements. This chapter identifies four
sample configurations for a TSCH network, each of which suits the needs of some
specific context. They are denoted as default, high reliability, low latency, and low
power consumption, and are characterized by specific values for Nslot and Ntries.

The default configuration refers to out-of-the-box OpenWSN devices. To find
suitable values for the other configurations’ network parameters, experimental anal-
ysis was started from the plots in Fig. 6.4 and re-evaluated for ϵ = 0.13, which more
closely resembles the frame error probability typically observed in our experimental
environment. The results are reported in Fig. 6.5. Then, three reasonable working
points were sought on the plots, aimed at optimizing the performance indicators

95

Multi-hop WSN: Modeling and Performance Analysis of IEEE 802.15.4 TSCH
Stefano Scanzio, Mohammad Ghazi Vakili, and Gianluca Cena et al.: Preparation of Papers for IEEE ACCESS

0

500

1000

1500

0 50 100 150 200

0

1

2

3

4

lower latency

lower power
consumption

0

0.2

0.4

0.6

0.8

1

0 4 8 12 16 20 24

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

lower latency

higher reliability

0

0.2

0.4

0.6

0.8

1

0 4 8 12 16 20 24

143

143.5

144

144.5

145

lower latency

higher reliability

P
[m

W
]

µ
d

[s
]

Nslot

Plot 4: power and latency vs. Nslot

P̂ (left axis)
µd (right axis)

1
−
ε p

k
t

µ
d

[s
]

Ntries

Plot 5: reliability and latency vs. Ntries

1− εpkt (left axis)
µd (right axis)

1
−
ε p

k
t

P
[m

W
]

Ntries

Plot 6: reliability and power vs. Ntries

1− εpkt (left axis)
P (right axis)

FIGURE 6. Influence of Nslot and Ntries on reliability, power consumption, and latency, evaluated using the proposed network model (ε = 0.13, Ntries = 16 for
Plot 4, Nslot = 101 for Plot 5 and Plot 6). Effects of moving working points—marked with solid red circles (•)—away from the default configuration—marked with
empty red circles (◦)—are suitably labeled.

The effect of separately increasing/decreasing each param-
eter (either Nslot or Ntries is varied in every plot) is shown
using underlined labels. It is worth remarking that working
points in the figure and configurations are not the same. For
example, the working point in Plot 4 labeled “lower latency”,
obtained by reducing Nslot from 101 to 11, does not corre-
spond to the low latency configuration. In fact, in the latter
case the value of Ntries was additionally decreased from 16
to 3, to lower the maximum latency further—see equation
(14). As will be shown, there is not an optimal setting for
Nslot and Ntries that suits all application contexts, because
improving a performance indicator unavoidably worsens at
least one of the others.

In detail, the four configurations we considered are:

• Default (Nslot = 101, Ntries = 16): this configuration
represents the default out-of-the-box setting of a WSN
when motes are based on the OpenWSN operating sys-
tem, and constitutes a balanced trade-off among power
consumption, reliability, and latency. In the following, it
will be used as the baseline.

• High reliability (Nslot = 101,Ntries = 24): this config-
uration is characterized by a reliability level higher than
the default case. In particular, 8 additional retries were
granted to every frame transmission (Ntries is increased
from 16 to 24).

• Low latency (Nslot = 11, Ntries = 3): this con-
figuration is targeted to applications demanding low
latency. In this case, Nslot was reduced by one order of
magnitude (from 101 to 11), which lowers all statistical
indices about latency (including the average and maxi-
mum values), and Ntries was set to 3 to provide stricter
bounds on the worst-case latency.

• Low power consumption (Nslot = 201, Ntries = 16):
this configuration is conceived for those applications
where batteries on motes have to be replaced as seldom
as possible. To this purpose, the value of Nslot was
doubled from 101 to 201.

An experimental campaign was carried out on real Open-
Mote B devices for the four above configurations, using the

network setup described in Section IV-A. The duration of
each experiment was set to 24 hours (Nsam = 720), and the
purposely injected interfering traffic was the same as in the
previous experiments. Results are reported in Table 6.

The high reliability configuration (second row in the table)
is clearly characterized by an extremely low packet loss
probability. Under the hypothesis that frame attempts can be
modeled as Bernoulli trials, reliability 1−epkt is, in theory, as
high as 0.9999999999999999999983, which corresponds to
20-nines. Although this parameter setting implies a tangible
increase of the theoretical worst-case latency Maxd with
respect to the default case, both the measured latency and
the power consumption were only marginally affected, as the
transmission error ε on the channel is not excessively high.

Concerning the low latency configuration, all statistics
about latency are noticeably lower than the default case.
In particular, the measured maximum (dmax = 1.023 s)
is very small and quite close to the theoretical worst-case
value (Maxd = 1.320 s), while the average time taken to
perform a request/response exchange is µd = 0.336 s. Un-
fortunately, low latency settings led to a significant increase
of the measured packet losses (Plost = 0.0042 = 0.42%)
and to a decrease of the estimated reliability (1 − epkt =
0.9942 = 99.42%). As expected, power consumption is
about 9 times higher than the default case, which makes this
solution mostly unpractical for battery-powered devices.

Finally, with the low power consumption configuration,
the power consumed by motes dropped to 76.5µW, which is
about half than in the default case (144.4µW). This is clearly
due to the fact that receiving motes have to switch their radio
transceivers on (to listen to the channel) less frequently. In
particular, since the actual rate of packet transmissions does
not vary (it only depends on the sending period Tapp of the
application), flisten decreased from 9.71 to 4.78 occurrences
of idle listening per seconds. The main disadvantage of this
setting is that there is a sharp increase of the latency.

A swift characterization of the above configurations based
on power consumption, reliability, and latency, is outlined in
the radar charts in Fig. 7, which clearly highlight the related

14 VOLUME 4, 2016

Figure 6.5: Influence of Nslot and Ntries on reliability, power consumption, and
latency, evaluated using the proposed network model (ϵ = 0.13, Ntries = 16 for Plot
4, Nslot = 101 for Plot 5 and Plot 6). Effects of moving working points—marked
with solid red circles (•)—away from the default configuration—marked with empty
red circles (◦)—are suitably labeled.

without excessively penalizing the others.
The effect of increasing or decreasing each parameter (either Nslot or Ntries

changed in every plot) is shown in Fig. 6.5 using underlined labels. The working
points in the figure and configurations are different. For instance, the working point
in Plot 4 labeled “lower latency,” achieved by reducing Nslot from 101 to 11, does
not correspond to the low latency configuration. In fact, in the latter case, the
value of Ntries was further decreased from 16 to 3, to lower the maximum latency
besides equation (6.14). As will be shown, there is no optimal setting for Nslot and
Ntries that suits all application contexts because improving a performance indicator
unavoidably worsens at least one of the others.

In detail, the four configurations we considered are:

• Default (Nslot = 101, Ntries = 16): This configuration draws the default out-
of-the-box setting of a WSN when motes are based on the OpenWSN OS,
and develops a balanced trade-off among power consumption, reliability, and
latency.

• High reliability (Nslot = 101, Ntries = 24): This configuration is characterized
by a reliability level higher than the default case. In particular, 8 additional
retries were granted to every frame transmission (Ntries was increased from
16 to 24).

• Low latency (Nslot = 11, Ntries = 3): This configuration is targeted for appli-
cations demanding low latency. In this case, Nslot was reduced by one order
of magnitude (from 101 to 11), which lowered all statistical indices about
latency (including the average and maximum values), and Ntries was set to 3
to provide a stricter limiting on the worst-case latency.

96

6.4 – Practical application contexts

• Low power consumption (Nslot = 201, Ntries = 16): This configuration is
conceived for applications in which batteries on motes must be replaced as
seldom as possible. For this purpose, the value of Nslot was doubled from 101
to 201.

The duration of each experiment was set to 24 hours (Nsam = 720), and the
purposely injected interfering traffic was the same as in the previous experiments.
The results are reported in Table 6.5.

Table 6.5: Latency, reliability, and power consumption, measured on real devices,
related to four configurations (characterized by different values of Nslot and Ntries)
targeted to different application contexts.

Configuration Latency Reliability Power Consumption
Condition Nslot Ntries dmin µd σd dp99 dmax Maxd Plost ϵ 1− ϵpkt ftra flisten P

[s] [s] [·10−5] [·10−4] µW

Default 101 16 0.528 2.115 1.310 6.579 11.049 64.640 0.0 0.125 14-nines 1.91 9.71 144.4
High Reliability 101 24 1.470 3.090 1.320 7.450 9.360 96.960 0.0 0.132 20-nines 1.92 9.71 144.5
Low Latency 11 3 0.159 0.336 0.135 0.780 1.023 1.320 0.0042 0.142 0.9942 1.92 90.71 1262.4
Low Power Cons. 201 16 2.565 5.535 2.461 13.637 22.366 128.640 0.0 0.112 14-nines 1.92 4.78 76.5
Default (15-days) 101 16 0.522 2.114 1.289 6.393 12.382 64.640 0.0 0.126 14-nines 1.90 9.71 144.5

The high reliability configuration (second row in the table) is characterized by an
extremely low packet loss probability. Under the hypothesis that frame attempts
can be modeled as Bernoulli trials, reliability 1 − epkt is, in theory, as high as
0.9999999999999999999983, or 20-nines. Although this parameter setting means a
tangible increase of the theoretical worst-case latency Maxd concerning the default
case, both the measured latency and the power consumption were only marginally
affected, as the transmission error ϵ on the channel was not extremely high.

Concerning the low latency configuration, all statistics about latency were no-
ticeably lower than the default case. In particular, the measured maximum (dmax =
1.023 s) was very small and close to the theoretical worst-case value (Maxd =
1.320 s), while the average time taken to perform a request/response exchange was
µd = 0.336 s. Unfortunately, low latency settings led to a significant increase in the
measured packet losses (Plost = 0.0042 = 0.42 %), and a decrease of the estimated
reliability (1 − epkt = 0.9942 = 99.42 %). As expected, the power consumption
was about 9 times higher than the default case, which makes this solution mostly
impractical for battery-powered devices.

Eventually, in the low power consumption configuration, the power consumed
by motes fell to 76.5 µW, which was about half that in the default case (144.4 µW).
This was because, receiving motes, it must switch their radio transceivers on (to
listen to the channel) less frequently. In particular, since the actual rate of packet

97

Multi-hop WSN: Modeling and Performance Analysis of IEEE 802.15.4 TSCH

L

P RDefault

L

P R
High Reliability

L

P RLow Latency

L

P RLow Power

Figure 6.6: Effects of different parameter configurations (targeted to specific appli-
cation contexts) on power consumption (P), reliability (R), and latency (L).

transmissions does not vary (depending on the sending period Tapp of the applica-
tion), flisten reduced from 9.71 to 4.78 occurrences of idle listening per second. The
main drawback of this setting is that there is a sharp increase in latency.

Fast characterization of the above configurations based on power consumption,
reliability, and latency is described in the radar charts in Fig. 6.6, which highlight
the related application contexts. Green points depict the quantity that mainly ben-
efits from a given setting, while red points are the impacts (almost always adverse)
that such settings imply on the other two doses. As demonstrated, optimizing all
performance indicators at the same time is not possible.

The default configuration performance evaluation was left running after the
first 24 hours to obtain an experimental sample to check the statistics’ reliability.
The experiment continued for 15 days. By doing so, Nsam = 10800 samples were
collected (including those used to calculate the values in the first row of Table 6.5).
The results are reported in the last row of the table. Further, in this case, no
packets were lost, not even after two weeks of continuous operation, as evidenced
by all ping requests succeeding. Measured latency was bounded to a maximum of
12.382 s, and the 99-percentile was 6.393 s. The results for this extended data set
show a good match with those obtained over a single day, which confirms that the
statistics of the latter are reliable.

98

6.5 – Conclusions

6.5 Conclusions
In this chapter, a mathematical model of a TSCH-based network has been pro-

posed, which provides three performance indicators relevant for WSNs: reliability,
power consumption, and latency. This model relies on a few parameters that can
be easily estimated from an actual setup deployed in the area of interest. These
parameters can then be used in a later stage to evaluate the expected network
performance when some TSCH configuration parameters are varied. To provide a
realistic estimation of power consumption, a characterization of the latest version of
OpenMote B motes was analyzed based on measurements performed on an actual
setup. The related results have been presented here.

An analysis of three relevant application contexts, characterized by specific net-
work configuration parameters (slotframe duration and retry limit), highlighted
that reliability, power consumption, and latency are intimately connected. There-
fore, it is impossible to optimize all the performance indicators at once, but their
joint optimization must necessarily follow a holistic approach. TSCH is an excep-
tionally flexible solution, as the performance demanded by a wide range of appli-
cation contexts can be easily achieved by suitably tuning these parameters. As
an example, the analysis showed that for two-way communication in which every
packet performs two hops overall (both directions considered), in typical operating
conditions, it is possible to either decrease the average latency below ∼ 1

3 s or en-
sure 20-nines reliability, or, finally, reduce the power consumption of the network
component by half relative to the default configuration.

99

100

Chapter 7

TSCH Predictor

A TSCH mathematical model was developed to predict the behavior of the
6TiSCH WSN. The model was proposed to analyze performance indicators, such
as latency, reliability, and power consumption, for single-hop and multi-hop WSNs.
The model also provides an estimation for Plost packet loss ratio and ϵpkt packet
loss probability. However, there was a limitation when the packet queuing was
present in the nodes, this issue impacts during the performing experiments, and as
a consequence, the latency on which the proposed model is built can not be valid
anymore. Thus, the proposed model in Chapter 5 was ineffective at performing
the WSN analysis. We propose an instrument to overcome the experimental anal-
ysis and estimate performance indicators without packet queuing limitation in the
hardware node.

The 6TiSCH matrix directly influences the performance indicators, which means
that we could modify the performance analysis by changing the parameters in the
TSCH matrix. However, this modification is complex on real devices, such as
OpenMote B devices, as the modification needs to be applied to the source code,
then load the compiled code to the devices. This task is not very simple, as it
takes time to modify the code and much other activity to perform an experimental
evaluation. Therefore, we propose a tool to facilitate the deployment phases in
industrial WSNs.

Simulation tools are the most-used tools in the engineering domain, which facil-
itates testing and deployment in the industry. WSN technologies have many simu-
lating tools for wireless networks, such as NS2, OMNeT++, Prowler, OPNET, and
TOSSIM. These simulators are powerful software platforms for simulating different
protocols or networks, expecting strong knowledge to develop a tailor-made simula-
tor for the TSCH WSN. However, many simulators are developed for 6TiSCH WSN,
such as OpenWSN [151], Cooja for Contiki and Contiki-NG [152], and TSCH-Sim
[153]. As far as we used, most simulators are complex for a normal user and made
for protocol analysis. Thus, we propose a simulator that can easily simulate and
predict a network’s performances. The core of the TSCH predictor is developed

101

TSCH Predictor

with a simple architecture that provides a framework to implement a new feature
on top of the main core. The TSCH predictor is a tool to simulate and predict
the performance indicators in the TSCH WSN. It provides a good prediction of
power-consumption for the 6TiSCH running on the OpenMote B device.

7.1 Introduction
The WSN performance indicator suffers from Wi-Fi traffic. Therefore, the net-

work simulator requires a realistic network simulation and considers network param-
eters and Wi-Fi disturbances to estimate the WSN network better. The proposed
TSCH predictor is implemented by a simple architecture and includes essential fac-
tors, making its result trustable and comparable with real-world data. It can also
adopt new features as needed.

The TSCH predictor was developed by considering OpenMote B hardware char-
acteristic with OpenWSN OS on top of it. The TSCH predictor does not attach to
the hardware, but it needs the energy measurement to calculate power consumption
accurately. We compared the result of the TSCH predictor with the experimental
data obtained from the testbed explained in Chapter 6. The comparison verifies
that the TSCH predictor estimates the performance indicators with high accuracy.
In this chapter, we compared the TSCH predictor with the experiments performed
by the OpenMote B devices, and the OpenWSN OS was utilized for communicating
via the 6TiSCH protocol.

The TSCH predictor has three main advantages: first, it stimulates the 6TiSCH
protocol with different parameters, such as slotframe, retransmission, and other
TSCH matrix settings; second, it overcomes the packet queuing issues and simulates
the WSN with higher frequency , which it helps to have the timeslot less than
20 ms for each cell in every slotframe, without limitation; and third, it performs
network simulation in parallel on different WSNs, making it more efficient and
flexible. Further, the TSCH predictor is simple and has a user-friendly interface
that makes it easy to configure and start simulations; it just requires the packet
delivery probability and the TSCH matrix parameters to start the simulation.

In the following, the system architecture and implementation of TSCH predictor
are described in Section 7.2, the simulation logic and interface details are presented
in Sections 7.3 and 7.4, and details about the comparison between the simulation
and the experimental results are presented in Section 7.5.

102

7.2 – System Architecture

7.2 System Architecture
The TSCH predictor is based on Python. The core of the predictor is developed

by a simple structure and implemented with the SimPy python library1, which is
a process-based discrete-event simulation framework based on Python.

The TSCH predictor architecture is defined based on the hardware and software
structure. The proposed architecture is presented in Fig. 7.1, which shows that the
system architecture is developed in three main layers: the configuration layer;
the system core, which defines the hardware node, the 6TiSCH network, and
the packet core; and the WSN simulation core, or the event generator for each
slotframe. The simulation core generates events to perform simulations in the
TSCH predictor. The data analysis is computed by utilizing the mathematical
model proposed in Chapter 6, and it provides a performance analysis right after
the network simulation. This layer provides a terminal interface and a Web API
to facilitate the configuration of the simulation tool. The terminal interface of
the TSCH predictor is developed for parallelization purposes, which helps simulate
thousands of parallel WSNs with different configurations simultaneously.

All configuration and network parameters are defined in the configuration layer.
This component is defined as a dynamic object while the simulator is running.
All hardware and software parameters are defined here, as well as the delivery
probability network parameter.

Figure 7.1 presents three subsections of the physical system: the hardware
node, the TSCH network, and the packet core. The hardware node provides
the hardware characteristics, such as the energy-consumption model, which helps
to calculate power consumption for each node in the network. It also tracks all the

1https://simpy.readthedocs.io/en/latest/

Configuration Layer

Text Packet Core
6TiSCH
Network

Hardware
Node

S
im

ul
at

io
n

Ti
m

e

Simulation Core

In
te

rf
ac

e

Terminal

WEB

S
ys

te
m

 C
or

e

Figure 7.1: TSCH predictor Software Architecture.

103

TSCH Predictor

packets transmitted in the network. The TSCH network represents the 6TiSCH
matrix parameters and software configuration. The WSN is generated based on
TSCH network by utilizing the hardware node. The packet core generates
and controls the packet generation and controls the packet transmission between
the nodes.

Moreover, it decides if the packet is successfully transferred to the next hop or
not. The TSCH network provides a packet destination embedded into the WSN
after the network topology is created. The probabilistic model of the collisions
and Wi-Fi traffics are considered here to provide a truthful prediction of the WSN
performance indicator. All three subsections are defined in different class objects to
easily modify the simulator core and implement new features in the TSCH predictor.

The simulator core runs on top of the system core. The network topology is
created here based on the TSCH network matrix, defined by the system core. The
simulator core uses SimPy to develop a process-based discrete-event simulation.
The simulator core defines each cell’s events in the slotframe in the TSCH matrix
to perform the simulation and, like a real device, sends a packet to the next hop in
each slotframe in the cell. Each node sends a packet in their scheduled time, defined
in their cell in the TSCH matrix. Each cell knows where to send data. After the
network topology is created, the simulator core starts to send packets at a specific
time defined in the parameters. The simulation core tracks latency, duplication,
and delivery time and stores the results in the log file after finishing the simula-
tion. After finishing the simulation, the analysis tool estimates the performance
indicators by utilizing the formula proposed in Chapter 6.

7.2.1 TSCH predictor configuration layer
The TSCH predictor configurations are defined here as a global object in the

TSCH predictor architecture, and it is accessible in the whole program. This layer
is divided into three subsections: general configuration, flow configuration, and
6TiSCH matrix configuration.

General configuration

The simulator parameters are defined in the general configuration file, defined
as a JSON format. The common network parameters and simulation parameters are
defined, such as total simulation time, energy model, number of slotframes, and
maximum number of attempts for transmission for each packet.

Flow configuration

This configuration defines the RPL and scheduler parameters for the network.
It represents the source, destination, routing of the network, type of the scheduler,

104

7.2 – System Architecture

and period of request/response for each packet. These parameters are used to
build the cell and node instances in the node and TSCH matrix in the system core.
The routing considers the tree and starts the network topology, which can change
and simulate a new network topology with new parameters. The configuration file
format is JSON, and it is defined as a global variable.

6TiSCH configuration

The 6TiSCH parameters are defined in the configuration file, with a plain text
format. The parameters (e.g., slot offset, channel offset, source (scr), destination
(dest), frame delivery probability [FDP: 1− ϵframe] and ACK delivery probability
[ADP: 1−ϵack]) are defined in the file for each direction. Listing 7.1 shows the TSCH
matrix format template, which defines the TSCH configuration network based on
the IEEE802.15.4 standard. In this template, the first component in the row defines
the cell slot offset or the slot number that its node will send the packet to. This
means that if this value is 18, the node will be scheduled 18 ∗ 20 = 380ms to
transmit data for each iteration in the slotframe period. The second component in
the row defines the channel offset. The third value is the source ID, which starts at
0 and it ends at the total number of nodes. The next parameter is the destination
ID, which indicates the packet destination or the destination node ID. If the source
is 0 and the destination is 1, the packet will be sent from node 0 to node 1 (0 −→ 1).

The most crucial TSCH predictor parameter is the simulator’s fundamental
parameter, the frame delivery probability. The 5th and 6th parameters are the
frame delivery probability and the ACK delivery probability, respectively. These
values are usually defined as inputs for the simulator, and they are computed from
the PING value utilities.

Listing 7.1: TSCH Matrix definition
offset channel_offset src dest FDP ADP
1 0 0 1 0.887411967465 0.887411967465
18 1 1 2 0.887411967465 0.887411967465
100 1 2 3 0.887411967465 0.887411967465

7.2.2 System core
The core is divided into hardware node, 6TiSCH network, and packet core.

Hardware node

The hardware node in the WSN architecture is developed in this layer to define
the hardware characteristics of the OpenMote B , which can adopt other hard-
ware characteristics too. The hardware node defines all the node functionalities

105

TSCH Predictor

Table 7.1: Energy consumption for different types of actions within a slotframe
matrix with OpenMote B motes. In bold quantities used in the hardware node.

Quantity Action(s) Slot Energy Size
offset [µJ] [bytes]

Ef
rx_data RX DATA frame 16 178 87

Ef
tx_ack TX ACK frame 16 106 33

Ef
tx_data TX DATA frame 98 187 90

Ef
rx_ack RX ACK frame 98 79 33

Ef
listen Idle listening 16 138 -

Ef
comp Computation - 628 -

Ef
rx RX DATA + TX ACK 16 284 120

Ef
tx TX DATA + RX ACK 98 266 123

(e.g., rxDATA, txDATA_waitACK, rxDATA_txACK, txDATA_rxACK, listen, queue,
and dequeue). These functionalities help send and receive requests from each node
and count the total number of sending and receiving packets. The total energy
consumption of each node is also calculated in this layer. The total energy con-
sumption is calculated based on the model presented in Chapter 6. The energy
consumption value of each slotframe is reported in Table 7.1. The quantities are
used to obtain the total power consumption in each node.

The 6TiSCH network

The 6TiSCH network is responsible for importing the TSCH matrix configura-
tion and global configuration for the WSN. It then creates cells for each node based
on the parameters defined in the configuration files. Nodes are generated from the
node object and are used inside the tsch_event function. The node has all the
functionality to send and receive packets. The frame delivery probability is used
here to exchange the frame in each cell.

Packet core

The packet core is implemented to generate a packet for the simulation layer.
This layer generates the packets for each node in each event; then, the cells are
responsible for sending the packet from source to destination in their scheduled time
slot. The node tracks delivered or lost packets in each request. The packet object
defined in the packet core has many methods that help track the frames, the most
used of which are get_next_node, arrived_next_hop, not_arrived_next_hop,

106

7.3 – Simulation Logic

arrived, is_lost, and is_dup_packet.

7.2.3 Simulation core
The simulation core generates events to run the simulation. The TSCH pre-

dictor is based on the SimPy module that provides a framework to implement a
discrete event simulator. This layer orchestrates all processes and layers.The simu-
lation core first imports the matrix and node configurations from the configuration
layer. Then it creates the SimPy environment instance that helps generate event
simulation. This step invokes the TSCH network object to create an event for each
cell in the TSCH matrix by assigning them to the hardware node. The SimPy
environment schedules all nodes as an event. All the node objects are created at
this stage, and they are attached to the simulator core. In this step, the packet core
invokes and generates a packet for each flow defined in the flow configuration. The
events generated in the simulation core are responsible for generating a packet for
each slotframe for the nodes. The events are attached to the SimPy environment as
a process. The simulation result appears after the total time of simulation finishes
in the SimPy environment.

7.3 Simulation Logic
The simulation of the delivery of frames and acknowledges is performed by

comparing a random number (with uniform probability distribution) with the cor-
responding delivery probability value. This means that the frame would not be
succeeded if the frame delivery probability is more than the probability of the air
(system). Further, if the packet does not have the chance to be sent, it will retry in
the next slotframe until the total number of tries becomes overflow. The retry pa-
rameter (TXT_RETRIES) is defined in the general configuration file. Nonetheless,
the frame is lost if the frame cannot satisfy the condition for all retry attempts.

The simulation happens in the TSCH event function of the simulation core. As
shown in the logic, two conditions are defined for the request (send frame) and
response (ACK) frames to check if the packet arrives at the node. When the new
packet is generated in each event, the event generates a uniform random number
x (0 ≤ x ≤ 1) and checks if the frame delivery probability FDP (FDP = 1 − ϵ)
is more than x, at which point this condition decides that the frame has reached
the destination. The same condition is used for ACK frames in the second step,
and if both conditions are satisfied, the packet reaches the destination node. The
simulation logic is presented in Algorithm 1.

107

TSCH Predictor

Algorithm 1: Simulation logic at the TSCH event
FDP ← (1− ϵ)
ACK ← (1− ϵACK)
while TRUE do

if random.uniform(0,1) ≤ FDP then
DATA frame arrived in subsequent node
if random.uniform(0,1) ≤ ACK then

ACK frame arrived to source node
else

ACK frame did not arrive at source node
end if

else
ACK frame sent but did not arrive at the following node

end if
end while

108

7.4 – Interfaces

7.4 Interfaces
The TSCH predictor has two interfaces, terminal, and Web. The terminal

interface runs on the single and multi-core CPUs and clusters, and it can simulate
multi-WSNs simultaneously on the same server.

The terminal interface requires a configuration file to run the predictor. The
predictor performs the simulation and stores the experimental results in a file after
finishing the simulation. An example is shown in Listing 7.2.

Listing 7.2: Running the predictor via Terminal
$ python TSCHpredictor.py EXAMPLE_101_16_0-0-0-0.conf

The TSCH predictor was developed to provide a simple and easy interface to per-
form the simulation. The parameter definition and configuration are user-friendly,
as shown in Fig 7.2, the web interface is designed to be simple and effective in con-
figuration. The interface takes the parameter values and then stores them in the
TSCH predictor configuration files. It also provides a complete report after finishing
the simulation and performance analysis based on the experimental data simulated
by the software. This feature is available for both interfaces. The terminal interface
provides the information by performing an analysis using the post-processing script
after the simulation, and the Web interface provides an analysis by selecting this
feature. The analysis provides the performance indicators in both interfaces. This
feature was developed based on the model proposed in Chapters 5 and 6.

7.5 Results
Two sets of experiments were performed to analyze the effectiveness of the

TSCH predictor: one performed on the actual device, and the other experiments
performed on the simulator. The results were analyzed using the analyzer feature
in the TSCH predictor to see how much the THSC predictor results were similar
to the experiments archived from real devices.

Nslotframe and Ntries were varied for each experiment. The round trips of the
packets on the real devices were obtained using the PING utilities. Then, the frame
delivery probability (ϵ) was obtained for each experiment from the round-trip logs.
The same analysis was performed in Chapter 6 to evaluate the frame delivery
probability. Table 7.3 shows some of the experiments performed in the previous
chapter, where the results are presented to validate the proposed simulator in this
chapter. The 24-hour experiments were performed for each configuration, and the
results in the first section are taken from Table 6.5 in Chapter 6. A different
set of configurations was selected in the TSCH matrix to obtain the results. The
set configurations were [11,3] , [101,16], [101,24], and [201,16], where the first and
second components in the setup were Nslotframe and Ntries, respectively.

109

TSCH Predictor

Table 7.2: TSCH predictor Web interface

Table 7.3 presents the analysis of the simulation versus experiments on real
devices. By changing the configuration, the performance indicators changed. Reli-
ability decreased when Ntries decreased in the WSN. When the Nslotframe was set to
high value, the latency increased. This is because latency is bounded in dmin ≤ di <
dmin +Tsframe, where di is the latency that packet i experiences, and if the requested
packet is lucky enough, dmin becomes (Nslotframe −Nrx,slotframe + Ntx,slotframe) ∗ Tslot .
Thus, when the Nslotframe value is high, latency increases. However, when the
Nslotframe increases, power consumption decreases. This is due to the listen fre-
quency (flisten) value. Therefore, if the Nslotframe is higher, the flisten decreases, as
does the power consumption. Detailed explanations of these analyses are presented
in Chapter 6.

The different values of ϵ are presented in the table, evaluated with the other
experimental setup. The ϵ values were utilized for the TSCH predictor to simulate
the nodes. These values were used to prepare the configuration file in the TSCH
matrix. The slotframe offset, ϵtx, and ϵACK are defined in the TSCH matrix.

The simulation was performed for different set configurations for one year long.

110

7.5 – Results

Then, the performance analyses are performed for each simulation. The exper-
imental and simulation analyses are reported in Table7.3, which shows that the
simulation values are good enough to predict the WSN performances.

In summary, The ϵ values calculated by the simulation were close to the ϵ values
obtained from real devices. The ϵ values have 99.5%, 99.7%, 99.7%, and 99.8%
similarity between the real and simulated values for [11, 3], [101, 16], [101, 24], and
[201, 16], respectively. Further, the mean latency µd for both cases was compared,
and both around 99% similar to each other, with a standard deviation of 94.5%–
99.38%. The power consumption and the frequency of listening and transmission
obtained from the TSCH predictor were also close (about 99.90% similarity) to the
real devices. Note that the simulation was performed in a different configuration;
it was cross-checked using the real round-trip data obtained by the PING utilities
via OpenMote B devices.

Table 7.3: Simulation data compared with real experimental data obtained from
OpenMote B

TSCH Conf. Latency Reliability Power Consumption
Nslot Ntries dmin µd σd dp99 dmax n̂tra µ̂d Maxd Plost ϵ 1− ϵpkt ftra flisten P f̂ tra f̂ listen

[s] [#] [s] [s] [·10−5] [·10−4] [µW] [·10−5] [·10−4]

Real data with Openmote B

11 3 0.159 0.335 0.134 0.780 1.023 2.32 0.338 1.320 0.4166 0.1428 0.9941 1.93 90.7 1262.49 1.94 90.71
101 16 0.522 2.117 1.293 6.398 12.382 2.29 2.12 64.640 0 0.1263 1 1.91 9.71 144.494 1.91 9.71
101 24 1.47 3.089 1.32 7.45 9.36 2.31 3.10 96.96 0 0.1323 1 1.92 9.71 144.554 1.92 9.71
201 16 2.565 5.534 2.46 13.637 22.366 2.25 5.60 128.64 0 0.1125 1 1.92 4.78 76.5805 1.87 4.79

Simulation with TSCH predictor

11 3 0.160 0.329 0.142 0.780 1.240 2.31 0.339 1320 0.5761 0.1435 0.9940 1.93 90.7 1262.53 1.93 90.71
101 16 0.520 2.105 1.301 6.420 14.500 2.29 2.12 64.640 0 0.1266 1 1.91 9.71 144.496 1.91 9.71
101 24 1.46 3.078 1.334 7.440 18.400 2.31 3.09 96.96 0 0.1327 1 1.92 9.71 144.551 1.92 9.71
201 16 2.58 5.581 2.443 13.98 30.18 2.25 5.61 128.64 0 0.1127 1 1.88 4.79 76.3954 1.88 4.79

Our results show that the TSCH predictor provides a good simulation and
estimation value for the performance indicators in different configurations. The
simplicity of performing a simulation and analyze the performance indicators is an
advantage in the TSCH predictor. Also, it could help optimize the network effi-
ciency by choosing the suitable parameter in the TSCH matrix, which is Nslotframe

or Nretries or both together. The TSCH simulator overcame the packet queuing
issue in the WSN analysis. The TSCH predictor is designed to help engineers
validate 6TiSCH configurations before deploying networks, and the predictor can
give a perfect estimation for network performance indicators, especially power con-
sumption. This analysis could help predict when to change battery-powered WSN
nodes.

111

112

Chapter 8

Results

This chapter summarizes some of the important results from this thesis, pro-
poses future work, and addresses existing issues raised by IoT and WSN in Industry
4.0. This thesis focused on two topics: standardization of the Internet of Things
(IoT) platform and modeling and simulation in the 6TiSCH Wireless Sensor Net-
work for Industry 4.0.

8.1 OPC-IoT
The OPC-IoT platform was proposed to overcome IoT standardization prob-

lems in Industry 4.0. The proposed architecture was based on OPC-UA, which
complies with the IEC62541 standard. The platform was implemented in three
layers–data collector, gateway, and data validation–and storage on the server-side.
The platform was adopted with ProfiNet and Modbus protocols, which simplify
shop-floor communication with industrial machines and exchange data with the
OPC-UA protocol. The platform can store data on Cassandra and MongoDB.
Kafka was also used for data broadcast systems between different parties in the
system. This platform was evaluated against the DIIG gateway (see [32]), with the
Kaa IoT platform as data storage in the architecture. Experimental analysis was
performed to analyze the system’s performance indicators (throughput, round trip,
fairness, and scalability).

Experimental analysis was performed to evaluate both platforms’ performance
indicators and select the best data collector among them. The Cassandra database
and the MongoDB were the same concerning throughput in the platforms; how-
ever, in the OPC-IoT platform, the Cassandra database was better when the total
number of concurrent clients was increased. As shown in Fig. 8.1, the test was
performed with the Cassandra database for 1,000 clients, and the total throughput
was around 8,000 packets / second after increasing the number of clients.

113

Results

As explained in Chapter 1, the OPC-IoT architecture is based on the OPC-
UA protocol, which is suggested by RAMI 4.0 as a communication layer. This
protocol provides a communication layer to the shop floor without any additional
gateway or devices. Although, the gateway was proposed in the architecture for
data conversion for a different protocol in the OPC-IoT platform. The proposed
gateway communicates with industrial protocols, such as Modbus or Profinet, with-
out adding new components or devices on the shop floor and communicating with
OPC-UA–compatible devices. The performance evaluation was performed using
Profinet, and the delivery acknowledgment is an advantage for the proposed archi-
tecture.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

#10 #20 #40 #80 #100 #200 #400 #800 #1000

Cassandra db

Figure 8.1: OPC-IoT: scalability test for 10 to 1000 clients

8.2 Fog Architecture
IFog4.0 is a fog architecture proposed to overcome the centralization problem

described in Chapter 3. The architecture was proposed and implemented to comply
with the RAMI 4.0 road map. The architecture was developed based on open-
source components to make it more accessible for industry SMEs. The architecture
was proposed with modular capability, with many preinstalled components, such
as IDE, visualization, and ERP. Further, it was designed to be able to install
customized features. Fog management was developed to control the fog platform
easily.

To verify the proposed architecture’s implementation and effectiveness, IFog4.0
was deployed in an industrial use case: a gas regulation station. The IFog4.0 was
communicating with the real PLC, sending a decision command to the gas station

114

8.3 – Single-hop WSNs

components, such as controlling the water bath heater’s temperature and cleaning
the dry gas filter in the gas station.

The IFog4.0 architecture was proposed for industrial applications to deliver
a framework that could provide fast implementation of Industry 4.0 in SMEs. As
shown in Chapter 3, IFog4.0 provides a set of development components for enabling
"Industry 4.0" based on RAMI 4.0. The IFog4.0 platform introduced a scalable
architecture based on open-source resources, such as Docker and Node-RED. Open
source components make it possible to achieve greater accessibility. The IDE tool
embedded in IFog4.0 was specifically tailored for this purpose. Finally, the archi-
tecture also enables component development by using the Docker SDK, deploying
it on the platform using the fog-management tool. The proposed workflow guides
the end-user to develop a custom application for their needs and install it on their
system.

8.3 Single-hop WSNs
Experimental analysis in Chapter 1.2 shows that WSN communication quality

suffers from background traffic, such as Wi-Fi and many other devices that work
in the same frequency spectrum as WSNs. This issue negatively affects WSN
performance indicators. To prevent this issue, a mathematical model was proposed
in Chapter 5 to predict and estimate performance indicators in WSNs. The analysis
was performed for a single-hop WSN (such as start topology), the most common
WSNs topology. This topology is frequently utilized in home automation in the
smart home industry.

Further, in Chapter 6, the model was extended to multi-hop networks, with the
realistic power-consumption model and a latency and reliability model. Experi-
mental analysis was performed to validate the model estimation. The OpenMote
B device running the 6TiSCH protocol was employed to perform all experiments,
where two configurations were applied–one with channel hopping enabled and an-
other with channel hopping disabled. Both experiments were performed to analyze
the effectiveness of channel hopping against Wi-Fi interference. The experiments
were performed with controllable background traffic to analyze better the effect of
the Wi-Fi interference on the WSNs.

The experimental analysis verified that the proposed model for a single-hop
TSCH network estimates performance indicators with high similarity. A CDF anal-
ysis of channel hopping enabled and disabled (which was repeated from Chapter 5)
was obtained to verify the latency similarity, as shown in Fig. 8.2 and Fig. 8.3.
The CDF analysis verified that the proposed mathematical model could estimate
the latency with high similarity when different background traffic was present. The
I(+)

∅ , I(+)
6 , and I(+)

6,6 define the number of background traffic in each experiment
(zero, one, or two activated Wi-Fi interferences, respectively).

115

Results

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14

I(+)

∅

I(+)
6

I(+)
6,6

0.65

0.7

0.75

0.8

0.85

0.9

4 4.5 5 5.5 6 6.5 7

I(+)
6

I(+)
6,6C

D
F

Latency (s)

I(+)

∅
I(+)
6

I(+)
6,6

Zoom

Figure 8.2: Measured and theoretical CDFs of d (channel hopping disabled).

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14

0.85

0.9

0.95

1

5.5 6 6.5 7

I(1)

∅

I(2)
1

I(2)
1,5

I(2)
1,5,9

I(2)
1,5,9,13

C
D

F

Latency (s)

I(1)

∅
I(2)
1

I(2)
1,5

I(2)
1,5,9

I(1)
1,5,9,13

Zoom

Figure 8.3: Measured and theoretical CDFs of d (channel hopping enabled).

116

8.4 – Multi-hop WSNs

This work’s main result was not just estimating the network’s performance indi-
cator; the proposed models were developed to help engineers select the right config-
uration for 6TiSCH devices based on background traffic and noisy environments to
satisfy the requirements. Fig.8.4 shows the main concept of this methodology. The
model was developed to validate the 6TiSCH configuration with the requested re-
quirements, and if it does not perform similarly, then the method must be repeated,
and if it is verified, then the configuration may be finalized. This methodology and
model were implemented for single-hop networks; the multi-hop model was pro-
posed with a realistic power-consumption model and presented in Chapter 6 for
the TSCH multi-hop network.

WSN model

Application
requirements
are satisfied?

Dataset

Real WSNCommunication
Parameters

N Y

TSCH

Model
fitting

Behavior
prediction

Experimental
measurements

Network
configuration

Expected
performance

Figure 8.4: Main idea of the single-hop methodology

8.4 Multi-hop WSNs
The multi-hop mathematical model was proposed for the TSCH network in

Chapter 6. The model was verified by the latency values stored by ping requests.
The latencies were applied using the model as an input value, and the performance
indicators were estimated with the proposed mathematical model.

Experiments were performed to evaluate the effect of different TSCH parame-
ters on performance indicators, demonstrating that increasing the number of slots
in the TSCH matrices increases latency. However, the transmission frequency de-
creases eventually; thus, power consumption decreases too. Many experiments were
performed for different Nslot values, and the results are reported in Table 8.1 (the
original observations are reported in the results section in Chapter 6). Further,
other interesting experiments were performed to evaluate the number of trans-
missions on the performance indicators. Table 8.2 shows that if the number of
transmission tries decreases, the power consumption and reliability also decrease.

The proposed model relies on a few parameters that can be easily estimated
from an actual setup deployed in the area of interest. These parameters can then

117

Results

Table 8.1: Experimental results about the influence of Nslot on latency, reliability,
and power consumption (measured on real devices).

Latency Reliability Power Consumption
Nslot dmin µd σd dp99 dmax n̂tra µ̂d Maxd Plost ϵ 1− ϵpkt ftra flisten P f̂ tra f̂ listen

[s] [#] [s] [s] [·10−5] [·10−4] µW [·10−5] [·10−4]

11 0.212 0.409 0.194 1.231 1.438 2.34 0.399 7.040 0.0 0.148 12-nines 2.00 90.70 1262.8 1.95 90.71
31 0.491 0.982 0.431 2.301 3.419 2.27 0.969 19.840 0.0 0.119 14-nines 1.91 32.06 453.0 1.89 32.06
51 0.258 1.024 0.649 3.007 3.054 2.25 1.021 32.640 0.0 0.110 15-nines 1.88 19.41 278.3 1.87 19.42
91 0.497 1.741 1.046 4.861 5.397 2.25 1.858 58.240 0.0 0.110 15-nines 1.87 10.80 159.4 1.87 10.80
101 0.352 2.046 1.588 8.764 10.457 2.28 1.936 64.640 0.0 0.124 14-nines 1.95 9.70 144.7 1.90 9.71
151 2.877 5.036 1.755 8.846 14.557 2.25 5.135 96.640 0.0 0.110 15-nines 1.85 6.44 99.0 1.87 6.43
201 0.726 4.216 2.880 12.131 14.050 2.36 4.193 128.640 0.0 0.153 12-nines 1.97 4.78 76.7 1.97 4.78

Table 8.2: Experimental results of the influence of Ntries on latency, reliability, and
power consumption (measured on real devices).

Latency Reliability Power Consumption
Ntries dmin µd σd dp99 dmax n̂tra µ̂d Maxd Plost ϵ 1− ϵpkt ftra flisten P f̂ tra f̂ listen

[s] [#] [s] [s] [·10−5] [·10−4] µW [·10−5] [·10−4]

2 0.496 1.851 1.015 4.441 5.377 2.17 1.861 8.080 0.017 0.0963 0.98154 1.82 9.71 144.1 1.82 9.71
4 0.342 1.853 1.272 6.066 6.090 2.24 1.850 16.160 0.0 0.1102 0.99971 1.88 9.71 144.3 1.87 9.71
6 0.387 2.031 1.323 6.906 7.447 2.32 2.048 24.240 0.0 0.1388 0.99999 1.93 9.70 144.5 1.93 9.70
8 0.726 2.320 1.558 8.255 9.890 2.27 2.285 32.320 0.0 0.1197 7-nines 1.92 9.70 144.5 1.89 9.71
16 0.352 2.046 1.588 8.764 10.457 2.28 1.936 64.640 0.0 0.1244 14-nines 1.95 9.70 144.6 1.90 9.71

be used later to evaluate the expected network performance when some TSCH
configuration parameters vary.

An analysis of three relevant application contexts characterized by specific net-
work configuration parameters (slotframe, duration, and retry limit) highlighted
that reliability, power consumption, and latency are intimately connected. There-
fore, it is impossible to optimize all performance indicators simultaneously; indeed,
their joint optimization must follow a holistic approach (see Fig. 8.5). TSCH is a
flexible solution, as the performance demanded by a wide range of application con-
texts can be easily achieved by tuning its parameters. As an example, we showed
that, for two-way communication where every packet performs two hops overall
(both directions considered), in typical operating conditions, it is possible to either
decrease the average latency below ∼ 1

3 s or ensure 20-nines reliability, or, finally,
reduce the power consumption of the network component by half concerning the
default configuration. Note that the model is proposed if there is no packet awaiting

118

8.5 – TSCH predictor

L

P RDefault

L

P R
High Reliability

L

P RLow Latency

L

P RLow Power

Figure 8.5: Effects of different parameter configurations (targeted to specific appli-
cation contexts) on power consumption (P), reliability (R), and latency (L).

queuing of the OpenMote devices. This is not a limitation due to the frequency rate
of the communication in many WSN scenarios. Nevertheless, the TSCH predictor
was proposed to provide perfect estimations in the TSCH network.

8.5 TSCH predictor
The TSCH predictor was proposed to provide a simple and effective simula-

tor for the TSCH network. This simulator was designed to be user-friendly and
straightforward for any engineer with any background to simulate their design and
predict the TSCH WSN configuration’s performance indicators before deploying
their design in the field. The predictor provides terminal and Web interfaces to run
simulations and analyses.

The simulator result was compared with the experimental results performed in
Chapter 6. The result shows that the TSCH predictor provides a realistic estimation
compared to the testbed’s real value. Table 8.3 reports the comparison between
the TSCH predictor and experimental results performed on the real testbed.

119

Results

Table 8.3: Simulation data compared with real ping data

TSCH Conf. Latency Reliability Power Consumption
Nslot Ntries dmin µd σd dp99 dmax n̂tra µ̂d Maxd Plost ϵ 1− ϵpkt ftra flisten P f̂ tra f̂ listen

[s] [#] [s] [s] [·10−5] [·10−4] [µW] [·10−5] [·10−4]

Real data with Openmote b+

11 3 0.159 0.335 0.134 0.780 1.023 2.32 0.338 1.320 0.4166 0.1428 0.9941 1.93 90.7 1262.49 1.94 90.71
101 16 0.522 2.117 1.293 6.398 12.382 2.29 2.12 64.640 0 0.1263 1 1.91 9.71 144.494 1.91 9.71
101 24 1.47 3.089 1.32 7.45 9.36 2.31 3.10 96.96 0 0.1323 1 1.92 9.71 144.554 1.92 9.71
201 16 2.565 5.534 2.46 13.637 22.366 2.25 5.60 128.64 0 0.1125 1 1.92 4.78 76.5805 1.87 4.79

Simulation with TSCH predictor

11 3 0.160 0.329 0.142 0.780 1.240 2.31 0.339 1320 0.5761 0.1435 0.9940 1.93 9.07 1262.53 1.93 90.71
101 16 0.520 2.105 1.301 6.420 14.500 2.29 2.12 64.640 0 0.1266 1 1.91 9.71 144.496 1.91 9.71
101 24 1.46 3.078 1.334 7.440 18.400 2.31 3.09 96.96 0 0.1327 1 1.92 9.71 144.551 1.92 9.71
201 16 2.58 5.581 2.443 13.98 30.18 2.25 5.61 128.64 0 0.1127 1 1.88 4.79 76.3954 1.88 4.79

8.6 Conclusion
This thesis explored Industrial IoT middleware solutions and adopted them

within the Industrial Protocol to be more compliant with the RAMI 4.0 road map
for Industry 4.0. The OPC-IoT platform proposed here was developed to overcome
standardization complexity, which is a property shown by any ordinary IoT plat-
form. The OPC-IoT platform was first investigated by performing experimental
analyses, then compared with a similar commercial IoT platform. The OPC-IoT
platform overcame the compatibility issues arisen among the different IoT node
vendors on the shop floor. Furthermore, since centralization is always challenging
for an IoT platform in factories, the IFog4.0 system was also proposed to overcome
that issue, shaping a decentralized architecture for IoT devices, by considering the
RAMI 4.0 road map. The proposed architecture was developed and deployed for a
gas regulation station’s real scenario. That station was emulated with PLC devices,
and IFog4.0 communicated with it and controlled the activity in the real scenario.
IFog4.0 demonstrated that the new implementation could leverage the deployment
of the IoT end-node in industry applications, and increase reliability and secu-
rity by including a decentralized architecture in the whole Industrial IoT. Both
proposed architectures, OPC-IoT and IFog4.0, have been introduced to overcome
the standardization complexity of the IoT in Industry 4.0. Once developed and
implemented, experimental analyses were performed to shape the performance in-
dicators. The trials demonstrated that the proposed architecture could orchestrate
the various standard included in the RAMI 4.0 road map. Hence, the proposed
architecture may help researchers and SMEs adapt their factory communication
and networks to the Industry 4.0 road map, so that a better and more reliable data
acquisition can be achieved in Industry 4.0.

120

8.6 – Conclusion

This work also focused on WSNs for industrial applications. As discussed
in Chapter 1.2, WSNs suffer from background traffic caused by interfering WiFi
and other wireless communication technologies. The experimental analysis demon-
strated that background traffic negatively impacts latency and reliability in WSNs.
In our analyses, the behavior of a 6TiSCH network based on single- and multi-hop
topologies was evaluated by varying the amount of interfering Wi-Fi traffic. A
mathematical model was proposed for both topologies to estimate the performance
indicators. The model behaviour was compared with experimental data gathered
on the real 6TiSCH devices. The OpenMote B device with the OpenWSN OS was
selected to run the investigation aimed at collecting the realistic power consump-
tion measurement. The comparison of the model data with the actual trial behavior
showed that the model could estimate the WSN performance indicators granting
high similarity rates. However, the mathematical model could not be used if the
packet was waiting in the queue. This issue is not a constraint in many applica-
tions, since in most cases, the transmission rate is not higher than the one granted
by the queue size available in the hardware. However, to face this issue, a TSCH-
predictor was proposed to simulate the 6TiSCH protocol with a higher frequency to
get a reasonable estimation of the WSN performance indicators. A further analysis
was performed to compare the TSCH-predictor simulation results with real devices’
experimental data. The study demonstrated that the simulation results shown by
the TSCH-predictor are still very similar to the actual data performed on real de-
vices. We hope that the proposed mathematical model and TSCH-predictor will
help engineers design TSCH matrix parameters for WSNs with higher reliability
and accuracy.

121

122

Appendix A

Publication List

Publications, including journals and international conference papers during the
Ph.D. degree at Politecnico di Torino, are reported here.

Journal Papers
• M. Collotta, R. Ferrero, E. Giusto, M. Ghazi Vakili, J. Grecuccio, X. Kong,

I. You, "A fuzzy control system for energy-efficient wireless devices in the
Internet of vehicles", International Journal of Intelligent Systems, Vol. 36,
Issue 4, p. 1595-1618, April. 2021,
doi: 10.1002/int.22353

• S. Scanzio, M. Ghazi Vakili, G. Cena, C. G. Demartini, B. Montrucchio, A.
Valenzano, C. Zunino, "Wireless sensor networks and TSCH: A compromise
between reliability, power consumption, and latency", IEEE Access, vol. 8,
p. 167042-167058, Sep. 2020, doi: 10.1109/ACCESS.2020.3022434

• B. Montrucchio, E. Giusto, M. Ghazi Vakili, S. Quer, R. Ferrero, C. Fornaro,
"A Densely-Deployed, High Sampling Rate, Open-Source Air Pollution Moni-
toring WSN", IEEE Transactions on Vehicular Technology, vol. 69, p. 15786-
15799, Nov. 2020,
doi: 10.1109/TVT.2020.3035554

• G. Cena, C. G Demartini, M. Ghazi Vakili, S. Scanzio, A. Valenzano, C.
Zunino, "Evaluating and modeling IEEE 802.15.4 TSCH resilience against
Wi-Fi interference in new-generation highly-dependable wireless sensor net-
works", Ad Hoc Networks, vol. 106, p. 102199, Sep. 2020,
doi: 10.1016/j.adhoc.2020.102199

123

https://doi.org/10.1002/int.22353
https://doi.org/10.1109/ACCESS.2020.3022434
https://doi.org/10.1109/TVT.2020.3035554
https://doi.org/10.1016/j.adhoc.2020.102199

Publication List

• E. Giusto, M. Ghazi Vakili, F. Gandino, C. Demartini, B. Montrucchio,
"Quantum Pliers Cutting the Blockchain", IT Professional, vol. 22, p. 90-96,
Nov. 2020,
doi: 10.1109/MITP.2020.2974690

Conferences
• M. Ghazi Vakili, C. Demartini, M. Guerrera, B. Montrucchio, "Open Source

Fog Architecture for Industrial IoT Automation Based on Industrial Proto-
cols", 2019 IEEE 43rd Annual Computer Software and Applications Confer-
ence (COMPSAC), vol. 1, p. 570-578,
doi: 10.1109/COMPSAC.2019.00088.

• M. Ghazivakili, C. Demartini, C. Zunino, "Industrial data-collector by en-
abling OPC-UA standard for Industry 4.0", 2018 14th IEEE International
Workshop on Factory Communication Systems (WFCS), p. 1-8,
doi: 10.1109/WFCS.2018.8402364

• M. Hemmatpour, M. Ghazivakili, B. Montrucchio, M. Rebaudengo, "DIIG:
a distributed industrial IoT gateway", 2017 IEEE 41st Annual Computer
Software and Applications Conference (COMPSAC), p. 755-759,
doi: 10.1109/COMPSAC.2017.110

• R. Ferrero, M. Ghazi Vakili, E. Giusto, M. Guerrera, V. Randazzo, "Ubiq-
uitous fridge with natural language interaction", 2019 IEEE International
Conference on RFID Technology and Applications (RFID-TA), p. 404-409,
doi: 10.1109/RFID-TA.2019.8892025

Datasets
• B. Montrucchio, E. Giusto, M. Ghazi Vakili, S. Quer, R. Ferrero, C. Fornaro,

"A Densely-Deployed, High Sampling Rate, Open-Source Air Pollution Mon-
itoring WSN", IEEEDataPort, August. 2020,
doi: https://dx.doi.org/10.21227/m4pb-g538

• S. Scanzio, M. Ghazi Vakili, G. Cena, C. G. Demartini, B. Montrucchio, A.
Valenzano, C. Zunino, "Wireless Sensor Networks Dataset (TSCH a Com-
promise Between Reliability, Power Consumption, and Latency)", IEEEDat-
aPort, Jan. 2021,
doi: https://dx.doi.org/10.21227/fg62-bp39

124

https://doi.org/10.1109/MITP.2020.2974690
https://doi.org/10.1109/COMPSAC.2019.00088
https://doi.org/10.1109/WFCS.2018.8402364
https://doi.org/10.1109/COMPSAC.2017.110
https://doi.org/10.1109/RFID-TA.2019.8892025
https://dx.doi.org/10.21227/m4pb-g538
https://dx.doi.org/10.21227/fg62-bp39

Appendix B

Kaa and DIIG algorithm

B.1 Kaa IoT Platform
There are several IoT platforms which enable programmers to connect different

devices to the Internet [154]–[156]. Kaa is an open source middleware platform for
the IoT nodes in order to manage data in back-end infrastructure through a server
and endpoint SDK components. Since the Kaa server provides all the back-end
functionality needed to operate on large-scale data, the Kaa IoT solution has been
chosen for the purpose of this work [157].

Kaa server requires NoSQL and SQL database instances to store endpoint data
and metadata, respectively. It manages each node in a combination of Control,
Operations, and Bootstrap services, as Fig. B.1 shows. NoSQL database can be
co-located with Kaa nodes on the same machine.

Kaa Control service manages overall system data and sends notifications to
Operations services. It also maintains an up-to-date list of available Operation
services.

The primary role of the Operation service is to communicate with multiple
endpoints concurrently. Operation services process the endpoint requests and send
data to them.

The Kaa Bootstrap service sends the information about Operation service con-
nection parameters to the endpoints. Kaa SDKs contain a pre-generated list of
Bootstrap services available in the Kaa server so that endpoints can query Boot-
strap services from this list to retrieve connection parameters for the currently
available Operation services.

As Fig. B.1 shows, the IoT gateway proposed by this paper is integrated with
the Kaa SDK in the Kaa endpoint to support Modbus and S7 communication
protocol. In order to do so, generated Kaa SDK are modified properly to load the
bootstrap from the IoT server, and handle the requests coming from the IoT nodes,
so that data can then be sent to the IoT server.

125

Kaa and DIIG algorithm

Control

Operation

Bootstrap

Control

Operation

Bootstrap

NO SQLSQL

Kaa Endpoints
DIIG

IoT gateway

Kaa SDK

DIIG
IoT gateway

Kaa SDK

Figure B.1: Kaa IoT platform architecture integrated with DIIG gateway.

B.2 DIIG Protocol
The architecture proposed by this work is presented in Fig. B.2. It is based on

the Kaa platform and consists of two main parts: the local protocol management
and the Kaa SDK component. The local protocol management acquires data from
a local network and sends them to the Kaa server. It can acquire data from the
S7 or Modbus TCP networks which are protocols commonly used in the industrial
environments. The SDK component is responsible for the communication with the
Kaa server through the Kaa APIs.

There are two possible solutions to manage data transmission from the IoT
nodes to the IoT gateway: solicited and unsolicited. In the solicited technique, the
IoT gateway must visit each IoT node and if data are available, transmits it. This
technique is not convenient since the IoT gateway should waste time sending pull
data requests to the IoT nodes. Furthermore, this method is also rigid and unfair
because an IoT node can saturate the traffic being thus responsible a nonuniform

126

B.2 – DIIG Protocol

L
oc

al
 P

ro
to

co
l M

an
ag

em
en

t
K

aa S
D

K
 C

om
p

on
en

t

IoT Server

Data Store

IoT Node

Figure B.2: DIIG architecture components.

127

Kaa and DIIG algorithm

traffic distribution.
However, unsolicited technique is more sophisticated in the sense that the IoT

nodes send their data directly without any request coming from the IoT gateway.
So, the overhead of sending pull data request from the IoT gateway is eliminated
using this technique. The IoT gateway proposed in the following exploits this
mechanism.

An important issue of this architecture is the communication between the local
protocol management and the Kaa SDK component. As Fig. B.3 shows, the
proposed gateway provides a parallel mechanism in order to achieve the real-time
capability. For each connected IoT node of S7 or Modbus TCP networks a dedicated
memory pool, a memory state table, two memory index containers, and two threads
are created in the IoT gateway. The memory pool retains data transmitted from the
IoT node. The size of the memory pool can be adjusted with the data transmission
rate from the IoT node. The memory state table indicates the state of each memory
address in the memory pool by signaling. Each memory address can adopt busy or
free state. If the memory address is already occupied by a transmitted data from
the IoT node its state is busy, otherwise it takes free state. The two memory index
containers specify a free and a full index in the memory pool.

In the proposed communication protocol, while the IoT node generates its data,
it reads Free index memory of the IoT gateway. Then, it lays its data in the
read index in the memory pool. Afterwards, it toggles the corresponding memory
state table. As can be seen in Fig. B.3, Tr thread always traverses the memory
state table to find a free and a full memory addresses then fillings the Free and
Full memory indices. The Tr traverses the memory state table in a round robin
algorithm without any priority. The Full memory index is exploited by Ts thread to
send the appropriate memory content to the Kaa server through Kaa APIs. Then,
it toggles the corresponding memory state table. In order to avoid operating on
the same data, if Ts reads the same Full memory index consecutively, it ignores
the index till an update.

The dashed and red color boxes indicate the shared memories in the architec-
ture,while the blue and green lines specify the read and write operations on the
same memories. In order to orchestrate the local IoT node read and write opera-
tions on the shared memories, a spinlock is adopted. To handle remote read and
write operations on the shared memories, Modbus TCP library has been modified
properly according to the specific requirements related to the access to a shared
resource.

In order to avoid data loss, each IoT node contains a local buffer. If the IoT node
reads the same Free index buffer consecutively, it assumes that the IoT gateway is
busy and stores its data in the local buffer. Then, it reads the Free index repeatedly
till any modification occurs, at that point it sends its data immediately in the new
index address. Each IoT node has 8 different channel blocks/registers to send
its data. In order to avoid overwriting the data blocks, a synchronous function is

128

B.2 – DIIG Protocol

executed in the IoT node. Synchronous functions are often called blocking functions
because they block the execution of the caller program and continues only when its
job is completed.

.

.

M
em

ory status flag

.

.

Fr
ee

 m
em

or
y

In
d

ex

Ready to
send Index

Tr

Ts

. . . .

. . . .

IoT Gateway

IoT node1 IoT node4

.

.

M
em

ory status flag

.

.

Fr
ee

 m
em

or
y

In
d

ex

Ready to
send Index

Tr

Ts

Send data to IoT
server on cloud

Send data to IoT
server on cloud

Figure B.3: DIIG architecture elements.

129

Bibliography

[1] T. Kramp, R. van Kranenburg, and S. Lange, “Introduction to the Internet
of Things”, in Enabling Things to Talk, A. Bassi, M. Bauer, M. Fiedler, T.
Kramp, R. van Kranenburg, S. Lange, and S. Meissner, Eds., Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2013, pp. 1–10, isbn: 9783642404030.
doi: 10.1007/978-3-642-40403-0{_}1.

[2] M. Wollschlaeger, T. Sauter, and J. Jasperneite, “The Future of Industrial
Communication: Automation Networks in the Era of the Internet of Things
and Industry 4.0”, IEEE Industrial Electronics Magazine, vol. 11, no. 1,
pp. 17–27, Mar. 2017, issn: 1932-4529. doi: 10.1109/MIE.2017.2649104.

[3] F. Shrouf, J. Ordieres, and G. Miragliotta, “Smart factories in Industry 4.0:
A review of the concept and of energy management approached in production
based on the Internet of Things paradigm”, in 2014 IEEE International
Conference on Industrial Engineering and Engineering Management, Dec.
2014, pp. 697–701. doi: 10.1109/IEEM.2014.7058728.

[4] L. D. Xu, E. L. Xu, and L. Li, “Industry 4.0: state of the art and fu-
ture trends”, International Journal of Production Research, vol. 56, no. 8,
pp. 2941–2962, 2018. doi: 10.1080/00207543.2018.1444806. [Online].
Available: https://doi.org/10.1080/00207543.2018.1444806.

[5] Q. Qi and F. Tao, “Digital Twin and Big Data Towards Smart Manufacturing
and Industry 4.0: 360 Degree Comparison”, IEEE Access, vol. 6, pp. 3585–
3593, 2018, issn: 21693536. doi: 10.1109/ACCESS.2018.2793265.

[6] A. B. de Sousa Jabbour, C. J. C. Jabbour, M. Godinho Filho, and D.
Roubaud, “Industry 4.0 and the circular economy: a proposed research agenda
and original roadmap for sustainable operations”, Annals of Operations Re-
search, vol. 270, no. 1-2, pp. 273–286, 2018, issn: 15729338. doi: 10.1007/
s10479- 018-2772-8. [Online]. Available: https://doi.org/10.1007/
s10479-018-2772-8.

[7] J. Lee, B. Bagheri, and H.-A. Kao, “A Cyber-Physical Systems architec-
ture for Industry 4.0-based manufacturing systems”, Manufacturing Letters,
vol. 3, pp. 18–23, 2015, issn: 2213-8463. doi: https://doi.org/10.1016/

131

https://doi.org/10.1007/978-3-642-40403-0{_}1
https://doi.org/10.1109/MIE.2017.2649104
https://doi.org/10.1109/IEEM.2014.7058728
https://doi.org/10.1080/00207543.2018.1444806
https://doi.org/10.1080/00207543.2018.1444806
https://doi.org/10.1109/ACCESS.2018.2793265
https://doi.org/10.1007/s10479-018-2772-8
https://doi.org/10.1007/s10479-018-2772-8
https://doi.org/10.1007/s10479-018-2772-8
https://doi.org/10.1007/s10479-018-2772-8
https://doi.org/https://doi.org/10.1016/j.mfglet.2014.12.001
https://doi.org/https://doi.org/10.1016/j.mfglet.2014.12.001

BIBLIOGRAPHY

j.mfglet.2014.12.001. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S221384631400025X.

[8] J. Rifkin, The third industrial revolution: how lateral power is transforming
energy, the economy, and the world. Macmillan, 2011.

[9] S. Muntone, “Second Industrial Revolution”, 2012.
[10] J. Robert E. Lucas, “Cambridge: Harvard University Press”, ISBN 978-0-

674-01601-9, 2002, pp. 109–110.
[11] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless

sensor networks: a survey”, Computer Networks, vol. 38, no. 4, pp. 393–
422, 2002, issn: 1389-1286. doi: https : / / doi . org / 10 . 1016 / S1389 -
1286(01)00302-4.

[12] M. Erdelj, M. Król, and E. Natalizio, “Wireless Sensor Networks and Multi-
UAV systems for natural disaster management”, Computer Networks, vol. 124,
pp. 72–86, 2017, issn: 1389-1286. doi: https://doi.org/10.1016/j.
comnet.2017.05.021.

[13] T. Miyazaki, K. Anazawa, Y. Maruyama, S. Kobayashi, T. Segawa, and P.
Li, “Resilient Information Management for Information Sharing in Disaster-
Affected Areas Lacking Internet Access”, in Ad-Hoc, Mobile, and Wireless
Networks, M. R. Palattella, S. Scanzio, and S. Coleri Ergen, Eds., Cham:
Springer International Publishing, 2019, pp. 3–17, isbn: 978-3-030-31831-4.

[14] Y. Liao, M. Mollineaux, R. Hsu, R. Bartlett, A. Singla, A. Raja, R. Bajwa,
and R. Rajagopal, “SnowFort: An Open Source Wireless Sensor Network
for Data Analytics in Infrastructure and Environmental Monitoring”, IEEE
Sensors Journal, vol. 14, no. 12, pp. 4253–4263, Dec. 2014. doi: 10.1109/
JSEN.2014.2358253.

[15] B. Rashid and M. H. Rehmani, “Applications of wireless sensor networks
for urban areas: A survey”, Journal of Network and Computer Applications,
vol. 60, pp. 192–219, 2016, issn: 1084-8045. doi: https://doi.org/10.
1016/j.jnca.2015.09.008.

[16] X. Yu, P. Wu, W. Han, and Z. Zhang, “A survey on wireless sensor network
infrastructure for agriculture”, Computer Standards & Interfaces, vol. 35,
no. 1, pp. 59–64, 2013, issn: 0920-5489. doi: https://doi.org/10.1016/
j.csi.2012.05.001.

[17] M. Srbinovska, C. Gavrovski, V. Dimcev, A. Krkoleva, and V. Borozan,
“Environmental parameters monitoring in precision agriculture using wire-
less sensor networks”, Journal of Cleaner Production, vol. 88, pp. 297–307,
2015, issn: 0959-6526. doi: https://doi.org/10.1016/j.jclepro.2014.
04.036.

132

https://doi.org/https://doi.org/10.1016/j.mfglet.2014.12.001
https://doi.org/https://doi.org/10.1016/j.mfglet.2014.12.001
http://www.sciencedirect.com/science/article/pii/S221384631400025X
http://www.sciencedirect.com/science/article/pii/S221384631400025X
https://doi.org/https://doi.org/10.1016/S1389-1286(01)00302-4
https://doi.org/https://doi.org/10.1016/S1389-1286(01)00302-4
https://doi.org/https://doi.org/10.1016/j.comnet.2017.05.021
https://doi.org/https://doi.org/10.1016/j.comnet.2017.05.021
https://doi.org/10.1109/JSEN.2014.2358253
https://doi.org/10.1109/JSEN.2014.2358253
https://doi.org/https://doi.org/10.1016/j.jnca.2015.09.008
https://doi.org/https://doi.org/10.1016/j.jnca.2015.09.008
https://doi.org/https://doi.org/10.1016/j.csi.2012.05.001
https://doi.org/https://doi.org/10.1016/j.csi.2012.05.001
https://doi.org/https://doi.org/10.1016/j.jclepro.2014.04.036
https://doi.org/https://doi.org/10.1016/j.jclepro.2014.04.036

BIBLIOGRAPHY

[18] I. Chukwuemeka Chimsom and M. K. Habib, “Design of a Two-Tier WSN-
based IoT Surveillance System with Cloud Integration”, in International
Conference on Research and Education in Mechatronics (REM), May 2019,
pp. 1–7. doi: 10.1109/REM.2019.8744133.

[19] F. Civerchia, S. Bocchino, C. Salvadori, E. Rossi, L. Maggiani, and M. Pe-
tracca, “Industrial Internet of Things monitoring solution for advanced pre-
dictive maintenance applications”, Journal of Industrial Information Inte-
gration, vol. 7, pp. 4–12, 2017, issn: 2452-414X. doi: https://doi.org/
10.1016/j.jii.2017.02.003.

[20] Z. Zhang, A. Mehmood, L. Shu, Z. Huo, Y. Zhang, and M. Mukherjee,
“A Survey on Fault Diagnosis in Wireless Sensor Networks”, IEEE Access,
vol. 6, pp. 11 349–11 364, 2018. doi: 10.1109/ACCESS.2018.2794519.

[21] B. Montrucchio, E. Giusto, M. Ghazi Vakili, S. Quer, R. Ferrero, and C.
Fornaro, “A Densely-Deployed, High Sampling Rate, Open-Source Air Pol-
lution Monitoring WSN”, IEEE Transactions on Vehicular Technology, p. 1,
Jan. 2020, issn: 1939-9359. doi: 10.1109/TVT.2020.3035554.

[22] B. Velusamy and S. C. Pushpan, “An Enhanced Channel Access Method to
Mitigate the Effect of Interference Among Body Sensor Networks for Smart
Healthcare”, IEEE Sensors Journal, vol. 19, no. 16, pp. 7082–7088, Aug.
2019, issn: 2379-9153. doi: 10.1109/JSEN.2019.2913002.

[23] P. Zheng, H. wang, Z. Sang, R. Y. Zhong, Y. Liu, C. Liu, K. Mubarok,
S. Yu, and X. Xu, “Smart manufacturing systems for Industry 4.0: Concep-
tual framework, scenarios, and future perspectives”, Frontiers of Mechanical
Engineering, vol. 13, no. 2, pp. 137–150, Jun. 2018, issn: 2095-0241. doi:
10.1007/s11465-018-0499-5. [Online]. Available: https://doi.org/10.
1007/s11465-018-0499-5.

[24] P. Adolphs, “Reference Architecture Model Industrie 4.0 (RAMI4.0)”, Tech.
Rep. July, 2015.

[25] C. Kaar, J. Frysak, and C. Stary, “Scaffolding RAMI4.0-Exploration as De-
sign Support”, pp. 1–8, 2018. doi: 10.1145/3232078.3232098.

[26] V. Alcácer and V. Cruz-Machado, “Scanning the Industry 4.0: A Literature
Review on Technologies for Manufacturing Systems”, Engineering Science
and Technology, an International Journal, vol. 22, no. 3, pp. 899–919, 2019,
issn: 2215-0986. doi: https://doi.org/10.1016/j.jestch.2019.01.006.
[Online]. Available: http://www.sciencedirect.com/science/article/
pii/S2215098618317750.

[27] J. Frysak, C. Kaar, and C. Stary, “Benefits and pitfalls applying RAMI4.0”,
Proceedings - 2018 IEEE Industrial Cyber-Physical Systems, ICPS 2018,
pp. 32–37, 2018. doi: 10.1109/ICPHYS.2018.8387633.

133

https://doi.org/10.1109/REM.2019.8744133
https://doi.org/https://doi.org/10.1016/j.jii.2017.02.003
https://doi.org/https://doi.org/10.1016/j.jii.2017.02.003
https://doi.org/10.1109/ACCESS.2018.2794519
https://doi.org/10.1109/TVT.2020.3035554
https://doi.org/10.1109/JSEN.2019.2913002
https://doi.org/10.1007/s11465-018-0499-5
https://doi.org/10.1007/s11465-018-0499-5
https://doi.org/10.1007/s11465-018-0499-5
https://doi.org/10.1145/3232078.3232098
https://doi.org/https://doi.org/10.1016/j.jestch.2019.01.006
http://www.sciencedirect.com/science/article/pii/S2215098618317750
http://www.sciencedirect.com/science/article/pii/S2215098618317750
https://doi.org/10.1109/ICPHYS.2018.8387633

BIBLIOGRAPHY

[28] J. Davis, “Smart Manufacturing”, Encyclopedia of Sustainable Technologies,
vol. 56, no. 1-2, pp. 417–427, 2017. doi: 10.1016/B978-0-12-409548-
9.10212-X. [Online]. Available: https://doi.org/10.1080/00207543.
2017.1351644.

[29] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash,
“Internet of Things: A Survey on Enabling Technologies, Protocols, and
Applications”, IEEE Communications Surveys and Tutorials, vol. 17, no. 4,
pp. 2347–2376, 2015, issn: 1553877X. doi: 10.1109/COMST.2015.2444095.

[30] F. Banaie, J. Misic, V. B. Misic, M. H. Yaghmaee Moghaddam, and S. A.
Hosseini Seno, “Performance analysis of multithreaded IoT gateway”, IEEE
Internet of Things Journal, vol. 6, no. 2, pp. 3143–3155, 2019, issn: 23274662.
doi: 10.1109/JIOT.2018.2879467.

[31] C. C. Lin and J. W. Yang, “Cost-Efficient Deployment of Fog Computing
Systems at Logistics Centers in Industry 4.0”, IEEE Transactions on Indus-
trial Informatics, vol. 14, no. 10, pp. 4603–4611, 2018, issn: 15513203. doi:
10.1109/TII.2018.2827920.

[32] M. Hemmatpour, M. Ghazivakili, B. Montrucchio, and M. Rebaudengo,
“DIIG: A Distributed Industrial IoT Gateway”, in 2017 IEEE 41st Annual
Computer Software and Applications Conference (COMPSAC), vol. 1, Jul.
2017, pp. 755–759. doi: 10.1109/COMPSAC.2017.110.

[33] International Standard, “IEC 62541-100:2015”, Tech. Rep., 2015, p. 121.
[Online]. Available: https://webstore.iec.ch/publication/21987.

[34] X. Ye and S. H. Hong, “Toward Industry 4.0 Components: Insights Into and
Implementation of Asset Administration Shells”, IEEE Industrial Electron-
ics Magazine, vol. 13, no. 1, pp. 13–25, Mar. 2019, issn: 1932-4529. doi:
10.1109/MIE.2019.2893397. [Online]. Available: https://ieeexplore.
ieee.org/document/8673850/.

[35] A. ML, {AutomationML} official website, 2019. [Online]. Available: https:
//www.automationml.org/o.red.c/home.html.

[36] M. Mukherjee, L. Shu, and D. Wang, “Survey of Fog Computing: Funda-
mental, Network Applications, and Research Challenges”, IEEE Communi-
cations Surveys Tutorials, vol. 20, no. 3, pp. 1826–1857, 2018, issn: 1553-
877X. doi: 10.1109/COMST.2018.2814571.

[37] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog Computing and Its Role
in the Internet of Things”, in Proceedings of the First Edition of the MCC
Workshop on Mobile Cloud Computing, ser. MCC ’12, New York, NY, USA:
ACM, 2012, pp. 13–16, isbn: 978-1-4503-1519-7. doi: 10.1145/2342509.
2342513. [Online]. Available: http://doi.acm.org/10.1145/2342509.
2342513.

134

https://doi.org/10.1016/B978-0-12-409548-9.10212-X
https://doi.org/10.1016/B978-0-12-409548-9.10212-X
https://doi.org/10.1080/00207543.2017.1351644
https://doi.org/10.1080/00207543.2017.1351644
https://doi.org/10.1109/COMST.2015.2444095
https://doi.org/10.1109/JIOT.2018.2879467
https://doi.org/10.1109/TII.2018.2827920
https://doi.org/10.1109/COMPSAC.2017.110
https://webstore.iec.ch/publication/21987
https://doi.org/10.1109/MIE.2019.2893397
https://ieeexplore.ieee.org/document/8673850/
https://ieeexplore.ieee.org/document/8673850/
https://www.automationml.org/o.red.c/home.html
https://www.automationml.org/o.red.c/home.html
https://doi.org/10.1109/COMST.2018.2814571
https://doi.org/10.1145/2342509.2342513
https://doi.org/10.1145/2342509.2342513
http://doi.acm.org/10.1145/2342509.2342513
http://doi.acm.org/10.1145/2342509.2342513

BIBLIOGRAPHY

[38] B. Chen, J. Wan, L. Shu, P. Li, M. Mukherjee, and B. Yin, “Smart Factory
of Industry 4.0: Key Technologies, Application Case, and Challenges”, IEEE
Access, vol. 6, pp. 6505–6519, 2018, issn: 2169-3536. doi: 10.1109/ACCESS.
2017.2783682.

[39] I. Stojmenovic and S. Wen, “The Fog computing paradigm: Scenarios and
security issues”, in 2014 Federated Conference on Computer Science and
Information Systems, 2014, pp. 1–8. doi: 10.15439/2014F503.

[40] S. Yi, C. Li, and Q. Li, “A Survey of Fog Computing: Concepts, Appli-
cations and Issues”, in Proceedings of the 2015 Workshop on Mobile Big
Data, ser. Mobidata ’15, New York, NY, USA: ACM, 2015, pp. 37–42, isbn:
978-1-4503-3524-9. doi: 10.1145/2757384.2757397. [Online]. Available:
http://doi.acm.org/10.1145/2757384.2757397.

[41] P. Hu, S. Dhelim, H. Ning, and T. Qiu, “Survey on fog computing: archi-
tecture, key technologies, applications and open issues”, Journal of Net-
work and Computer Applications, vol. 98, pp. 27–42, 2017, issn: 1084-8045.
doi: https : / / doi . org / 10 . 1016 / j . jnca . 2017 . 09 . 002. [Online].
Available: http : / / www . sciencedirect . com / science / article / pii /
S1084804517302953.

[42] Y. Lu and X. Xu, “Cloud-based manufacturing equipment and big data ana-
lytics to enable on-demand manufacturing services”, Robotics and Computer-
Integrated Manufacturing, vol. 57, pp. 92–102, 2019, issn: 0736-5845. doi:
https://doi.org/10.1016/j.rcim.2018.11.006. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0736584518302801.

[43] A. Y. Alqahtani, S. M. Gupta, and K. Nakashima, “Warranty and mainte-
nance analysis of sensor embedded products using internet of things in indus-
try 4.0”, International Journal of Production Economics, vol. 208, pp. 483–
499, 2019, issn: 0925-5273. doi: https://doi.org/10.1016/j.ijpe.2018.
12.022. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0925527318305000.

[44] N. Mohamed, J. Al-Jaroodi, and S. Lazarova-Molnar, “Leveraging the Capa-
bilities of Industry 4.0 for Improving Energy Efficiency in Smart Factories”,
IEEE Access, vol. 7, pp. 18 008–18 020, 2019. doi: 10.1109/ACCESS.2019.
2897045.

[45] J. A. Saucedo-Martínez, M. Pérez-Lara, J. A. Marmolejo-Saucedo, T. E.
Salais-Fierro, and P. Vasant, “Industry 4.0 framework for management and
operations: a review”, Journal of Ambient Intelligence and Humanized Com-
puting, vol. 9, no. 3, pp. 789–801, 2018, issn: 18685145. doi: 10.1007/
s12652-017-0533-1.

135

https://doi.org/10.1109/ACCESS.2017.2783682
https://doi.org/10.1109/ACCESS.2017.2783682
https://doi.org/10.15439/2014F503
https://doi.org/10.1145/2757384.2757397
http://doi.acm.org/10.1145/2757384.2757397
https://doi.org/https://doi.org/10.1016/j.jnca.2017.09.002
http://www.sciencedirect.com/science/article/pii/S1084804517302953
http://www.sciencedirect.com/science/article/pii/S1084804517302953
https://doi.org/https://doi.org/10.1016/j.rcim.2018.11.006
http://www.sciencedirect.com/science/article/pii/S0736584518302801
https://doi.org/https://doi.org/10.1016/j.ijpe.2018.12.022
https://doi.org/https://doi.org/10.1016/j.ijpe.2018.12.022
http://www.sciencedirect.com/science/article/pii/S0925527318305000
http://www.sciencedirect.com/science/article/pii/S0925527318305000
https://doi.org/10.1109/ACCESS.2019.2897045
https://doi.org/10.1109/ACCESS.2019.2897045
https://doi.org/10.1007/s12652-017-0533-1
https://doi.org/10.1007/s12652-017-0533-1

BIBLIOGRAPHY

[46] Y. Lu, “Industry 4.0: A survey on technologies, applications and open re-
search issues”, Journal of Industrial Information Integration, vol. 6, pp. 1–
10, 2017, issn: 2452414X. doi: 10.1016/j.jii.2017.04.005. [Online].
Available: http://dx.doi.org/10.1016/j.jii.2017.04.005.

[47] L. Wang, M. Törngren, and M. Onori, “Current status and advancement of
cyber-physical systems in manufacturing”, Journal of Manufacturing Sys-
tems, vol. 37, pp. 517–527, 2015, issn: 02786125. doi: 10.1016/j.jmsy.
2015.04.008. [Online]. Available: http://dx.doi.org/10.1016/j.jmsy.
2015.04.008.

[48] RAMI4.0 Standard. [Online]. Available: https://www.plattform- i40.
de/I40/Redaktion/DE/Anwendungsbeispiele/265-agentenbasierte-
vernetzung-von-cyber-physischen-produktionssystemen-tu-muenchen/
agentenbasierte-vernetzung-von-cyber-physischen-produktionssystemen.
html.

[49] M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Cla, “Middleware
for internet of things: A survey”, IEEE Internet of Things Journal, vol. 3,
no. 1, pp. 70–95, 2016, issn: 23274662. doi: 10.1109/JIOT.2015.2498900.

[50] R. Zgheib, E. Conchon, and R. Bastide, “Semantic Middleware Architec-
tures for IoT Healthcare Applications”, in Enhanced Living Environments:
Algorithms, Architectures, Platforms, and Systems, I. Ganchev, N. M. Gar-
cia, C. Dobre, C. X. Mavromoustakis, and R. Goleva, Eds., Cham: Springer
International Publishing, 2019, pp. 263–294. doi: 10.1007/978-3-030-
10752-9{_}11.

[51] M. A. A. da Cruz, J. J. P. C. Rodrigues, A. K. Sangaiah, J. Al-Muhtadi,
and V. Korotaev, “Performance evaluation of IoT middleware”, Journal of
Network and Computer Applications, vol. 109, no. February, pp. 53–65, 2018,
issn: 10958592. doi: 10.1016/j.jnca.2018.02.013. [Online]. Available:
https://doi.org/10.1016/j.jnca.2018.02.013.

[52] Y. Liu and X. Xu, “Industry 4.0 and Cloud Manufacturing: A Compara-
tive Analysis”, Journal of Manufacturing Science and Engineering, vol. 139,
no. 3, 2016, issn: 1087-1357. doi: 10.1115/1.4034667. [Online]. Available:
https://doi.org/10.1115/1.4034667.

[53] A. V. Dastjerdi, H. Gupta, R. N. Calheiros, S. K. Ghosh, and R. Buyya,
“Chapter 4 - Fog Computing: principles, architectures, and applications”, in
Internet of Things, R. Buyya and A. V. Dastjerdi, Eds., Morgan Kaufmann,
2016, pp. 61–75, isbn: 978-0-12-805395-9. doi: https : / / doi . org / 10 .
1016/B978-0-12-805395-9.00004-6. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/B9780128053959000046.

136

https://doi.org/10.1016/j.jii.2017.04.005
http://dx.doi.org/10.1016/j.jii.2017.04.005
https://doi.org/10.1016/j.jmsy.2015.04.008
https://doi.org/10.1016/j.jmsy.2015.04.008
http://dx.doi.org/10.1016/j.jmsy.2015.04.008
http://dx.doi.org/10.1016/j.jmsy.2015.04.008
https://www.plattform-i40.de/I40/Redaktion/DE/Anwendungsbeispiele/265-agentenbasierte-vernetzung-von-cyber-physischen-produktionssystemen-tu-muenchen/agentenbasierte-vernetzung-von-cyber-physischen-produktionssystemen.html
https://www.plattform-i40.de/I40/Redaktion/DE/Anwendungsbeispiele/265-agentenbasierte-vernetzung-von-cyber-physischen-produktionssystemen-tu-muenchen/agentenbasierte-vernetzung-von-cyber-physischen-produktionssystemen.html
https://www.plattform-i40.de/I40/Redaktion/DE/Anwendungsbeispiele/265-agentenbasierte-vernetzung-von-cyber-physischen-produktionssystemen-tu-muenchen/agentenbasierte-vernetzung-von-cyber-physischen-produktionssystemen.html
https://www.plattform-i40.de/I40/Redaktion/DE/Anwendungsbeispiele/265-agentenbasierte-vernetzung-von-cyber-physischen-produktionssystemen-tu-muenchen/agentenbasierte-vernetzung-von-cyber-physischen-produktionssystemen.html
https://www.plattform-i40.de/I40/Redaktion/DE/Anwendungsbeispiele/265-agentenbasierte-vernetzung-von-cyber-physischen-produktionssystemen-tu-muenchen/agentenbasierte-vernetzung-von-cyber-physischen-produktionssystemen.html
https://doi.org/10.1109/JIOT.2015.2498900
https://doi.org/10.1007/978-3-030-10752-9{_}11
https://doi.org/10.1007/978-3-030-10752-9{_}11
https://doi.org/10.1016/j.jnca.2018.02.013
https://doi.org/10.1016/j.jnca.2018.02.013
https://doi.org/10.1115/1.4034667
https://doi.org/10.1115/1.4034667
https://doi.org/https://doi.org/10.1016/B978-0-12-805395-9.00004-6
https://doi.org/https://doi.org/10.1016/B978-0-12-805395-9.00004-6
http://www.sciencedirect.com/science/article/pii/B9780128053959000046
http://www.sciencedirect.com/science/article/pii/B9780128053959000046

BIBLIOGRAPHY

[54] I. Stojmenovic, “Fog computing: A cloud to the ground support for smart
things and machine-to-machine networks”, in 2014 Australasian Telecom-
munication Networks and Applications Conference (ATNAC), Nov. 2014,
pp. 117–122. doi: 10.1109/ATNAC.2014.7020884.

[55] A. Davoudian, L. Chen, and M. Liu, “A Survey on NoSQL Stores”, ACM
Comput. Surv., vol. 51, no. 2, 40:1–40:43, Apr. 2018, issn: 0360-0300. doi:
10.1145/3158661. [Online]. Available: http://doi.acm.org/10.1145/
3158661.

[56] V. Reniers, D. V. Landuyt, A. Rafique, and W. Joosen, “Object to NoSQL
Database Mappers (ONDM): A systematic survey and comparison of frame-
works”, Information Systems, vol. 85, pp. 1–20, 2019, issn: 0306-4379. doi:
https://doi.org/10.1016/j.is.2019.05.001. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0306437918304290.

[57] P. Pääkkönen and D. Pakkala, “Reference Architecture and Classification
of Technologies, Products and Services for Big Data Systems”, Big Data
Research, vol. 2, no. 4, pp. 166–186, 2015, issn: 2214-5796. doi: https:
//doi.org/10.1016/j.bdr.2015.01.001. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S2214579615000027.

[58] S. Vitturi, C. Zunino, and T. Sauter, “Industrial Communication Systems
and Their Future Challenges: Next-Generation Ethernet, IIoT, and 5G”,
Proceedings of the IEEE, vol. 107, no. 6, pp. 944–961, Jun. 2019, issn: 0018-
9219. doi: 10.1109/JPROC.2019.2913443.

[59] Profinet, Profinet, \url{https://www.profibus.com/technology/profinet/}.
[60] Modbus, Modbus protocol, \url{http://modbus.org/}.
[61] O. P. C. Foundation, OPC UA system, \url{https://opcfoundation.org/about/what-

is-opc/}.
[62] MQTT.org, MQTT protocol, \url{http://mqtt.org/faq}.
[63] Y. Zhang and W. W. Li, “Energy Consumption Analysis of a Duty Cycle

Wireless Sensor Network Model”, IEEE Access, vol. 7, pp. 33 405–33 413,
2019, issn: 2169-3536. doi: 10.1109/ACCESS.2019.2903303.

[64] H. Yetgin, K. T. K. Cheung, M. El-Hajjar, and L. H. Hanzo, “A Survey of
Network Lifetime Maximization Techniques in Wireless Sensor Networks”,
IEEE Communications Surveys Tutorials, vol. 19, no. 2, pp. 828–854, 2017.

[65] M. Huang, K. Zhang, Z. Zeng, T. Wang, and Y. Liu, “An AUV-assisted Data
Gathering Scheme based on Clustering and Matrix Completion for Smart
Ocean”, IEEE Internet of Things Journal, p. 1, 2020, issn: 2327-4662. doi:
10.1109/JIOT.2020.2988035.

137

https://doi.org/10.1109/ATNAC.2014.7020884
https://doi.org/10.1145/3158661
http://doi.acm.org/10.1145/3158661
http://doi.acm.org/10.1145/3158661
https://doi.org/https://doi.org/10.1016/j.is.2019.05.001
http://www.sciencedirect.com/science/article/pii/S0306437918304290
http://www.sciencedirect.com/science/article/pii/S0306437918304290
https://doi.org/https://doi.org/10.1016/j.bdr.2015.01.001
https://doi.org/https://doi.org/10.1016/j.bdr.2015.01.001
http://www.sciencedirect.com/science/article/pii/S2214579615000027
http://www.sciencedirect.com/science/article/pii/S2214579615000027
https://doi.org/10.1109/JPROC.2019.2913443
https://doi.org/10.1109/ACCESS.2019.2903303
https://doi.org/10.1109/JIOT.2020.2988035

BIBLIOGRAPHY

[66] Z. Li, Y. Liu, A. Liu, S. Wang, and H. Liu, “Minimizing Convergecast Time
and Energy Consumption in Green Internet of Things”, IEEE Transactions
on Emerging Topics in Computing, p. 1, 2018, issn: 2168-6750. doi: 10.
1109/TETC.2018.2844282.

[67] M. Peng, W. Liu, T. Wang, and Z. Zeng, “Relay selection joint consecutive
packet routing scheme to improve performance for wake-up radio-enabled
WSNs”, Wireless Communications and Mobile Computing, vol. 2020, pp. 1–
32, Jan. 2020, issn: 1530-8669. doi: 10.1155/2020/7230565.

[68] G. Cena, S. Scanzio, and A. Valenzano, “Improving Effectiveness of Seamless
Redundancy in Real Industrial Wi-Fi Networks”, IEEE Transactions on
Industrial Informatics, vol. 14, no. 5, pp. 2095–2107, May 2018, issn: 1941-
0050. doi: 10.1109/TII.2017.2759788.

[69] ——, “Experimental Evaluation of Techniques to Lower Spectrum Consump-
tion in Wi-Red”, IEEE Transactions on Wireless Communications, vol. 18,
no. 2, pp. 824–837, Feb. 2019, issn: 1558-2248. doi: 10.1109/TWC.2018.
2884914.

[70] V. N. Swamy, P. Rigge, G. Ranade, B. Nikolić, and A. Sahai, “Wireless
Channel Dynamics and Robustness for Ultra-Reliable Low-Latency Com-
munications”, IEEE Journal on Selected Areas in Communications, vol. 37,
no. 4, pp. 705–720, 2019.

[71] G. Cena, S. Scanzio, L. Seno, and A. Valenzano, “Comparison of Mixed
Diversity Schemes to Enhance Reliability of Wireless Networks”, in Ad-Hoc,
Mobile, and Wireless Networks, M. R. Palattella, S. Scanzio, and S. Coleri
Ergen, Eds., Cham: Springer International Publishing, 2019, pp. 118–135,
isbn: 978-3-030-31831-4.

[72] IEEE, “IEEE Standard for Low-Rate Wireless Networks”, IEEE Std 802.15.4-
2015 (Rev. of IEEE Std 802.15.4-2011), pp. 1–709, Apr. 2016. doi: 10.1109/
IEEESTD.2016.7460875.

[73] “IEEE Standard for Information technology—Telecommunications and in-
formation exchange between systems Local and metropolitan area networks—Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications”, IEEE Std 802.11-2016 (Revision of
IEEE Std 802.11-2012), pp. 1–3534, Dec. 2016. doi: 10.1109/IEEESTD.
2016.7786995.

[74] R. Koutsiamanis, G. Z. Papadopoulos, X. Fafoutis, J. M. D. Fiore, P. Thu-
bert, and N. Montavont, “From Best Effort to Deterministic Packet Delivery
for Wireless Industrial IoT Networks”, IEEE Transactions on Industrial In-
formatics, vol. 14, no. 10, pp. 4468–4480, Oct. 2018. doi: 10.1109/TII.
2018.2856884.

138

https://doi.org/10.1109/TETC.2018.2844282
https://doi.org/10.1109/TETC.2018.2844282
https://doi.org/10.1155/2020/7230565
https://doi.org/10.1109/TII.2017.2759788
https://doi.org/10.1109/TWC.2018.2884914
https://doi.org/10.1109/TWC.2018.2884914
https://doi.org/10.1109/IEEESTD.2016.7460875
https://doi.org/10.1109/IEEESTD.2016.7460875
https://doi.org/10.1109/IEEESTD.2016.7786995
https://doi.org/10.1109/IEEESTD.2016.7786995
https://doi.org/10.1109/TII.2018.2856884
https://doi.org/10.1109/TII.2018.2856884

BIBLIOGRAPHY

[75] G. Cena, S. Scanzio, A. Valenzano, and C. Zunino, “Experimental Analysis
and Comparison of Industrial IoT Devices based on TSCH”, in 24th IEEE
International Conference on Emerging Technologies and Factory Automa-
tion (ETFA 2019), 2019, pp. 184–191. doi: 10.1109/ETFA.2019.8869410.

[76] ISO/IEC, “Information technology - Home electronic system (HES) archi-
tecture - Part 3-11: Frequency modulated wireless short-packet (FMWSP)
protocol optimised for energy harvesting - Architecture and lower layer pro-
tocols”, International Organization for Standardization/International Elec-
trotechnical Commission, Tech. Rep. ISO/IEC 14543-3-11:2016, pp. 1–25.

[77] G. Lu, B. Krishnamachari, and C. S. Raghavendra, “An adaptive energy-
efficient and low-latency MAC for data gathering in wireless sensor net-
works”, in International Parallel and Distributed Processing Symposium (IPDPS
2004), Apr. 2004, pp. 224–. doi: 10.1109/IPDPS.2004.1303264.

[78] R. Piyare, A. L. Murphy, C. Kiraly, P. Tosato, and D. Brunelli, “Ultra
Low Power Wake-Up Radios: A Hardware and Networking Survey”, IEEE
Communications Surveys Tutorials, vol. 19, no. 4, pp. 2117–2157, 2017, issn:
2373-745X. doi: 10.1109/COMST.2017.2728092.

[79] M. R. Palattella, N. Accettura, L. A. Grieco, G. Boggia, M. Dohler, and
T. Engel, “On Optimal Scheduling in Duty-Cycled Industrial IoT Applica-
tions Using IEEE802.15.4e TSCH”, IEEE Sensors Journal, vol. 13, no. 10,
pp. 3655–3666, 2013.

[80] M. R. Palattella, T. Watteyne, Q. Wang, K. Muraoka, N. Accettura, D.
Dujovne, L. A. Grieco, and T. Engel, “On-the-Fly Bandwidth Reservation
for 6TiSCH Wireless Industrial Networks”, IEEE Sensors Journal, vol. 16,
no. 2, pp. 550–560, 2016.

[81] L. L. Bello, A. Lombardo, S. Milardo, G. Patti, and M. Reno, “Software-
Defined Networking for Dynamic Control of Mobile Industrial Wireless Sen-
sor Networks”, in 2018 IEEE 23rd International Conference on Emerging
Technologies and Factory Automation (ETFA), vol. 1, 2018, pp. 290–296.
doi: 10.1109/ETFA.2018.8502457.

[82] H. Nishimoto, Y. Kawahara, and T. Asami, “Prototype implementation of
ambient RF energy harvesting wireless sensor networks”, in IEEE SEN-
SORS, Nov. 2010, pp. 1282–1287. doi: 10.1109/ICSENS.2010.5690588.

[83] F. K. Shaikh and S. Zeadally, “Energy harvesting in wireless sensor net-
works: A comprehensive review”, Renewable and Sustainable Energy Re-
views, vol. 55, pp. 1041–1054, 2016, issn: 1364-0321. doi: https://doi.
org/10.1016/j.rser.2015.11.010.

139

https://doi.org/10.1109/ETFA.2019.8869410
https://doi.org/10.1109/IPDPS.2004.1303264
https://doi.org/10.1109/COMST.2017.2728092
https://doi.org/10.1109/ETFA.2018.8502457
https://doi.org/10.1109/ICSENS.2010.5690588
https://doi.org/https://doi.org/10.1016/j.rser.2015.11.010
https://doi.org/https://doi.org/10.1016/j.rser.2015.11.010

BIBLIOGRAPHY

[84] S. Y. Shin, H. S. Park, and W. H. Kwon, “Mutual interference analysis
of IEEE 802.15.4 and IEEE 802.11b”, Computer Networks, vol. 51, no. 12,
pp. 3338–3353, 2007, issn: 1389-1286. doi: https://doi.org/10.1016/j.
comnet.2007.01.034.

[85] J. Kim, W. Jeon, K. Park, and J. P. Choi, “Coexistence of Full-Duplex-
Based IEEE 802.15.4 and IEEE 802.11”, IEEE Trans. Ind. Informat., vol. 14,
no. 12, pp. 5389–5399, Dec. 2018, issn: 1551-3203. doi: 10.1109/TII.2018.
2866307.

[86] S. Pollin, I. Tan, B. Hodge, C. Chun, and A. Bahai, “Harmful Coexistence
Between 802.15.4 and 802.11: A Measurement-based Study”, in 3rd Interna-
tional Conference on Cognitive Radio Oriented Wireless Networks and Com-
munications (CrownCom), May 2008, pp. 1–6. doi: 10.1109/CROWNCOM.
2008.4562460.

[87] L. Angrisani, M. Bertocco, D. Fortin, and A. Sona, “Assessing coexistence
problems of IEEE 802.11b and IEEE 802.15.4 wireless networks through
cross-layer measurements”, in IEEE Instrumentation Measurement Technol-
ogy Conference (IMTC), May 2007, pp. 1–6. doi: 10.1109/IMTC.2007.
379454.

[88] M. Petrova, L. Wu, P. Mahonen, and J. Riihijarvi, “Interference Measure-
ments on Performance Degradation between Colocated IEEE 802.11g/n and
IEEE 802.15.4 Networks”, in Sixth International Conference on Networking
(ICN 2007), Apr. 2007, p. 93. doi: 10.1109/ICN.2007.53.

[89] B. Polepalli, W. Xie, D. Thangaraja, M. Goyal, H. Hosseini, and Y. Bashir,
“Impact of IEEE 802.11n Operation on IEEE 802.15.4 Operation”, in 2009
Int. Conference on Advanced Information Networking and Applications Work-
shops, May 2009, pp. 328–333. doi: 10.1109/WAINA.2009.102.

[90] F. Yao, S. Yang, and W. Zheng, “Mitigating interference caused by IEEE
802.11b in the IEEE 802.15.4 WSN within the environment of smart house”,
in IEEE International Conference on Systems, Man and Cybernetics, Oct.
2010, pp. 2800–2807. doi: 10.1109/ICSMC.2010.5641899.

[91] S. Ben Yaala, F. Théoleyre, and R. Bouallegue, “Performance study of co-
located IEEE 802.15.4-TSCH networks: Interference and coexistence”, in
IEEE Symposium on Computers and Communication (ISCC), Jun. 2016,
pp. 513–518. doi: 10.1109/ISCC.2016.7543790.

[92] J. Umer, H. Di, L. Peilin, and Y. Yueming, “Frequency hopping in IEEE
802.15.4 to mitigate IEEE 802.11 interference and fading”, Journal of Sys-
tems Engineering and Electronics, vol. 29, no. 3, pp. 445–455, Jun. 2018.
doi: 10.21629/JSEE.2018.03.01.

140

https://doi.org/https://doi.org/10.1016/j.comnet.2007.01.034
https://doi.org/https://doi.org/10.1016/j.comnet.2007.01.034
https://doi.org/10.1109/TII.2018.2866307
https://doi.org/10.1109/TII.2018.2866307
https://doi.org/10.1109/CROWNCOM.2008.4562460
https://doi.org/10.1109/CROWNCOM.2008.4562460
https://doi.org/10.1109/IMTC.2007.379454
https://doi.org/10.1109/IMTC.2007.379454
https://doi.org/10.1109/ICN.2007.53
https://doi.org/10.1109/WAINA.2009.102
https://doi.org/10.1109/ICSMC.2010.5641899
https://doi.org/10.1109/ISCC.2016.7543790
https://doi.org/10.21629/JSEE.2018.03.01

BIBLIOGRAPHY

[93] S. Zoppi, H. M. Gürsu, M. Vilgelm, and W. Kellerer, “Reliable hopping se-
quence design for highly interfered wireless sensor networks”, in IEEE Inter-
national Symposium on Local and Metropolitan Area Networks (LANMAN
2017), Jun. 2017, pp. 1–7. doi: 10.1109/LANMAN.2017.7972164.

[94] G. Bianchi, “Performance analysis of the IEEE 802.11 distributed coordina-
tion function”, IEEE Journal on Selected Areas in Communications, vol. 18,
no. 3, pp. 535–547, Mar. 2000, issn: 1558-0008. doi: 10.1109/49.840210.

[95] F. Babich and M. Comisso, “Theoretical analysis of asynchronous multi-
packet reception in 802.11 networks”, IEEE Transactions on Communica-
tions, vol. 58, no. 6, pp. 1782–1794, 2010. doi: 10.1109/TCOMM.2010.06.
09,ISSN={\{}1558-0857{\}},month={\{}June{\}},.

[96] P. P. Pham, “Comprehensive Analysis of the IEEE 802.11”, Mobile Networks
and Applications, vol. 10, no. 5, pp. 691–703, Oct. 2005, issn: 1572-8153. doi:
10.1007/s11036-005-3363-x.

[97] D. De Guglielmo, B. Al Nahas, S. Duquennoy, T. Voigt, and G. Anastasi,
“Analysis and Experimental Evaluation of IEEE 802.15.4e TSCH CSMA-
CA Algorithm”, IEEE Transactions on Vehicular Technology, vol. 66, no. 2,
pp. 1573–1588, Feb. 2017, issn: 1939-9359. doi: 10 . 1109 / TVT . 2016 .
2553176.

[98] C. Ouanteur, L. Bouallouche-Medjkoune, and D. Aïssani, “An Enhanced
Analytical Model and Performance Evaluation of the IEEE 802.15.4e TSCH
CA”, Wireless Personal Communications, vol. 96, no. 1, pp. 1355–1376, Sep.
2017, issn: 1572-834X. doi: 10.1007/s11277-017-4241-0.

[99] P. Luong, T. M. Nguyen, and L. B. Le, “Throughput analysis for coexisting
IEEE 802.15.4 and 802.11 networks under unsaturated traffic”, EURASIP
Journal on Wireless Communications and Networking, vol. 2016, no. 1,
p. 127, May 2016, issn: 1687-1499. doi: 10.1186/s13638-016-0586-4.

[100] S. Y. Shin, “Throughput analysis of IEEE 802.15.4 network under IEEE
802.11 network interference”, AEU - International Journal of Electronics
and Communications, vol. 67, no. 8, pp. 686–689, 2013, issn: 1434-8411.
doi: https://doi.org/10.1016/j.aeue.2013.02.007.

[101] A. Nikoukar, S. Raza, A. Poole, M. Güneş, and B. Dezfouli, “Low-Power
Wireless for the Internet of Things: Standards and Applications”, IEEE
Access, vol. 6, pp. 67 893–67 926, 2018, issn: 2169-3536. doi: 10 . 1109 /
ACCESS.2018.2879189.

[102] P. Gaj, S. Scanzio, and L. Wisniewski, “Guest Editorial: Heterogeneous In-
dustrial Networks of the Current and Next-Generation Factories”, IEEE
Transactions on Industrial Informatics, vol. 16, no. 8, pp. 5539–5542, 2020.

141

https://doi.org/10.1109/LANMAN.2017.7972164
https://doi.org/10.1109/49.840210
https://doi.org/10.1109/TCOMM.2010.06.09, ISSN={\{}1558-0857{\}}, month={\{}June{\}},
https://doi.org/10.1109/TCOMM.2010.06.09, ISSN={\{}1558-0857{\}}, month={\{}June{\}},
https://doi.org/10.1007/s11036-005-3363-x
https://doi.org/10.1109/TVT.2016.2553176
https://doi.org/10.1109/TVT.2016.2553176
https://doi.org/10.1007/s11277-017-4241-0
https://doi.org/10.1186/s13638-016-0586-4
https://doi.org/https://doi.org/10.1016/j.aeue.2013.02.007
https://doi.org/10.1109/ACCESS.2018.2879189
https://doi.org/10.1109/ACCESS.2018.2879189

BIBLIOGRAPHY

[103] P. Thubert, “An Architecture for IPv6 over the TSCH mode of IEEE 802.15.4”,
IETF Std draft-ietf-6tisch-architecture-19, pp. 1–60, Dec. 2018.

[104] X. Vilajosana, T. Watteyne, T. Chang, M. Vučinić, S. Duquennoy, and P.
Thubert, “IETF 6TiSCH: A Tutorial”, IEEE Communications Surveys Tu-
torials, vol. 22, no. 1, pp. 595–615, 2020.

[105] X. Vilajosana, T. Watteyne, M. Vučinić, T. Chang, and K. S. J. Pister,
“6TiSCH: Industrial Performance for IPv6 Internet-of-Things Networks”,
Proceedings of the IEEE, vol. 107, no. 6, pp. 1153–1165, 2019.

[106] M. Vučinić, T. Chang, B. Škrbić, E. Kočan, M. Pejanović-Djurišić, and T.
Watteyne, “Key Performance Indicators of the Reference 6TiSCH Imple-
mentation in Internet-of-Things Scenarios”, IEEE Access, vol. 8, pp. 79 147–
79 157, 2020.

[107] “IEEE Standard for Local and metropolitan area networks–Part 15.4: Low-
Rate Wireless Personal Area Networks (LR-WPANs) Amendment 1: MAC
sublayer”, IEEE Std 802.15.4e-2012 (Amendment to IEEE Std 802.15.4-
2011), pp. 1–225, 2012.

[108] D. Stanislowski, X. Vilajosana, Q. Wang, T. Watteyne, and K. S. J. Pister,
“Adaptive Synchronization in IEEE802.15.4e Networks”, IEEE Transactions
on Industrial Informatics, vol. 10, no. 1, pp. 795–802, 2014.

[109] M. Mongelli and S. Scanzio, “A neural approach to synchronization in wire-
less networks with heterogeneous sources of noise”, Ad Hoc Networks, vol. 49,
no. 1, S. C. Mukhopadhyay, Ed., pp. 1–16, Oct. 2016, issn: 1570-8705. doi:
https://doi.org/10.1016/j.adhoc.2016.06.002. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S1570870516301366.

[110] Q. Wang, K. Jaffrès-Runser, Y. Xu, J. Scharbarg, Z. An, and C. Fraboul,
“TDMA Versus CSMA/CA for Wireless Multihop Communications: A Stochas-
tic Worst-Case Delay Analysis”, IEEE Transactions on Industrial Informat-
ics, vol. 13, no. 2, pp. 877–887, Apr. 2017, issn: 1551-3203. doi: 10.1109/
TII.2016.2620121.

[111] G. Anastasi, M. Conti, M. D. Francesco, and A. Passarella, “Energy con-
servation in wireless sensor networks: A survey”, Ad Hoc Networks, vol. 7,
no. 3, pp. 537–568, 2009, issn: 1570-8705. doi: https://doi.org/10.1016/
j.adhoc.2008.06.003.

[112] M. R. Palattella, P. Thubert, X. Vilajosana, T. Watteyne, Q. Wang, and T.
Engel, “6TiSCH Wireless Industrial Networks: Determinism Meets IPv6”,
in Internet of Things: Challenges and Opportunities, S. C. Mukhopadhyay,
Ed., Cham: Springer International Publishing, 2014, pp. 111–141, isbn: 978-
3-319-04223-7. doi: 10.1007/978-3-319-04223-7{_}5.

142

https://doi.org/https://doi.org/10.1016/j.adhoc.2016.06.002
http://linkinghub.elsevier.com/retrieve/pii/S1570870516301366
https://doi.org/10.1109/TII.2016.2620121
https://doi.org/10.1109/TII.2016.2620121
https://doi.org/https://doi.org/10.1016/j.adhoc.2008.06.003
https://doi.org/https://doi.org/10.1016/j.adhoc.2008.06.003
https://doi.org/10.1007/978-3-319-04223-7{_}5

BIBLIOGRAPHY

[113] N. Taheri Javan, M. Sabaei, and V. Hakami, “IEEE 802.15.4.e TSCH-Based
Scheduling for Throughput Optimization: A Combinatorial Multi-Armed
Bandit Approach”, IEEE Sensors Journal, vol. 20, no. 1, pp. 525–537, 2020.

[114] A. Elsts, S. Kim, H. Kim, and C. Kim, “An Empirical Survey of Autonomous
Scheduling Methods for TSCH”, IEEE Access, vol. 8, pp. 67 147–67 165,
2020.

[115] A. Karaagac, I. Moerman, and J. Hoebeke, “Hybrid Schedule Management in
6TiSCH Networks: The Coexistence of Determinism and Flexibility”, IEEE
Access, vol. 6, pp. 33 941–33 952, 2018.

[116] A. Elsts, X. Fafoutis, G. Oikonomou, R. Piechocki, and I. Craddock, “TSCH
Networks for Health IoT: Design, Evaluation, and Trials in the Wild”, ACM
Trans. Internet Things, vol. 1, no. 2, Apr. 2020, issn: 2691-1914. doi: 10.
1145/3366617. [Online]. Available: https://doi.org/10.1145/3366617.

[117] Q. Wang, X. Vilajosana, and T. Watteyne, “6TiSCH Operation Sublayer
(6top) Protocol (6P)”, IETF RFC 8480, pp. 1–50, Nov. 2018.

[118] P. Thubert, T. Winter, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister,
R. Struik, J. Vasseur, and R. Alexander, “RPL: IPv6 Routing Protocol for
Low power and Lossy Networks”, IETF RFC 6550, pp. 1–157, Mar. 2012.

[119] S. Yoo, P. K. Chong, D. Kim, Y. Doh, M. Pham, E. Choi, and J. Huh,
“Guaranteeing Real-Time Services for Industrial Wireless Sensor Networks
With IEEE 802.15.4”, IEEE Transactions on Industrial Electronics, vol. 57,
no. 11, pp. 3868–3876, Nov. 2010, issn: 1557-9948. doi: 10.1109/TIE.2010.
2040630.

[120] C.-S. Chen and D.-S. Lee, “Energy Saving Effects of Wireless Sensor Net-
works: A Case Study of Convenience Stores in Taiwan”, Sensors, vol. 11,
no. 2, pp. 2013–2034, Feb. 2011, issn: 1424-8220. doi: 10.3390/s110202013.

[121] G. Acar and A. E. Adams, “ACMENet: an underwater acoustic sensor
network protocol for real-time environmental monitoring in coastal areas”,
IEEE Proceedings - Radar, Sonar and Navigation, vol. 153, no. 4, pp. 365–
380, Aug. 2006, issn: 1350-2395. doi: 10.1049/ip-rsn:20045060.

[122] G. Cena, C. G. Demartini, M. Ghazi Vakili, S. Scanzio, A. Valenzano, and C.
Zunino, “Evaluating and Modeling IEEE 802.15.4 TSCH Resilience against
Wi-Fi Interference in New-Generation Highly-Dependable Wireless Sensor
Networks”, Ad Hoc Networks, vol. 106, p. 102 199, 2020, issn: 1570–8705.
doi: https://doi.org/10.1016/j.adhoc.2020.102199.

[123] Z. Shelby, K. Hartke, and C. Bormann, “The Constrained Application Pro-
tocol (CoAP)”, IETF RFC 7252, pp. 1–111, Jun. 2014.

143

https://doi.org/10.1145/3366617
https://doi.org/10.1145/3366617
https://doi.org/10.1145/3366617
https://doi.org/10.1109/TIE.2010.2040630
https://doi.org/10.1109/TIE.2010.2040630
https://doi.org/10.3390/s110202013
https://doi.org/10.1049/ip-rsn:20045060
https://doi.org/https://doi.org/10.1016/j.adhoc.2020.102199

BIBLIOGRAPHY

[124] J. Polastre, J. Hill, and D. Culler, “Versatile Low Power Media Access for
Wireless Sensor Networks”, in International Conference on Embedded Net-
worked Sensor Systems, ser. SenSys ’04, New York, NY, USA: ACM, 2004,
pp. 95–107, isbn: 1-58113-879-2. doi: 10.1145/1031495.1031508.

[125] X. Vilajosana, Q. Wang, F. Chraim, T. Watteyne, T. Chang, and K. S. J.
Pister, “A Realistic Energy Consumption Model for TSCH Networks”, IEEE
Sensors Journal, vol. 14, no. 2, pp. 482–489, Feb. 2014, issn: 2379-9153. doi:
10.1109/JSEN.2013.2285411.

[126] M. Ghazivakili, C. Demartini, and C. Zunino, “Industrial data-collector by
enabling OPC-UA standard for Industry 4.0”, in 2018 14th IEEE Interna-
tional Workshop on Factory Communication Systems (WFCS), Jun. 2018,
pp. 1–8. doi: 10.1109/WFCS.2018.8402364.

[127] VDI/VDE, “Status Report - The Reference Architectural Model Industrie
4.0 (RAMI4.0)”, Vdi/Vde,Zvei, vol. 0, no. April, 2015.

[128] P. Ferrari, A. Flammini, S. Rinaldi, E. Sisinni, D. Maffei, and M. Malara,
“Evaluation of Communication Delay in IOT Applications Based on OPC
UA”, 2018 Workshop on Metrology for Industry 4.0 and IoT, MetroInd 4.0
and IoT 2018 - Proceedings, pp. 224–229, 2018. doi: 10.1109/METROI4.
2018.8428346.

[129] M. Ghazi Vakili, C. Demartini, M. Guerrera, and B. Montrucchio, “Open
Source Fog Architecture for Industrial IoT Automation Based on Industrial
Protocols”, in 2019 IEEE 43rd Annual Computer Software and Applications
Conference (COMPSAC), vol. 1, 2019, pp. 570–578. doi: 10.1109/COMPSAC.
2019.00088.

[130] W. Steiner and S. Poledna, “Fog computing as enabler for the Industrial
Internet of Things”, e & i Elektrotechnik und Informationstechnik, vol. 133,
no. 7, pp. 310–314, Nov. 2016, issn: 1613-7620. doi: 10.1007/s00502-016-
0438- 2. [Online]. Available: https://doi.org/10.1007/s00502-016-
0438-2.

[131] C. C. Byers, “Architectural Imperatives for Fog Computing: Use Cases, Re-
quirements, and Architectural Techniques for Fog-Enabled IoT Networks”,
IEEE Communications Magazine, vol. 55, no. 8, pp. 14–20, Aug. 2017, issn:
0163-6804. doi: 10.1109/MCOM.2017.1600885.

[132] Develop with Docker Engine SDKs and API, Jan. 2019. [Online]. Available:
https://docs.docker.com/develop/sdk/.

[133] Node-RED, Jan. 2019. [Online]. Available: https://nodered.org/.
[134] IBM Emerging Technology, Jan. 2019. [Online]. Available: https://emerging-

technology.co.uk/.

144

https://doi.org/10.1145/1031495.1031508
https://doi.org/10.1109/JSEN.2013.2285411
https://doi.org/10.1109/WFCS.2018.8402364
https://doi.org/10.1109/METROI4.2018.8428346
https://doi.org/10.1109/METROI4.2018.8428346
https://doi.org/10.1109/COMPSAC.2019.00088
https://doi.org/10.1109/COMPSAC.2019.00088
https://doi.org/10.1007/s00502-016-0438-2
https://doi.org/10.1007/s00502-016-0438-2
https://doi.org/10.1007/s00502-016-0438-2
https://doi.org/10.1007/s00502-016-0438-2
https://doi.org/10.1109/MCOM.2017.1600885
https://docs.docker.com/develop/sdk/
https://nodered.org/
https://emerging-technology.co.uk/
https://emerging-technology.co.uk/

BIBLIOGRAPHY

[135] JS Foundation, Jan. 2019. [Online]. Available: https://js.foundation/.
[136] Grafana - The open platform for analytics and monitoring, Jan. 2019. [On-

line]. Available: https://grafana.com/.
[137] B. Z. Cadersaib, H. B. Sta, and B. A. G. Rahimbux, “Making an Inter-

operability Approach between ERP and Big Data Context”, in 2018 Sixth
International Conference on Enterprise Systems (ES), Oct. 2018, pp. 146–
153. doi: 10.1109/ES.2018.00030.

[138] J. R. Farr and M. H. Jawad, “Design of Heat Exchangers”, in, New York,
NY: ASME, 2006, ch. Design of, isbn: 0791802396. [Online]. Available: http:
//dx.doi.org/10.1115/1.802396.ch7.

[139] S. Scanzio, M. Ghazi Vakili, G. Cena, C. G. Demartini, B. Montrucchio,
A. Valenzano, and C. Zunino, Wireless Sensor Networks Dataset (TSCH a
Compromise Between Reliability, Power Consumption, and Latency), 2020.
doi: 10.21227/fg62-bp39. [Online]. Available: https://dx.doi.org/10.
21227/fg62-bp39.

[140] A. Conta, S. Deering, and M. Gupta, “Internet Control Message Protocol
(ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification”, IETF
RFC 4443, pp. 1–23, Mar. 2006.

[141] G. Cena, I. C. Bertolotti, A. Valenzano, and C. Zunino, “Evaluation of
Response Times in Industrial WLANs”, IEEE Transactions on Industrial
Informatics, vol. 3, no. 3, pp. 191–201, Aug. 2007. doi: 10.1109/TII.2007.
903219.

[142] T. Watteyne, A. Mehta, and K. Pister, “Reliability through frequency di-
versity”, in Proceedings of the 6th ACM symposium on Performance evalua-
tion of wireless ad hoc, sensor, and ubiquitous networks - PE-WASUN ’09,
ser. PE-WASUN ’09, New York, New York, USA: ACM Press, 2009, p. 116,
isbn: 9781605586182. doi: 10.1145/1641876.1641898. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1641876.1641898.

[143] P. Du and G. Roussos, “Spectrum-aware wireless sensor networks”, in IEEE
Annual International Symposium on Personal, Indoor, and Mobile Radio
Communications (PIMRC 2013), 2013, pp. 2321–2325. doi: 10.1109/PIMRC.
2013.6666532.

[144] OpenWSN, \url{https://openwsn.atlassian.net/wiki/}.
[145] OpenMote, \url{https://www.industrialshields.com/open-mote-b- industrial-

shields-open-source-device-ready-for-internet -of-things}.

145

https://js.foundation/
https://grafana.com/
https://doi.org/10.1109/ES.2018.00030
http://dx.doi.org/10.1115/1.802396.ch7
http://dx.doi.org/10.1115/1.802396.ch7
https://doi.org/10.21227/fg62-bp39
https://dx.doi.org/10.21227/fg62-bp39
https://dx.doi.org/10.21227/fg62-bp39
https://doi.org/10.1109/TII.2007.903219
https://doi.org/10.1109/TII.2007.903219
https://doi.org/10.1145/1641876.1641898
http://portal.acm.org/citation.cfm?doid=1641876.1641898
https://doi.org/10.1109/PIMRC.2013.6666532
https://doi.org/10.1109/PIMRC.2013.6666532

BIBLIOGRAPHY

[146] S. Scanzio, M. G. Vakili, G. Cena, C. G. Demartini, B. Montrucchio, A.
Valenzano, and C. Zunino, “Wireless Sensor Networks and TSCH: A Com-
promise Between Reliability, Power Consumption, and Latency”, IEEE Ac-
cess, vol. 8, pp. 167 042–167 058, 2020, issn: 2169-3536. doi: 10 . 1109 /
ACCESS.2020.3022434.

[147] R. Tavakoli, M. Nabi, T. Basten, and K. Goossens, “Topology Management
and TSCH Scheduling for Low-Latency Convergecast in In-Vehicle WSNs”,
IEEE Transactions on Industrial Informatics, vol. 15, no. 2, pp. 1082–1093,
2019.

[148] G. Cena, S. Scanzio, L. Seno, A. Valenzano, and C. Zunino, “Energy-Efficient
Link Capacity Overprovisioning In Time Slotted Channel Hopping Net-
works”, in 2020 16th IEEE International Conference on Factory Communi-
cation Systems (WFCS), 2020, pp. 1–8.

[149] L. Seno, G. Cena, S. Scanzio, A. Valenzano, and C. Zunino, “Enhancing
Communication Determinism in Wi-Fi Networks for Soft Real-Time Indus-
trial Applications”, IEEE Transactions on Industrial Informatics, vol. 13,
no. 2, pp. 866–876, 2017.

[150] G. Cena, S. Scanzio, and A. Valenzano, “SDMAC: A Software-Defined MAC
for Wi-Fi to Ease Implementation of Soft Real-Time Applications”, IEEE
Transactions on Industrial Informatics, vol. 15, no. 6, pp. 3143–3154, 2019.

[151] E. Municio, G. Daneels, M. Vučinić, S. Latré, J. Famaey, Y. Tanaka, K.
Brun, K. Muraoka, X. Vilajosana, and T. Watteyne, “Simulating 6TiSCH
networks”, Transactions on Emerging Telecommunications Technologies, vol. 30,
no. 3, e3494, 2019. doi: https://doi.org/10.1002/ett.3494. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.
3494.

[152] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and flexible
operating system for tiny networked sensors”, in 29th Annual IEEE Inter-
national Conference on Local Computer Networks, 2004, pp. 455–462. doi:
10.1109/LCN.2004.38.

[153] A. Elsts, “TSCH-Sim: Scaling Up Simulations of TSCH and 6TiSCH Net-
works”, Sensors, vol. 20, no. 19, 2020, issn: 1424-8220. doi: 10 . 3390 /
s20195663. [Online]. Available: https://www.mdpi.com/1424-8220/20/
19/5663.

[154] mbed IoT Platform, https://www.mbed.com/en/, Accessed: 2020-01-15.
[155] platformio IoT Platform, http://platformio.org/, Accessed: 2020-01-15.
[156] iotivity IoT Platform, https://iotivity.org/, Accessed: 2020-01-15.
[157] Kaa IoT Platform, https://www.kaaproject.org, Accessed: 2020-01-15.

146

https://doi.org/10.1109/ACCESS.2020.3022434
https://doi.org/10.1109/ACCESS.2020.3022434
https://doi.org/https://doi.org/10.1002/ett.3494
https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.3494
https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.3494
https://doi.org/10.1109/LCN.2004.38
https://doi.org/10.3390/s20195663
https://doi.org/10.3390/s20195663
https://www.mdpi.com/1424-8220/20/19/5663
https://www.mdpi.com/1424-8220/20/19/5663

This Ph.D. thesis has been typeset
by means of the TEX-system facil-
ities. The typesetting engine was
pdfLATEX. The document class was
toptesi, by Claudio Beccari, with
option tipotesi=scudo. This class
is available in every up-to-date and
complete TEX-system installation.

	List of Tables
	List of Figures
	Introduction
	Internet of things: Problem Statement and Challenges
	IoT Challenges
	Related work

	TSCH Wireless Sensor Network: Problem Statement and Challenges
	WSN Challenges
	Related work
	Time Slot Channel Hopping mechanism

	Industrial IoT Platform Based on RAMI 4.0
	Proposed Architectures
	DIIG-Kaa
	OPC-IoT
	DIIG-OPC algorithm
	OPC-IoT algorithm

	Performance Evaluation and Comparison
	Results
	Throughput
	Round-trip
	Fairness
	Scalability

	Conclusion

	Industrial Fog Architecture Based on Industrial Protocols
	Background
	Docker virtualization

	Proposed IFog4.0 Architecture
	Architecture
	Fog-Management
	Programming tools
	Data visualization
	Enterprise resource planning(ERP)
	Data storage
	Industrial communication

	Use Case and Results
	Testbed hardware
	IFog4.0 installation & configuration

	Wireless Sensor Network: Testbed and Experimental setup
	Experimental testbed
	Wi-Fi Interference
	OpenWSN OS
	Measurement

	Single-hop WSN: Modeling and Performance Analysis of IEEE 802.15.4 TSCH
	Two-way communication model
	Packet loss on a single hop
	Failure rate for two-way communication
	Transmission latency
	Number of retransmissions
	Modeling the transmission latency
	Channel hopping

	Experimental evaluation
	Experimental testbed
	Interfering traffic
	Measurement technique
	Matching experimental parameters

	Results
	Channel hopping disabled
	Channel hopping enabled
	Comments on channel hopping effectiveness

	Conclusions

	Multi-hop WSN: Modeling and Performance Analysis of IEEE 802.15.4 TSCH
	Mathematical model
	Reliability
	Power consumption
	Latency
	Derived quantities

	Power-consumption Model
	Characterization of power consumption

	Results
	Performance vs. slotframe length
	Performance vs. retry limit

	Practical application contexts
	Leveraging the mathematical model
	Evaluation of relevant configurations

	Conclusions

	TSCH Predictor
	Introduction
	System Architecture
	TSCH predictor configuration layer
	System core
	Simulation core

	Simulation Logic
	Interfaces
	Results

	Results
	OPC-IoT
	Fog Architecture
	Single-hop WSNs
	Multi-hop WSNs
	TSCH predictor
	Conclusion

	Publication List
	Kaa and DIIG algorithm
	Kaa IoT Platform
	DIIG Protocol

	Bibliography

