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Abstract— Electricity price is a crucial element for market 

players to maximize their profits. In this context, the forecast of 

the hour-ahead, day-ahead, and week-ahead electricity prices 

plays a crucial role. The more accurate the prediction is, the lower 

the market risk is. In this paper, several machine learning 

algorithms (Support Vector Machine, Gaussian Processes 

Regression, Regression Trees, and Multi-Layer Perceptron) with 

different structures have been adopted to forecast Italian 

wholesale electricity prices. Considering different time horizons 

(hourly, daily, and weekly), their performances have been 

compared through several performance metrics, including Mean 

Absolute Error (MAE), R-index, Mean Absolute Percentage Error 

(MAPE), and the number of anomalies in which the forecast error 

passes a threshold. 

The investigation reveals that, in general, SVM and Tree-based 

models outperform other models at different time horizons.  

Index Terms— Electricity price prediction, Different 

forecasting horizons, Italian electricity market, Machine learning, 

Prediction error distribution, PUN 

NOMENCLATURE 

ANN Artificial Neural Network 

GPR Gaussian Process Regression 

GPR M.5/2 GPR Matern 5/2 

GPR R.Q GPR Rational Quadratic 

GPR S.E GPR Squared Exponential 

ML Machine Learning 

MAE Mean Absolute Error 

MAPE Mean Absolute Percentage Error 

MGP Italian day-ahead market  

MLP Multi-Layer Perceptron 

PUN National Single Price 

NG Natural Gas 

SVM Support Vector Machines 

SVM C.G SVM Coarse Gaussian 

SVM F.G  SVM Fine Gaussian 

SVR Support Vector Regression 

I. INTRODUCTION 

LECTRICITY market price has huge volatility, and this 

increases the risk for market players. Electricity Price 

forecasts from one hour to few days ahead have become of great 

interest to power portfolio organizers, generation companies 

(GENCOs), and consumers [1]. 

Due to the importance of the electricity market price 

prediction, several approaches have been proposed so far. 

Artificial Intelligence (AI) has attracted considerable attention 

over the previous years in electricity price prediction. Many 

researchers focused on how a particular class of AI, Machine 

Learning methods (ML), can improve the time series[2]–[5]. In 

the field of prediction, the objective of ML methods is 

improving prediction accuracy by minimizing some loss 

function, and in most cases, the sum of squared errors [6], [7]. 

One of the most widely used methods is the Artificial Neural 

Network (ANN). The ANN computational procedures imitate 

the learning method of the human brain. The performance of an 

ANN is based on the structure of the network [8]. The most 

common artificial neural network utilized in the price 

forecasting process is the Multi-Layer Perceptron (MLP) [9]. 

Other algorithms adopted in this field are Support Vector 

Machines (SVM) and Gaussian Process Regression (GPR). 

They are powerful kernel-based ML methods for data analysis 

[10]. SVM and GPR are commonly supervised learning 

algorithms [11], [12]. Support vector regression (SVR) is a 

generalization of the SVM to the regression problem [13]. 

Moreover, some studies have utilized Decision Tree 

Algorithms, particularly Regression Trees, for price prediction 

problems [14]. To improve the performance of Tree-Based 

models, researchers have applied Boosting and Bagging 

techniques in the prediction process [14], [15].  

In the last years, several multi-step frameworks to forecast 

electricity prices were developed. In particular, an attractive 

combined model that includes variational mode decomposition, 

mixed data modeling, feature selection, generalized regression 

neural network, and gravitational search algorithm is proposed 

in [16]. Another example is the hybrid deep-learning 

framework, which includes the feature preprocessing module, 

the deep learning-based point prediction step, the error 

compensation, and the probabilistic prediction modules [17]. 

Another method available in literature adopts the 

components estimation techniques. This approach requires 

filtering out the deterministic structural components from the 

original time series and modeling the residual component 

utilizing some stochastic process. The final forecast is obtained 
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by combining the predictions of both these components [18]. 

Large-scale studies comparing the performance of machine 

learning models for regression problems have focused almost 

exclusively on the RESs generation prediction and load 

consumption prediction [19]–[21]. However, there are very few 

comprehensive comparison studies (if any) for electricity price 

prediction on different time horizons. 

In the previous paper [22], we have compared the main 

machine learning algorithms described above. In the present 

paper, we have extended the comparison considering different 

time horizons, including hourly, daily, and weekly. We ranked 

the algorithms based on four performance metrics, MAE, R, 

MAPE, and the number of anomalies. Moreover, by analyzing 

the error tails using the probability density function, we 

determined the overall prediction performance [23], [24]. In 

addition, we evaluated the impact of cyclical input data on 

prediction performance. 

This paper is organized as follows. Section II proposed an 

overview of conducted methods and strategies for price 

prediction. In Section III, we described the metrics adopted to 

compare the forecasting methods. Section IV provides 

information about the input data of the chosen case study. In 

Section V, the outcome of the comparisons is discussed. 

II. ALGORITHMS AND STRATEGY FOR PRICE PREDICTION 

In this section, we provided a brief description of the adopted 

methodologies. 

A. Support Vector Regression (SVR) 

SVR is categorized as a supervised learning method 

performed by a Support Vector Machine (SVM) to solve 

regression problems [10]. The principal object of SVR is 

determining hyperplanes that maximize the margin between 

classes [25]. 

SVR is categorized based on the type of kernel [26], [27] , 

which can be: Linear, Quadratic, Cubic, and Gaussian (Fine, 

and Coarse).  

B. Gaussian Process Regression (GPR) 

Gaussian Process is a collection of random variables; each 

subset of variables has a joint Gaussian distribution.  

GP is characterized by the mean function 𝑚(𝑥) and the 

covariance function 𝑘(𝑥1, 𝑥2) [28]. Eq. (1)- (3) can explain a 

real process 𝑓(𝑥) as a GP. 

𝑓(𝑥)~𝐺𝑝(𝑚(𝑥), 𝑘(𝑥1, 𝑥2)) (1) 

where: 
𝑚(𝑥) = 𝔼[𝑓(𝑥)] (2) 

𝑘(𝑥1, 𝑥2) =  𝔼[(𝑓(𝑥1) − 𝑚(𝑥1))(𝑓(𝑥2) − 𝑚(𝑥2))] (3) 

In the regression model, considering a dataset D with N 

observations; 𝐷 = { ( 𝑥𝑖 , 𝑦𝑖)| 𝑖 = 1, … , 𝑁} , with 𝑥𝑖 ∊ ℝ𝐷  and 

𝑦𝑖 ∊ ℝ the goal is to predict new 𝑦∗ given 𝑥∗ using 𝑓(𝑥) such 

that: 𝑦𝑖 =  𝑓(𝑥𝑖) + 𝛿𝑖  where 𝛿𝑖  is Gaussian noise with mean 

zero and variance 𝛿2. 

In the GPR method, various types of kernel classes can be 

used. The most important types of kernel used in this article are 

described below [28], [29]:  

• Exponential Covariance 

• Squared Exponential Covariance 

• Rational Quadratic Covariance 

• Matern Class Covariance 

C. Tree-based Methods 

Tree-based methods or Decision tree algorithms have a 

flowchart-like structure. Regression trees are a type of decision 

tree where the target variable can take numerical values. 

Regression trees models can be applied to models having both 

a large number of observations and many variables. 

Each decision tree consists of "root nodes”, “decision nodes”, 

and Leaf or Terminal nodes [30]. The minimum number of leaf 

size is a key factor to tune a Tree-based model. If it is too large, 

the accuracy of the model will be reduced. Vice-versa, if it is 

too small, the risk of overfitting will increase.  

Some techniques, which are often called “ensemble 

methods”, have been used to improve the performance of Tree-

based models. Among them, Bagging and Boosting are very 

popular, and we investigated them in this paper [31]. 

Bootstrap aggregation or Bagging Trees is a learning method 

for improving the forecast by reducing the variance related to 

prediction; it averages the results to achieve an overall forecast.  

Boosting Tree is another method for improving the result of 

the prediction. Different from bagging, boosting tree methods 

use weighted average outcomes to achieve the forecast. 

Moreover, in boosting methods, in each step, each tree is grown 

based on the information related to previously grown trees [31]. 

D. Multi-Layer Perceptron 

MLP is a feed-forward neural network. The artificial 

neurons, which are also called nodes, are organized as the Input 

layer, hidden layer (one or more), and output layer. In the input 

layer, neurons receive the input data; in the intermediate hidden 

layers, they elaborate them, and in the output layer, they provide 

the output variables. Output nodes and hidden neurons use an 

activation function, such as Sigmoid tangent functions [32]. For 

training the model, we adopted the Levenberg-Marquardt 

BackproPagation (BP) algorithm to solve the non-linear least 

squares problem [10]. 

E. Price Prediction Strategy 

There are different methods to forecast multiple horizons 

[33]. In this study, we used the Iterative Forecasting method: 

the first subsequent horizon is predicted using the full set of 

input variables; then, the predicted value is used as an input to 

forecast the next horizon. The process is carried on until the end 

of the forecast horizon. Due to using the previous forecasted 

value, for a longer horizon, the results may deteriorate. 

III. PERFORMANCE EVALUATION METRICS 

The common evaluation metrics for a regression problem are 

Mean Absolute Error (MAE), Pearson correlation coefficient 

(R), and Mean Absolute Percentage Error (MAPE). Eq. (4), eq 

(5), and eq. (6) defines MAE, R, and MAPE respectively [20], 
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[34], where: 

• 𝑥𝑗corresponds to the actual value; 

• 𝑦𝑗is the forecasted value;  

• 𝑥̅ is the average of the actual output; 

• 𝑦̅ is the average of the predicted output; 

• n is the number of observations. 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑥𝑗 − 𝑦𝑗|

𝑛

𝑗=1

 (4) 

𝑅 =
∑ (𝑥𝑗 − 𝑥̅)(𝑦𝑗 − 𝑦̅)𝑛

𝑗=1

√∑ (𝑥𝑗 − 𝑥̅)2𝑛
𝑗=1 √∑ (𝑦𝑗 − 𝑦̅)2𝑛

𝑗=1

 
(5) 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑥𝑗 − 𝑦𝑗

𝑥𝑗
|

𝑛

𝑗=1

 (6) 

For the prediction j, the error is defined by eq. (7). 

𝐸𝑟𝑟𝑜𝑟𝑗 = |𝑥𝑗 − 𝑦𝑗| (7) 

In this paper, for analyzing and comparing the performance 

of the forecasting methods, we defined an index named 

“anomaly index”, which represents the number of forecasts 

characterized by an error greater than a specific threshold, 

which is defined in two steps: first, a line (the red one in Fig. 1) 

is fitted on the ascending percentage error plot; second, the 

threshold is set considered the maximum value of the red line. 

The percentage errors higher than the threshold line (yellow) 

are considered as anomalies. The rationale is to provide a 

different kind of signal to market participants, for which the 

forecast reliability is crucial. A model with a higher number of 

anomalies causes a serious risk to decision-makers, who are 

loss-averse. This kind of participant can adjust its bidding 

strategy using a model with a lower total number of anomalies 

in price prediction. 

 
Fig. 1.  Finding anomalies 

 

 
1 Prezzo Unico Nazionale 

IV. ITALIAN ELECTRICITY MARKET CASE STUDY: INPUT 

DATA AND SETTINGS 

In this section, an introduction to the Italian power market is 

presented (subsection A). Detailed information on the 

processed input data is provided in subsection B. A descriptive 

statistic on the Italian electricity market is provided in 

subsection C. Preprocessing of the data is presented in 

subsection D. The method for determining the train and test set 

of the data is provided in subsection E. 

A. Introducing the Italian Power Market 

In the Italian Power Market, the geographical market 

includes 13 foreign virtual zones, 6 geographical zones, and 1 

pole of limited production (national virtual zone) [35]. In the 

Italian day-ahead market (MGP), the submissions of market 

participants take place between the ninth day before the day of 

physical delivery (opens at 8 AM) and the day before the day 

of delivery (closes at 12 p.m) [35].  

The MGP National Single Price (PUN) formation follows 

the following process: 

• in the first step, the supply and demand curves are 

constructed based on the merit order criterion by collecting all 

the supply and demand bids from all the zones; 

• in the second step, the interzonal transmission line limits 

are checked. If the interzonal flows are within the line limits, 

the market-clearing price is identified by the intersection of the 

demand and supply curves [36]. 

Currently, considering taxes and dispatching costs, the 

MGP National Single Price (PUN) is around 35% of the Italian 

final electricity bills. 

In this study, several algorithms are adopted to predict the 

MGP National Single Price 1(PUN), which is defined as the 

average of zonal prices in the MGP, weighted for total 

purchases and net of purchases for pumped-storage units and of 

purchases by neighboring countries’ zones [35]. 

B. Input Data 

The electricity wholesale price depends on several factors, 

such as load forecasts, fuel costs, weather data, scheduled 

maintenance. In our study, we selected only relevant and public 

data based on an extensive literature review [3], [9]. The 

variables adopted to forecast PUN are listed in Table 1.  

All the data, including load consumption, electricity price, 

and Natural Gas (NG) price, are taken from Gestore dei Mercati 

Energetici (GME) for 2017, 2018, 2019, and 2020 [35]. Data 

are gathered on an hourly basis, except for NG price, which is 

gathered on a daily basis. In our dataset, all variables were 

complete, and there was not any gap in the data. 

As mentioned before, in the iterative forecasting method to 

predict the next step in the longer horizon, the model uses the 

previous forecasted value instead of the actual value. In the 

daily forecast, the data related to the previous 24 hours average 

price will be updated in each step. On a weekly horizon, the 

previous 24 hours average price and the previous day same hour 

price will be updated in the next step. Due to inaccessibility to 
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data related to the previous day NG price in the weekly forecast, 

this input variable is removed in the week-ahead prediction.  

Each year consists of 8,760 hours (except 2020, which was a 

leap year, which consisted of one additional day making 8,784 

hours), resulting in 35064 observations for the given period.  

The hours from 08:00 to 20:00 on working days are 

considered as peak hours, and all the hours of non-working days 

and the hours from 00:00 to 08:00 and from 20:00 to 24:00 on 

working days are considered as off-peak hours [35]. 

In the hourly forecast (one-step-ahead), all the predictors are 

considered in the training process. In the daily forecast, the 

predictor related to the previous 24 hours average price is 

updated in each iteration, replaced by a new forecasted price. In 

the weekly forecast, the previous day's natural gas price is 

unavailable. Previous 24 hours average electricity price and 

previous day same hour electricity price are updated by new 

predicted prices. 
TABLE 1 

ALL VARIABLES FOR PUN PREDICTION (✓: AVAILABLE, : NOT 

AVAILABLE, AND U: UPDATED IN EACH ITERATION) 

Input Variables Units Hourly Daily Weekly 

Hour 1-24 ✓ ✓ ✓ 

Hour type 
0(Peak), 

1(Off-Peak) 
✓ ✓ 

✓ 

Week Day 1-7 ✓ ✓ ✓ 

Day type 
0(weekday) 

1(weekend) 
✓ ✓ 

✓ 

Season type 1-4 ✓ ✓ ✓ 

Forecasted load MWh ✓ ✓ ✓ 

Previous day same 

hour load 
MWh ✓ ✓ 

✓ 

Previous week same 

hour load 
MWh ✓ ✓ 

✓ 

Previous 24 hours 

average load 
MWh ✓ ✓ 

✓ 

Previous day same 

hour price 
€/MWh ✓ ✓ U 

Previous week same 

hour price 
€/MWh ✓ ✓ ✓ 

Previous 24 hours 

average price 
€/MWh ✓ U U 

Previous day NG 

price 
€/MWh ✓ ✓  

Previous week 

average NG price 
€/MWh ✓ ✓ ✓ 

C. Descriptive Statistics on the Italian electricity market 

The raw data of hourly PUN and load consumption in each 

year from 2017 to 2020 are depicted in Fig. 2. The correlation 

between PUN and load is also presented in this figure.  

The boxplot of annual PUN statistics and annual load 

statistics from 2017 to 2020 are plotted in Fig. 3. TABLE 2 

presents a descriptive statistic of annual load and price for four 

years. 

Based on Fig. 3 and Table 2, after 2018, it can be seen that 

there is a decreasing trend of load, which leads to a decrease in 

the PUN trend.  

D. Data Preprocessing 

To maximize the performance of the models, we preprocess 

the data as described below. 

1) Data normalization 

We normalized the data so that each value is bounded between 

0 and 1 based on eq. (8) [37]: 

𝑞∗ =
𝑞 − 𝑄𝑚𝑖𝑛

𝑄𝑚𝑎𝑥 − 𝑄𝑚𝑖𝑛

 
(8) 

where 𝑞∗ is the scaled value of 𝑞, and 𝑄𝑚𝑎𝑥 and 𝑄𝑚𝑖𝑛  are the 

maximum and minimum value of dataset 𝑄. 

 
Fig. 2.  Electricity load consumption and PUN in each year 

 
(A) 

 
(B) 

Fig. 3.  Boxplot of annual PUN statistics (A) and annual load statistics (B). 

On each box central red line indicates the median; the grey circle indicates the 

mean, and the upper and lower edges of the box indicate the 25th and 75th 

percentiles, respectively. The whiskers extend to 1.5 times the interquartile 

range, and outlier appears as a blue + sign, is the value away from whiskers 

range, green dashed line indicated the yearly trend 
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TABLE 2 

DESCRIPTIVE STATISTICS OF ANNUAL LOAD AND PRICES (2017-2020)[38] 

 

2) Handling cyclical input data 

Hours of the day, days of the week, seasons in a year are all 

examples of input data that are cyclical. There is one major 

issue with these cyclical input data. In the prediction methods, 

the cyclical feature such as the hour of a day does not hold any 

numerical ordering (‘1’ < ‘2’ < ‘3’), and some machine learning 

methods will not be able to understand that naturally. To 

overcome this issue, there are some different methods to handle 

such input data. They involve creating dummy variables and 

representing the cyclical input data as (𝑥, 𝑦) coordinates on a 

circle: the first approach, dummy encoding, a dummy variable 

takes values of 0 and 1, where the values indicate the presence 

or absence of a group membership. in the second method, 

trigonometric encoding, each cyclical variable be mapped onto 

a circle which the lowest value for that variable appears right 

next to the largest value. The transferred values of that point can 

be calculated using 𝑐𝑜𝑠  and 𝑠𝑖𝑛 trigonometric functions [39]. 

𝑥1
′ = cos(

2𝜋𝑥

𝐶𝑛

) (9) 

𝑥2
′ = sin(

2𝜋𝑥

𝐶𝑛

) (10) 

where 𝑥 is the sample before conversion, and 𝐶𝑛 is the period 

of the cycle.  

In this study, we have evaluated the impact of these methods 

to increase forecast accuracy. 

E. Determining training and testing sets  

Training and validation sets are used to fit the model and tune 

the model hyperparameters, respectively. A test set is utilized 

to provide an unbiased estimation of the final model [40].  

In our study, by using the holdout method, we split up the 

dataset into train, validation, and test (prediction) sets. 55% of 

the dataset is considered a train, 20% validation, and 25% a test 

set. In other words, the period Jan 1, 2017, to Dec 31, 2019, is 

considered a train and validation, and the entire period of 2020 

is considered the test set. 

V. DISCUSSION ON THE RESULTS 

The objective of this study is to compare the performance of 

the methods described in section II for predicting electrical 

prices at different time horizons. To carry out a more extensive 

analysis, we compared different versions/structures of the same 

algorithm. For the algorithms SVM and GPR, the different 

kernels are described in subsection II.A and II.B were 

implemented, respectively. For MLP, we built neural networks 

characterized by two hidden layers, and we changed the number 

of neurons per layer: the notation MLP {x,y} means that the 

MLP model has x neurons in the first hidden layer and y 

neurons in the second one. Based on the literature, there is 

currently no theoretical reason to use neural networks with 

more than two hidden layers [41]. Carrying out some 

preliminary tests, we found that two hidden layers can generally 

minimize errors and improve prediction accuracy. There are 

many methods for defining the correct number of neurons in the 

hidden layers [42]–[45]. Based on the criteria in the mentioned 

literature and the trial-and-error approach, we selected the 

number of neurons in each hidden layer between 5 to 10 in the 

first hidden layer and 5 to 15 in the second hidden layer. For the 

sake of completeness and to show the impact of the number of 

neurons, we analyzed six different structures in the paper. 

Finally, Tree-based methods described in subsection II.C 

were implemented, considering the different number of leaf 

sizes; the notation adopted to describe the properties of tree-

based methods is composed by the name of the algorithm 

(Bagged Trees or Boosted Trees) followed by the minimum 

number of leaf size. The leaf size is a crucial factor in tuning a 

Tree-based model. If it is too large, the accuracy of the model 

will be reduced. Vice-versa, if it is too small, the risk of 

overfitting will increase.  

Table 3 ranks the compared forecasting models on different 

performance metrics in the hour-ahead horizon. The models are 

implemented in MATLAB software on an Intel(R) Core(TM) 

i7-8700 @ 3.20GHz, RAM 32GB system. 

Each numerical value is the mean of the metrics computed 

for each test data sample (8784 hours – year 2020). The results 

in Table 3 show that the SVM methods generally outperform 

the remaining ML methods in all performance metrics, except 

the total number of anomalies.  

As we explain in section II.E, we used the iterative 

forecasting method to obtain forecasted values for daily and 

weekly horizons. All performance comparisons reported in 

Table 4 are based on the average performance of 366 days 

forecast of test data. As expected, by increasing the forecasting 

horizon, from hour-ahead to day-ahead, the accuracy of the new 

forecasts depends on the accuracy of the previous ones, which 

results in deteriorated predictions on a longer horizon. Based on 

Table 4, considering MAE, the group of GPR method was more 

sensitive to increasing the prediction horizon, an average 

increase of 3.28 €/MWh on MAE. Vice-versa, the SVM 

methods were less sensitive with an average increment of 1.5 

€/MWh on MAE. TABLE 5 allows us to investigate the 

performance obtained by each method across the weekly 

horizon. In the transition from hourly horizon to weekly 

horizon, on average, the MAE of the SVM group increased by 

1.7 €/MWh. The deterioration in the MAE for MLP, Tree-

based, and GPR is different, with an increment of 2.3, 1.51, and 

4.41 €/MWh, respectively. 

It is also worth mentioning that the results are the same as the 

previous one in the transition from day-ahead to a week ahead 

horizon. In addition, to seek more insight into the results listed 

in the previous tables, we have compared the total anomalies in 

percentage error for each method in different horizons. 

Year 2017 2018 2019 2020 

L
o

ad
 

(M
W

) 

Max 50333 52412 53824 49964 

Min 17212 17610 17014 15334 

Mean 33271 33934 33579 31102 

Std 7568 7555 7731 7449 

P
U

N
 

(€
/M

W
h
) 

Max 170 159.4 108.4 162.6 

Min 10 6.97 1 0 

Mean 53.95 61.31 52.32 38.91 

Std 16.46 14.84 12.68 14.65 
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TABLE 3 

RANKING OF DIFFERENT PREDICTION METHODS IN HOUR-AHEAD FORECAST CONSIDERING SEVERAL INDEXES: MAE, R, MAPE [20], [34], AND ANOMALIES [22] 

Rank 
Methods order by 

MAE 
MAE 

Methods order by 
R 

R 
Methods order by 

MAPE 
MAPE 

Methods order by  
Anomalies 

Anomalies Methods  References 

1 SVM Quadratic 3.703 SVM Quadratic 0.945 SVMLinear 15.833 Bagged Trees 30 82 Bagged Trees 10 [14], [31] 

2 SVMLinear 3.769 SVM C.G 0.944 GPR M.5/2 15.979 Bagged Trees 10 84 Bagged Trees 20 [14], [31] 

3 MLP {5 5} 3.873 SVMLinear 0.941 SVM Quadratic 16.162 Bagged Trees 20 95 Bagged Trees 30 [14], [31] 

4 SVM C.G 3.885 SVM Cubic 0.936 MLP {5 5} 16.308 Bagged Trees 40 96 Bagged Trees 40 [14], [31] 

5 MLP {10 5} 3.901 GPR Exponential 0.936 SVM Cubic 16.421 SVM F.G 108 Boosted Tress 10 [14], [31] 

6 MLP {10 15} 3.952 MLP {10 5} 0.935 MLP {10 15} 16.66 GPR Exponential 118 GPR Exponential [28] 

7 SVM Cubic 4.093 GPR M.5/2 0.934 MLP {10 5} 16.797 GPR R.Q 121 GPR Matern 52 [28] 

8 MLP {5 15} 4.183 MLP {5 5} 0.931 MLP {10 10} 16.887 Boosted Tress 10 126 GPR R.Q [28] 

9 GPR M.5/2 4.305 MLP {5 15} 0.928 MLP {5 15} 16.91 MLP {5 5} 132 GPR S.E [28] 

10 MLP {10 10} 4.325 GPR S.E 0.925 GPR S.E 17.037 SVM C.G 144 MLP {5 5} [32] 

11 MLP {5 10} 4.349 MLP {5 10} 0.924 MLP {5 10} 17.097 SVM Quadratic 145 MLP {5 10} [32] 

12 GPR Exponential 4.537 MLP {10 10} 0.921 SVM C.G 19.656 SVMLinear 148 MLP {5 15} [32] 

13 GPR S.E 4.729 GPR R.Q 0.919 GPR Exponential 21.549 MLP {5 15} 149 MLP {10 5} [32] 

14 Boosted Tress 10 5.063 MLP {10 15} 0.919 Bagged Trees 30 24.674 SVM Cubic 179 MLP {10 10} [32] 

15 GPR R.Q 5.229 Boosted Tress 10 0.915 Bagged Trees 40 24.947 MLP {10 10} 179 MLP {10 15} [32] 

16 Bagged Trees 40 5.255 Bagged Trees 40 0.906 GPR R.Q 27.139 MLP {10 5} 186 SVM C.G [26], [27] 

17 Bagged Trees 30 5.5 Bagged Trees 30 0.905 Bagged Trees 20 27.369 GPR S.E 200 SVM Cubic [26], [27] 

18 Bagged Trees 10 5.765 Bagged Trees 20 0.894 Boosted Tress 10 27.696 GPR M.5/2 201 SVM F.G [26], [27] 

19 Bagged Trees 20 5.774 Bagged Trees 10 0.887 Bagged Trees 10 30.106 MLP {10 15} 225 SVM Quadratic [26], [27] 

20 SVM F.G 19.23 SVM F.G 0.549 SVM F.G 103.61 MLP {5 10} 254 SVMLinear [26], [27] 

 
TABLE 4 

RANKING OF DIFFERENT PREDICTION METHODS IN DAY-AHEAD FORECAST CONSIDERING SEVERAL INDEXES: MAE, R, MAPE [20], [34], AND ANOMALIES [22] 

Rank 
Methods order by 

MAE 
MAE 

Methods order by 
R 

R 
Methods order by 

MAPE 
MAPE 

Methods order by  
Anomalies 

Anomalies Methods  References 

1 SVMLinear 4.359 SVMLinear 0.921 MLP {5 15} 17.251 Bagged Trees 20 98 Bagged Trees 10 [14], [31] 

2 SVM Quadratic 4.403 SVM C.G 0.921 MLP {5 10} 17.312 Bagged Trees 10 101 Bagged Trees 20 [14], [31] 

3 MLP {5 5} 4.419 SVM Quadratic 0.92 MLP {5 5} 17.476 Bagged Trees 30 103 Bagged Trees 30 [14], [31] 

4 MLP {5 15} 4.515 MLP {5 5} 0.914 MLP {10 15} 17.773 SVM F.G 114 Bagged Trees 40 [14], [31] 

5 MLP {10 15} 4.637 MLP {5 10} 0.913 MLP {10 10} 18.019 Bagged Trees 40 119 Boosted Tress 10 [14], [31] 

6 MLP {5 10} 4.702 MLP {5 15} 0.91 MLP {10 5} 18.592 Boosted Tress 10 127 GPR Exponential [28] 

7 MLP {10 5} 4.714 MLP {10 15} 0.91 SVM Quadratic 18.938 GPR R.Q 142 GPR Matern 52 [28] 

8 SVM C.G 4.725 MLP {10 5} 0.906 SVMLinear 19.181 GPR Exponential 142 GPR R.Q [28] 

9 MLP {10 10} 4.859 MLP {10 10} 0.904 SVM Cubic 22.917 GPR Matern 52 144 GPR S.E [28] 

10 SVM Cubic 6.009 Boosted Tress 10 0.887 GPR S.E 23.888 SVM C.G 151 MLP {5 5} [32] 

11 Boosted Tress 10 6.116 SVM Cubic 0.867 SVM C.G 24.37 SVMLinear 156 MLP {5 10} [32] 

12 Bagged Trees 40 6.663 Bagged Trees 40 0.867 Bagged Trees 40 28.652 SVM Quadratic 158 MLP {5 15} [32] 

13 Bagged Trees 10 6.725 Bagged Trees 30 0.858 GPR R.Q 28.966 MLP {10 5} 181 MLP {10 5} [32] 

14 Bagged Trees 20 7.001 Bagged Trees 20 0.853 Bagged Trees 30 30.082 MLP {5 5} 182 MLP {10 10} [32] 

15 GPR S.E 7.032 Bagged Trees 10 0.845 Bagged Trees 20 31.02 MLP {5 10} 183 MLP {10 15} [32] 

16 Bagged Trees 30 7.355 GPR S.E 0.835 Boosted Tress 10 31.693 MLP {10 15} 189 SVM C.G [26], [27] 

17 GPR R.Q 7.395 GPR R.Q 0.813 Bagged Trees 10 32.826 SVM Cubic 197 SVM Cubic [26], [27] 

18 GPR Matern 52 7.985 GPR Exponential 0.79 GPR Matern 52 32.954 MLP {10 10} 202 SVM F.G [26], [27] 

19 GPR Exponential 9.371 GPR Matern 52 0.789 GPR Exponential 39.325 GPR S.E 205 SVM Quadratic [26], [27] 

20 SVM F.G 20.3 SVM F.G 0.502 SVM F.G 106.64 MLP {5 15} 223 SVMLinear [26], [27] 

 
TABLE 5 

RANKING OF DIFFERENT PREDICTION METHODS IN WEEK-AHEAD FORECAST CONSIDERING SEVERAL INDEXES: MAE, R, MAPE [20], [34],AND ANOMALIES [22] 

Rank 
Methods order by 

MAE 
MAE 

Methods order by 
R 

R 
Methods order by 

MAPE 
MAPE 

Methods order by  
Anomalies 

Anomalies Methods  References 

1 SVM Quadratic 5.057 SVM Quadratic 0.899 SVMLinear 22.153 SVM F.G 113 Bagged Trees 10 [14], [31] 

2 SVMLinear 5.112 SVMLinear 0.897 SVM Quadratic 22.585 Bagged Trees 30 115 Bagged Trees 20 [14], [31] 

3 MLP {5 10} 5.407 SVM C.G 0.894 MLP {5 10} 24.219 MLP {10 5} 118 Bagged Trees 30 [14], [31] 

4 SVM C.G 5.56 MLP {5 15} 0.885 MLP {10 15} 24.346 Bagged Trees 20 125 Bagged Trees 40 [14], [31] 

5 MLP {5 15} 5.676 MLP {5 10} 0.884 MLP {5 5} 24.939 Bagged Trees 40 125 Boosted Tress 10 [14], [31] 

6 MLP {10 15} 6.319 Bagged Trees 10 0.867 SVM Cubic 25.292 Boosted Tress 10 130 GPR Exponential [28] 

7 Bagged Trees 10 6.513 MLP {10 5} 0.866 MLP {5 15} 25.466 GPR R.Q 132 GPR Matern 52 [28] 

8 MLP {10 10} 6.537 MLP {5 5} 0.864 GPR Matern 52 28.181 GPR Exponential 132 GPR R.Q [28] 

9 MLP {5 5} 6.541 Boosted Tress 10 0.859 SVM C.G 28.795 Bagged Trees 10 137 GPR S.E [28] 

10 SVM Cubic 6.713 MLP {10 15} 0.856 MLP {10 10} 29.448 GPR Matern 52 138 MLP {5 5} [32] 

11 Boosted Tress 10 6.88 MLP {10 10} 0.854 MLP {10 5} 32.223 SVM C.G 152 MLP {5 10} [32] 

12 Bagged Trees 40 7.196 Bagged Trees 40 0.849 GPR R.Q 34.072 SVMLinear 153 MLP {5 15} [32] 

13 Bagged Trees 30 7.309 SVM Cubic 0.848 Boosted Tress 10 34.564 MLP {5 10} 158 MLP {10 5} [32] 

14 Bagged Trees 20 7.311 Bagged Trees 20 0.845 Bagged Trees 10 34.867 MLP {10 10} 158 MLP {10 10} [32] 

15 GPR Matern 52 7.354 Bagged Trees 30 0.838 GPR S.E 36.416 SVM Quadratic 164 MLP {10 15} [32] 

16 MLP {10 5} 8.156 GPR Matern 52 0.819 Bagged Trees 20 42.39 MLP {10 15} 181 SVM C.G [26], [27] 

17 GPR R.Q 8.244 GPR S.E 0.817 Bagged Trees 30 43.811 GPR S.E 188 SVM Cubic [26], [27] 

18 GPR S.E 9.685 GPR R.Q 0.796 Bagged Trees 40 43.855 SVM Cubic 192 SVM F.G [26], [27] 

19 GPR Exponential 11.196 GPR Exponential 0.758 GPR Exponential 45.88 MLP {5 15} 195 SVM Quadratic [26], [27] 

20 SVM F.G 20.716 SVM F.G 0.504 SVM F.G 107.9 MLP {5 5} 255 SVMLinear [26], [27] 

 

 



 7 

The results show that having better performance in MAE and 

R index does not necessarily mean having fewer outliers in the 

percentage error. As seen in the results, methods with low MAE 

might result in higher total anomalies.  

To make easier the visualization of the performance, the 

radar graph for four considered indicators are depicted in Fig. 4 

- Fig. 7. It is necessary to mention that the indicators are 

normalized between 0 and 1. Also, to have a better overview, 

we inverted the MAE, the Total number of anomalies, and 

MAPE, i.e., we apply the 1−normalizes metric. In this regard, 

the models with the best performance should present a 

performance closer to 1 for all indicators. The best model is the 

one with the largest sides.  

Due to the worse performance of the SVM fine Gaussian 

method compared to other methods in the R index, the values 

related to this method are eliminated in the radar graph 

illustration.  Looking at the results, we can see that the SVM 

model kept good performances as the prediction horizon grew 

considering MAE, R index, and MAPE. Moreover, on longer 

horizon, after SVM, Tree-based models have an impressive 

improvement. Fig. 4 also affirms, in most cases in the MLP 

model, an inverse relationship between the number of neurons 

and performance improvement. The higher the number of 

neurons, the lower the accuracy. GPR models have worse 

performance in MAE, R, and MAPE metrics, particularly in the 

longer horizon. Bagged Trees have better performance in 

considering the number of anomalies.  

 
Fig. 4.  1-normalized MAE; best performance = 1, worst performance= 0. 

 
Fig. 5.  R index; best performance = 1, worst performance= 0. 

 
Fig. 6.  1-normalized MAPE; best performance = 1, worst performance= 

0.. 

 
Fig. 7.  1-normalized total number of anomalies; best performance = 1, 

worst performance= 0. 

 

o present the performance of the models in the day-ahead 

forecast, Fig. 8 shows the prediction results of four methods as 

a representative of each group, that is, SVM Linear, Bagged 

Regression Trees with 40 leaves, MLP with 5 neurons in the 

first hidden layer and 5 neurons in the second hidden layer, and 

GPR Squared Exponential. The results are produced on test data 

for an example day,11-Nov-2020. Based on this figure, in the 

peak price, the Bagged tree always follows the same price of 

the previous day, but other methods adjusted the predicted price 

based on the average of the previous week and the previous day. 

It is necessary to mention that the behavior of prediction 

methods is different in other seasons. 

Fig. 9 draws the results of the week-ahead prediction on test 

data for an example week, 46th week of 2020.  

As discussed in TABLE 5, bagged SVM and MLP models 

outperform GPR and bagged trees in the week-ahead horizon. 

In comparison to the day-ahead forecast, the performance of 

GPR is more sensitive to increasing the prediction horizon and 

much weaker than other algorithms. Although the prediction 

accuracy of GPR decreased by increasing the horizon, it follows 

the trend of the actual price. 

Distributions of model errors for hourly, daily, and weekly 

horizon forecast are visualized in Fig. 10 to Fig. 12. In these 

figures, prediction error distributions of the four selected  
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Fig. 8.  The forecasts of four methods (SVM Linear, GPR S.E, Bagged 

Regression tree40, and MLP {5 5}) as a representative of each group for 316th 

day of 2020 (11-Nov-2020). 

 
Fig. 9.  The forecasts of four methods (SVM Linear, GPR S.E, Bagged 

Regression tree40, and MLP {5 5}) as a representative of each group for 46th 

week of 2020 (8-Nov-2020 to 15-Nov-2020). 

methods are compared. Higher central error peak and thinner 

tails are the key features of a successful model in the forecast 

process [24].  

In the electricity market, participants often prefer to use a 

model with lower and thinner tail errors in forecasting 

electricity prices. In fact, a model with fat error tails increases 

the probability of inaccurate predictions and causes a serious 

risk to market participants. It is also worth mentioning that a 

model with lower and thinner tail risk is more interesting to 

investigators in the electricity market; even the model has a 

higher general performance considering general performance 

indexes, e.g., MAE [24].  

In the hourly-ahead forecast, Fig. 10, the SVM and MLP 

models have a higher central error peak. On the other hand, 

GPR has a lower central error peak and fat tail error. In general, 

the figure reflects TABLE 3. 

In the daily horizon, as shown in Fig. 11, we can see the error 

distributions model got worse regarding the hourly-ahead 

forecast. Increasing the forecast horizon from one-hour-step to 

24-hour-step yields fatter tails error, with decreasing central 

error peak. Based on this figure, a significantly lower central 

error peak and fatter tail error in the GPR model are apparent. 

The obtained performance of the GPR model indicates a certain 

inconsistency in the predictability of electricity price in the 

transition from hour-ahead to day-ahead forecast.  

According to Fig. 12, the transition from day-ahead to week-

ahead prediction makes a slightly rightward shift of the error 

distribution and increases error tail mass in all methods. The 

transition results in more deterioration of the GPR and MLP 

prediction performance. Unlike with GPR, increasing the time 

forecasting horizon causes less impact on the performance of 

the SVM model. The error distribution in Fig. 12 also reflects 

TABLE 5. 

 
Fig. 10.  Kernel density estimates of forecast Error for Hourly-Horizon 

 
Fig. 11.  Kernel density estimates of forecast Error for Daily-Horizon 

 
Fig. 12.  Kernel density estimates of forecast Error for Weekly-Horizon 
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Computational complexity is a crucial aspect of comparing 

different machine learning algorithms. The Big O notation is 

used to rank the algorithms by how they operate depending on 

the dataset's dimension they are working on [46]. 

Based on the [47], for a training dataset of size 𝑁, SVM has 

training time complexity 𝑂(𝑁2)or 𝑂(𝑁3) depending on the 

kernel. On the other hand, GPR models suffer from 

𝑂(𝑁3) training computational complexity, making it difficult 

in the massive dataset [48].  

In Decision tree algorithms, consider that the dataset has 𝑁 

observation, and 𝑑  numerical features. When the numerical 

feature needs to be sorted, sorting one feature takes 𝑂(𝑁 ∗
𝑙𝑜𝑔(𝑁)) . Then sorting all the features take 𝑂(𝑁 ∗ 𝑙𝑜𝑔 𝑁 ∗
𝑑) .To calculate Information gain at each threshold, for one 

feature it takes 𝑂(𝑁), and for 𝑑  features, it takes 𝑂(𝑁 ∗ 𝑑). 

Then computational complexity is 𝑂(𝑁 ∗ 𝑙𝑜𝑔(𝑁) ∗ 𝑑)+ 𝑂(𝑁 ∗
𝑑). Finally, in the Big O notation, 𝑂(𝑁 ∗ 𝑙𝑜𝑔(𝑁) ∗ 𝑑)+ 𝑂(𝑁 ∗
𝑑) will be almost equal to 𝑂(𝑁 ∗ 𝑙𝑜𝑔(𝑁) ∗ 𝑑) [49]. 

The computational complexity of MLP is related to the 

architecture of the model. The computational complexity for 

training MLP with two hidden layers is 𝑂(𝑁 ∗ 𝑤) where 𝑤 =
𝑖 ∗ 𝑗 + 𝑗 ∗ 𝑘 + 𝑘 ∗ 𝑙 and 𝑖 denotes the number of nodes of the 

input layer, 𝑗 the number of nodes in the first hidden layer, 𝑘 

the number of nodes in the second hidden layer and 𝑙  the 

number of nodes in the output layer [50]. The ranking of 

different machine learning algorithms is listed in Table 6. 

 
Table 6 

RANKING OF DIFFERENT PREDICTION METHODS BASED ON THE Time 

COMPLEXITY (BIG O NOTATION) 

Rank 
Methods order by 

Time complexity 
Big 𝑂 notation References 

1 MLP 𝑂(𝑁 ∗ 𝑤) [50] 

2 Decision Tree 𝑂(𝑁 ∗ log(𝑁) ∗ 𝑑) [49] 

3 SVM 𝑂(𝑁2) or 𝑂(𝑁3) [47] 

4 GPR 𝑂(𝑁3) [48] 

Cyclical input data in the time series can have a different 

impact on the subsequent forecasting performance. Therefore, 

it is important to estimate it. As discussed in paragraph IV.D.2), 

two methods are popular to manage cyclical data: the dummy 

encoding and the trigonometric encoding. We applied both. For 

the first one, 24 dummies are created representing hours of a 

day, 7 dummies for days of a week, and 4 dummy variables for 

seasons of a year. For the second, a single variable is 

transformed into two variables by taking cos and sin of data. 

We considered the day-ahead time horizon and four methods 

as a representative of each ML group.  

 
Fig. 13.  Impact of encoding cyclical input data considering MAE index 

 
Fig. 14.  Impact of encoding cyclical input data considering R index 

Bar charts in Fig.14-Fig.17 depict the MAE, R, MAPE, and 

the number of anomalies, respectively. In the figures, three 

cases are represented: in the first, no algorithm is adopted to 

manage cyclical input data (green bars); in the second, the 

dummy encoding method is used (blue bars); in the third, the 

trigonometric encode method is adopted (yellow bars). 

 
Fig. 15.  Impact of encoding cyclical input data considering MAPE index 

 
Fig. 16.  Impact of encoding cyclical input data considering the total 

number of anomalies 

Performance indicators recorded a statistically slight 

increment in forecast error. The exception is for GPR Squared 

Exponential Method, whose performance after transferring data 

using dummy variables is improved. 

VI. CONCLUSION  

In this study, the applicability and accuracy of four relevant 

predictive models (SVM, GPR, MLP, and Tree-Based 

methods) in hour-ahead, day-ahead, week-ahead electricity 

price prediction of the Italian electricity market were 

investigated. To obtain a multiple-horizon forecast, the Iterative 

forecasting method was applied. Data obtained from Gestore 

dei Mercati Energetici (GME), Italian energy markets manager, 

were used in the applications. Based on the dataset's 

availability, several inputs from the electricity market were 

considered, such as the electricity prices and the demand 
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forecast. Besides, we considered the natural gas price, which 

specifically impacts the Italian electricity market. The 

outcomes were compared through several performance metrics, 

including MAE, R, MAPE, and the total number of anomalies. 

Also, the algorithms are ranked based on the computational 

time complexity (big O). Along with using the total number of 

anomalies as a performance indicator, the kernel smoothing 

function was used to analyze the error tails in each prediction 

method. 

The investigation on the results at above twenty models has 

identified SVM models as suited to forecast hourly wholesale 

electricity price. Furthermore, it was found that an irrational 

increase in the complexity of the MLP model does not lead to 

increased accuracy.  

Investigating the results in day-ahead prediction reveals that 

SVM and MLP model had a certain consistency in the 

prediction, transition from hour-ahead to day-ahead forecast. 

Across the weekly horizon, comparison studies can show that 

SVM and MLP models are not only the appropriate models in 

performance accuracy but also well suited to reduce the error 

tails risk. In this regard, these two methods are the appropriate 

models for decision-makers in the Italian electricity market. 

The impact of cyclical input data on subsequent forecasting 

performance was evaluated in the last part of this study. 

Considering different performance metrics, we have concluded 

that encoding the cyclical input data using dummies and 

trigonometric function leads to worse results than without 

encoding. The results of this study are advantageous for 

generator companies, utility companies, retailers, and large 

industrial consumers who can predict the volatile wholesale 

prices with a rational level of accuracy to adjust its bidding 

strategy, reduce the risk or maximize the profits in the day-

ahead electricity market.  

There exist several avenues for future studies. Since the 

comparison of the prediction methods of this work is based on 

the Italian day-ahead market (MGP), investigating the 

performance of the models on other electricity markets, e.g., 

Intra-Day Market (MI) and Ancillary Services Market (MSD), 

is more advantageous for market participants. Moreover, 

developing and comparing price prediction models would be 

interesting for the longer horizon, e.g., month-ahead horizon. 
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