
13 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Practical complexities of probabilistic algorithms for solving Boolean polynomial systems / Barbero, Stefano; Bellini,
Emanuele; Sanna, Carlo; Verbel, Javier. - In: DISCRETE APPLIED MATHEMATICS. - ISSN 0166-218X. -
ELETTRONICO. - 309:(2022), pp. 13-31. [10.1016/j.dam.2021.11.014]

Original

Practical complexities of probabilistic algorithms for solving Boolean polynomial systems

Elsevier preprint/submitted version

Publisher:

Published
DOI:10.1016/j.dam.2021.11.014

Terms of use:

Publisher copyright

Preprint (submitted version) of an article  published in DISCRETE APPLIED MATHEMATICS © 2022,
http://doi.org/10.1016/j.dam.2021.11.014

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2940876 since: 2021-11-28T11:42:02Z

Elsevier



Practical complexities of probabilistic algorithms for

solving Boolean polynomial systems

Stefano Barbero‡ Emanuele Bellini† Carlo Sanna‡ Javier Verbel†

†Cryptography Research Centre
Technology Innovation Institute

Abu Dhabi, UAE
emanuele.bellini@tii.ae

javier.verbel@tii.ae

‡Department of Mathematical Sciences
Politecnico di Torino

Torino, IT
stefano.barbero@polito.it

carlo.sanna.dev@gmail.com

Abstract

Solving a polynomial system over a finite field is an NP-complete problem of funda-
mental importance in both pure and applied mathematics. In particular, the security of
the so-called multivariate public-key cryptosystems, such as HFE of Patarin and UOV of
Kipnis et al., is based on the postulated hardness of solving quadratic polynomial systems
over a finite field. Lokshtanov et al. (2017) were the first to introduce a probabilistic al-
gorithm that, in the worst-case, solves a Boolean polynomial system in time O∗(2δn), for
some δ ∈ (0, 1) depending only on the degree of the system, thus beating the brute-force
complexity O∗(2n). Later, Bj̈orklund et al. (2019) and then Dinur (2021) improved this
method and devised probabilistic algorithms with a smaller exponent coefficient δ.

We survey the theory behind these probabilistic algorithms, and we illustrate the re-
sults that we obtained by implementing them in C. In particular, for random quadratic
Boolean systems, we estimate the practical complexities of the algorithms and their prob-
abilities of success as their parameters change.
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1 Introduction

Solving a polynomial system

pi(x1, . . . , xn) = 0, i = 1, . . . ,m, (1)

of m equations in n unknowns x1, . . . , xn is a fundamental problem in both pure and applied
mathematics [11, 32]. Its difficulty depends on the domain of the variables and polynomial
coefficients. Over the integers, the problem is undecidable, as a consequence of Matiyasevich’s
solution of Hilbert’s tenth problem [23]. Over an algebraic closed field, determining if the
system has a solution is equivalent, by the weak Nullstellensatz, to determining if 1 does not
belong to the ideal generated by the polynomials, and for polynomials with rational coefficients
establishing ideal membership is known to be exponential space complete [24]. Over a finite
field, the case of greatest interest for computer science, the problem is NP-complete already
when the polynomials are quadratic [18]. (Note that if all the polynomials are linear then the
system can be solved in polynomial time by Gaussian elimination.) Moreover, assuming the
exponential time hypothesis [19], there exists no subexponential time (worst-case) algorithm
for this problem. This makes it particularly relevant for cryptographic applications. Indeed,
the security of the so-called multivariate cryptosystems, such as HFE of Patarin [27] and
UOV of Kipnis et al. [21], is based on the postulated hardness of solving quadratic polynomial
systems over a finite field. Hereafter, we will focus on the case of the Boolean field F2, although
many results generalize obviously to arbitrary finite fields.
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Extremely underdetermined (m = O(
√
n)) quadratic polynomial systems can be solved

in polynomial time [25], and extremely overdetermined (n = O(
√
m)) quadratic polynomial

systems are also expected to be solvable in polynomial time [10]. For quadratic polynomial
systems having m = n and satisfying certain algebraic assumptions, which have been experi-
mentally verified to hold for most of random systems, Bardet et al. [2] proposed a O∗(20.792n)
expected-time algorithm. Furthermore, the Yang–Chen variant [34] of the XL algorithm of
Courtois et al. [10] solves quadratic polynomial systems with m = n in time O∗(20.875n),
but again requires specific algebraic assumptions. These methods inspired the “crossbreed”
algorithm of Joux and Vitse [20], which has a fast implementation on GPUs [26] (for a study
of the complexity of the crossbreed algorithm, see [14]).

Solving a polynomial system can also be done by computing a Gröbner basis of the ideal
generated by the equations, and efficient algorithms for computing Gröbner bases include
Faugère’s F4 [15] and F5 [16], and their several variants (as Hybrid-F5 [5]). However, the
asymptotic complexities of these algorithms are not well-understood. In general, the complex-
ity of the Gröbner basis computation can be estimated by O

(
Mon(dreg)

ω
)
, where dreg is the

so-called degree of regularity, Mon(dreg) is the number of monomials of degree not exceeding
dreg, and ω is the linear algebra constant [1, 17] (see also [3]).

Lokshtanov et al. [22] were the first to introduce a probabilistic algorithm that solves a
square (m = n) polynomial system in time O∗(2δn), for some δ < 1 depending only on the de-
gree of the system, without relying on any unproved assumption. In particular, for quadratic
systems their algorithm has complexity O∗(20.8765n). They used the so-called “polynomial
method”, which replaces the whole system of equations by a single random polynomial whose
truth table can be computed more efficiently than by brute force. These ideas were im-
proved by Björklund et al. [7], who introduced a parity-counting argument that reduced the
complexity to O∗(20.804n), and then by Dinur [13], who considered a multiparity-counting ar-
gument and reduced further the complexity to O∗(20.6943n). Furthermore, Dinur [12] devised
a probabilistic algorithm that, under some reasonable assumptions, solves random quadratic
polynomial systems in time O(n2 · 20.815n). Note that this last complexity is asymptotically
worse than the previous algorithm of Dinur (and also Björklund et al.), however it does not
hide polynomial factors and the hidden constant is expected to be “small”.

The purpose of this paper is twofold:

1. Survey the new probabilistic algorithms for solving Boolean polynomial systems, in order
to provide a useful resource for researchers interested in these new methods.

2. Provide experimental data about how actual implementations of these new algorithms
perform in practice, including running times and probabilities of success.

Regarding the second point, the last two authors wrote an implementation in C [29] of the
probabilistic algorithms, and tested its performance on random Boolean polynomial systems.
We did so motivated by the well-known fact that the asymptotic complexity of an algo-
rithm can be misleading when it comes to applications. Indeed, an algorithm with a better
asymptotic complexity can be outperformed by an algorithm with a worse asymptotic com-
plexity when they run on real world data, due to large hidden constants in the asymptotic
notation and/or very different worse-case and average-case behaviors. A classic example is
Coppersmith–Winograd algorithm for matrix multiplication [9] that, despite being asymp-
totically better than other matrix-multiplication algorithms like Strassen’s [31], it is never
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used in practice because of the huge hidden constant in its asymptotic complexity. Moreover,
authors usually introduce a new algorithm by providing a high-level explanation that, while
simplifying the exposition, could hide technical difficulties that may arise in producing an
actual implementation and that may increase the actual complexity. Therefore, after the
theoretical analysis, implementations and experiments are still necessary to understand the
real performance of any new algorithm.

The paper is structured as follows: in Section 2 we provide the mathematical preliminaries;
in Section 3 we explain the logic of the probabilistic algorithms; in Sections 4 and 5 we
illustrate our implementations of the algorithms and the experimental results; and in Section 6
we summarize our general conclusions.

Acknowledgements

S. Barbero and C. Sanna are members of GNSAGA of INdAM and of CrypTO, the group of
Cryptography and Number Theory of Politecnico di Torino.

2 Preliminaries

2.1 Notation

We employ Landau’s notation f(n) = O(g(n)), with its usual meaning that |f(n)| ≤ C|g(n)|
for some constant C > 0. Also, we write f(n) = O∗(g(n)) whenever f(n) = O(nkg(n))
for some constant k ≥ 0. We let log denote the logarithm in base 2, and |A| denote the
cardinality of every set A. We reserve the letters x, y, z, w for formal variables. We indicate
with F2 the field with two elements, and with Fn2 its n-fold Cartesian product. For every
a, b ∈ Fn2 , we write a ≤ b to mean that ai ≤ bi for i = 1, . . . , n, and we let |a| denote the
Hamming weight of a, that is, the number of i ∈ {1, . . . , n} such that ai = 1. Also, we define
Wn
w := {a ∈ Fn2 : |a| ≤ w} for every w ≤ n.

2.2 Boolean functions

We recall some basic facts on Boolean functions. A Boolean function is a map f : Fn2 → F2, and
its support is supp(f) := f−1(1). Once an order on Fn2 is fixed, we have that f is completely
described by its truth table [f(a) : a ∈ Fn2 ]. Furthermore, f has a unique representation as a
Boolean polynomial, that is, an element of the quotient ring

F2[x1, . . . , xn] /(x21 − x1, . . . , x2n − xn).

This representation is called the algebraic normal form (ANF) of f . Precisely, the ANF of f
is

f(x) =
∑
a∈Fn

2

ζ[f ](a)xa11 · · ·x
an
n ,

where ζ[f ] : Fn2 → F2 is the zeta transform of f , defined by

ζ[f ](a) :=
∑
b≤a

f(b), (2)
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for every a ∈ Fn2 . Given the truth table of f , computing ζ[f ] using (2) requiresO(3n) additions.
A more efficient algorithm, usually attributed to Yates [35], provides a way to compute ζ[f ]
using only O(n2n) additions. More generally, if A ⊆ Fn2 is a downward closed set, that is,
if a ∈ A implies that b ∈ A for every b ∈ Fn2 with b ≤ a, then the values of ζ[f ] over A
are completely determined by the values of f over A, and they can be computed by Yates’s
algorithm using O(n|A|) additions, see Algorithm 1.

Algorithm 1: Yates’s algorithm for computing the zeta transform.

1 function ZetaTransform([f(a) : a ∈ A])
input : The partial truth table [f(a) : a ∈ A] of a Boolean function f : Fn2 → F2

over a downward closed set A ⊆ Fn2 .
output: The zeta transform

[
ζ[f ](a) : a ∈ A

]
.

// This is an in-place algorithm: [f(a) : a ∈ A] is overwritten.

2 for i = 1, . . . , n do
3 for a ∈ A do
4 if ai = 1 then
5 f(a)← f(a) + f(a1, . . . , ai−1, 0, ai+1, . . . an)

6 return [f(a) : a ∈ A]

Thus the zeta transform converts the truth table of a Boolean function to the ANF. It
turns out that the zeta transform is its own inverse, meaning that ζ[ζ[f ]] = f for every
f , and consequently it also provides a way back from the AFN to the truth table. When
used in this way, it is also known as the Möbius transform. In particular, if f is a Boolean
function with supp(ζ[f ]) ⊆ A, where A ⊆ Fn2 is a downward closed set, then the knowledge
of the values of f over A is enough to determine all the values of f , a process known as
interpolation, see Algorithm 2. An important case is that in which f has ANF of degree d, so
that supp(ζ[f ]) ⊆ Wn

d , and consequently f is completely determined by its values over Wn
d .

Algorithm 2: Interpolation of a Boolean function.

1 function Interpolation([f(a) : a ∈ A],B)
input : The partial truth table [f(a) : a ∈ A] of a Boolean function f : Fn2 → F2

with supp(ζ[f ]) ⊆ A, and two downward closed sets A ⊆ B ⊆ Fn2 .
output: The partial truth table [f(a) : a ∈ B].

2 [g(a) : a ∈ A]← ZetaTransform([f(a) : a ∈ A])
3 Define [g̃(a) : a ∈ B] by g̃(a) := g(a) for a ∈ A, and g̃(a) := 0 for a /∈ A.
4 return ZetaTransform([g̃(a) : a ∈ A])

2.3 Solving a Boolean polynomial system

Hereafter, let p1, . . . , pm ∈ F2[x1, . . . , xn] be polynomials of degree at most d, given by their
ANFs. The problem of solving the polynomial system (1) has three important versions:

• Decisional: the output is True if (1) has a solution, and False otherwise;
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• Search: the output is any (single) solution of (1), if it is solvable, and Null otherwise;

• Exhaustive: the output is the whole set of solutions of (1).

The decisional and search versions are strictly related. On the one hand, obviously, solving
the search version also solves the decisional. On the other hand, by iteratively testing each
variable, one can solve the search version by calling a subroutine for the decisional version at
most n times, see Algorithm 3.

Algorithm 3: Search using Decisional.

1 function Search(p1, . . . , pm)
input : Polynomials p1, . . . , pm ∈ F2[x1, . . . , xn].
output: A solution of {pi(x) = 0}mi=1 if it exists, and Null otherwise.

2 (a1, . . . , an)← (0, . . . , 0)
3 for i = 1, . . . , n do
4 (q1, . . . , qm)← (p1|xi=0, . . . , pm|xi=0)

// Decisional(q1, . . . , qm) returns True if the system {qi(x) = 0}mi=1 has

a solution, and False otherwise.

5 if Decisional(q1, . . . , qm) then
6 ai ← 0
7 (p1, . . . , pm)← (q1, . . . , qm)

8 else
9 ai ← 1

10 (p1, . . . , pm)← (p1|xi=1, . . . , pm|xi=1)

11 if (p1, . . . , pm) = (0, . . . , 0) then
12 return (a1, . . . , an)
13 else
14 return Null

2.4 Razborov–Smolensky construction

In all the probabilistic algorithms we will examine, the polynomial

F (x) :=

m∏
i=1

(1 + pi(x)) (3)

is considered, in order to set up a decisional version of the problem of solving (1), or in order
to reduce it to a parity-counting problem as we will explain next. Indeed, a ∈ Fn2 is a solution
of (1) if and only if F (a) = 1. Since in general deg(F ) = dm, the ANF of F may be too large
to be manipulated. Thus (3) is approximated by a probabilistic polynomial of smaller degree,
using the following construction credited to Razborov [28] and Smolensky [30].

Let ` ∈ {1, . . . ,m} be a parameter. For i ∈ {1, . . . , n} and j ∈ {1, . . . ,m} pick αij ∈ F2

uniformly at random, and define the polynomials

Ri(x) :=
m∑
j=1

αijpj(x), i = 1, . . . , `. (4)
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Note that, for every a ∈ Fn2 and i ∈ {1, . . . , `}, if F (a) = 1, then Ri(a) = 0; whereas if
F (a) = 0, then there exists j such that pj(a) = 1, and consequently Pr[Ri(a) = 0] = 1

2 .
Therefore, defining

F̃ (x) :=
∏̀
i=1

(1 +Ri(x)), (5)

it follows that Pr
[
F̃ (a) = F (a)

]
≥ 1− 2−` for every a ∈ Fn2 , that is, F̃ approximates F with

high probability (depending on `). Moreover, deg(F̃ ) ≤ d`, which can be much lower than
the degree of F .

2.5 Valiant–Vazirani affine hashing

The Valiant–Vazirani affine hashing [33] is a probabilistic method to isolate an unique solution
of the system (1). It consists on adding a set of random linear equations to (1) in this way:
If we assume that S ⊆ Fn2 is the nonempty set of solutions to (1) and k = 0, 1, 2, . . . , n is the
unique integer such that 2k ≤ |S| < 2k+1, we draw independent and uniform random values
αi,j , βi ∈ F2 for i = 1, 2, . . . , k + 2, j = 1, 2, . . . , n and add the linear equations

n∑
j=1

αi,jxj = βj , i = 1, 2, . . . k + 2 (6)

to (1). For the probability Pr[Ux] that x ∈ S is the only solution to (1) which also satisfies
(6) the following inequality holds (see [7, Section 2.5])

Pr[Ux] ≥ 1

2k+3
.

Therefore

Pr[∪x∈SUx] =
∑
x∈S

Pr[Ux] ≥ 1

8
.

From this fact and thanks to the inequalities
(
1− 1

8

)r ≤ e−
r
8 ≤ ε, with r =

⌈
8 ln ε−1

⌉
inde-

pendent repetitions of this procedure we can isolate a unique solution x ∈ S with probability
1 − ε. Since k is unknown we can consider ε = 1

n and exhaustively try out all the values
k = 0, 1, . . . , n. Thus using this method, if (1) is solvable, a solution can be isolated with high
probability with O(n log n) steps.

3 Probabilistic algorithms

A probabilistic algorithm is an algorithm that employs a source of randomness in some of
its steps, and which is known to return the correct answer with a probability bounded from
below, usually depending on some parameters of the algorithm. Some authors use the term
randomized algorithm (of the Monte Carlo type), but we avoided it because it seem to suggest
that a deterministic algorithm was somehow “randomized”, which is not the case of the
probabilistic algorithms we are considering.
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3.1 Lokshtanov et al.’s algorithm

The main result of Lokshtanov et al. [22] for polynomial systems over F2 is the following:

Theorem 3.1. A polynomial system over F2 of degree d and n unknowns can be solved by a
probabilistic algorithm in time O∗

(
20.8756n

)
for d = 2, and O∗

(
2(1−1/(5d))n

)
for d > 2.

Lokshtanov et al.’s probabilistic algorithm solves the decisional version of the problem.
Their idea is to put n1 := bδnc, where δ ∈ (0, 1) is a parameter depending only on d, and
split the variables x1, . . . , xn into y := x1, . . . , xn−n1 and z := xn−n1+1, . . . , xn, so that the
polynomial (3) can be written as F (y, z). Then, letting

V :=
∨

a∈Fn−n1
2

 ∑
b∈Fn1

2

sbF (a, b)

 , (7)

where sb ∈ F2 are draw randomly with uniform distribution, we have that: If (1) has no
solution, then V = 0; otherwise, if (1) has solutions, then V = 1 with probability at least 1/2.

Computing V directly from (7) is too inefficient, because of the large degree of F (y, z).
Therefore, F (y, z) is replaced by a random polynomial F̃ (y, z) of lower degree using the
Razborov–Smolensky construction, as explained in Section 2.4. In this case, it is chosen
` := n1 + 2. Moreover, the truth table of the polynomial∑

b∈Fn1
2

sbF̃ (y, b) ∈ F2[y]

is computed efficiently using Yates’s algorithm for the Möbius transform.
In order to correct the errors introduced by approximating F (y, z) with F̃ (y, z), it can

be proved that it is enough to repeat this whole procedure 100n times, and then return the
result that occurs at least 40n times.

Finally, a careful complexity analysis [22, Lemma 3.3] shows that the best choice for the
parameter is δ = 0.1235 for d = 2, and δ = 1/(5d) for d > 2, which leads to the claimed time
complexities. For a pseudocode see Algorithm 4.

3.2 Björklund et al.’s algorithm

The main result of Björklund et al. [7] for polynomial systems over F2 is the following:

Theorem 3.2. A polynomial system over F2 of degree d and n unknowns can be solved by a
probabilistic algorithm in time O∗

(
20.804n

)
for d = 2, and O∗

(
2(1−1/(2.7d))n

)
for d > 2.

The key idea of Björklund et al. is to introduce the parity-counting problem for the sys-
tem (1), which is the problem of determining the parity of the number of solutions of (1),
that is, 0 if the number of solutions if even, and 1 if the number of solutions is odd. In light
of the previous considerations on the polynomial (3), this amount to computing the sum∑

c∈Fn
2

F (c). (8)
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Algorithm 4: Lokshtanov et al.’s algorithm.

1 function LokAlgo(p1, . . . , pm)
input : p1, . . . , pm ∈ F2[x1, . . . , xn] of degree at most d, given by their ANFs.
output: True if {pi(x) = 0}mi=1 has a solution, False otherwise.

2 n1 ← bδnc // δ := 0.1235 for d = 2, and δ := 1/(5d) for d > 2.
3 `← n1 + 2
4 s← 100n

5 Initialize array [Score(a) : a ∈ Fn−n1
2 ] of integers to zeros.

6 for t = 1, 2, . . . , s do
// Below y = x1, . . . , xn−n1

7 S(y)← 0 ∈ F2[y]
8 for b ∈ Fn1

2 do
9 Ri(y)←

∑m
j=1 αi,jpj(y, b) for i = 1, . . . , `, where αi,j ∈ F2 are random.

10 F̃ (y)←
∏`
i=1(1 +Ri(y))

11 S(y)← S(y) + sbF̃ (y) where sb ∈ F2 is random.

12 T ← ZetaTransform(ANF of S(y),Fn−n1
2 ) // Truth table of S(y),

computed by the Möbius transform.

13 for a ∈ Fn−n1
2 do

14 if T (a) = 1 then
15 Score(a)← Score(a) + 1

16 for a ∈ Fn−n1
2 do

17 if Score(a) > 40n then
18 return True

19 return False

9



Once (at most) one solution of (1) has been isolated using the Valiant–Vazirani affine hashing,
solving the parity-counting problem is equivalent to determining if the system has a solution.

The evaluation of (8) is performed using the probabilistic approximation F̃ of F defined in
(5), which has a lower degree than F . Similarly to Loskshtanov et al., the variables x1, . . . , xn
are split into y := x1, . . . , xn−n1 and z := xn−n1+1, . . . , xn, where n1 := bλnc and λ ∈ (0, 1) is
a parameter depending only on the degree d, so that F can be written as F (y, z). Defining

G(y) :=
∑
b∈Fn1

2

F̃ (y, b) =
∑
b∈Fn1

2

∏̀
i=1

(1 +Ri(y, b)) (9)

we have that ∑
c∈Fn

2

F̃ (c) =
∑

a∈Fn−n1
2

G(a). (10)

In order to evaluate (9), note that deg(G) ≤ d`− n1, and consequently G can be interpo-
lated by computing its values on Wn−n1

d`−n1
. Since for any a ∈ Wn−n1

d`−n1
we have

G(a) =
∑
b∈Fn1

2

∏̀
i=1

(1 +Ri(a, b)),

this can be intended as a parity-counting problem for the polynomial system

Ri(a, z) = 0, i = 1, . . . , `,

with degree dn1 − `. Therefore, interpolating G is equivalent to |Wn−n1
d`−n1

| recursive calls for
solving (smaller) parity-counting instances.

It is possible to show that for each a ∈ Fn−n1
2 it holds

Pr

G(a) =
∑
b∈Fn1

2

F (a, b)

 ≥ 1− 2n1−`,

and choosing ` = n1 + 2 the computed partial parity is correct with probability at least 3/4.
Finally, for each a ∈ Fn−n1

2 the error is reduced by computing s approximations of each
partial parity via independent probabilistic polynomials {Gk(y)}sk=1 and using a scoreboard of
votes, selecting as correct parity the one that appears more than s/2 times. Taking s = 48n+1,
this majority vote for each a ∈ Fn−n1

2 across all s approximations gives the parity with an
exponentially small probability of error.

An analysis of the complexity [7, Section 3.7] shows that the best choice for the parameter
is λ = 0.1967 . . . for d = 2, and λ = 1/(2.7d) for d > 2, which leads to the time complexities
of Theorem 3.2. For a pseudocode see Algorithm 5.

3.3 Dinur’s algorithm

Dinur [13] improved the results of Björklund et al. with the following theorem:
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Algorithm 5: Björklund et al. algorithm.

1 Function Parity({pi(x)}mi=1):
input : p1, . . . , pm ∈ F2[x1, . . . , xn] of degree at most d, given by their ANFs.
output: The parity P of the number of solutions of the system {pi(x) = 0}mi=1.

2 n1 ← bλnc // λ := 0.1967 for d = 2, and λ := 1/(2.7d) for d > 2.
3 `← n1 + 2
4 s← 48n+ 1

5 Initialize array [Score(a) : a ∈ Fn−n1
2 ] of integers to zeros.

6 for k = 1, . . . , s do
// Below y = y1, . . . , yn−n1 and z = z1, . . . , zn1.

7 Ri(y, z)←
∑m

j=1 αi,jpj(y, z) for i = 1, . . . , `, where αi,j ∈ F2 are random.

8 Initialize the array [V (a) : a ∈ Fn−n1
2 ] of Booleans to zeros.

9 for a ∈ Wn−n1
d`−n1

do

10 V (a)← V (a) + Parity({R(k)
h (a, z)}`h=1)

11 T ← Interpolation
(
[V (a) : a ∈ Fn−n1

2 ],Fn−n1
2

)
// Truth table of G(k)(y)

over Fn−n1
2 .

12 Score← Score+ T // Update the score with componentwise sum.

13 P ← 0

14 for a ∈ Fn−n1
2 do

15 if Score(a) > s/2 // Majority vote.

16 then
17 P ← P + 1

18 return P
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Theorem 3.3. A polynomial system over F2 of degree d and n unknowns can be solved by
a probabilistic algorithm in time O∗

(
20.6943n

)
for d = 2, and O∗

(
2(1−1/(2d))n

)
for d > 2.

Moreover, there exists a probabilistic algorithm that outputs all the K solutions. For an
arbitrarily small ε > 0, the runtime of this algorithm is O∗

(
max

(
20.6943n, 2εnK

))
for d = 2,

and O∗
(
max

(
2(1−1/(2d))n, 2εnK

))
for d > 2.

The main idea of Dinur’s algorithm relies in the observation that all the smaller parity-
counting instances are related as they originate from the same system.

Definition 3.1. Given as input polynomials p1, . . . , pm ∈ F2[x1, . . . , xn] in their ANFs, and
nonnegative integers n1 ≤ n and w ≤ n − n1, the multiple parity-counting problem asks to
determine the array [V (a) : a ∈ Wn−n1

w ] such that

V (a) =
∑
b∈Fn1

2

F (a, b), for a ∈ Wn−n1
w , (11)

where F (y, z) is polynomial (3) in which x = (y1, . . . , yn−n1 , z1, . . . , zn1) after a partition of
the variables.

As in Björklund et al. [7], in order to evaluate (11) the approximation (9) using proba-
bilistic polynomials is considered and its evaluation is performed reducing via recursion an
instance of the multiple parity counting problem to only a few instances of the same prob-
lem. Dinur’s reduction does not fix any variable to a particular value, but rather changes
internal parameters of the multiple parity-counting instance which determine the number of
inner parity-counting instances and the number of variables over which each parity is com-
puted. The finer control over the parameters of the induced instances allows for a potentially
more efficient self-reduction with respect to the one used in [7]. For a pseudocode of Dinur’s
multiple parity counting algorithm see Algorithm 6.

Another novelty in Dinur’s algorithm is the approach used in isolating solutions. The
Valiant–Vazirani affine hashing isolates only one solution at a time, and applying it to obtain
all solutions will be inefficient unless their number is small. Dinur introduced a method that
isolates and outputs many solutions “in parallel”. Say that a solution (σ, τ) ∈ Fn−n1

2 × Fn1
2

to the system (1) is isolated with respect to the partition (y1, . . . , yn−n1 , z1, . . . , zn1) if for
any τ ′ 6= τ , we have that (σ, τ ′) is not a solution. The solutions are isolated and outputted
performing r times a linear change of variables with uniform invertible matrices in Fn×n2 , then
finding all the isolated solutions to the equivalent systems with n1 + 1 calls to the multiple
parity counting algorithm. Indeed, for a fixed partition of the new variables, assuming that
all σ ∈ Fn−n1

2 for which the returned parity is 1 correspond to isolated solutions, the n1
remaining bits of τ can be recovered one at a time with n1 additional calls to the multiple
parity counting algorithm, where in the ith call zi is fixed to 0. In order to avoid “false
positive” every candidate solution is tested to control if it is indeed a solution to the system.
Choosing r = 2n and a suitable value for n1, this procedure outputs all the isolated solutions
with negligible probability of error [13, Section 4.1]. For a pseudocode of this procedure see
Algorithm 7.

With the same value of n1 < n the multiple parity counting algorithm begins in a
similar way to the previous related algorithms in [22] and [7], by choosing a parameter `,
considering the probabilistic polynomial (5) and defining a first partition of the variables

12



Algorithm 6: Dinur MultParityCount.

1 function MultParityCount({ph(y, z)}mh=1, n1, w)
input : {ph(y, z)}mh=1 polynomials of degrees d ≥ 2 in the variables

y = (y1, . . . , yn−n1), z = (z1, . . . , zn1), represented in ANF, n1, w.
output: The solution [V (a) : a ∈ Wn−n1

w ] of the multiparity-counting problem
(see Definition 3.1).

2 n2 ← bn1 − λnc // λ ∈ (0, 1) is a parameter.

3 if n2 ≤ 0 then
4 return BruteForceMultParity({ph(y, z)}mh=1, n1, w)

5 `← n2 + 2
6 s← 48n+ 1

7 Initialize the array [Score(c) : c ∈ Wn−n1
w × Fn1−n2

2 ] of integers with zeros.
8 for k = 1, . . . , s do
9 Ri(y, z)←

∑m
j=1 αi,jpj(y, z) for i = 1, . . . , `, where αi,j ∈ F2 are random.

// Below u = z1, . . . , zn1−n2 and v = zn1−n2+1, . . . , zn2.

10 V1 ← MultParityCount({Ri((y, u), v)}`i=1, n2, d · `− n2)
11 e← Interpolation([V1(a) : a ∈ Wn−n2

d·`−n2
],Wn−n1

w × Fn1−n2
2 )

12 Score← Score+ e // Update the score with componentwise sum.

13 Initialize the array [V (a) : a ∈ Wn−n1
w ] of Booleans with zeros.

14 for a ∈ Wn−n1
w do

15 for b ∈ Fn1−n2
2 do

16 if Score(a, b) > s/2 // Majority vote

17 then
18 V (a)← V (a) + 1

19 return V
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Algorithm 7: Dinur ExhaustSolutions.

1 function ExhaustSolutions({ph(x)}mh=1, n1)
input : p1, . . . , pm ∈ F2[x1, . . . , xn] of degree at most d, given by their ANFs, n1.
output: All the solutions to the system {ph(x) = 0}mh=1.

2 r ← 2n
3 for k = 1, . . . , r do
4 Draw random invertible matrix B ∈ Fn×n2

5 {qh(v)}mh=1 ← Change of variables v = B−1x in {ph(x)}mh=1.

6 Initialize array [M(i, a) : i ∈ {0, . . . , n1}, a ∈ Fn−n1
2 ] of Booleans to zeros.

// Below y = v1, . . . , vn−n1 and z = vn−n1+1, . . . , vn.
7 M(0, ·)← MultParityCount({qh(y, z)}mh=1, n1, n− n1)
8 for i = 1, . . . , n1 do
9 M(i, ·)←

MultParityCount({qh(y, z1, . . . , zi−1, 0, zi+1, . . . , zn1)}mh=1, n1 − 1, n− n1)
10 for a ∈ Fn1

2 do
11 if M(0, a) = 1 then
12 sol← a
13 for i = 1, . . . , n1 do
14 if M(i, a) = 1 then
15 sol← sol ‖ 0
16 else
17 sol← sol ‖ 1

18 if {ph(B(k) · sol) = 0}mh=1 then

19 return B(k) · sol

14



x = (y1, . . . , yn−n1 , z1, . . . zn1). Then an additional partition on z is done with another pa-
rameter n2 < n1 obtaining z = (u, v) = (u1, . . . , un1−n2 , v1, . . . , vn2).

Considering

G(y, u) =
∑
c∈Fn2

2

F̃ (y, u, c) =
∑
c∈Fn2

2

∏̀
i=1

(1 +Ri(y, u, c)),

the evaluation of every partial parity

G(a, b) =
∑
c∈Fn2

2

F̃ (a, b, c)

for a ∈ Fn−n1
2 and b ∈ Fn1−n2

2 is equivalent to a parity counting instance of the system

R1(a, b, v) = 0, . . . R`(a, b, v) = 0,

and we have

Pr

G(a, b) =
∑
c∈Fn2

2

F (a, b, c)

 ≥ 1− 2n2−`,

which is at least 3
4 fixing ` = n2 + 2. Since deg(G) ≤ d` − n2 in order to interpolate G

it is sufficient to compute its values in Wn−n2
d`−n2

. The main difference from the Björklund et

al. parity counting algorithm is in the way that the |Wn−n2
d`−n2

| valuations of G are computed.

In Dinur’s algorithm all the |Wn−n2
d`−n2

| parity counting instances are performed as a single
recursive call of the multiple parity-counting algorithm, where in the nested calls brute force
evaluation is used only when the parameter defining the partition becomes less or equal
to 0. For a pseudocode of the bruteforce algorithm employed by Dinur see Algorithm 8.
The multiple parity-counting algorithm outputs the vector in Wn−n2

d`−n2
whose entries for all

Algorithm 8: Dinur BruteforceMultParity.

1 function BruteForceMultParity({ph(y, z)}mh=1, n1, w)
input : {ph(y, z)}mh=1 polynomials of degrees d ≥ 2 in the variables

y = (y1, . . . , yn−n1), z = (z1, . . . , zn1), represented in ANF, n1, w.
output: The solution [V (a) : a ∈ Wn−n1

w ] of the multiparity-counting problem
(see Definition 3.1).

2 Initialize the array [e(c) : c ∈ Wn−n1
w × Fn1

2 ] of Booleans with all ones. ;
3 for k = 1, . . . ,m do

4 p(k) ← ZetaTransform(ANF of 1 + pk(y, z),Wn−n1
w × Fn1

2 ) // p(k) is the

truth table of 1 + pj(y, z) over Wn−n1
w × Fn1

2 .

5 e← e ∧ p(k) // Bitwise AND the evaluation.

6 return
[∑

b∈Fn1
2
F (a, b) : a ∈ Wn−n1

w

]

(a, b) ∈ Wn−n2
d`−n2

× Fn1−n2
2 are the parities G(a, b) used to interpolate G(y, u). Since the

multiple parity counting algorithm calls itself with parameter n′2 < n2 , the number of variables
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over which the polynomials are defined increases with the recursion depth, but their degree
n′2(d− 1) + 2d decreases (since d− 1 ≥ 1). Moreover∣∣Wn−n2

n2(d−1)+2d

∣∣ > ∣∣Wn−n′2
n′2(d−1)+2d

∣∣
so the new instance is not harder than the original one, ensuring an efficient self–reduction. As
stated before, the correct partial parity is obtained with probability at least 3

4 and the error
correction is performed via scoreboarding and majority vote on the s = 48n+1 approximations
given by the polynomials {Gk(y, u)}sk=1 for all (a, b) ∈ Wn−n1

w × Fn1−n2
2 in order to obtain

the true partial parity and the output vector of partial parities with exponentially small
probability of error.

3.4 Dinur’s second algorithm

Dinur presented a second algorithm in [12], essentially designed for a cryptographic setting,
whose complexity estimate can be resumed in the following statement

Statement 1. Under some reasonable assumptions, a polynomial system of m degree d equa-
tions selected at random in n variables over F2 can be solved (up to small constants) with a
running time of O

(
n2 · 20.815n

)
if d = 2 and O

(
n2 · 2(1−1/(2.7d))n

)
if d > 2.

The basic idea of this algorithm relies on the observation that in order to find a solution to
the system (1) it is sufficient to consider the probabilistic polynomials (4), enumerate isolated
solutions to the system

Ri(x1, . . . , xn) = 0, i = 1, . . . , `, ` < m (12)

because the set of solutions to (12) is a superset of the solution set of (1), then test each
isolated solution on (1). In Dinur [12] Proposition 3.1 shows that for a variable partition
x = (y, z) = (y1, . . . , yn−n1 , z1, . . . , zn1) where n1 = ` − 1 and assuming that (σ, τ) is an
isolated solution to (1) the following inequality holds

Pr [(σ, τ) is an isolated solution to (12) ] ≥ 1− 2n1−` =
1

2

so assuming that (1) has an isolated solution this solution is also isolated for (12) with prob-
ability at least 1/2. Another important assumption is needed: the system (1) must have an
isolated solution with high probability. However in a cryptographic setting, given a variable
partition (y, z) grouping a solution to (1) together with 2n1 − 1 different assignments, it is
reasonable that each such assignment satisfies (1) with probability 2−m. Thus a solution to
(1) is isolated with probability at least 1 − 2n1−m, which is very closed to 1, since usually
m � n/5 and in this algorithm n1 is chosen such that n1 < n/5 in order to optimize the
complexity. For a pseudocode of Dinur’s second algorithm see Algorithm 9 As in previous
Dinur’s algorithm [13] isolated solutions are recovered bit-by-bit by computing n1 + 1 sums,
but enumerating isolated solutions of (12) rather than the ones of (1). Exploiting the low
degree dF̃ of the polynomial (5) the algorithm interpolates

U0 (y) =
∑
b∈Fn1

2

F̃ (y, b) and Ui (y) =
∑

b∈Fn1−1
2

F̃|bi=0 (y, b) for i = 1, . . . , n1,
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Algorithm 9: Dinur Solve.

1 function Solve({ph(x)}mh=1, N)
input : {ph(x)}mh=1 polynomials of degrees d ≥ 2 in the variables

x = (x1, . . . , xn), represented in ANF, N maximum number of tries.
output: A solution to the system {ph(x) = 0}mh=1 or Failure if after N tries

nothing has been found.
2 Parameters: n1, dF̃
3 Initialization: `← n1 + 1, w ← dF̃
4 PotSolsList← NewList() // PotSolsList is an N × 2n−n1 × `

multidimensional array: for k = 0, . . . , N − 1 PotSolsList[k] is a

2n−n1 × ` matrix storing the values of CurPotSols where for

i = 0, . . . , 2n−n1 − 1, CurPotSols[i] = (U0(a
(i)), . . . , Un1(a(i))) and a(i) is

the i-th element of Fn−n1
2 according to a predefinite order

5 c← 0, k ← 0
6 while c = 0 ∧ k ≤ N − 1 do

7 Draw a uniformly random matrix
[
α
(k)
i,j

]
∈ F`×m2 of full rank ` and compute

{R(k)
i (x) =

∑m
j=1 α

(k)
i,j pj(x)}`i=1

8 CurPotSols← OutputPotSols({R(k)
i (x)}`i=1, n1, w)

9 PotSolsList[k]← CurPotSols
10 if k 6= 0 then
11 i← 0
12 while c = 0 ∧ i ≤ 2n−n1 − 1 do
13 if CurPotSols[i][0] = 1 // test if CurPotSols[i] is valid

14 then
// if CurPotSols[i] has been otput before test if

sol = a(i)||CurPotSols[i] is a solution to the original

system

15 for k1 = 0, . . . , k − 1 do
16 if CurPotSols[i] = PotSolsList[k1][i] then

17 sol← a(i)||CurPotSols[i]
18 if {pj(sol) = 0}mj=1 then

19 c← c+ 1
20 return sol

21 else
22 break // continue with next i

23 i← i+ 1

24 k ← k + 1

25 if c = 0 then
26 print Failure

17



where for an isolated solution (σ, τ)

U0(σ) = 1, Ui(σ) = τi + 1 for i = 1, . . . , n1,

and then evaluates {Ui(y)}n1
i=0 on all a ∈ Fn−n1

2 to recover isolated solutions. For a pseudocode
of the algorithm that outputs the potential isolated solutions see Algorithm 10. Thanks to
Proposition 3.3 Dinur [12] shows that these interpolations can be optimized considering the
solutions to (12) in the set Wn−n1

dF̃−n1+1 × Fn1
2 , using, in order to find these solutions, the

exhaustive search algorithm of Bouillaguet et al. [8]. For a pseudocode of this interpolation
procedure see Algorithm 11. Therefore the computation of the sums

∑
b∈Fn1

2

F̃ (a, b) is only

needed , instead of evaluating the sums
∑

b∈Fn1
2

F (a, b) which are too expensive to compute

directly due to the high degree of F . In the previous algorithms of Björklund et al. [7]
and Dinur [13], such sums are computed by majority voting across 48n + 1 evaluations of
different polynomials, a method which is no more used here, reducing the complexity of the
algorithm by a factor of Ω(n). Once that an isolated solution to (12) is found it has to be
tested to control if it is a solution to (1). However, these tests make expensive evaluations of
polynomials, which generally require about |Wn

d | bit operations. This may give rise to a large
overhead, in particular for d > 2. Thus, to avoid this, the algorithm is repeated a certain
small number of times. In each of its iterations different sets of independent probabilistic
polynomials (4) are used and only the candidate solutions that are output more than once are
tested, under the assumption, based on the randomness assumptions about the input system,
that it is unlikely for an incorrect candidate solution to be suggested more than once.

4 Implementation

The last two authors wrote an implementation in C of the probabilistic algorithms [29]. The
implementation is self-contained, depending only on the C standard library. Its core modules
are:

- qpoly.c, qsyst.c, which implement the data structures and the basic functions for
quadratic polynomial systems.

- bfunc.c, which implements the basic algorithms for Boolean functions. In particular,
Yates’s algorithm for the zeta transform. This module stores each Boolean functions in
n variables as an array of 2n bits, which represents either its truth table or its ANF.

- rbfunc.c, which implements the basic algorithms for Boolean functions supported on
values with small Hamming weight. This module stores each Boolean function with
support in Wn

d , respectively each ANF in n variables and degree at most d, as an array
of |Wn

d | bits. It also contains the code to perform the polynomial operations needed in
Lokshtanov et al.’s algorithm.

The remaning modules implement the probabilistic algorithms. More details are provided in
the comments of the source code.

Although we did not focus very much on optimizations, we tried to take advantage of the
binary architecture of the processor. For instance, the elements of Fn2 are stored as 64-bits
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Algorithm 10: Dinur OutputPotSols.

1 function OutputPotSols({Ri(x)}`i=1, n1, w)
input : {Ri(x)}`i=1 probabilistic polynomials of degrees d ≥ 2 in the variables

x = (x1, . . . , xn), represented in ANF, n1, w.
output: A 2n−n1 × ` matrix Out where Out[i] = (U0(a

(i)), . . . , Un1(a(i))) and a(i)

is the i–th element of Fn−n1
2 according to a predefinite order.

2 Do a partition of the variables: x = (y, z) = (y1, . . . , yn−n1 , z1, . . . , zn1)

3 (V,ZV )← ComputeUValues({Ri(y, z)}`i=1, n1, w) // V ∈ F|W
n−n1
w |

2 is the truth

table of U0(y) over Wn−n1
w and ZV ∈ Fn1×|W

n−n1
w+1 |

2 is a matrix whose

i--th row is the truth table of Ui(y) over Wn−n1
w+1

4 u(0) ← Interpolation(V,Fn−n1
2 )

5 for i = 1, . . . , n1 do

6 ui ← Interpolation(ZV [i],Fn−n1
2 )

// u(i) ∈ Fn−n1
2 stores the coefficents of Ui(y) in ANF obtained via

interpolation

7 Evals← 0 // Evals is a n1 + 1× 2n−n1 matrix initialized to 0 such

that Evals[i][j] = Ui(a
(j)) where a(j) is the j--th element of Fn−n1

2

according to a predefinite order

8 for i = 0, . . . , n1 do

9 Evals[i]← ZetaTransform(u(i))// evaluate the truth table of Ui(y)

over Fn−n1
2

10 Out← 0 // initialize the output matrix Out ∈ F2n−n1×n1+1
2 to 0

11 for j = 0, . . . 2n−n1 − 1 do

12 if Evals[0][j] = 1 // check if U0(a
(j)) = 1, i. e., if a(j) could be

part of a potential solution

13 then
14 Out[j][0]← 1
15 for i = 1, . . . , n1 do
16 Out[j][i]← Evals[i][j] + 1 // copy potential solution by

flipping evaluation bit, since for a potential solution

(a(j), b) we have Evals[i][j] = Ui(a
(j)) = bi + 1

17 return Out
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Algorithm 11: DinurComputeUValues

1 function ComputeUValues({Ri(y, z)}`i=1, n1, w)
input : {Ri(y, z)}`i=1 probabilistic polynomials of degrees d ≥ 2 in the variables

(y, z) = (y1, . . . , yn−n1 , z1, . . . , zn1), represented in ANF, n1, w.

output: V ∈ F|W
n−n1
w |

2 the truth table of U0(y) over Wn−n1
w and ZV ∈ Fn1×|W

n−n1
w+1 |

2

a matrix whose i–th row is the truth table of Ui(y) over Wn−n1
w+1 .

2 Sols← BruteForceSystem({Ri(y, z)}`i=1, n− n1, w + 1) // Sols is a L× n
matrix such that the i-th row Sol[i] stores the i-th solution to

the system {Ri(y, z) = 0}`i=1 found with bruteforce on Wn−n1
w+1 × Fn1

2 ,

supposing that this system has L solutions

3 V ← 0, ZV ← 0 // initializaton of the truth tables for all the

Ui(y), i = 0, . . . , n1
4 for i = 1, . . . , L do
5 a← Sols[i][1, . . . , n− n1]
6 b← Sols[i][n− n1 + 1, . . . , n] // (y, z) = (a, b) is the i--th solution

7 if |a| ≤ w // values of the Hamming weight |a| exceeding w do not

contribute to U0(y)
8 then
9 j ← IndexOf(a, n− n1, w) // get the index of a in Wn−n1

w according

to a predefinite ordering

10 V [j]← V [j] + 1 mod 2

11 for k = 1, . . . , n1 do
12 if bk = 0 then
13 j ← IndexOf(a, n− n1, w + 1)
14 ZV [k][j]← ZV [k][j] + 1 mod 2

15 return (V,ZV )
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machine words (under the assumption n ≤ 64) and, when possible, operations between them
are performed using machine words instructions (bitwise xor, or, and, shift, popcount...).
In principle, this reduces the complexity by a factor of n. In particular, we used Gosper’s
algorithm [4, Item 175] to loop efficiently through the elements of Wn

w by using only few
instructions.

As source of randomness, which is essential to all the probabilistic algorithms, we found
that using the pseudorandom generator of the C standard library (linear feedback shift reg-
ister) is enough.

We remark that implementing these probabilistic algorithms presents a difficulty due to
their probabilistic nature. Precisely, while, for example, in an implementation of an algorithm
for Gröbner basis computation, one can run the implementation and check that at every step
the computation is consistent; For these probabilistic algorithms one cannot do the same,
since each step has a certain amount of randomness, and only at the end of the computation
the theory ensures that the probability of error is sufficiently small.

5 Experimental results

In this section, we illustrate our experimental results about the practical complexities of the
probabilistic algorithms. We decided to measure the practical complexity in terms of the
number of clock cycles taken by the algorithms. Of course, other choices are possible. For
example, measuring the time of execution. Nevertheless, different choices give results that are
essentially proportional to each other and do not change our general conclusions, since we are
mostly interested in the growth rate of the practical complexity.

In all our experiments, we randomly generated square (m = n, that is, same number of
equations and variables) quadratic systems that have a unique solution. We did so because if
P is a system having at most one solution, then determining the consistency of P is equivalent
to determining the parity of the number of solutions of P . So that, in this particular case,
the subroutine Decisional used in the algorithm Search (3) can be replaced by one of the three
algorithms LPTWY (4), BKW (5), and MultParityCount (6)1. We call the resulting algorithms
Search-LPTWY, Search-BKW, and Search-Dinur1.

All these algorithms use an internal loop of size s, which is chosen high enough to guarantee
an overwhelming probability of success in n. For LPTWY it is set s = 100n, while for BKW
and MultParityCount the choice is s = 48n + 1. In practice, we can significantly reduce this
value and keep a reasonably high probability of success in the algorithms Search-LPTWY,
Search-BKW, and Search-Dinur1. For a given n and several values of s, we estimated the
probability of success of the algorithms Search-LPTWY, Search-BKW, and Search-Dinur1 on
solving a square system of size n with s internal repetitions. In each case, we ran 100 samples
to estimate such a probability2. Based on these estimations, we approximate the minimum
value smin of s such that Search effectively finds a solution with probability greater than
2/3, see Table 1. Overall, for Search-BKW and Search-Dinur1 we have smin ≈ 3n, while
for Search-LPTWY this number grows roughly as 6n. In practice, the choice of only smin
internal repetitions represents a speed up by a factor of 15 for each algorithm, with at least

1To compute the parity of P with MultParityCount, we find the parity of the output of MultParityCount.
2Except in LPTWY with n = 16, 17 where we ran 20 iterations because each of them takes a considerable

amount of time.
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Table 1: Estimation of smin.

n 6 7 8 9 10 11 12 13 14 15 16 17

LPTWY 31 31 41 51 51 61 61 61 61 71 81 81

BKW 1 11 25 25 25 31 35 35 35 41 41 41

Dinur1 1 1 15 25 25 31 35 35 41 41 41 45

n 18 19 20 21 22 23 24 25

BKW 45 45 51 51 51 55 55 61

Dinur1 51 61 61 65 65 71 71 75

a probability of 2/3 of finding a solution.
In Figure 1, we compare the practical complexities of the algorithms Search-LPTWY,

Search-BKW, Search-Dinur1, Dinur2, and Bruteforce. For each of them, we measure the num-
ber of clock cycles needed to solve a square system with a unique solution. For Search-LPTWY,
Search-BKW, Search-Dinur1, we use the parameters suggested in the original papers with the
exception of s, for which we used smin, see Table 1. For Dinur2 we set n1 = b(1/5.4)nc satis-
fying the required n1 ≈ (1/5.4)n, so that Dinur2 has complexity O

(
n220.815n

)
bit operations

[12, Sec. 4]. For this configuration, we obtained that Dinur2 succeeds at finding a solution
with probability greater than 0.9 for every 6 ≤ n ≤ 20.

Figure 1: Clock-cycles of the probabilistic algorithms and Bruteforce on randomly generated
square quadratic systems over F2 with a unique solution.

From the data of Figure 1, we estimate the growth rates of the practical complexities of all
probabilistic algorithms considered in this paper. The results are shown in Table 2. To have a
more precise complexity estimation, we only use the data coming from 14 ≤ n ≤ nmax, where
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Table 2: Growth rate of the practical complexity of solving a square quadratic system with at
most one solution. In the case of Search-LPTWY, Search-BKW, Search-Dinur1, it means with
probability of success greater than 2/3.

Algorithm
Experimental Theoretical

nmax (14 ≤ n ≤ nmax) (n→∞)

Search-LPTWY 17 20.912 20.876

Search-BKW 25 20.876 20.804

Search-Dinur1 25 20.971 20.694

Dinur2 30 20.818 20.815

Bruteforce 30 21.022 21

nmax is the maximum value of n that we were able to test. We find that already for n ≥ 14
the probabilistic algorithms are catching up with brute force, meaning that, as the number of
variables increases by 1, the practical complexity of these algorithms increase by a factor less
than 2, while the practical complexity of brute force doubles. Assuming (pessimistically) that
the practical complexity of all the algorithms keep increasing by the factor shown in Table 2,
we get that (our implementation of) brute force is outperformed by LPTWY for n ≥ 129,
Dinur1 for n ≥ 132, BKW for n ≥ 60, and by Dinur2 for n ≥ 33.

We remark that the growth rate of the practical complexity of Dinur2 is very close to its
theoretical value as n → +∞, thus confirming Dinur’s estimate. The growth rates of the
practical complexities of the other algorithms are slightly bigger than their corresponding
theoretical values. We think that this is due to the polynomial factors that are ignored in the
asymptotic analysis of such algorithms (and in fact hidden by the notation O∗).

We also measured the memory used by the algorithms Search-BKW, Search-Dinur1, and
Dinur2 to solve random square quadratic systems for n = 18, . . . , 30 (for n ≤ 17, our imple-
mentation always uses about 2MB for default memory allocations), and compared it with the
theoretical values of s · 2n−n1 , s · 2n−n2 , and 4n1 · 2n−n1 bits, respectively. See Figure 2.

6 Conclusions and future works

Algorithms for solving Boolean polynomial systems are of essential importance in both pure
and applied mathematics, and it is still unclear what is the best computational complexity
that they can achieve. In fact, the computational complexities of many such algorithms are
determined only under restrictive hypotheses and/or for the average case.

Lokshtanov et al. [22] were the first to exhibit an asymptotically lower time complexity
than brute-force, by introducing a probabilistic algorithm that, in the worse case, solves a
square polynomial system in time O∗(2δn), for some δ ∈ (0, 1) depending on the degree of the
system, without relying on any unproved hypothesis. Their result was improved by Björklund
et al. [7] and Dinur [12, 13], who devised probabilistic algorithms with a smaller factor δ at
the exponent.

In this paper, we survey the theory behind these probabilistic algorithms, which is based
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Figure 2: Memory usage of the probabilistic algorithms on randomly generated square
quadratic systems over F2 (dashed lines) compared with theoretical values (solid lines).

on the zeta and Möbius transforms and the Razborov–Smolensky construction, and which is
much different from the approach of other algorithms for solving polynomial systems, e.g.,
Gröbner bases computation. We hope that by doing so we provided a useful resource for
researchers interested in approaching these methods.

Moreover, motivated by the fact that the asymptotic complexity of an algorithm is not nec-
essarily a good measure of its actual performance or real data, we illustrate the experimental
results that we obtained by running our implementations of the probabilistic algorithms [29]
on random square quadratic (Boolean) polynomial systems having exactly one solution.

First, we found that in the probabilistic algorithms the number s of iterations of the main
loop can be significantly reduced, thus improving the speed by a factor of about 15, while
keeping a reasonably high probability of success, see Table 1.

Second, we compared the practical complexities (in terms of clock cycles) of the probabilis-
tic algorithms, finding that for n ≥ 14, despite being slower than brute force, all algorithms
are already catching up on brute force, with respect to the growth rates of their practical
complexities, see Figure 1 and Table 2. In particular, we found that already for n ≥ 14
the growth rate of the practical complexity of Dinur2 is very close to its theoretical value as
n→ +∞, which confirms Dinur’s results [12]. We estimate that in our implementation brute
force should be outperformed by LPTWY, BKW, Dinur1, and Dinur2 for n ≥ 129, n ≥ 60,
n ≥ 132, and n ≥ 33, respectively.

We believe that our study of the practical complexities shows that these probabilistic
algorithms are not only very important theoretical results, but also have actual consequences
for applications, that is, future efficient implementations of them could be among the fastest
in solving Boolean polynomial systems. Indeed, although our current implementation of the
probabilistic algorithms (which is written as a proof of concept, keeping it simple, and without
focusing on optimizations) is slower than brute-force, it already shows that the growth rates of
the practical complexities catch up quickly with their theoretical values, especially for Dinur2.
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Therefore, it is reasonable to expect that more efficient implementations of the probabilistic
algorithms will beat brute-force already for small values of n. Efficient implementations of
the zeta transform, for example exploiting parallelism via GPUs [6] or FPGAs, might be
relevant. We hope that this work will contribute to stimulate further research in the direction
of efficient implementations of these probabilistic algorithms and their potential descendants
or variations.
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